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Abstract: The existing Big Data of transport flows and railway operations can be mined through
advanced statistical analysis and machine learning methods in order to describe and predict well
the train speed, punctuality, track capacity and energy consumption. The accurate modelling of
the real spatial and temporal distribution of line and network transport, traffic and performance
stimulates a faster construction and implementation of robust and resilient timetables, as well as
the development of efficient decision support tools for real-time rescheduling of train schedules. In
combination with advanced train control and safety systems even (semi-) automatic piloting of
trains on main and regional railway lines will become feasible in near future.
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Closing the loop between data mining
and fast decision support for
intelligent train scheduling and traffic control
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(Delft University of Technology, Delft 2628CD, the Netherlands )

Abstract; The existing Big Data of transport flows and railway operations can be mined through

advanced statistical analysis and machine learning methods in order to describe and predict well

the train speed, punctuality, track capacity and energy consumption, The accurate modelling of

the real spatial and temporal distribution of line and network transport, traffic and performance

stimulates a faster construction and implementation of robust and resilient timetables, as well as

the development of efficient decision support tools for real-time rescheduling of train schedules. In

combination with advanced train control and safety systems even (semi-) automatic piloting of

trains on main and regional railway lines will become feasible in near future.

Keywords:intelligent train rescheduling; train control; big railway data; statistical learning; ro-

bust timetabling

1 Introduction

Every day, a huge amount of data on the

actual transport flows containing the number,
origin and destination of railway passengers, cargo
and trains is collected and saved by railway under-
takings. Simultaneously, signals, track circuits,
axle counters, interlocking machines, radio block
centres, substations and on-board units generate
and communicate automatically billions of real-
time messages on the actual occupation of the rail-
way infrastructure and rolling stock, respectively.
The digital data is filtered, selected and used for
line planning, timetabling, traffic control, failure,
incident/accident detection and maintenance sched-
uling in order to ensure safe, punctual and efficient
train operation, as well as reliable customer and
management information.

The enormous size and speed of new informa-
tion requires very powerful data processing,
storage and analysis tools to be understood and

handled well by the railway personnel and staff.

Which kind of data is now relevant for intelligent
train scheduling, traffic management and customer
information? Above all, the compilation and com-
munication of safety-related vital data must be as-
sured so that the responsible staff members can
take appropriate decisions quickly, if necessary.
This means any signalling and safety system data
affecting thereal-time train detection, safe route
interlocking, headway calculation, train control
and movement authority are crucial. Non-vital
data, as regular passenger and cargo flow informa-
tion, train delay records or commercial advertise-
ment may be transmitted later on and analysed off-
line.

However, the capability, reliability and speed
of on-line information recognition, evaluation and
decision making of the railway personnel involved
in train driving, scheduling and traffic control is
limited. Depending on the traffic density and
trains > speed, actual environmental conditions
(weather, visibility, noise), clarity of the infor-

mation, complexity of the operator’s task, and
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personal professional experience the reaction time
of train drivers and traffic/signal controllers varies
considerably. In general, a well-trained driver of a
conventional train is expected to start braking if a
signal aspect changes to yellow or red within a few
seconds. Ergonomic and empirical research on the
work load and the time to take a decision of train
drivers and railway dispatchers/traffic controllers,
respectively is still very rarel*?,

The main barriers for a successful development
and implementation of intelligent decision support
tools for real-time train scheduling and traffic con-
trol are;

1) Clear distinction and fast reliable data trans-
mission between vital signalling & safety systems
and non-vital decision support systems for
planning, dispatching and train driving;

2) High robustness, accuracy, computation
and communication speed of real-time rescheduling
and driver advisory tools;

3) Insufficient performance evidence and end
user acceptance in daily practice;

4) Missing clarity and easy understanding of
the user interface and output;

5) Diverging political, business and social in-
terests of stakeholders.

The objective of the following section is to de-
scribe briefly, how some complex and routine hu-
man tasks for timetabling, train dispatching and
traffic management can be performed through

more efficient computerized decision support sys-

tems,

2 Promising computerized decision
support approaches

2.1 Statistical learning
Principal train operations times, such as running/
headway/dwell/arrival/departure/delay times, can be

monitored and analysed rather easily based on auto-

matically generated train detection, signalling and
safety system data ( track occupation/clearance,
signals, switches, route set-up/release, movement au-
thority). Updating of scheduled process times was
done in the past mostly only when timetables changed,

new rolling stock was employed or obviously proved

infeasible by simply increasing the scheduled times
here and there. Instead, the distributions of the main
train operations times should be analysed regularly off-
line in order to estimate their statistical fitting and
standard parameters that may be used for the ex-post
evaluation of timetable quality and train operations
performance, as well as for a consistent, more
accurate adaptation of the scheduled train operations
times. By the way, the probability distribution of run-
ning times and dwell times are generally right-skewed
due to scheduled supplements and possible headway
and route conflicts. Arrival delays seem to fit
lognormal and gamma distributions, while departure
delays fit well to negative exponential, Weibullor gam-
ma density distributions™,

Online prediction of train operation times re-
quires the use of sophisticated statistical learning
methods. For this purpose Multiple Linear Regres-
sion (MLR), Regression Tree (RT), and Random
Forest (RF) models have been tested for the esti-
mation of running times and dwell times, respec-
tively, on a local and a global level™. The local
model described the variation of running times of
trains of the same line over a particular lock
section, while the global model aggregated the
process times of all recorded trains into two sepa-
rated test sets for running times and dwell times,
respectively, The process times of the trains which
had been hindered by preceding trains or route con-
flicts have been filtered out, so that only conflict-
free running times have been included in the data
set. As the models must be robust against outliers,
models that can cope with errors are favoured com-
pared to models with high variance that may
overfit the data. The prediction accuracy of the
trained models for running times was significantly
less than for dwell times, because the former de-
pend only weakly from train delays, while arrival
delays and variation of passenger volume between
peak and off-peak periods impact strongly on the
latter. The prediction error of the global models
was clearly higher than of the local models. Com-
paring the accuracy of the different methods, the
least-trimmed squares (LTS) method for robust

linear regression outperformed the RM model and
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even more clearly the RT model for, both,

running time and dwell time.
2.2 Robust timetabling

Four main approaches for timetabling can be
distinguished: graphical, analytical, simulation
models, and combinatorial optimization models.

1) Graphical timetable models like time-
distance diagrams of scheduled train arrival and de-
parture times at stations and platform track occu-
pation times are standard means to illustrate the
planned movement of trains and the use of track
infrastructure generally at macroscopic scale (mi-
nutes, kilometres). Train diagrams are also used
to examine quickly the timetable feasibility based
on the expected transport demand (train frequency
and speed) and required ( minimum) headway
times on each line. However, the discretisation
steps of macroscopic graphical timetable models
are too big for describing accurately the impact of
technical and safety constraints concerning track a-
lignment, signalling, interlocking and train dy-
namics on track capacity®?,

2)So far, railway timetables are based princi-
pally on deterministic running, dwell and headway
times between stations, Small variations of the
service times are compensated by standard running
time and dwell time supplements, as well as mar-
gins (buffer times) between the train paths. The
determination of supplements and buffer times in
practice is mainly based on rules of thumb, some-
times validated by simulation. Queuing models en-
able to estimate the waiting time of a timetable as
a function of track occupancy and the coefficients
of variation of the scheduled headway and service
times of individual lines and simple stations, Major
stations with multiple tracks and routes may be
modelled as multi-channel service systems. How-
ever, the type, properties and parameters of the
distributions of stochastic analytical models need to
be validated by means of statistical analysis of real-

71 Scheduled waiting times

world operations data
generated by stochastic variables of the timetable
must be clearly distinguished from estimated origi-
nal and consecutive delays during operations. In

particular on densely occupied, strongly intercon-

nected networks this may lead to underestimation
of the delay propagation, because the real train
speed and service time of the signaling and safety
systems at headway and route conflicts are mostly
unknown. The distributions of headway times at
arrivals and service times in stations, in fact, are
stochastically interdependent,

3)Macroscopic simulation models used for the
estimation of varying train trip and dwell times
cannot estimate accurately the impact of specific
rules of operation, different signalling and safety
systems, block signal spacing, local speed restric-
tions, interlocking of signals and routes, train
length, braking and acceleration, ( minimum)
headway times, and delays experienced in station
areas. In the worst case, tight train schedules
might even become infeasible and train delays, in
fact, would be underestimated. That is why micro-
scopic timetable simulation models have been de-
veloped and implemented in several European rail-
way networks and countries'®, Headway and route
conflicts, use of track capacity and the propagation
of primary and consecutive delays are computed on
the basis of so called blocking time diagrams at a
scale of seconds and metres, thus being 60 times
more precise than beforet.

4) Combinatorial optimization models aim at

solving the formulated (timetable) problem for a

certain objective function under predefined con-

straints to optimality and, thus, generating an op-
timal design for individual train departure and arri-
val times in a network. They are computed via
(Mixed) Integer Linear Programming ((M)ILP)
by means of a general-purpose solver or, if intrac-
table, by heuristic methods using e.g. Branch-and-
Bound or LLagrangian relaxation. When the scope of
the investigated railway network and data exceeds
the computation memory and speed for solving the
timetable problem a hybrid optimisation approach
integrating macroscopic global network timetable
optimisation and microscopic simulation of local/

[10-11]

regional networks offers a loophole In

general, optimisation models apply deterministic
variables for searching the (near) optimal value of

the objective function as minimisation of overall
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running times in networks at given constraints like
minimum headway and transfer times between
train are also validated insufficiently. The
feasibility of the given scheduled train running
times and minimum headway times is often not
proven with respect to conflict-free train routing in
multi-track stations, while the exact track occupa-
tion, size, allocation and use of timetable slack re-
mains unknown. An exemption is the recent itera-
tive approach for constructing an innovative
conflict-free and passenger robust routing plan and
microscopic timetable for complex railway station

which

allocation of buffer times and supplements

areas from scratch, enables a smart

[12]
However, the running times and safety headway
times are still treated as given timetable design in-
put and the train speed profiles are not optimised.
Essential graphical output for the evaluation of
train schedules in form of e.g. standard time-dis-
tance, speed-distance and headway time distribu-
tions is missing in  most mathematical
programming publications, which is an important
barrier for their application in practice.
2.3 Real-time rescheduling

Smaller train delays (one to two minutes) are
recovered automatically due to existing running
time supplements (at least 3 % on top of the mini-
mum technical running time) and knock-on delays
are avoided or reduced by buffer times (at least one
minute) provided in the timetable. Larger delays of
individual trains may disturb the train traffic,
while technical failures lead mostly to disruptions
of train operations at least in one direction lasting
longer than one hour. Real-time rescheduling
models can support dispatchers and traffic control-

lers in recognizing and solving route conflicts
quickly. Regular train delays that lead to
congestion of trains at junctions and stations and
may propagate over (parts of) the network, so
far, are handled locally by simple dispatching
measures (holding, rerouting, reordering, cancel-
lation) based on experience. Major disruptions due
to technical failures, very bad weather or accidents
are managed by (centralised) traffic controllers u-
On densely

sing ( static) contingency plans.

occupied lines, in particular single track sections
every disruption reduces the track capacity signifi-
cantly so that cancelling some train services is una-

voidable. The

decisions may be sub-optimal, because they are fed

efficiency of the dispatching
only by radio communications, limited visual net-
work traffic incident information and cannot
predict well the impact of their measures on the lo-
cal and regional network traffic.

During the past decade, a few computerised
real-time rescheduling tools have been developed
that can and must generate quickly (near) optimal

disturbed/disrupted local and

[13-20]

timetables for
regional networks

Real-time rescheduling models need to address
and solve subsequently:

1)Data loading from and communications with
the signalling, safety, traffic control and interloc-
king systems,

2)Route assignment to each train.

3) Detection and resolution of potential
headway and route conflicts.

4)Determination of exact arrival and departure
times at the borders of the network, intermediate
stations, and relevant signals/junctions/crossings.

5) Adaptation of speed profiles.

None of these tools was connected, communi-
cated and tested until today in real-time with data
processors and traffic control operators of railway
undertakings. All tools had to compile previously
saved copies of log files containing the train sched-
ules, signal box and interlocking messages as input
data for testing. The output was then computed of-
fline in laboratories, because the railway undertak-
ings still hesitated to let test and demonstrate the

use of rescheduling tools simultaneously in real
world traffic control operations., That means the

proposed dispatching measures in case of incidents
and new real-time traffic plans could not be presen-
ted online to traffic controllers on duty in order to
be confirmed or rejected and the performance of
the rescheduling tool be compared with the dis-
patching decisions made by dispatchers,
Nonetheless, an innovative framework for

closed-loop control of railway traffic during pertur-
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bations has been developed and demonstrated re-
cently by means of simulation in case studies on
four main railway corridors in United Kingdom,
the Netherlands, Sweden and Norway'*), Optimal
Real-Time Traffic

predictions over a given optimisation horizon have

Plans based on traffic

been computed and presented to a human

dispatcher by means of a Human-Machine

Interface. If accepted, the plans can be
implemented directly by an Automatic Route
Setting module through setting up the optimised
train routes and transmitting speed advices for en-
ergy-efficient driving by the Driver Advisory Sys-
tem. Two different conflict detection and
resolution modules (ROMA and RECIFE) have
been adopted for the simulated Iron Ore line in
Sweden/Norway in order to compare their per-
formance.

The existing models for (optimised) rerouting
and rescheduling in case of incidents and (partial)
track blockage differ with regard to scope (often
restricted to a few standard ( passing) routes
within interlocking areas), discretisation (macro-/
meso-/ microscopic infrastructure; train length and
( position,  speed,

operation  time  steps

acceleration, deceleration)), and discrete event or
synchronous computation of track occupation/
clearance, interlocking times with (out) partial
route release, headway and corresponding blocking
times. The applied mathematical integer program-
ming methods for route and headway conflict de-
tection range from e.g. Alternative (job-shop dis-
junctive graphs with train speed coordination**1,
Bi-level Conflict  Grapht'™,

Resource-based set-packing with speed alteration

Resource  Tree

on entrance of block sections'® to Mixed-integer

linear  program  without speed  variations
(Pellegrini). In general, heuristic algorithms are
needed to solve the rerouting and rescheduling
problem within short time (one to two minutes) in
order to satisfy the dispatcher’s tasks. The pre-
ferred objectives of the real-time rescheduling
models may be minimization of @) (maximum)
consecutive train delays, (@ consecutive passenger

delays or Q) priority weighted timetable deviation.

The minimization of total train delays is also used
as objective. However, this objective is infected by
primary delays, which occur independently from
applying a rescheduling tool, whereas it can reduce
the amount of knock-on delays more or less.
2.4 Driver advisory systems

Train drivers cannot precisely determine the
earliest and latest time to start coasting and
braking in order to maximize energy-saving and to
arrive just on time, respectively. Only well trained
and experienced train drivers know the amount of
available running time supplement of their trains’
trip and may recover (partly) from delays. Current
train Driver Advisory Systems (DAS), if applied
on top of Automatic Train Protection (ATP)/Au-
tomatic Train Control (ATC) systems, are bound
to the simple communication of the amount of
actual train delay (scaled in minutes) and predeter-
mined local speed advices for regular train
operation without considering the impact of actual
train delays and traffic congestion in the network,

Some Urban Rail

Europe, North America and Japan have implemen-

Rapid Transit systems in

ted on-board a kind of Automatic Cruise Control
(ACC) that controls continuously the individual
trains’ acceleration, actual speed and deceleration

according to the nominal speed profile, distance

travelled, traction/braking force and safety
headway required.

Intelligent driver advisory systems can make
use of real-time traffic information generated by
the signalling and safety systems, which are com-
municated via digital radio/Radio Block Centre
(RBC) to the central traffic control unit. Flexible
speed advices are required in particular for densely
occupied railway lines operated by a mix of trains
with different maximum speed levels and stop pat-
terns, heavily loaded (freight) trains and at abnor-
mal weather conditions. The central traffic control
unit then computes and transmits globally
optimised speed profiles in real-time to the on-
board unit of each train involved in order to
generate conflict-free and energy-optimal speed ad-
vices at local level. The DAS system architecture
intermediate or on-board

may be central,
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depending on where the re-computation of speed
trajectories and speed advices, respectively, takes
place® .  The

algorithms for the Dreal-time prediction of train e-

development of intelligent
vent times, @ computation and communication of
accurate advisory speed changes based on optimal
speed profiles @at open track sections and in inter-
locking areas is a very challenging actual research

Proven DAS

conflict-free train operations, reduce train delays,

[23-25]

topic systems can assure

improve punctuality of train services and.save ener-
gy. The advisory speed information is not-vital and

would be overruled by the ATP/ATC system in

case of over-speed, headway or route conflict.

3 Conclusions

The attractiveness, transport volume and
market share of the railways increase, if the capac-
ity of the infrastructure, quality of train services,
accuracy and reliability of real-time process infor-
mation was improved. This can be achieved by an
integrated approach for lifting the treasure of exist-
ing Big Railway Data through sharing transport,
technical, operations, safety and business data,
developing advanced statistical analysis and
learning methods in order to describe and predict
better the determinants of real train speed, punc-
tuality, capacity and energy consumption. Further
research on the spatial and temporal distribution of
railway transport, traffic and performance line by
line, as well as local, regional and national net-
works, will stimulate the development, test and
faster implementation of robust timetables, while
the introduction of efficient decision support tools
for real-time rescheduling of train schedules can
minimise the impact of incidents and disruptions on
capacity and quality of operations. The dedicated
railway infrastructure and high performance of
train control and safety systems favours automatic
piloting of main line and even regional trains‘®*,
The most important actual barriers for faster
and ( near optimal ) re-planning of railway
operations in case of traffic disturbances and dis-
ruptions are not limited technical resources or

computational power, but current human compe-

tences of timetable planners, train drivers and traf-
fic controllers, as well as organisational barriers
due to the separation between infrastructure man-
agement and train operating companies. The reti-
cence of human actors against innovative train
driving and rescheduling can be resolved by infor-
mation, training and incentivising. The elimination
of organisational barriers in the railway industry
require wise political governess dominated by soci-

etal aims and not by fragmented business goals,
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