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Topological approach to measure network
recoverability
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Abstract—Network recoverability refers to the ability of a
network to return to a desired performance level after suffering
malicious attacks or random failures. This paper proposes a
general topological approach and recoverability indicators to
measure the network recoverability in two scenarios: 1) recovery
of damaged connections and 2) any disconnected pair of nodes
can be connected to each other. Our approach presents the effect
of the random attack and recovery processes on the network
performance by the robustness envelopes of realizations and the
histograms of two recoverability indicators. By applying the ef-
fective graph resistance and the network efficiency as robustness
metrics, we employ the proposed approach to assess 10 real-
world communication networks. Numerical results verify that
the network recoverability is coupled to the network topology,
the robustness metric and the recovery strategy. We also show
that a greedy recovery strategy could provide a near-optimal
recovery performance for the investigated robustness metrics.

Index Terms—Robusteness; multiple failure; Recoverability

I. INTRODUCTION

In communication networks, disaster-based failures and
damage to optical fiber cables can partially overload data
delivery, resulting in un-availability of communication services
[1]. The causes for such massive failures include: human
errors, malicious attacks, large-scale disasters, and environ-
mental challenges [2]. Calculating the performance of net-
works under such challenges can provide significant insight
into the potential damage they can incur, as well as provide a
foundation for creating more robust infrastructure networks.

Network robustness is interpreted as a measure of the
network’s response to perturbations or challenges imposed
on the network [3], which has been studied extensively in
recent years. Van Mieghem et al. [3] propose a framework
for computing topological network robustness by considering
both a network topology and a service for which the network
is designed. In communication networks, Cholda et al. [4]
survey various robustness frameworks and present a general
framework classification, while Pašić et al. [5] present the
FRADIR framework that incorporates reliable network design,
disaster failure modeling and protection routing. A wide
range of metrics based on the underlying topology have been
proposed to measure network robustness [6], and further a
structural robustness comparison of several telecommunication
networks under random nodal removal was presented in [7].

In a board sense, network robustness is also related to
the ability of a network to return to a desired performance

level after suffering malicious attacks and random failures
[8]. We define such network capability as network recover-
ability1 in this paper. Several recovery mechanisms have been
investigated under different circumstances [9], particularly in
complex networks applications. Majdandzic et al. [10] model
cascading failures and spontaneous recovery as a stochastic
contiguous spreading process and exhibit a phase switching
phenomenon. The recovery strategies based on the centrality
metrics of network elements (e.g., nodes or links) are inves-
tigated in [8][11], which show that a centrality metric-based
strategy may not exist to improve all the network performance
aspects simultaneously. A progressive recovery approach [12],
that consists in choosing the right sequence of links to be
restored after a disaster in communication networks, proposes
to maximize the weighted sum of the total flow over the entire
process of recovery [13], as well as to minimize the total cost
of repair under link capacity constraints [14].

Although the above papers [8]–[14] have contributed to this
field, a general framework or methodology for quantifying
the recovery capability of a real communication network is
still lacking. In this paper, we propose a topological approach
and two recoverability indicators to measure the network
recoverability in two different scenarios, link-based Scenario
A and energy-based Scenario B. Specifically, Scenario A
assumes that any disconnected pair of nodes can be connected
to each other in the recovery process, which can describe the
recovery process for logical networks. Scenario B restricts the
under-repaired links to the damaged links in the attack process,
which describes the recovery process for physical networks.

The proposed approach involves three concepts: the network
topology, the robustness metric and the recovery strategy. For
a communication network G, we apply the network efficiency
EG and the effective graph resistance rG as the robustness
metrics for case studies. The network efficiency EG gives
an indication of the efficiency of information exchange on
networks under shortest path routing [15], while the effective
graph resistance determines the overall diffusivity of infor-
mation spreading in a communication network [16]. Besides
a random recovery strategy and some strategies based on
topological properties, we also consider a greedy recovery
strategy. In the greedy strategy, the damaged element (a node
or a link) which improves the network performance most has

1Sometimes network restoration is used



the highest priority to be recovered. We test our approach in 10
real telecommunication networks, including logical networks
and backbone networks located in different areas, and verify
that the proposed approach and the proposed recoverability
indicators can assess the performance of different recovery
strategies and compare the recoverability of different networks.

The rest of this paper is organized as follows: Section II
introduces the topological approach for measuring the network
recoverability in two scenarios. Section III presents the main
concepts in the evaluation of network recoverability. The
experimental results are exhibited in Section IV. Section V
concludes the paper.

II. TOPOLOGICAL APPROACH FOR MEASURING NETWORK
RECOVERABILITY

In this section, we introduce an approach for measuring the
network recoverability in two scenarios.

A. R-value and challenge

We inherit the framework and some definitions proposed
for network robustness [3], [17] and extend the methodology
for the network recoverability. A given network determined
by a service and an underlying topology is translated into
a mathematical object, defined as the R-value, on which
computations can be performed [3]. The R-value takes the
service into account and is normalized to the interval [0, 1].
Thus, R = 1 reflects complete functionality in an unattacked
network, and R = 0 corresponds to absence of performance
in a completely destroyed network.

A challenge is an event that changes the network and thus
changes the R-value. We assume that a sequence of elementary
changes do not coincide in time. Here, we confine an elemen-
tary challenge to a link removal in an attack process or a link
addition in a recovery process. Since every perturbation has
an associated R-value, any realization consisting of a number
M of elementary challenges can be described by a sequence
of R-values denoted {R[k]}1≤k≤M , where k is the sequence
number of challenges.

B. Scenario A: recovery of any alternative link

We define RG as the robustness metric of the network
G(N,L) with N nodes and L links. Attacks on a network
only consist of link removals in the network by a determined
strategy, which usually degrades the robustness of the network.
We remove links, one by one, until the R-value RGa first
reaches or drops below a constant ρ, where ρ ∈ [0, 1] is a
prescribed R-threshold for the robustness metric that can be
tolerated [3]. The above process is called the attack or failure
process. The number of removed links in the attack process,
i.e., attack challenges, is denoted by Ka.

Then we launch the recovery process from the remaining
network Ga(N,L−Ka). Scenario A assumes that the recov-
ery links can be established between any two nodes in the
complement of the graph after attacks. The process of one
realization is illustrated in Figure 1a. Specifically, we recover
the network by adding links, one by one, to the remaining
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(b) Scenario B

Fig. 1: Illustration of the attack process and the recovery process in an Erdős-
Rényi (ER) random graph G0.1(100) with link density p = 0.1 and network
size N = 100 in one realization. The R-threshold is ρ = 0.8.

network Ga by a recovery strategy until the robustness metric
R-value first reaches or excesses RGr

= 1. The network after
the recovery process is denoted by Gr(N,L − Ka + Kr),
where Kr is the number of recovery challenges (adding Kr

links). We define the Link Ratio denoted ηL as the ratio of the
number of attack challenges and the recovery challenges, i.e.,

ηL(G, ρ) =
Ka

Kr
(1)

which indicates the efficiency of the recovery process in one
realization. A Link Ratio ηL(G, ρ) > 1 implies that the
network can be recovered by less challenges than the number
Ka of attack challenges. Otherwise, the network is more
difficult to recover than to destroy.

Scenario A can characterize the recovery process in a con-
nection oriented network with logical connections [18], e.g.,
a virtual circuit for transporting data or a wireless backhaul
network, where the links in a logical network represent the
duplex channel between two devices. After such networks are
attacked by denial-of-service attacks (DoS) or signal blocking,
one should establish several connections or reconfigure several
new channels to maintain the network’s overall performance.
In this case, the overhead cost of the recovery measures
mainly depends on the total number of dispatched connections,
which corresponds to the number Kr of recovery challenges
in Scenario A.

C. Scenario B: recovery of attacked links

The attack process in Scenario B is the same as in Scenario
A. In the recovery process in Scenario B, we add all the links
which are removed in the attack process, one by one, until
the underlying topology returns to the original. Scenario B
describes recovery processes in the physical communication
network, e.g., optical backbone networks and power grids
supplying to communication networks. In these networks, the
recovery measure for each connection, e.g., repairing fiber
optic cables, usually requires a relatively long period. During
the recovery process, the network still provides services with
a degraded performance. Thus, the network recoverability is
related to the network performance (or the robustness metric)
throughout the recovery process.

One realization of the attack and recovery process is il-
lustrated in Figure 1b. In Scenario B, the number of attack
challenges and the number of recovery challenges are the



same, i.e., Ka = Kr, and hence, ηL = 1 in (1). Therefore,
we propose another recoverability indicator in Scenario B.
The robustness energy S(G, ρ) of a network G is the sum
of the R-value in the attack process S(G, ρ) =

∑Ka

k=0R[k],
which expresses the robustness performance of network under
successive attacks [17]. Thus, the energy of attack challenges
is computed by Sa(G, ρ) =

∑Ka

k=0(1−R[k])), which indicates
the cumulative degradation of network performance due to
the attacks. In the recovery process, the energy of recovery
challenges Sr(G, ρ) =

∑Ka

k=0(R[k]−ρ) represents the benefit
of the network performance by the recovery measures. The
Energy Ratio denoted ηE in Scenario B is defined as the ratio
between the energy of recovery challenges Sr and the energy
of attack challenges Sa in each realization for a determined
R-threshold ρ, which follows

ηE(G, ρ) =
Sr
Sa

(2)

An Energy Ratio ηE(G, ρ) > 1 implies the benefit of recovery
measures can compensate the loss of network performance by
the attacks, which indicates a high network recovery capability.
Conversely, an Energy Ratio ηE(G, ρ) < 1 implies a low
recoverability.

D. Comparison via envelopes and the recoverability indica-
tors

Any realization of attack and recovery processes can be
expressed as a sequence of R-values denoted {R[k]}. To
investigate the recovery behavior, we need to know how
many challenges k are needed to make R-value decrease to
a predefined threshold ρ and increase to its original value,
which confines us to investigate the number of challenges
K as a function of a specific R-value r, i.e., {K[r]}. Thus,
each value in {K[r]} is the number of challenges that is
needed to change R-value to a specific R-value r for each
realization. The envelope is constructed using all sequences
{K[r]} for r ∈ {r1, r2, . . . , rH}, where rj = ρ+ j(1−ρ)

H is a
sampled value and H = 1000 is the total sample number. The
boundaries of the envelope are given by the extreme number
of challenges K

Kmin[r] ∈ {min(K[r1]),min(K[r2]) . . . ,min(K[rH ])} (3)
Kmax[r] ∈ {max(K[r1]),max(K[r2]) . . . ,max(K[rH ])} (4)

which gives the best- and worst-case of robustness metrics
for a network after a given number of recovery challenges.
The expected number of challenges K leading the topological
approach rj is

Kavg[r] ∈ {E(K[r1]), E(K[r2]) . . . , E(K[rH ])} (5)

Since K[r] defines a probability density function (PDF), we
are interested in the percentiles of K[r]

Km%[r] ∈ {Km%[r1],Km%[r2] . . . ,Km%[rH ]} (6)

where Km%[r] are the points at which the cumulative distri-
bution of K[r] crosses m

100 , namely Km%[r] = t⇔ Pr[K[r] ≤
t] = m

100 .
We apply the envelope to present the behavior of the attack

and recovery processes on a network [3], [17]. The envelope
profiles a rough PDF of the random variables of the number of

challenges K, which is the probability of a random variable to
fall within a particular region. The area of the envelope can be
regarded as the variation of the robustness impact of a certain
series of challenges, which quantifies the uncertainty or the
amount of risk due to perturbations.

We propose two recoverability indicators, the Link Ratio
ηL(G, ρ) and the Energy Ratio ηE(G, ρ), for different sce-
narios, respectively. Since an attack process and a recovery
process could be random under the random strategy, the re-
coverability indicators are random variables. We can compare
the recoverability of different networks by the average recov-
erability indicators for simplicity. For example, the average
Link Ratio E[ηL(G1, ρ)] > E[ηL(G2, ρ)] for two different
networks G1 and G2 implies that the network G1 usually has
a better recoverability than G2 in Scenario A for the robustness
threshold ρ.

Besides the average recoverability indicators, we are also
concerned about the variance of the recoverability indicators
V ar[η(G, ρ)], which indicates how likely the recoverability
is to shift upon the random strategy. A smaller variance of
the recoverability indicators V ar[η(G, ρ)] implies a narrower
uncertainty of the recoverability indicators, thus a better re-
coverability.

III. ROBUSTNESS METRIC AND RECOVERY STRATEGY

In this section, we introduce the main factors of a specific
recovery process, which involve robustness metrics, recovery
strategies and network topologies.

A. Robustness metrics

A group of topological metrics are proposed to measure the
network robustness [6] and the correlation of some metrics in
random graphs and functional brain networks are investigated
in [19]. We select 20 real telecommunication networks in the
specialized databases [20], and show the correlation between
metrics. As metrics, we include the network efficiency EG, the
spectral radius of adjacency matrix λ1, the algebraic connectiv-
ity µN−1, the diameter ϕ, the effective graph resistance rG, the
ratio µ1/µN−1, the average hopcount E[H] among all node
pairs, the clustering coefficient cG in Figure 2. Considering
services of communication networks, we select 1) the network
efficiency EG and 2) the effective graph resistance rG as
the robustness metrics that characterize the performance of
end-to-end transmissions. Figure 2 shows that these two path-
based metrics, the network efficiency EG and the effective
graph resistance rG, are comparatively lowly correlated (i.e.,
ρPearson(EG, rG) = −0.63).

1) Network efficiency EG. We assume that the hopcount
h(i, j), i.e., the number of links in the shortest path from node
i to j, indicates the overhead of data delivery from end to
end. Thus, the reciprocal of the hopcount 1/h(i, j) implies
the amount of packages for one unit overhead, which can be
interpreted as the efficiency of the communication between
two nodes. If there is no path from i to j, h(i, j) = ∞ and
1/h(i, j) = 0. For a whole network, the efficiency of a given
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Fig. 2: Correlation of several topological properties in 20 real telecommu-
nication networks. The Pearson correlation coefficients ρPearson are marked if
the correlation is strong enough, i.e., |ρPearson| > 0.8 (by solid lines) or weak
enough, i.e., |ρPearson| < 0.4 (by dash lines).

network can be computed by the mean of the reciprocals of
all the hopcount h(i, j) in a network, i.e.,

EG =

∑
i 6=j∈G 1/h(i, j)(

N
2

) (7)

which is defined as network efficiency [15]. Network effi-
ciency quantifies how efficient the exchange of information
across the whole network under the shortest-path routing [21].
The network efficiency of a network monotonically decreases
with the successive link removals.

2) Effective graph resistance rG. The effective graph
resistance [22], [23], [16], [24] origins from the field of
electric circuit analysis, which is defined as the accumulated
effective resistance between all pairs of nodes. The effective
graph resistance refers to the average power dissipated in a
resistor network with random infected currents, which can
indicate the overall diffusivity of information spreading in a
communication network. Also, the effective graph resistance
rG determines the onset of congestion in a communication
network. Specifically, let δ be the average total input rate
of the network. It can be shown [25] that the maximum
acceptable value of δ, which ensures that all links are within
their transmission capacity, is upper bounded by

(
N
2

)
r−1
G .

To generalize the impact of attacks on the robustness met-
rics, we apply the reciprocal of the effective graph resistance
r−1
G as the R-value, which decreases for link removals in

an attack process and increases in a recovery process. In
this paper, we also assume that the removed links leading
to the network disconnection have the supreme priority and
can be restored instantly. Thus, we numerically exclude the
realizations of attack processes that disconnect the network
and lead to r−1

G = 0.

B. Attack and recovery strategies

For simplicity and generality, we consider a random at-
tack strategy in attack processes. The random attack strategy
implies that the attacks or failures occur independently on
links randomly and uniformly, which is consistent with the
random failure stage in a product life cycle. The R-value R[k]
for a determined number of attack challenges k is a random
variable. We consider three different strategies for recovery
measures, i.e., random recovery, metric-based recovery and
greedy recovery:

1) Random recovery: The random recovery strategy refers
to the strategy that the links are added randomly and uniformly,

Networks N L E[D] λ1 µN−1 ϕ ρD EG

DFN 58 87 3.00 5.43 0.25 6 -0.11 0.36
Cernet 41 58 2.83 4.78 0.22 5 -0.35 0.40
Bt US 36 76 4.22 5.85 0.41 6 0.03 0.44
GtsCe 149 193 2.59 3.81 0.01 21 -0.09 0.16
Cogentco 197 243 2.47 3.79 0.01 28 0.03 0.14
TataNld 145 186 2.57 3.27 0.01 28 -0.21 0.15
ATT US 25 56 4.48 5.76 0.65 5 -0.02 0.51
Coronet 100 136 2.72 3.30 0.05 15 0.04 0.20
GEANT 40 61 3.05 4.32 0.14 8 -0.20 0.36
Renater 43 56 2.60 3.88 0.10 9 -0.15 0.33

TABLE I: Topological properties, explained in Section 3.1, of the 10 real
telecommunication networks.

one by one, in recovery processes, which can describe a self-
repairing process after attacks or recovery measures without
scheduling.

2) Metric-based recovery: The metric-based strategy deter-
mines the sequence of adding links by the topological metrics
of links. The performance of a network is usually restricted by
its structural “bottleneck”, i.e., the effective graph resistance
is related to the algebraic connectivity and the minimum
degree [19]. A good recovery strategy tends to remedy such
bottleneck. Thus, we consider two metrics of links between
node i and j: the minimum product of degree didj , and
the minimum product of eigenvector centrality cicj . For each
challenge in a recovery process, we select and restore the link
l∗ij with the minimum didj or cicj .

3) Greedy recovery: The greedy recovery strategy involves
adding the link l∗ that makes R-value increase most in each
challenges, i.e.,

l∗ = argmax
l∈Gc

R(G+ l)−R(G) (8)

where Gc is the complement of the current network G. The
greedy strategy is a practical and intuitive recovery strategy,
where the current optimal link for improving the performance
of the network has the priority to be recovered during a
recovery process.

C. Telecommunication networks
We select 10 real communication networks for case study.

The topological properties of the 10 real telecommunica-
tion networks are described in Table 1. These 10 telecom-
munication networks include logical networks (representing
the IP layer) and backbone transport networks (connected
with optical fiber). This set of networks was selected in
specialized databases [20], covering the telecommunication
systems located in different areas of the world, i.e., DFN
(German backbone X-WiN network), Cernet (China education
and research network), Bt US (Internet provided by BT in
the US), GtsCe (GTS network in central Europe), Cogentco
(IP backbone network provided by Cogentco), TataNld (Tata
national long distance network), ATT US (IP MPLS backbone
network provided by AT&T), Coronet (IP backbone network
provided by Cogent), GEANT (IP backbone network provided
by GEANT), Renater (Internet provided by Renater).

IV. RESULTS AND DISCUSSION

In this section, detailed results and analysis on the real-
world network via the proposed approach for assessing net-
work recoverability are presented. For some evaluation items,
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Fig. 3: Envelopes of the challenges for two scenarios and two robustness
metrics (i.e., the inverse of the effective graph resistance r−1

G and the network
efficiency EG) in DFN network, by random recovery strategy. Each envelope
is based on 104 realizations.

we only present results for a specific network, i.e., DFN. We
set the R-threshold as ρ = 0.8 in the following simulations.
The approach translates easily to other networks or other
robustness metrics.

A. Envelope examples and comparison

Each realization of processes consists of an attack process
and a following recovery process. Figure 3 exemplifies the
envelopes of the challenges in DFN network for two scenarios
and two robustness metrics, r−1

G and EG, respectively, under
the random recovery strategy. The envelopes for the attack
processes are similar in different scenarios while Scenario
A usually needs more challenges to recover the robustness
metrics than Scenario B, if the random recovery strategy is
employed. The total number of challenges Ka + Kr could
cover a wide range of values since the number of challenges
Ka +Kr is influenced by two random processes (i.e., attack
and recovery).

Figure 3a and Figure 3c also illustrates that the function
R-value of the average number of challenges R[Kavg] for
the robustness metric r−1

G is almost linear, in both the attack
process and the recovery process. For the robustness metric
EG, the function R[Kavg] is slightly concave, illustrated in
Figure 3b and Figure 3d. We will show that the concavity of
the function R[Kavg] could help to explain the behavior of
the recoverability indicators.

B. Comparison of recovery strategies

The envelope computation can be applied to compare the
performance of different recovery strategies for a specific real-
ization of attacks. Figure 4 shows different recovery strategies
(e.g., random, minimum didj , minimum cicj , greedy) for one
realization of attack processes under random attack strategy
in DFN network. The envelope of recovery processes by
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Fig. 4: Comparisons of different recovery strategies for one realization of
attacks in DFN network. Two scenarios and two robustness metrics (i.e., the
inverse of the effective graph resistance r−1

G and the network efficiency EG)
are applied. Each envelope is based on 104 realizations.

random recovery for the network efficiency EG covers a larger
surface than that of the inverse of the effective graph resistance
r−1
G . This implies that the network efficiency EG in different

realizations could deviate more from one another under the
random recovery, and the performance of random recovery
is more difficult to be guaranteed. The average challenge
sequence {Kavg} under the random recovery can be a standard
to evaluate the performance of other recovery strategies.

Figure 4 shows that the performance of metric-based strate-
gies, e.g., minimum degree product and minimum eigenvector
centrality product, is not guaranteed. Especially for the net-
work efficiency EG, the metric-based strategies outperform
the average of random strategy in the initial stage of recovery
processes but degrade for more recovery challenges. Mean-
while, we notice that the greedy recovery usually upper bounds
the random recovery envelopes. The R-value as a function
of the number of challenges k under the greedy strategy
is concave in the recovery process, which demonstrates the
diminishing returns property of the recovery measures. Since
the optimal recovery strategy is usually an NP-hard problem,
we suspect that the greedy recovery can be a practical near-
optimal recovery strategy for both robustness metrics, i.e., r−1

G

and EG.

C. Overview of the Link Ratio and the Energy Ratio

We employ the proposed approach and the recoverability
indicators η (including the Link Ratio ηL and the Energy Ratio
ηE) to evaluate the 10 real telecommunication networks. Fig-
ure 5 shows the recoverability indicators under two different
scenarios, two robustness metrics and two recovery strategies
for 10 networks by violin plots. Violin plots are similar to
box plots, except that they show the probability density of the
ratios η at different values, which presents more insights about
the ratios η under random circumstances. Moreover, violin
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Fig. 5: Violin plots of the Link Ratio ηL in Scenario A and the Energy Ratio ηE in Scenario B. The average ratios x̃ = E[η] and the standard deviations
s =

√
V ar[η] are presented on the top of each subplot. The blue surface and blue notes represent the random recovery strategy, and the red surface and

blue notes represent the greedy recovery strategy. The average ratios are marked as triangle markers. Each histogram of η is based on 104 realizations.

plots can be applied to compare the performance of any two
different strategies, e.g., the random and the greedy.

Figure 5 shows that almost all histograms of the ratio η,
regardless of the scenarios, the strategies and the metrics,
exhibit heavy-tailed distributions, while the greedy strategy
presents a longer tail. Also, the ratio η has a wider range of
values under the greedy strategy, which implies the greedy
strategy has a higher probability to lead to a large ratio η, as
well as a better recovery performance.

For both robustness metrics in Scenario A, DFN, Cernet and
Renater have an average Link Ratio E[ηL] < 1 for the random
strategy, which implies a relatively low recovery capability. By
contrast, GTSce, Cogentco and TataNld have a large average
Link Ratio E[ηL] > 1, which outperform other networks much
under both the random strategy and the greedy strategy. The
network with a larger average Link Ratio usually has a larger
diameter ϕ, then the new established links in Scenario A could
shorten the diameter ϕ and increase the topological approach
(r−1
G or EG) more.
The Energy Ratio ηE presents different behaviors of the

Link Ratio ηL compared with Scenario A. The average Energy
Ratios E[ηE ] for the robustness metric r−1

G approximate 1
under the random strategy, which can be explained by the
fact that the function R[Kavg] is almost linear (illustrated in
Section 4.1), and thus the energy Sa ≈ Sr. Since the function
R[Kavg] is concave for the robustness metric E−1

G and thus the
energy Sa < Sr, the average Energy Ratios E[ηE ] for different
networks are slightly larger than 1. The average Energy Ratio
E[ηE ] in Scenario B under the greedy strategy is usually
located in the tail of the distribution of the Link Ratio ηL
under the random strategy, which demonstrates that the greedy
strategy can update the recoverability of networks much.

D. Relation between Scenario A and Scenario B

To compare the recoverability among different networks,
we employ the SA-SB plots to show the relation of the Link
Ratio in Scenario A and the Energy Ratio in Scenario B under
a determined recovery strategy. SA-SB plots are divided as 4
quadrants by the reference lines of the Link Ratio ηL = 1
and the Energy Ratio ηE = 1 in order to easily assess the
recoverability by the location of the average ratios E[ηL] and
E[ηE ]. Figure 6 shows the average ratios E[η] and the standard
deviations

√
V ar[η] for the real-world networks in SA-SB

plots.
Figure 6 shows that the recoverability under two different

scenarios has a weak correlation, e.g., a Link Ratio ηL in Sce-
nario A does not lead to a higher ηL in Scenario B. We can also
observe that all the average Energy Ratios E[ηE ] are located in
the first and the second quadrant, which demonstrates a good
recoverability of tested networks in Scenario B. However, the
average Link Ratios E[ηL] in the second quadrant suggest the
topological improvement for these networks in Scenario A.

For a determined robustness metric, both the average Link
Ratio E[ηL] and the Energy Ratio E[ηE ] can be increased
by applying the greedy strategy, but the performance can
be different. For example, the average Link Ratio E[ηL] of
Cogentco is larger than that of TataNld under the random
strategy but smaller than that of TataNld under the greedy
strategy, which implies that the performance of a recovery
strategy strongly depends on the network topology.

V. SUMMARY

This paper proposes a topological approach for evaluating
the network recoverability in two scenarios, which extends
the application of the framework [3] of network robustness.
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(d) Greedy recovery: EG

Fig. 6: SA-SB plots of the Link Ratio ηL and the Energy Ratio ηE
for two robustness metrics (i.e., the inverse of the effective graph re-
sistance r−1

G and the network efficiency EG). The dark markers rep-
resent the average ratios E[η], and the cross indicates the value range[
E[η]−

√
V ar[η], E[η] +

√
V ar[η]

]
.

We assess the recoverability of 10 real communication net-
works for two different path-based robustness metrics, i.e., the
network efficiency and the effective graph resistance. In ac-
cordance with the results, the network recoverability presents
different behaviors between link-based Scenario A and energy-
based Scenario B. All the telecommunication networks have
a healthy recovery capability in Scenario B under the random
recovery strategy, i.e. the average Energy Ratio E[ηE ] > 1,
while three of the networks (DFN, Cernet and Renater) suggest
topological improvements for the recoverability in Scenario A,
i.e., the average Link Ratio E[ηL] < 1. The goodness of the
recoverability in Scenario B can be explained by the concavity
of the R-value as a function of the number of challenges.
The network recoverability is also strongly related to the
recovery strategy. Comparing the performance of different
recovery strategies, the greedy recovery strategy exhibits a
good performance for the investigated robustness metrics and
thus improves the network recoverability.
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