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Finite Temporal Support Pulses for EM Excitation
Ioan E. Lager, Senior Member, IEEE, and Sven L. van Berkel, Student Member, IEEE

Abstract—A new family of pulses is introduced. It consists of
a windowed-power (WP), unipolar prototype, a unicycle, and a
pulse with almost rectangular spectral diagram. These pulses have
finite temporal support, controlled continuity at onset and end,
and are tailored via simple design rules. The WP prototype has a
very low spectral leakage. The WP monocycle’s effectiveness as ex-
citation in computational schemes is demonstrated via numerical
experiments. Its signature is also shown to practically overlap one
generated by readily available circuitry. The WP pulses are oppor-
tune as excitation in electromagnetic analysis, for time-windowing
purposes, and for feeding pulsed-field or timed antenna arrays.

Index Terms—Antennas, pulse generation, time-domain (TD)
analysis.

I. INTRODUCTION

THE opportunity of causality and controlled differentia-
bility of model pulses used as excitation in electromag-

netic (EM) analysis was discussed in [1]. That paper intro-
duced a family of causal pulses derived from the power expo-
nential (PE) unipolar prototype. However, EM simulations can
largely benefit from excitations with finite temporal support (see
Section V-A). PE pulses lack this feature (their tail extends to in-
finity), and pulses combining finite temporal support, controlled
differentiability and shape control via few parameters are then
needed. By starting from a windowed-power (WP) prototype,
this letter introduces a novel family of model pulses providing
all these qualities. Following [2], the family is endowed with
a pulse with almost flat spectral contents in a prescribed band-
width. This feature is similar to the band limitation offered by,
for example, the approximate prolate wave function [3], but the
WP-based pulse has the advantage of being time-windowed.

Temporal boundedness is also an important enabler for timed
array antennas [4]. Inspired by (mechanically) switching ON
and OFF a single-tone feeding signal, such antenna (models) use
rectangular time-windowed sinusoidal excitations. Nonetheless,
the far-field EM field radiated by antennas is at least the time-
derivative of the feeding signal’s signature [5] (the received
signal in a loop-to-loop transfer being the third-order time-
derivative of the feeding current [6]). Consequently, ON/OFF
switched sine feeding signals render the radiated EM field
at least discontinuous. Conversely, imposing the continuity of
the radiated EM field requires the feeding signal to be discon-
tinuous. None of these situations is physical. The WP unipo-
lar prototype resolves this issue: It combines time-windowing

Manuscript received November 17, 2016; revised January 3, 2017; accepted
January 10, 2017. Date of publication February 1, 2017; date of current version
June 19, 2017.

The authors are with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, CD Delft 2628, The
Netherlands (e-mail: i.e.lager@tudelft.nl; s.l.vanberkel@tudelft.nl).

Color versions of one or more of the figures in this letter are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LAWP.2017.2662205

Fig. 1. WP model pulse. (a) Temporal signature. (b) Spectral diagram.

with controlled differentiability. Moreover, it offers exception-
ally low spectral leakage (SpL), an essential figure of merit of
any apodization function [7, p. 55].

This letter will first introduce the WP unipolar prototype. The
WP monocycle and a pulse with almost rectangular spectral
diagram will be then derived from it. The WP monocycle’s
adequacy will be proven via illustrative numerical experiments
and by demonstrating its physical reproducibility.

II. WP UNIPOLAR PROTOTYPE

The WP family of model pulses is constructed by starting
from the WP unipolar prototype originally introduced in [8]

WP(ν, t) = t′ν (2 − t′)ν H(t′)H(2 − t′) (1)

where ν = 2, 3, 4, . . . , is the pulse rising power, t the time coor-
dinate, t′ = t/tr , with tr > 0 being the pulse rise-time (the time
between onset and the instant when the pulse peaks), and H(·)
the Heaviside unit step function. This pulse has a finite temporal
support 2tr , being implicitly causal. The support of its first ν
time-derivatives is also 2tr . The pulse and its first ν − 1 time-
derivatives are continuous at both onset and end—the choice
ν � 2 ensures this type of continuity at least for ∂tWP(ν, t).
The WP prototype is normalized to unity.

The Fourier transform of WP(ν, t) can be shown to be

ŴP(ν, jω) = exp(−jωtr ) tr 2ν ν!
√

2π
Jν+1/2(ωtr )
(ωtr )ν+1/2

(2)

where ω = 2πf , with f being the frequency, and Jn+1/2 is
the Bessel function of the first kind and fractional order [9,
Section 10.1]. Note that |ŴP(jω)| = |ŴP(−jω)| since WP(ν, t)
is real. Examples of this pulse and the corresponding Bode di-
agrams are shown in Fig. 1. In it, | · |dB stands for 20 log10
(| · |/| · |max).

The WP pulse is also favorable for time-windowing purposes.
A key figure of merit to this end is the SpL [7, p. 55]

SpL = PSL/Ptot = (Ptot − PML) /Ptot (3)

where Ptot is the total spectral power, PML is the power in the
main lobe (ML), and PSL is the total power in the sidelobes. For
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TABLE I
SPL AND THE EXTENT OF THE SPECTRAL DIAGRAM’S ML FOR THE WP PULSE

ν Spectral Leakage (SpL) ML Limit

2 −28.7 dB 0.92f tr

3 −35.1 dB 1.11f tr

5 −45.9 dB 1.49f tr

10 −68.4 dB 2.39f tr

20 −106.4 dB 4.13f tr

Fig. 2. ∂t WP model pulse. (a) Temporal signature. (b) Spectral diagram.

WP(ν, t), PML is evaluated from (2) by numerical integration
while Ptot follows via Parseval’s theorem as

Ptot =
∫ 2tr

t=0
[WP(ν, t)]2dt = tr

24ν+1[(2ν)!]2

(4ν + 1)!
. (4)

The SpL and the ML limits are catalogued in Table I for the ν’s
in Fig. 1. The SpL is very low even for small ν’s, this attesting
the pulse’s suitability for time-windowing purposes.

III. WP MONOCYCLE MODEL PULSE

Antenna systems are practically always fed by means of
pulses with no dc component in their spectral diagram. Such
a model pulse, denoted as WP monocycle (∂tWP), is now con-
structed by taking the time-differential in (1)

∂tWP(ν, t) = N(ν)2ν(1 − t′)t′ν−1(2 − t′)ν−1H(t′)H(2 − t′)
(5)

with N(ν) = tr ν−12−ν (ν − 1)1−ν (2ν − 1)ν−1/2 ensuring a
unit amplitude for the pulse. The WP monocycle has a zero-
crossing at t = tr and has a maximum and a minimum at

tex;± = tr
[
1 ± (2ν − 1)−1/2

]
(6)

respectively. Its Fourier transform follows from (2), by multi-
plication by jω. Examples of this pulse and the corresponding
Bode diagrams are shown in Fig. 2. The spectral diagram’s peak
shifts to higher frequencies as ν increases. Fig. 3 illustrates the
variation of the spectral diagram’s peak and −3-dB limits for
a wide range of ν values. This figure, in conjunction with the
pulse width and its zero-crossing, provide a complete set of
design rules for fitting the WP monocycle’s parameters to the
requirements of specific practical applications.

IV. WP MODULATED–SINC–COSINE MODEL PULSE

Numerical models often require excitations with a flat spec-
tral diagram over a prescribed frequency range f ∈ [fl , fh ],
0 < fl < fh , with center frequency fc = (fl + fh)/2 and band-
width B = fh − fl . The WP family is then supplemented with

Fig. 3. Variation of the spectral diagram’s peak and−3-dB limits as a function
of ν for the ∂t WP model pulse.

such a model pulse. In line with [2], WP(ν, t) is used for time-
windowing the noncausal function

G(t0 , t) = sinc[B(t − t0)] cos [2πfc(t − t0)] (7)

where sinc(x) def= sin(πx)/(πx), for x ∈ R, and t0 � 0 is a
time shift. The Fourier transform of (7) is

Ĝ(t0 , jω) =
exp(−jω t0)

2B
×

{
1, for ωl < |ω| < ωh

0, otherwise
. (8)

Combining (1) and (7) then yields the WP modulated–sinc–
cosine (WPs-c) model pulse defined as

WPs-c(ν,B, t) = sinc [B(t − tr )] cos [2πfc(t − tr )] WP(ν, t)
(9)

where tr and B are interrelated via tr = Ksc/B, with Ksc =
1, 2, 3, . . .. The pulse’s Fourier transform follows as:

̂WPs-c(ν,B, jω) =
1
2π

[
ŴP(ν, jω)

(jω )∗ Ĝ(jω)
]

=
exp(−jωtr )

2B
[I(−ωh,−ωl) + I(ωl, ωh)]

(10)

where
(jω )∗ denotes frequency convolution, ωl,h = 2πfl,h and

I(ωα , ωβ ) =
∫ ω+ωβ

ω ′=ω+ωα

[
exp(jω′tr )ŴP(ν, jω′)

]
dω′. (11)

The integral in (11) is amenable to numerical quadrature, the
presented examples using the trapezoidal rule. Examples of the
WPs-c pulse and the corresponding Bode diagrams are shown
in Fig. 4. The spectral behavior has the following features.

1) The spectral diagram approximates increasingly well a
rectangular shape as Ksc increases, while the influence of
ν on its shape is minimal.

2) |̂WPs-c(ν,B, jωl,h)|2 ≈ 1/4 for Ksc � 3.
3) Design rules: By taking Ksc � 3, tr and fc follow from

the intended fl and fh , and ν can be chosen more or less
arbitrarily for ensuring a certain pulse “smoothness.”

These observations concur with those in [2, Section IV].
WPs-c(ν,B, t) also offers remarkably low SpL, as evidenced

in Table II. This recommends it for band-limited frequency-
domain studies performed via time-domain (TD) simulations.
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Fig. 4. WPs-c model pulse. (a) Temporal signature. (b) Spectral diagram.

TABLE II
SPL AND THE LIMITS OF THE SPECTRAL DIAGRAM’S ML FOR THE WPS-C

MODEL PULSE

K s c Spectral Leakage (SpL) ML Limits

2 −61.1 dB 0.23f /tc ; 1.77f /tc

10 −69.3 dB 0.58f /tc ; 1.42f /tc

Fig. 5. Explanatory for the CST simulations. (a) Examined infinitely long
microstrip line; configuration parameters: ws = 100 μm, Δ = 0.7ws , and
H = 127 μm; the configuration is symmetric with respect to the x = 0 and
y = 0 planes. (b) Signatures of the CST(t) and ∂t WP(ν, t) excitation pulses.

Nonetheless, the flat spectral diagram is obtained at the ex-
pense of enlarging the pulse’s temporal support. As shown in
Section V-A, this enlarges the computation times in the case of
TD simulations. Finding an optimum balance between spectral
flatness and computational effectiveness must be established
on a case-by-case basis. The design rules given in this section
provide the conducive instruments to this end.

V. PRACTICAL APPLICATIONS

The opportunity of the ∂tWP pulse is now demonstrated by
analyzing the impact of a ∂tWP excitation on computational
efficiency and the pulse’s amenability to physical realization.

A. Time-Windowed EM Simulations

CST Microwave Studio has established itself in the antenna
community as the de facto standard TD general-purpose EM
simulation tool. In this section, it is shown via a simple yet
illustrative example how a ∂tWP excitation can massively im-
prove the computational efficiency of this software. For em-
phasizing the effect of the advocated excitation, all simulations
deliberately employ standard, basic runtime settings.

The investigated configuration [shown in Fig. 5(a)] concerns
an infinitely extended, grounded microstrip line, with the strip
and ground being perfectly conducting (PEC). For the chosen

TABLE III
CST MICROWAVE STUDIO SIMULATIONS RESULTS

L Mesh Cells Pulse Term. Criterion tS W ts im
∣∣Δ |S 1 1 |

∣∣ Maximum

2 mm 400 000 ∂t WP E.C. 45 ps 18 s 0.118%
2 mm 400 000 ∂t WP T.W. 30 ps 13 s 0.025%
2 mm 400 000 CST T.W. 180 ps 71 s 6.5%
10 mm 1 500 000 CST T.W. 180 ps 308 s 0.023%
10 mm 1 500 000 CST E.C. 270 ps 410 s 0.021%

εr = 11.9, the dimensions ws and H ensure a 50-Ω character-
istic impedance. The line is excited via a Δ-gap discrete port
with a uniform field distribution over the gap’s subtended area,
its source impedance being of 50 Ω. In view of symmetry, only
one quarter of the configuration is simulated. The boundary
conditions follow from the symmetry at x = 0 and y = 0, are
PEC type on the ground plane, and are perfectly matched layers
(PML) type on all other boundaries. The line is examined for
f ∈ [20, 60] GHz where it is taken as nonradiative (no power is
transferred into surface waves [10]). All injected energy should
then reach the PML boundaries at x = ±L and leave the com-
putational domain. However, the PML limitations cause some
reflections. Eventually, after several reflections, practically all
injected energy will leave the domain and the simulation can
be stopped, this situation being termed as “energy convergence”
(E.C.) termination. Prior to reaching the E.C. state, the boundary
reflections cause spurious reflections at the Δ-gap feeding port.
This study concerns exactly the reflection coefficient |S11(f)|
at this port.

Simulations are first carried out for L = 18 mm and use a
−30-dB E.C. termination. Two excitation pulses are employed:
1) the one constructed automatically by the package, hereafter
denoted as CST(t); its length is tp ; CST = 180 ps, and the per-
taining results are henceforth taken as reference; 2) a ∂tWP pulse
with ν = 10 and tr = 10 ps; its length (including a zero tail) is
tp ; WP = 30 ps. The pulse signatures are shown in Fig. 5(b). The
|S11(f)| decibel values obtained via the two excitations agree
up to three decimals (see [8, Fig. 5]), this attesting the ∂tWP
pulse’s suitability, but the computation time tsim is 83% shorter
in the case of the WP excitation.

A considerably higher computation time saving is achievable
by exploiting the temporal finiteness of the WP monocycle.
To this end, it is observed that no reflections from boundaries
are sensed at the Δ-gap port if L > LRf = tSW c0/

√
εr,eff /2,

where tSW is the simulation window, c0 the EM wave speed
in free space, and εr,eff the relative effective permittivity of
the transmission line (

√
εr,eff = 2.85 in this case). Simulations

are stopped at tSW , a strategy termed as “time-windowed”
(T.W.) termination. Two reflections-free lengths LWP = 2 mm
and LCST = 10 mm are determined by equating tSW to tp ; WP
and tp ; CST, respectively, and adding a safety margin.

The effect of the various runtime parameters is examined in
Table III and Fig. 6. The deviation of |S11(f)| (in dB) with
respect to the reference CST(t)/E.C. results is calculated as

Δ|S1 1 |(f) =
(
|S11(f)| − |S11(f)|ref

)
/|S11(f)|ref . (12)

Fig. 6 shows the effect of the boundary reflections for the
CST(t) excitation when L = 2 mm (L � LRf (tp ; CST)). A
minute effect is also visible for the ∂tWP excitation with E.C.
termination since L < LRf (tp ; WP). No boundary reflections
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Fig. 6. Deviations with respect to the reference |S11 | in the case of the
computational domain with L = 2 mm.

Fig. 7. Replication of the pulse signature p(t) in [11, Fig. 10(b)] via a WP
monocycle. The inset contains the pulse parameters and the replication error.
The p(t) signature is reproduced with written permission from the authors.

occur when using a ∂tWP excitation in conjunction with T.W.
termination, this combination yielding the shortest computation
time, tsim;WP = 13 s. There is also no effect of boundary re-
flections when using a CST(t) excitation and L = 10 mm for
both T.W. and E.C. terminations (see Table III). Nevertheless,
the computation times are much larger, namely 308 s for T.W.
(23.7 × tsim;WP ) and 410 s for E.C. (31.5 × tsim;WP )! The mas-
sive computation time saving arising from using a ∂tWP excita-
tion with T.W. termination is conducive to ensuring the feasibil-
ity of optimization processes requiring numerous simulations.
This is highly relevant for antenna design: Correlating the pulse
length with the dimensions of the domain of computation may
result in a reflections-free region where field quantities can be
accurately evaluated.

B. Physical Reproducibility of the Model Pulses

An aspect of prime importance when designing (model)
pulses is their physical reproducibility via (integrated) circuits.
This study focuses on the WP monocycle due to its envisaged
suitability as a feeding pulse for radio applications.

Let the pulse signature p(t) in [11, Fig. 10(b)], the generat-
ing circuit being developed for ultrahigh data-rate transfer. p(t)
is now replicated via ∂tWP (see Fig. 7). First, tex;± in (6) are
identified with the instants tex;±,p when p(t) reaches its max-
imum and minimum, respectively. This yields a preliminary ν
that is rounded off to the nearest integer. The combination of
ν and tp,min − tp,max yields the pulse’s tr . The signature is
time-shifted by tsh to align its zero-crossing with that of p(t),
and the pulse amplitude is assigned. The resulting ∂tWP, with
its parameters, is shown in Fig. 7. The deviation with respect

to p(t) is

Err(p) =

∫ 500 ps
t=0 ps [p(t) − ∂tWP(t)]2 dt∫ 500 ps

t=0 ps p2(t)dt
= 0.08 (%) (13)

a practically perfect replication! The circuitry for generating
WP monocycles can then be deemed as readily available.

VI. CONCLUSION

A novel family of model pulses was constructed from a WP
unipolar prototype. The prototype and its time-derivatives have
finite temporal support and are continuous at onset and end up
to controlled differentiation orders. The prototype’s shape is
tailored via two parameters only. As a time-windowing func-
tion, its SpL is below −46 dB. A WP monocycle was derived
by time-differentiating the prototype. Practical rules for its de-
sign were given. The family was supplemented with the WP
modulated–sinc–cosine pulse featuring an almost rectangular
spectral diagram and lower than −60-dB SpL levels. The WP
monocycle was shown to be extremely effective as excitation in
EM analyses: time-windowed simulations using it yielded up to
31.5 times lower computation times when compared to standard
excitations, while ensuring identical accuracy. This pulse’s sig-
nature was also shown to be reproducible via readily available
circuitry. This recommends the WP family of pulses for exci-
tation in computational EM, for time-windowing purposes, and
as feeding signals for pulsed-field or timed antenna systems.
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