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Abstract—This paper investigates the joint range, Doppler and
Direction-of-Arrival (DOA) estimation with a wideband phased
array in the presence of phase residual which brought by the
range-Doppler couplings. 3D MUSIC algorithm is adopted and a
compensation approach is proposed to eliminate the influence of
the phase residual on the estimation accuracy. Tensor Decompo-
sition (TD) is applied to obtain the noise subspace. Therefore,
the spatial smoothing technique can be avoided. Simulation
data validate the improvement of joint parameters estimation
performance using the proposed method.

I. INTRODUCTION

Detection and localization of moving targets are impor-
tant in many fields such as automotive radar, ground mov-
ing target indication (GMTI), underwater acoustic array. Af-
ter deramping for frequency-modulated-continuous-waveform
(FMCW) signal or range compression for pulse radar, the
parameters of moving targets can be jointly revealed by
the multi-dimensional sinusoids data. The spectral analysis
tool and spectral estimator can be applied to extract these
parameters. Many traditional single frequency estimators have
been proposed and can be extended to multiple dimensional
frequency estimator. One of the most famous estimators is
Fourier transform, which is simple and efficient. However,
Fourier transform is criticized due to its bad resolution per-
formance, especially when the data size is limited. Subspace-
based methods, like two dimensional multiple signal clas-
sification (MUSIC) [1] and two dimensional estimation of
signal parameters via rotational invariance technique (ESPRIT)
[2], explore the orthogonality between signal subspace and
noise space and achieve resolution limits beyond Rayleigh
criterions. Owing to the excellent performance of the resolution
and accuracy, algorithms from this group are promising in
the real application. Some other optimization estimators are
proposed recently as well, but most of them suffer the heavy
computational burden or are sensitive to the initial guess.

In recent years, when wideband radar signal became widely
used due to the requirement of improving range resolution,
the range migration problem has attracted significant attention.
This problem becomes especially severe for radars with large
operational bandwidth and fast moving targets [3]. A variety of
algorithms have been proposed to specifically tackle this prob-
lem. The iterative adaptive algorithms (IAA) presented in [4]
provide super-resolution estimation by alternatively calculating
covariance matrix and estimation results. This algorithm is
extended to the wideband waveform case with range migration
problem in [3] and a fast implementation is further proposed

in [5]. The problem for IAA is that the algorithm consumes
huge memory and time when the raw data dimension is large
and the scanning area is divided into dense bins, which makes
the algorithm not practical for the real-time application. The
Keystone transform (KT) and matched filter in [6] were used
to eliminate range walk problem and Radon Fourier transform
(RFT) was proposed in [7] to consider even higher order
coupling problems by line or curve searching in the time-
frequency domain. However, since these approaches need large
raw data size to do interpolation and coherent integration, they
could not provide the comparably high resolution as other
super-resolution algorithms mentioned in [1], [2]. Implementa-
tion of RFT is also time-consuming for line searching in multi-
dimensional data. Although many waveform design methods
are proposed to solve range migration problem [8], these
algorithms increase the system complexity and the resolution
is not as high as super-resolution algorithms. It is worth noting
that, the definition of conventional range migration, which
shown as a coupling term in the data model, is based on the
Rayleigh criterions. However, the resolution of subspace-based
methods has broken such criterions, so the coupling term will
always decrease the performance of these methods more or
less even if the target migrates less than one range resolution
cell in one coherent processing interval (CPI). As such, for the
purpose of not misleading, the term of phase residual will be
adopted rather than range migration in the following.

In this paper, we propose a 3D MUSIC-based algorithm
for the joint estimation of range, Doppler and DOA using
wideband pulse Doppler radar. In addition, an embedded
compensation approach is proposed to suppress the influence
of the phase residual phenomenon. Besides, TD is applied
here to extract the noise subspace. Thus, the spatial smoothing
technique for improving the detectability of the coherent
sources can be avoided. The rest of the paper is organized
as follows. In section II, the signal model for the wideband
phased array is presented. In section III, compensated 3D TD-
MUSIC is introduced to estimate the range, Doppler and DOA
jointly. The simulation results are shown in section IV and
finally, conclusions are drawn in section V.

II. WIDEBAND MODEL

A. Element Received Signal Model
A pulse-Doppler radar with wideband waveform is con-

sidered herein. Assume there are I fast moving scatterers
presented in the far-field and the reflection of these scatterers
are received by a uniform linear array (ULA). The received



signal for a single element is considered at first. The received
data model Y ∈ CK×M can be conveniently expressed after
FT on the fast-time as

Y =

I∑
i=1

xiAi + N (1)

where i = 1, 2, ..., I , xi, represent the number index of scat-
terers and the complex amplitude of ith scatterer, respectively,
Ai is a K×M matrix containing the signature of ith scatterer
and N is additional white Gaussian noise with power σ2. The
signature Ai involved in (1) has been studied in [9] and is
shown to be the product of a two-dimensional (2D) sinusoids
with cross-coupling terms.

Ai = exp
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where τi denotes the initial round-trip delay of ith scatterer,
vi denotes the velocity of ith scatterer in the range direction,
B denotes the bandwidth, fc denotes the carrier frequency, Tr
denotes the pulse repetition interval, k = 0, 2, ...,K−1 denotes
fast-time/frequency index, m = 0, 1, ...,M − 1 denotes slow
time/frequency index, and K is the number of sampling points
in fast time and M is the total number of pulses, respectively.

In (2), the first two components represent a fast-time
frequency sampled at a rate B/K and a Doppler frequency
2vfc/c associated with slow time sampling Tr. The third term
brought by the wide bandwidth and the radial movements of
the scatterers is the cross-coupling between fast-time and slow-
time.

B. Array model
The array data model can be established then. The steering

vector of ULA aθi ∈ CL×1 is

aθi = [1, ej2π
d
λ sin θi , . . . , ej2π

(L−1)d
λ sin θi ]T (3)

where l = 0, 1, . . . , L − 1, L, d, λ, and θi, respectively,
represent the index of elements, the number of elements, the
inter-space of the neighbouring elements, the wavelength of
centre frequency and the DOA of ith scatterer. By using the
steering vector, the data model of a single element is extended
to array data model as
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The discrete data are stacked and further simplified by using
the notations ωdi ∈ CM×1 and ωri ∈ CK×1 as

ωdi = [1, ej2π
2vifc
c Tr,...,e

j2π
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]T
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where [·]m,k denotes the entry in the (m + 1)th row and the
(k+1)th column. The array model S ∈ CL×M× K then can
be written in a compact way as

S =

I∑
i

xi(a
θ
i ◦ ωdi ◦ ωri )� (1L ◦Ωdr

i ) (7)

where 1L = [1, 1, ...1]T ∈ RL×1, ◦ and � denote the outer
product and Hadamard product, respectively. The array data
model in the presence of noise is rewritten as

Y = S +N (8)

where N l,m,k ∈ CL×M× K represent the white Gaussian
discrete noise.

III.TD AND COMPENSATED 3D MUSIC ALGORITHM

In this section, the TD-based 3D MUSIC algorithm with
phase residual compensation is presented. One of the key step
of MUSIC algorithm is the extraction of the noise subspace.
Usually, the spatial smoothing technique is applied to obtain
the smoothed covariance matrix to increase the detectability of
the coherent sources. However, the usage of spatial smoothing
decreases the effective raw data size. TD is adopted here to
extract the noise subspace to avoid this side effect. Unlike
the method in [10], in which the author formulates the multi-
dimensional covariance matrix, TD is directly performed.
Here, the number of the sources are assumed to be known
as I . In fact, although the rank-one components of TD are
not mutually orthogonal, they could represent the whole signal
subspace. The orthogonalization process is applied to orthogo-
nalize and unitize these components. Next, the noise subspace
can be easily obtained from orthogonal complement subspace
of the signal subspace. However, the received signals cannot be
extracted exactly as rank-one components due to the coupling
terms in the data model. Thus a compensation is made before
TD to adjust the phase of the signal reflection of one target to
a rank one component. As the targets with different velocity
have different coupling phase residuals, the compensation has
to be implemented in each velocity bin. Therefore, the velocity
term is chosen as the first scanning domain to reduce the
computational complexity.

The compensation term for the coupling at the velocity
scanning bin vp is written as coupling component D ∈
CL×M× K as

D = 1L ◦Ωdr
p (9)

Then multiply the conjugate compensation term with raw data
elementwisely as

Ŷ = Y �D∗ (10)

where (·)∗ means complex conjugate of a matrix. Since the
compensation term is just a phase shift, it will not increase
the noise power. The new data which the coupling term is
removed for the velocity vp are obtained. Then the range and
angle scanning can be performed in current velocity bin.

After removing the phase residual in velocity bin vp, TD
is applied to extract I rank-one component. It is worth noting
that these rank-one components cannot represent all the targets
signal subspace. Only the targets with velocity vp, whose



the phase residuals are compensated, is rank-one component
among them.

Then by outer product and orthogonalization process, the
signal subspace is reformed as the unit orthogonal column
matrix. After that, the noise subspace is obtained by orthogonal
projection as

UnUH
n = I−UsU

H
s (11)

where I is the identity matrix. The steering function vector is
formulate for scanning bin [θp, vq, rh] as

α = aθp ⊗ ωdq ⊗ ωrh (12)

The MUSIC spectrum is

Pp,q,h =
1

αH(I−UsUs
H)α

(13)

Above all, the algorithm is concluded in Algorithm (1)

Algorithm 1 compensated 3D TD-MUSIC

for vp in [−vm, vm] do
Ŷ := Y �D∗

Ŷ =:
∑I
i ai ◦ bi ◦ ci # Tensor Decomposition

Us(i) := ai ⊗ bi ⊗ ci

Us(i) :=
Us(i)

||Us(i)||
Us := orth(Us) # Orthogonalization
UnUH

n := I−UsU
H
s

for θq in [−θm, θm] do
for rh in [0, Rm] do
α := ωdp ⊗ ωθq ⊗ ωrh
P :=

1

αH(I−UsUs
H)α

endfor
endfor

endfor

IV.SIMULATION

In this section, the influence of bandwidth and target radial
velocity on estimation error is analyzed and the ability of joint
Doppler and DOA estimation using the proposed method is
evaluated. The parameters of the simulation are shown in Table
(I). Here the range resolution of the system is

c

2B
= 0.15m. It

TABLE I: System Parameters

Parameters Values
Carrier frequency 10 GHz
Number of antenna elements 8
Number of fast-time samplings 64
Number of pulses for CPI 8
Distance between elements 15 mm
Bandwidth 1 GHz
PRI 0.1 ms
SNR 10 dB

is obvious that the coupling term will decrease the performance
of the MUSIC algorithm because it destroys the rank-one
structure of the signal component. Part of the signal energy
will leak into noise part. Therefore, the signal subspace cannot
represent the true signal parameters. For the estimation error
example please refer [11].

Three targets at the coordinates (range (m), angle (de-
grees), velocity(m/s)) (9, 30, 60), (7, 40, 55) and (8, 35, 50) are
correspondingly set to simulate multiple moving targets. In
this simulation, we assume the number of targets is known.
However, the coupling terms usually make it very difficult to
correctly estimate the number of sources. Thanks to the fact
that the dynamic noise subspace is guaranteed to be orthogonal
to the steering function vector, the number of the sources is
allowed to be slightly overestimated. The estimation of the
model rank will be discussed detailly in the future publication.
There are many algorithms and tools of tensor decomposition
available and in our simulation, the nonlinear least square
(NLS) is adopted [12]. The simulation results using 3D TD-
MUSIC compensation are shown in Fig. 1(a) and Fig. 2(a),
respectively. From the figures, one can see that all the peaks
corresponding to the targets reveal in the right position with
high resolution. All the results are normalized and restricted
in 20 dB for better observation.

For comparison, the results using same 3D TD-MUSIC
algorithm without compensation are shown in Fig. 1(b) and
Fig. 2(b), the peaks corresponding to the targets appear at the
biased position and the closed targets appear as ghost targets.
According to the system parameters, although the target may
not migrate more than one range resolution cell, the coupling
terms influence the resolution and accuracy significantly. Thus,
the phase residual phenomenon should not be ingnored in the
super-resolution algorithms.

The simulation results successfully validate the improve-
ment of estimation performance on accuracy and resolution.
The time for one slice map in Fig. 1(a) is around one minute,
while the time for FT is less than one second. Although
3D TD is more computationally intensive than conventional
FT, it provides much higher resolutions on estimation. This
algorithm could be a subsidiary to provide better estimation in
the local spectrum after implementing FT. Moreover, with the
parallel processing and more powerful hardware techniques,
TD-MUSIC could be a very promising algorithm in the future.

V. CONCLUSION

In this paper, we have proposed the 3D TD-MUSIC al-
gorithm with the coupling phase residual compensation for
joint estimation of range, Doppler and DOA by wideband
radar. The influence of the coupling phase on the parameters
estimation is removed at first by applying a compensation
process for each velocity scanning bin. Then TD is applied
to decompose the 3-dimensional raw data, and corresponding
orthogonal signal subspace is obtained by orthogonalizing the
outer product of rank one component. Finally, the 3D MUSIC
algorithms are used to estimate the range, Doppler and DOA
jointly. The simulation results validate the improvements of
proposed methods with high resolution in joint range, Doppler
and DOA estimation.



(a)

(b)

Fig. 1: Range-angle map at velocity 60 m/s (a) with phase
compensation, (b) without phase compensation
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