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Pulsed EM Field Transfer Between a Horizontal
Electric Dipole and a Transmission Line – A

Closed-Form Model Based on the
Cagniard-DeHoop Technique

Martin Štumpf,Member, IEEE, Giulio Antonini, Senior Member, IEEE, and Ioan E. Lager,Senior Member, IEEE

Abstract—The pulsed electromagnetic (EM) field transfer be-
tween a horizontal electric dipole (HED) and a transmission line
is described analytically with the aid of the time-domain (TD)
reciprocity theorem and the Cagniard-DeHoop technique. It is
demonstrated that a suitably chosen wave-slowness representa-
tion makes it possible to cast the pertaining interaction integrals
into a form amenable to analytical solution. The closed-form
coupling model thus obtained clearly reveals the dependence
of configurational parameters on the wireless signal transfer.
Numerical results are presented and validated using a three-
dimensional EM computational tool.

Index Terms—time-domain analysis, Cagniard-DeHoop
method, electromagnetic scattering, electromagnetic coupling,
transmission lines;

I. I NTRODUCTION

T HE constant need for still higher data rates in the
increasingly congested radio spectrum has triggered the

intensive research into the pulsed EM transfer which is deemed
to be a promising enabler for designing inter- and intra-
chip wireless interconnects in integrated circuit devices [1],
[2], [3] and ultra-high data-rate, safe and reliable digital
communication systems [4], [5], [6]. A wireless interconnect
system, in general, consists of transmitting and receiving
antennas that are mutually coupled via the radiative EM
coupling path. Whenever the pulse-time width of an excitation
pulse is large enough such that the EM field surrounding
the conductor of a receiving antenna has the transverse EM
structure, the transmission-line theory [7] can be employed to
capture the dominant coupling mechanism in the pulsed EM
transfer. To that end, a number of EM-field-to-transmission-
line coupling models have been proposed (see [8], [9]),
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successfully validated (e.g. [10], [11]) and applied to antenna-
to-transmission line coupling problems (e.g. [12], [13]) and
EM-field susceptibility studies (e.g. [14], [15]).

While the relevant analytical models in the frequency
domain (FD) are capable of analyzing relatively complex
problems including radiation and dissipation phenomena [16],
[17], the corresponding TD developments are mostly limited
to loss-free transmission lines on a (piecewise-)homogeneous
background excited by a uniform EM plane wave (e.g. [18],
[14]). For describing the transfer of EM pulses radiated from
spatially localized EM sources such as a CMOS integrated-
loop antenna [19], [20] or a lightning return stroke [15],
however, the plane-wave coupling models are no longer prac-
tical. Accordingly, having the limitation in mind, Ref. [21]
introduced closed-form expressions describing the TD voltages
on a transmission line excited by a vertical electric dipole
(VED), which proved to be efficient for lightning-induced
voltage calculations [22]. Moreover, such a closed-form EM
coupling model clearly indicates the relevant excitation and
configurational parameters, thus making it possible to optimize
the pertaining signal transfer (e.g. [23]) with very low com-
putational efforts that are virtually independent of the relative
source-field distance. In contrast to the excitation EM fields
radiated from a VED source above a planar interface, the
corresponding fields radiated from a HED source are generally
composed of both TE- and TM-type waves [24, Sec. 2.3]. As
a consequence, the methodology applied in the previous works
[21], [22] is not directly applicable to the actual problem,
which calls for a new solution strategy. Introducing such a
Cagniard-DeHoop-based methodology [25], [26] that yields a
novel analytical description of the pulsed EM transfer between
a HED and a transmission line is exactly the main purpose of
the present paper.

The problem under consideration is formulated in Sec. II
using the EM reciprocity theorem of the time-convolution type
(see [27, Sec. 28.2] and [28, Sec. 1.4.1]). In the following
Sec. III, the EM fields radiated from a HED source above
a perfect ground are expressed via wave-slowness represen-
tations. Here, the slowness representation of the horizontal
component of the excitation field is cast into the form that
enables to integrate the field along the line analytically.
In this manner, we find complex-FD expressions for the
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Fig. 1. A transmission line excited by an impulsive horizontal electric dipole.

induced-voltage response that are amenable to the Cagniard-
DeHoop method. The resulting analytical TD expressions
for the HED-induced Thévenin’s voltages on a transmission
line are given in Sec. IV. The latter section heavily relies
on the Appendix, where the corresponding Cagniard-DeHoop
technique is closely described on the transformation of generic
constituents. In Sec. V, illustrative numerical examples are
presented and validated using a three-dimensional EM com-
putational tool. Finally, conclusions are drawn and potential
applications are hinted at in Sec. VI.

II. PROBLEM DESCRIPTION

We shall analyze the TD voltage response of a transmission
line induced by an elementary HED (see Fig. 1). Position
in the problem configuration is specified by the Cartesian
coordinates{x, y, z} with respect to a Cartesian reference
frame with the originO and the standard base{ix, iy, iz}. The
time coordinate ist > 0 and the time-convolution operator
is denoted by∗

t
. The Dirac-delta distribution is denoted

by δ(t) and the Heaviside-unit step function isH(t). The
partial differentiation is denoted by∂ that is supplied with
the pertaining subscript.

Without loss of generality, the exciting HED is oriented
along thex-direction and is located at(0, 0, h > 0) above the
unbounded, planar and perfectly electrically conducting (PEC)
ground plane in a homogeneous, isotropic and loss-free half-
spacez > 0. The EM properties of the half-space are described
by its (real-valued, scalar and positive) electric permittivityǫ0
and magnetic permeabilityµ0. The corresponding EM wave
speed isc0 = (ǫ0µ0)

−1/2 > 0 and the wave impedance is
denoted byζ0 = (µ0/ǫ0)

1/2 > 0. The source signature is
described byj(t) = i(t)∆x (in A ·m), where i(t) is the
electric-current pulse and∆x > 0 denotes the (short) dipole’s
length. It is further assumed that the source starts to radiate at
t = 0 and prior to this instant EM fields are zero throughout
the problem configuration.

The transmission line under consideration is made of PEC
and is located along{x′1 < x′ < x′2, y

′ = y′0, z
′ = z0}

with respect to a rotated Cartesian coordinate system with
coordinates{x′, y′, z′} defined by

x′ = x cos(φ) + y sin(φ) (1)

y′ = −x sin(φ) + y cos(φ) (2)

z′ = z (3)

where{0 ≤ φ < 2π} is the angle of rotation (see Fig. 1). The
transmission line’s end points at{x1,2, y1,2, z0} then simply

correspond to{x′1,2, y
′
0, z0} in the rotated coordinate system,

respectively. The length of the transmission line is denoted by
L = x′2 − x′1.

The problem is formulated with the aid of the EM
reciprocity theorem of the time-convolution type (see [27,
Sec. 28.2] and [28, Sec. 1.4.1]) along the lines proposed
in Ref. [29]. Through the reciprocity theorem, the (actual)
receiving (R) situation is interrelated with the (auxiliary)
testing (T) state in which the transmission line operates as a
transmitter. This way yields (cf. [29, Eq. (7)] and [22, Eq. (1)])

V R
1 (t) ∗

t
IT1 (t)− V T

1 (t) ∗
t
IR1 (t)

− V R
2 (t) ∗

t
IT2 (t) + V T

2 (t) ∗
t
IR2 (t)

≃−

∫ x′

2

x′=x′

1

Ee
x′(x′, y′0, z0, t)∗t

IT(x′, t)dx′

− IT1 (t)∗t

∫ z0

z=0

Ee
z(x1, y1, z, t)dz

+ IT2 (t)∗t

∫ z0

z=0

Ee
z(x2, y2, z, t)dz (4)

where the relevant voltage and electric-current quantities at
x′ = x′1,2 are denoted by{V1,2, I1,2}, respectively, and
superscript (e) denotes the excitation field, that is, the total EM
field radiated from the HED source located above the ground
plane in the absence of the transmission line. Accordingly, the
left-hand side of the reciprocity relation (4) can be interpreted
as a TD interaction of the terminal voltages and currents, while
the right-hand side represents the weighted contribution of the
excitation-field distribution along the transmission line. If the
transmission line is atx′ = x′2 matched in both (R) and (T)
states and excited via the electric-current Dirac-impulse source
at x′ = x′1 in state (T), i.e.IT1 (t) = δ(t), Eq. (4) has the
following form (cf. [29, Eq. (47)])

V G
1 (t) ≃ −

∫ x′

2

x′=x′

1

Ee
x′ [x′, y′0, z0, t− (x′ − x′1)/c0]dx

′

−

∫ z0

z=0

Ee
z(x1, y1, z, t)dz

+

∫ z0

z=0

Ee
z(x2, y2, z, t− L/c0)dz (5)

whereV G
1 (t) is the open-circuited (Thévenin’s) voltage ob-

served atx′ = x′1. A similar procedure leads to the Thévenin-
voltage expression at the far-end of the transmission line, that
is

V G
2 (t) ≃

∫ x′

2

x′=x′

1

Ee
x′ [x′, y′0, z0, t− (x′2 − x′)/c0]dx

′

−

∫ z0

z=0

Ee
z(x2, y2, z, t)dz

+

∫ z0

z=0

Ee
z(x1, y1, z, t− L/c0)dz (6)

The right-hand sides of Eqs. (5)–(6) will next be evaluated via
the Cagniard-DeHoop method [25], thereby yielding the TD
impedance transfer functions describing the pulsed EM-field
signal transfer,V G

1,2(t) = Z1,2(x
′
1, x

′
2, y

′
0, z0, h, φ, t) ∗t

i(t),
respectively (see Fig. 1).
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III. SLOWNESS-DOMAIN REPRESENTATION OF

EXCITATION FIELDS

The time invariance of the problem configuration and the
causality of the excited EM waves are properly accounted
for via the one-sided Laplace transformation. To show the
notation, the expression is given for thex-component of the
excitation electric-field strength, that is

Êe
x(x, y, z, s) =

∫ ∞

t=0

exp(−st)Ee
x(x, y, z, t)dt (7)

with {s ∈ R; s > 0} thus relying on Lerch’s uniqueness
theorem [28, Appendix]. The Cagniard-DeHoop technique
combines the Laplace transformation (7) with the wave-
slowness representation

Êe
x(x, y, z, s) = (s/2πi)2

∫ i∞

κ=−i∞

dκ

×

∫ i∞

σ=−i∞

exp[−s(κx+ σy)]Ẽe
x(κ, σ, z, s)dσ (8)

where κ and σ are slowness parameters in thex- and y-
direction, respectively. Under the slowness representation, the
electric-field strength radiated from a HED source above the
perfect ground plane can be expressed as

Ẽe
x′(κ, σ, z, s) = −ζ0sĵ(s)c

−1
0 G̃(κ, σ, z, s) cos(φ)

+ ζ0sĵ(s)c0κ[κ cos(φ) + σ sin(φ)]G̃(κ, σ, z, s) (9)

Ẽe
z(κ, σ, z, s) = −ζ0ĵ(s)c0κ∂zG̃(κ, σ, z, s) (10)

in which G̃ is the transform-domain Green’s function repre-
senting the one-dimensional wave motion emanating from the
point source and its image accounting for the presence of the
ground plane atz = 0. Accordingly, the Green’s function reads

G̃(κ, σ, z, s) = exp[−sγ0|z − h|]/2sγ0

− exp[−sγ0(z + h)]/2sγ0 (11)

for all z ≥ 0, whereγ0 = γ0(κ, σ) = [Ω2
0(κ) − σ2]1/2 =

(c−2
0 − κ2 − σ2)1/2 with Re(γ0) > 0. The form of the

source-type transform-domain representation of the horizontal
excitation-field component (9) suggests to transform the wave
slowness parameters according to (cf. Eqs. (1)–(2))

κ = v cos(φ) − p sin(φ) (12)

σ = v sin(φ) + p cos(φ) (13)

Under this transformationκ2 + σ2 = v2 + p2, κx + σy =
vx′ + py′ anddκdσ = dvdp. Subsequently, subject to (12)–
(13), Eq. (8) transforms to

Êe
x(x, y, z, s) = (s/2πi)2

∫ i∞

v=−i∞

dv

×

∫ i∞

p=−i∞

exp[−s(vx′ + py′)]Ēe
x(v, p, z, s)dp (14)

and, finally, Eq. (9) transforms to

Ēe
x′(v, p, z, s) = −ζ0sĵ(s)c0Ω

2
0(v)G̃(v, p, z, s) cos(φ)

− ζ0sĵ(s)c0vp G̃(v, p, z, s) sin(φ) (15)

where we usedΩ0(v) = (c−2
0 − v2)1/2 > 0.

IV. T IME-DOMAIN THÉVENIN’ S VOLTAGE RESPONSES

The wave-slowness representations derived in the previous
section are next used to construct space-time expressions for
the induced Thévenin’s voltage responses (see Eqs. (5)–(6) and
Fig. 1). The contributions from the horizontal (with respect
to the ground plane) component of the excitation field, say
V

G;‖
1,2 (t) and from the vertical one denoted byV G;⊥

1,2 (t) will be
discussed separately. The total voltage response then follows
as

V G
1,2(t) = V

G;‖
1,2 (t) + V G;⊥

1,2 (t) (16)

for all t > 0.

A. Horizontal excitation-field contributions

The transform-domain expression for the horizontal com-
ponent of the excitation field (15) is used in the slowness
representation (14), where the dependence on the axial coordi-
natex′ manifests itself through the exponential function only.
Consequently, the spatial integration with respect tox′ (see
Eqs. (5)–(6)) is elementary, which yields ans-domain expres-
sion that is amenable to the Cagniard-DeHoop methodology
as specified in the Appendix. In this way, we arrive at

V
G;‖
1 (t) = −ζ0∂tj(t) ∗t

{

[I(x′2, y
′
0, Z

i, t− L/c0)

− I(x′1, y
′
0, Z

i, t)] cos(φ) − [I(x′2, y
′
0, Z

r, t− L/c0)

− I(x′1, y
′
0, Z

r, t)] cos(φ) + [J(x′2, y
′
0, Z

i, t− L/c0)

− J(x′1, y
′
0, Z

i, t)] sin(φ) − [J(x′2, y
′
0, Z

r, t− L/c0)

− J(x′1, y
′
0, Z

r, t)] sin(φ)
}

(17)

whereZ i = |z0 − h|, Zr = z0 + h and space-time functions
I(x, y, z, t) with J(x, y, z, t) are given by Eqs. (34) and (36),
respectively, in the Appendix. Upon inspection of Eqs. (5)–(6),
the corresponding contribution atx′ = x′2 follows

V
G;‖
2 (t) = ζ0∂tj(t) ∗t

{

[I(−x′1, y
′
0, Z

i, t− L/c0)

− I(−x′2, y
′
0, Z

i, t)] cos(φ) − [I(−x′1, y
′
0, Z

r, t− L/c0)

− I(−x′2, y
′
0, Z

r, t)] cos(φ) − [J(−x′1, y
′
0, Z

i, t− L/c0)

− J(−x′2, y
′
0, Z

i, t)] sin(φ) + [J(−x′1, y
′
0, Z

r, t− L/c0)

− J(−x′2, y
′
0, Z

r, t)] sin(φ)
}

(18)

Finally, Eqs. (17)–(18) are substituted in Eq. (16) to get the
total voltage response.

B. Vertical excitation-field contributions

The transform-domain expression for the vertical compo-
nent of the excitation field (10) is integrated with respect toz
(see Eqs. (5)–(6)) and the result of integration is substituted in
the slowness representation of type (8). This procedure leads
to an expression in thes-domain that can be transformed back
to the original domain as described in Sec. C of the Appendix.
Following these lines, we end up with

V G;⊥
1 (t) = ζ0∂tj(t) ∗t

{

K(x1, y1, Z
i, t)

−K(x1, y1, Z
r, t)−K(x2, y2, Z

i, t− L/c0)

+K(x2, y2, Z
r, t− L/c0)

}

(19)
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where space-time functionK(x, y, z, t) is given by Eq. (39).
Upon inspection of Eqs. (5)–(6), we find

V G;⊥
2 (t) = ζ0∂tj(t) ∗t

{

K(x2, y2, Z
i, t)

−K(x2, y2, Z
r, t)−K(x1, y1, Z

i, t− L/c0)

+K(x1, y1, Z
r, t− L/c0)

}

(20)

Finally, Eqs. (19)–(20) are substituted in Eq. (16) to get the
total voltage response.

V. I LLUSTRATIVE NUMERICAL EXAMPLES

In this section, a number of illustrative problem configu-
rations are analyzed. Namely, we shall calculate the voltage
response of a transmission line of a lengthL = 100mm that
is located at a heightz0 = L/25 above the perfect ground
plane. The transmission line is excited by a HED of a length
dx = L/100 that is placed above the origin at a height
h = 3L/20. The transmitting antenna is activated by a causal
electric-current pulse with finite temporal support that can be
simply constructed by convolving a triangular pulse with a
rectangular one. Accordingly, the input electric-current pulse
is described by

i(t) = im

[

2

(

t

tw

)2

H(t)− 4

(

t

tw
−

1

2

)2

H

(

t

tw
−

1

2

)

+ 4

(

t

tw
−

3

2

)2

H

(

t

tw
−

3

2

)

− 2

(

t

tw
− 2

)2

H

(

t

tw
− 2

)

]

(21)

where we takeim = 1.0A andc0tw = 5L (see Fig. 2). Hence,
the length of the HED and the height of the transmission
line are relatively small with respect to the spatial support of
the current pulse, namely,dx/c0tw = 1/500 and z0/c0tw =
1/125, thereby meeting the assumptions made for the coupling
model to apply. For the sake of validation, the problem is
also analyzed using the finite integration technique (FIT) as
implemented in CST Microwave Studior. Here, the line is
represented by a circular cylinder of a radiusr = L/100.
The characteristic impedance matching the line then follows
asZc = (ζ0/2π) cosh

−1(z0/r) ≃ 124Ω [11].
The chosen configurational parameters for the first example

x′1 = −L/2, x′2 = L/2, y′0 = 3L/4 and φ = 0 imply
that the exciting HED is oriented in parallel with respect
to the transmission line and is equidistant from its terminals
(see Fig. 3a). From Eqs. (17)–(18) it is clearly seen that for
φ = 0 and x′1 = −x′2 we haveV G;‖

1 (t) = −V
G;‖
2 (t). Since

K(x, y, z, t) as given by Eq. (39) is an odd function ofx, we
also haveV G;⊥

1 (t) = −V G;⊥
2 (t) and henceV G

1 (t) = −V G
2 (t)

in total as observed in Fig. 3b. The discrepancies with respect
to the voltage pulses calculated via the FIT are acceptable
and can be largely attributed to the simplifying assumptions
of the analytical model and to numerical errors. Finally, it
is interesting to note that the calculated voltage pulses have
approximately the shape of a bipolar triangle, which is, in fact,
the shape of∂ti(t) (see Eq. (21)).
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Fig. 2. Excitation electric-current pulse shape.
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Fig. 3. (a) Top view of the problem configuration; (b) HED-induced
Thévenin-voltage responses.

In the second example, the line is horizontally shifted with
respect to the source by changing{x′1, x

′
2} to x′1 = −L/4 and

x′2 = 3L/4 (see Fig. 4a). In this case, the distance from the
source to the transmission-line terminals is not equal anymore,
which manifests itself by the time shift between the pulse
shapes shown in Fig. 4b. While the voltage pulse observed
at the far-end terminal still starts with a negative lobe, its

Authorized licensed use limited to: TU Delft Library. Downloaded on March 05,2020 at 08:01:52 UTC from IEEE Xplore.  Restrictions apply. 



0018-926X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2019.2935115, IEEE
Transactions on Antennas and Propagation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, NO. X,AUGUST 2019 5

×

O

iy

ix

x′

1 = −L/4

x′

2 = 3L/4

y′

0 = 3L/4

φ = 0

a

0 1 2 3 4
−1

0

1

2

3

4

5

t/tw

vo
lt
a
g
e

re
sp

o
n
se

(m
V

)

 

 

V G
1

(t) ANALYTIC

V G
1

(t) FIT

V G
2

(t) ANALYTIC

V G
2

(t) FIT

b

Fig. 4. (a) Top view of the problem configuration; (b) HED-induced
Thévenin-voltage responses.

shape is now more similar to the scaled copy of the (unipolar)
excitation electric-current pulse. The corresponding results
calculated via the FIT agree well with the ones predicted by
the analytical model.

For x′1 = −x′2 and φ = π/2, Eqs. (17)–(18) reveal that
V

G;‖
1 (t) = V

G;‖
2 (t) in the third example (see Fig. 5a). Also,

sincex1 = x2 = −y′0 = −3L/4 and y1 = x′1 = −L/2 =
−y2 together with the propertyK(x, y, z, t) = K(x,−y, z, t)
(see Eqs. (19)–(20) with (39)) we haveV G;⊥

1 (t) = V G;⊥
2 (t),

which yieldsV G
1 (t) = V G

2 (t) in total. Hence, the calculated
voltage pulses at the transmission-line terminals are identical
in this case (see Fig. 5b). Clearly, their shape resemble the
negative scaled copy of the excitation pulse, which has also
been confirmed with the aid of FIT.

Finally, the transmission line has been rotated byφ = π/12
with respect to the axis of the exciting HED. Similarly to the
second example, its position in the rotated coordinate system
is determined byx′1 = −L/4, x′2 = 3L/4 and y′0 = 3L/4
(see Fig. 6a). Figure 6b then demonstrates that the excitation
electric-current pulse is heavily distorted upon traversing the
distance to the receiving transmission-line terminals. The
correspondence with the pulses calculated using the FIT is
satisfactory again.
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Fig. 5. (a) Top view of the problem configuration; (b) HED-induced
Thévenin-voltage responses.

VI. CONCLUSIONS

A closed-form TD coupling model describing the pulsed
EM-field signal transfer between an impulsive HED source
and a transmission line has been constructed via the Cagniard-
DeHoop technique. As the influence of configurational param-
eters on the signal transfer clearly shows up in the analytical
and easy-to-implement formulas, they lend themselves to
their application in solving multi-objective optimization tasks
aiming at distortion-free or/and energy-effective EM pulse
transfers. Illustrative numerical examples demonstrated the
intricate distortion undergone by the exciting electric-current
pulse on its way from the HED source to the receiving ports of
a transmission line as well as the validity of the model. Since
the computational burden of direct-discretization techniques
(e.g. the finite-difference TD technique) increases rapidly with
the growing solution domain, the computational resources
required by such numerical techniques are exceedingly high
whenever the transmission line is relatively far away from
its exciting source. In such cases, the derived closed-form
formulas, whose computational effort is virtually independent
of the mutual HED-to-transmission-line distance, can provide
useful approximate results. Thanks to the problem linearity,
the sum of contributions due to a collection of HEDs can
serve for representing the voltage response induced by a
small, conducting, current-carrying thin wire in the shape
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Fig. 6. (a) Top view of the problem configuration; (b) HED-induced
Thévenin-voltage responses.

of a loop, thereby yielding the pulsed EM field transfer
between a vertical magnetic dipole and a transmission line
[27, Sec. 26.10]. Moreover, the proposed coupling model can
be further extended to analyze the crosstalk between two
lines [30] and, in combination with the results presented in
[22, Appendix], to obtain an efficient analytical model for
analyzing the induced voltages on a transmission line due to
a tortuous lightning channel [31].

APPENDIX

In this Appendix we shall derive the TD counterparts of
generic integrals from which the HED-induced voltage on a
transmission line can be constructed.

A. Space-time functionI(x, y, z, t)

The first generic representation to be transformed to the TD
has the following form

Î(x, y, z, s) =
c0

8π2i2

∫ i∞

v=−i∞

exp(−svx)
Ω2

0(v)

v + c−1
0

dv

×

∫ i∞

p=−i∞

exp{−s[py + γ0(v, p)z]}
dp

γ0(v, p)
(22)

for x, y ∈ R, {z ∈ R; z > 0}, {s ∈ R; s > 0} and recall
that γ0 = γ0(v, p) = [Ω2

0(v) − p2]1/2 = (c−2
0 − v2 − p2)1/2

0

Re(p)

Im(p)

v-plane

Ω0(v)

C

C∗

×

a

0

Re(v)

Im(v)

v-plane

1/c0

G

G∗

×

b

Fig. 7. Complex slowness planes. (a)p-plane with the Cagniard-DeHoop
path fory > 0; (b) v-plane with the Cagniard-DeHoop path forx > 0.

with Re(γ0) > 0. At first, the integrand with respect top is
analytically continued into the complexp-plane away from the
imaginary axis and the integration path is in virtue of Jordan’s
lemma and Cauchy’s theorem deformed into the hyperbolic
Cagniard-DeHoop path defined by

py + γ0(v, p)z = udΩ0(v) (23)

for {u ∈ R;u ≥ 1} andd = (y2 + z2)1/2 > 0. Upon solving
Eq. (23) forp, we find path parametrizationC ∪C∗ (∗ denotes
the complex conjugate), where

C =
{

p(u) =
[

(y/d)u+ i(z/d)(u2 − 1)1/2
]

Ω0(v)
}

(24)

for all {1 ≤ u < ∞} (see Fig. 7a). Combining the con-
tributions of integration fromC and C∗ and introducing the
parameteru as the variable of integration with the Jacobian

∂p

∂u
=

iγ0[v, p(u)]

(u2 − 1)1/2
(25)

alongC, we obtain

Î(x, y, z, s) =
c0
4π2i

∫ ∞

u=1

du

(u2 − 1)1/2

×

∫ i∞

v=−i∞

exp{−s[vx+ udΩ0(v)]}(c
−1
0 − v)dv (26)
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where we changed the order of the integrations. In the ensuing
step, we proceed similarly in the complexv-plane. Hence,
the integrand with respect tov is first continued analytically
away from the imaginary axis and the integration contour
along Re(v) = 0 is replaced with the corresponding Cagniard-
DeHoop path, whose parametrization is found from

vx+Ω0(v)ud = τ (27)

where {τ ∈ R; τ > 0}. Solving Eq. (27) forv we obtain
another hyperbolic-path parametrizationG ∪ G∗, with

G =
{

v(τ) =
{

xτ + iud[τ2 −R2(u)/c20]
1/2

}

/R2(u)
}

(28)

for all {R(u)/c0 ≤ τ <∞} with R(u) = (x2+u2d2)1/2 > 0
(see Fig. 7b). Taking into account the symmetry of the
Cagniard-DeHoop path with respect to Im(v) = 0 and using

∂v

∂τ
=

iΩ0[v(τ)]

[τ2 −R2(u)/c20]
1/2

(29)

to introduceτ as the variable of integration, we find

Î(x, y, z, s) =
c0d

2π2

∫ ∞

u=1

udu

R2(u)(u2 − 1)1/2

×

∫ ∞

τ=R(u)/c0

exp(−sτ)
[

τ/c0 − 2xτ2/R2(u) + x/c20

]

× [τ2 −R2(u)/c20]
−1/2dτ (30)

where we have explicitly specified the integrand along the
Cagniard-DeHoop path. Interchanging further the order of the
integrations, we arrive at

Î(x, y, z, s) = (1/2π2)

∫ ∞

τ=R/c0

exp(−sτ)dτ

×

∫ U(τ)

u=1

R−2(u)
[

c0τ − 2xc20τ
2/R2(u) + x

]

× (u2 − 1)−1/2[U2(τ)− u2]−1/2udu (31)

whereR = R(1) = (x2 + y2 + z2)1/2 andU(τ) = (c20τ
2 −

x2)1/2/d > 0. The integrand with respect tou shows the
inverse square-root singularities at the end points of integration
that are handled via [32, Appendix A]

u2 = cos2(ψ) + U2(τ) sin2(ψ) (32)

for {0 ≤ ψ ≤ π/2}. Under the substitution, the integral with
respect tou can be readily carried out analytically and we end
up with

Î(x, y, z, s) =
1

4πR

∫ ∞

τ=R/c0

exp(−sτ)
(

1−
xc0τ

R2

)

dτ

(33)

In view of Lerch’s uniqueness theorem of the one-sided
Laplace transformation [28, Appendix], the TD counterpart
of Eq. (33) immediately follows

I(x, y, z, t) =

(

1−
xc0t

R2

)

H(t−R/c0)

4πR
(34)

This result is used in Eqs. (17)–(18) to construct the voltage
response of a transmission line.

B. Space-time functionJ(x, y, z, t)

The second generic representation to be transformed to the
TD has the following form

Ĵ(x, y, z, s) =
c0

8π2i2

∫ i∞

v=−i∞

exp(−svx)
v

v + c−1
0

dv

×

∫ i∞

p=−i∞

exp{−s[py + γ0(v, p)z]}
pdp

γ0(v, p)
(35)

for x, y ∈ R, {z ∈ R; z > 0}, {s ∈ R; s > 0}. Its transforma-
tion to the TD follows the procedure closely described in the
previous section. In this way, it can be found that

J(x, y, z, t) = P (x, y, z, t)
H(t−R/c0)

4πR
(36)

in which

P (x, y, z, t) = (y/d2c0t){xc0t− x2 + c20t
2d2/R2

− [R(c20t
2 − x2) + c0td

2]/(R+ c0t)} (37)

and recall thatd = (y2 + z2)1/2 andR = (x2 + d2)1/2. The
space-time function (36) is used in Eqs. (17)–(18) to construct
the voltage response of a transmission line.

C. Space-time functionK(x, y, z, t)

The last generic integral to be transformed to the TD has
the following form

K̂(x, y, z, s) =
c0

8π2i2

∫ i∞

κ=−i∞

exp(−sκx)κdκ

×

∫ i∞

σ=−i∞

exp{−s[σy + γ0(κ, σ)z]}
dσ

γ0(κ, σ)
(38)

for x, y ∈ R, {z ∈ R; z > 0}, {s ∈ R; s > 0}. Following
the procedure applied in Sec. A again, the TD counterpart of
Eq. (38) follows

K(x, y, z, t) =
xc0t

R2

H(t−R/c0)

4πR
(39)

This result is used in Eqs. (19)–(20) to construct the voltage
response of a transmission line.
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