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Abstract—Today’s computing architectures and device tech-
nologies are becoming incapable of meeting the increasingly
stringent demands on energy and performance posed by evolving
applications. Therefore, alternative novel post-CMOS computing
architectures are being explored. Some of these are Computation-
in-Memory (CIM) architectures based on memristive devices;
they integrate the processing units and the storage in the same
physical location (i.e., the memory based on memristive devices).
Due to their advanced manufacturing processes, use of new
materials, and dual functionality, testing such chips requires
specific schemes and therefore special attention. This paper
describes the need for testing CIM architectures, proposes a
systematic test approach, and shows the strong dependency of the
test solutions on the nature of the architecture. All of these will
be demonstrated using a design that is designed for computation-
in-memory bit-wise logical operations.

I. INTRODUCTION

In the past decades, the world has seen a phenomenal
increase in computing performance, resulting in smaller, faster,
and more energy efficient computers. However, today’s com-
puter architectures as well as the CMOS technology used to
manufacture them are facing major challenges such as memory
wall, power wall, leakage wall, and cost wall [1, 2]; these
make them economically not attractive for many evolving
applications which are extremely demanding, e.g., in terms of
MOPs/Watt. Therefore, continuing with delivering sustainable
benefits in the foreseeable future requires the exploration
of alternative (unconventional) computing architectures that
leverage novel post-CMOS device technologies such as mem-
ristive devices (e.g., resistive RAM (RRAM), phase change
memory (PCM), spin-transfer-torque magnetic RAM (STT-
MRAM)). One of these is a Computation-in-Memory (CIM)
architecture based on memristive devices [3, 4]; it is based on
integrating the processing units and the memory in the same
physical location. As a consequence, it signicantly reduces the
memory accesses and data movements while supporting mas-
sive parallelism, potentially resulting in orders of magnitude
improvement in terms of energy and computing efciency [5, 6].
Many companies (e.g., IBM, ARM), research institutes (e.g.,
IMEC), and universities are investigating and demonstrating
such an architecture [5]. There are still many issues that have
to be solved in order to get this computer technology mature
enough; examples are: endurance of the memristive devices,
variability, complexity of the control units within the CIM

core, etc [7, 8]. In addition, and like all other ICs, these CIM
dies need to be tested for manufacturing defects, in order to
guarantee sufcient outgoing product quality to the customer.
The manufacturing process of memristive-based CIM cores
involves additional steps and makes use of new materials [9],
which may lead to new failure mechanisms. In addition, a CIM
die acts both as a memory as well as a computing unit; and
hence, it has to be tested for both functionalities.

To the best of our knowledge, this is the first paper to
discuss the test needs for memristive device-based CIM ar-
chitectures. Nevertheless, there is some published work on
emerging memories (relying on memristive devices) upon
which CIM architectures are based. Most of this work is
based on modeling defects as linear resistors, injecting them
in the memory netlist in order to perform circuit simulation
and derive fault models, and thereafter test and design-for-
testability (DfT) solutions [10–16]. However, recent work has
demonstrated that using resistors to model defects in, for
example, RRAM and STT-MRAM is not accurate enough due
to the non-linearity of these devices [17, 18]. Inaccurate defect
modeling may lead to non-realistic fault models, and hence,
low-quality tests; this has enabled the development of Device-
Aware-Test approach [19].

This paper addresses the test aspects of CIM architectures
based on emerging memristive devices. It briefly discusses
the feasibility of functional and structural testing. In addition,
it provides a systematic and structural approach for testing,
and it highlights the need for testing the CIM die for its two
different functional configurations, once as a memory and once
as a computing unit. The paper also shows the dependency of
the test solutions on the nature of the CIM architecture itself
by demonstrating this test approach for a CIM design that
performs bit-wise logic operations.

The remainder of this paper is structured as follows. Sec-
tion II presents background information on CIM, including
a classification of different CIM architectures. Section III
presents the proposed structural test approach for CIM ar-
chitectures. Sections IV, V and VI apply this approach for
a case study based on bit-wise logical CIM implementation.
Section VII presents a discussion and conclusion.
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(a) CIM core (b) CIM program

Fig. 1: CIM accelerator [5]

II. COMPUTATION-IN-MEMORY

In this section, we briefly present the concept of CIM archi-
tectures and classify them. Then, an implementation example
for each class is given; one of them will be used as case study
in this paper. However, in order to better understand these
implementations, the working principles of an RRAM (used
as a memristive device) will be be introduced first.

A. CIM Concept and Classification

The CIM architecture is based on integrating the processing
units and the storage in the same physical memory location. A
realistic implementation that many researchers are prototyping
is shown in Fig. 1a [5, 20, 21]; the CIM core may consist of
very dense memristive crossbar array and CMOS peripheral
circuitry. The CIM die takes over the memory-intensive com-
putation parts from the processor, thus significantly speeding
up the execution and reducing the energy consumption by
eliminating large amounts of data transfers. Fig. 1b illustrates
a program that could be executed efciently on a CIM ar-
chitecture; multiple loops can be executed within the CIM
core while the other parts of the program can be executed on
the conventional core. Each time a loop is invoked, the CPU
sends a macro-instruction to the CIM core which decodes and
executes it locally, and returns the final results.

As already mentioned, computing in the CIM core takes
actually place within the memory. Hence, the CIM core can
operate in two different configurations: memory and computa-
tion configuration. Fig. 2a shows these configurations, as well
as the operations that each configuration requires. Since the
computation configuration also uses read and write operations,
it is a superset of the memory configuration. Fig. 2b shows
a block diagram of a CIM die. In addition to the memory
core, it consists also of a communication interface. It is worth
noting that computations in the CIM core take place within the
memory core. Because a memory core consists of a memory
array and peripheral circuits, and depending on where the
result of the computation is produced, CIM architectures can
be divided into two classes [22]:

• CIM-Array (CIM-A): In CIM-A, the computation result is
produced within the array. Examples of such architectures
are PLiM [23], ReVAMP [24], CIM device [25], etc. The
CIM-A core typically requires a significant redesign of
the memory array to support computing, as conventional
memory cell layouts are typically optimized for storage
functionality only.

CIM Core

Memory
Configuration
1. Read
2. Write

Computation
Configuration
1. Read
2. Write
3. Compute

(a) CIM configurations
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(b) CIM block diagram

Fig. 2: CIM configurations and block diagram

• CIM-Periphery (CIM-P): In CIM-P, the computation result
is produced within the peripheral circuitry. Examples of
such architectures are PRIME [26], Pinatubo [27], CIM-
Accelerator [28], etc. This architecture focuses on special
circuits in the peripherals to realize, for example, bit-wise
logic operations [27, 29], matrix-vector multiplication [6,
30], etc. Even though the computational results are produced
in the peripheral circuits, the memory array could be a
significant component in the computations. For example, to
perform bit wise logic operations, multiple rows in the array
need to be simultaneously activated.
As CIM performs operations within the memory core, at

least part of the operands should be stored in the memory
array. In other words, the operator being executed within the
memory needs to have all operands stored in the array (as
resistive) or only part of the operands is stored in the array and
the other part is received via the memory port(s) (hence their
logic values are hybrid, i.e., resistive and voltage). This results
in four sub-classes: CIM-Ar, CIM-Ah, CIM-Pr and CIM-Ph;
the additional letters ‘r’ and ‘h’ denote the nature of the
inputs (operands), namely resistive and hybrid, respectively.
An example of CIMP-Ah and CIM-Pr will be discussed in
Subsection C and D.

B. RRAM Device Technology

RRAM devices are one of the most popular memristive
devices; they are non-volatile, two-terminal, non-linear devices
that can switch their resistance [7, 31, 32]. The symbol to
denote an RRAM device is shown in Fig. 3a, while the
structure of the device is shown in Fig. 3b; the structure
consists of a metallic oxide (green) that is stacked between two
electrodes (yellow, top (TE) and bottom electrode (BE)) [7,
32]. When a voltage higher than the set threshold (VTE>VSET)
is applied, some of the bonds between the metal and oxygen
ions break. The oxygen ions are attracted to the positively
charged electrode, leaving behind a chain of vacancies (blue
circles). This chain, called the conductive filament (CF), can
conduct a current. Even if the bias voltage is removed, the
CF will remain intact, making this device non-volatile. On
the contrary, when a negative voltage lower than the reset
threshold (VTE<VRESET) is applied, some of the ions move
back into the oxide, thus reducing the size of the CF. The shape
of the CF determines the resistance of the device; larger CFs
have a lower resistance. Fig. 3c shows the RRAM switching
behavior with a current-voltage graph.
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Fig. 4: Majority logic

For memory applications, we distinguish two resistive
states: the low resistive state (LRS, SET state, or logical ‘1’),
and high resistive state (HRS, RESET state, or logical ‘0’).
As this resistance is continuous and slightly varies per write
cycle [7, 32], ranges that correspond to these two states are
defined. Fig. 3d shows these specs for the two logic ranges
(‘0’ and ‘1’), as well ranges outside the defined specs that
an RRAM device can enter due to defects or extreme process
variations [7]; these are ‘L’, ‘U’, and ‘H’ ranges corresponding
respectively to extreme low logic state (resistance beyond the
spec), undefined state, and extreme high logic state (resistance
below the spec); the states ‘L’, ‘U’, and ‘H’ have been seen in
defective RRAMs [19]. Fig. 3e presents a typical 1T-1R cell;
here, BL, WL, and SL indicate bit line, word line, and select
line respectively, while int is the internal node of the cell.

C. CIM-Ah: Majority Logic

The majority logic gate [3] shown in Fig. 4 is an imple-
mentation example of the CIM-Ah class using a memristive
device Z. It has three inputs: P and Q supplied as voltages
from the peripherals, and Z stored in the array; The output
Znew is produced after a majority operation is performed. The
output is ‘1’ if the majority of the inputs P , Q, and Z are ‘1’,
as described in the truth table. Here Q denotes the negation
of Q. The state of Z can only change to another state for
a limited amount of input combinations P and Q, as shown
in the truth table of the figure. This function can be used to
develop other logic functions, like imply or inversion.

D. CIM-Pr: Scouting Logic

Scouting logic [29] pictured in Fig. 5a is an implementation
example of CIM-Pr executing bit-wise logic OR, AND, and
XOR. The operands are initially programmed in the memory
cells M1 and M2. The operation is performed by selecting the
two cells simultaneously (by applying a read voltage Vr) and
comparing the resulting current (Iin) to a reference current
(Iref ) using a dedicated sense amplifier (SA); the reference to
be used depends on the operation to be performed as shown
in Fig. 5b.

Fig. 5: Scouting logic operations [29]

III. TEST METHODOLOGY FOR CIM

This section presents a testing methodology for CIM cores.
However, the difference between functional versus structural
testing for such cores is first discussed.

A. Functional and Structural Testing

Tests for electronics can be classified into two categories:
functional and structural tests [33]. Functional tests aim at
checking the proper operation of the device-under-test, while
structural tests aim at checking if the device is manufactured
correctly. The question is which of these two approaches could
be used for CIM die testing.

Functional tests apply a range of input stimuli to a device
and observe if the corresponding output responses are correct,
as defined by the device operation. To illustrate this for a
CIM core, assume a functional test is used to test the CIM
core being able to perform bit-wise logic operations of two
operands. If we assume that the memory within the CIM core
has r-bit row addresses, then there are 2r·(2r − 1) possible
combinations of selecting two operands. Even if extremely
high test frequencies of 10 GHz are used, testing for all
these combinations would take more than 58 years per chip
for an address size of r=32. Besides being extremely time
consuming, detection of all faults is still not guaranteed. For
instance, the above case does not consider different values for
the operands.

Structural tests, in contrary to functional tests, verify if a
device is manufactured correctly; i.e., the device is free of
manufacturing defects such as broken connections. It assumes
that if the device is manufactured correctly, the device should
functionally work properly. These tests rely on fault models
that describe the faulty behavior of the device in the presence
of a defect. This makes it feasible to define how these faults
are sensitized and measure whether a test detects them or not.
Therefore, accurate fault models are the key enabler for high
quality structural test solutions. Note that structural tests do not
require all input combinations to be tested, but merely those
that sensitize the targeted faults models. Therefore, structural
tests are both faster and achieve a higher and measurable fault
coverage [33]. As a result, structural testing is more widely
adopted. Thus, a high-quality CIM test should be a structural
test, and will require accurate fault models reflecting the real
defect behavior of CIM dies. Nevertheless, functional tests
could be used to increase the fault coverage of faults that
cannot be detected with structural testing, as is recognized in
the community [34].
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B. CIM Test Approach

As already mentioned, a CIM core operates in two con-
figurations: memory configuration and computation config-
uration. Note that at least part of the CIM hardware used
in the computation configuration is not used in the memory
configuration. Hence, CIM cores cannot be tested as regular
memories. CIM cores have to be tested for both configurations.
As the computation configuration makes use of the memory,
the latter has to be tested first. Testing CIM cores has to be
performed as follows:

1) Memory Configuration Test: In this case, the mem-
ory functionality is tested; i.e., only the hardware that
is required to perform memory operations is enabled
and tested. Obviously, common memory test solutions
applicable to the type of memory can be used (e.g.,
RRAM, STT-MRAM, PCM). Note that testing CIM in
this configuration is an independent step, and does not test
all hardware involved in the computation configuration.

2) Computation Configuration Test: In this case, the
hardware responsible for all the computing functionalities
is tested. This hardware strongly depends on the CIM
architecture and the computing features it enables. For
example, testing a CIM die with (analog) vector matrix
multiplication features could be different than testing for
logic bit-wise operations.

Test development for any IC follows three known steps
illustrated in Fig. 6. First, the defects must be understood
and adequately modeled. The resulting defect models are
injected into the electrical netlist of the design. Second, this
netlist is simulated and the faulty behaviors are observed and
compiled into fault models. Ideally, before the fault analysis,
the complete fault space should be defined (when applicable).
During the fault analysis, the fault space is verified by
injecting every defect in the netlist, which results in a set
of realistic faults for that specific design or layout. Third,
test solutions for the realistic faults are generated. Applying
the above test development approach to CIM would mean
applying it two times; once for each CIM configuration (i.e.,
memory and computation).

Test development for CIM as memory: the memory core
of CIM can be any kind of memory such as conventional
ones (SRAM, DRAM) as well as emerging ones (RRAM,
PCM, STT-MRAM). Although testing of SRAM and DRAM
is very mature, testing of emerging memories is still under
investigation. They may need radically new approaches in
defect modeling; a defective non-linear device (e.g., an
RRAM device) cannot be accurately modeled with a linear
resistor in series or in parallel with a perfect device [18, 19].

Test development for CIM as computing unit: As already
mentioned, testing CIM in this configuration is strongly de-
pendent on the design of the architecture. Defining what to test
for implies the identification of the modified or new blocks
integrated with the memory core to realize the computing
functionality. To illustrate this, we will briefly analyze two
examples of CIM architectures: CIM-Ah and CIM-Pr as dis-
cussed in Section II.

CIM-Ah Majority Logic: realizing such functionality within
e.g. RRAM crossbar will need the modification of the fol-
lowing memory components: a) Memory array, b) BL and
SL drivers, and c) Control logic. CIM-A architectures require
always a redesign of the memory cells, as the conventional
memory cell dimensions and their embedding in the bit and
word line structure do not allow them to be used for logic.
A conventional memory cell is namely heavily optimized in
terms of processing stack and layout. Therefore, any modifica-
tions of the array require a new cell design and characterization
process for the new control voltages, currents, etc. In addition,
modifications in the periphery are needed to support the
changes in the cell. In case of CIM-Ah Majority Logic, the
write drivers and the control circuitry have to be redesigned
to support the required functionality; e.g., the control logic
needs to assure that the output of the sense amplifier can
be fed back into the array via the drivers for operations on
data from multiple cells. Therefore, testing CIM-Ah Majority
Logic requires the guarantee of testing the memory array, BL
and SL drivers, and the control logic. Note that the memory
array is tested both in the memory configuration as well as
in computation configuration; an access to the memory during
computation could lead to an erroneous bit flip of the cell.

CIM-Pr Scouting Logic: As Fig. 5a shows, realizing such
functionality, for example within RRAM crossbars, will need
the modification of the following memory components: a)
Memory array, b) Word line decoders, c) Sense amplifiers,
and d) Control logic. Even though the computational results
are produced in the peripheral circuits, the memory array
for CIM-P is a substantial component in the computation.
As the peripheral circuits are modified, the currents and
voltages applied to the memory array are typically different
than in the conventional memory. Obviously, the majority of
the changes take place in the peripheral circuits and minimal
to medium changes are required in the memory array. CIM-
Pr Scouting Logic activates two or more (but not many)
rows of a memory array simultaneously (similar to multi-
port memories) during computations. Hence, in addition to a
customized sense amplifier to perform the logic operation, this
architecture also requires modifications in the address decoder
to activate several rows at the same time. Note, however, that
modifications in the cell array could be minimal as the total
read current is still small. Therefore, testing CIM-Pr Scouting
Logic requires to test the memory array, sense amplifiers, the
decoders, and the control logic. Note also here that the memory
array is tested both in the Memory Configuration as well as
in Computation configuration; e.g., simultaneous access of the
memory array during computing may lead to a fault in a cell.
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IV. CIM-PR ARCHITECTURE

This section describes the implementation of CIM-Pr ar-
chitecture based on Scouting Logic [29], which will be used
to demonstrate the proposed test approach in the next two
sections. This architecture is shown in Fig. 7; it is based on a
regular RRAM design. Note that the majority of the building
blocks (subcircuits) remain unmodified; these consist of the
column address decoder, the BL driver, and the SL driver.
The column address decoder decodes the column address and
drives the corresponding column select (CS) line. The BL
driver drives the BL corresponding to the CS line with the
data in Data-In. To prevent the decoder from disturbing read
operations, its output is fed through a tri-state buffer that is
controlled by Write/Read. The SL driver controls the SLs
based on Data-In; the SL is ‘0’ when setting (w1) and reading,
and ‘1’ when resetting (w0) the cells.

However, in order to perform Scouting logic (i.e., bit-wise
logic operations on two operands), some sub-circuits needed
to be redesigned; these consist of: a) the WL decoder (that
should be able to select two wordlines simultaneously), b)
the SAs (that need to support appropriate logic functions; see
Fig. 5), c) the control circuitry (to provide appropriate control
signals based on the Opcode), and d) memory array. The latter
is typically optimized for storage and would undergo some
minimal modifications to allow for specific drive voltages and
read currents. As the modified subcircuits will need special
attention during testing, they will be briefly explained next;
we focus on WL decoders and SAs.
• WL Decoders: The WL decoder, shown in Fig. 8a, decodes

two Row Addresses A and B and drives the corresponding
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Fig. 9: Sensing Circuitry
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WLs (i.e., address m drives WLm) for the selection of
the appropriate two words for a logic operation. Each
address can be used to select any of the WLs. Besides logic
gates, the WL decoder consists of two identical address
decoders. Fig. 8b illustrates such a 4-bit decoder; for each
input combination (e.g., A3A2A1A0=1111) one WL is se-
lected. Each two selected WLs per input combination (e.g.,
A3A2A1A0=B3B2B1B0=1111) are ORed, and the resulting
signal is ANDed with the WLEN signal to control the timing.

• Sense Amplifier: One possible modified SA design for
Scouting logic is shown in Fig. 9a, which is based on [35].
The two nodes A and B are precharged when no operation
takes place, i.e., SEN=‘0’. Once the SA is enabled via the
SEN and CS signals, the two nodes will be discharged via
BL and BLref. The time it takes to discharge the nodes
depends on the connected resistances to these nodes. For
example, if RBL<RBLref , BL will discharge faster. After
some time, the cross-coupled inverters begin to charge node
B, allowing for even faster discharging of node A and the
capturing of the operation outcome; we use node B in our
design. To enable OR and AND bit-wise logic operations,
the SA needs to have two corresponding reference currents,
IOR and IAND (see Fig. 5). These are implemented using
two different resistors, ROR and RAND, as shown in Fig. 9b.
The Operation signal is used to select a reference; Operation
is its logic complement. Fig. 10 shows the relative resistance
of these references with respect to the equivalent resistance
of the two cells being selected for the operation. In the mem-
ory configuration, the equivalent resistance is equal to the
resistance of the cell being read, while in the computation
configuration, it is equal to the parallel resistance of two
cells being accessed. Note that Rread=ROR.

V. CIM-PR MEMORY CONFIGURATION TEST

This section illustrates the test approach for the CIM-Pr core
in the memory configuration; it includes defect modeling, fault
analysis, and test generation; see Fig. 6.

A. Defect Modeling

The manufacturing process of a CIM core consists of three
production phases: the front-end-of-line (FEOL), the back-

INTERNATIONAL TEST CONFERENCE 5



end-of-line (BEOL), and CF forming. To accurately estimate
the impact of manufacturing defects on the circuit behavior,
these defects need to be understood and modeled such that
they can be used during circuit simulation for fault analysis.
Two classes of defect models exist; they are discussed next.

Linear resistor as defect model: During the FEOL phase,
transistors are fabricated on the wafer. Here standard transistor
defects may occur that are related to line edge roughness,
random dopant fluctuations, gate material granularity, etc. [36].
These defects may result, e.g., in reduced driving capabilities.
They can have an impact on the peripheral circuitry as well as
on the memory array, e.g., the SA becomes biased towards
one logical value. After the FEOL phase, the lower metal
layers are deposited in the BEOL phase. Lithographic issues
or misalignment may cause defects here, resulting in shorts or
opens in the wiring [37]. These defects again affect both the
peripherals and the memory array. For example, the address
decoder may wrongfully access multiple cells at the same time.
These defects have been always modeled as linear resistors
[11, 13] that act as a short or an open between two nodes.

Device-Aware defect models: The RRAM device is fabri-
cated between two metal layers. Defects that may occur can be
related to the electrode [38] and the oxide structure [39], which
do affect the memory array. After this step, the remaining
metal layers are deposited. To create a CF in the RRAM
device, a forming step is required; this step strongly depends
on the forming current (Iform) and may cause defects like over-
forming or non-forming [17]. Although it can be convincing
for modeling opens and shorts in interconnects, using linear
resistors for defect modeling has never been validated for any
device. It has recently been demonstrated that this assumption
is inaccurate for emerging technologies such as (RRAM) [17]
and (STT-MRAM) [40]; the results showed that the traditional
approach may even lead to wrong fault models. Hence, it is
incapable of delivering high-quality test solutions. This has
resulted in the development of device-aware defect modeling
approach [17, 19, 40]; it aims at accurately modeling physical
defects, by incorporating the way the defect impacts the
technology parameters (e.g., length, width) and thereafter the
electrical parameters (e.g., the critical switching current) of the
device [40]. This results in an electrical model of the defective
device (e.g. RRAM device). This model can be then used to
replace a defect free model at the circuit level to investigate its
impact on the memory behavior. Note that in case of Device-
Aware defect modeling, each defect may result in a different
electrical model of the device.

B. Fault Modeling

Fault modeling is ideally based on two steps: 1) fault
space definition, and 2) fault space validation using defect
injection and circuit simulation. The fault space identifies all
possible faults that can take place; i.e., any deviation from the
correct functional behavior of a memory. This can be done
analytically as the space of the potential memory operations
is defined. However, the space is huge and constraints should
be made in order to limit the space to a reasonable sized one.

Once the space is identified, the fault analysis can take place;
stimuli sensitizing each of the faults should be developed and
applied to an appropriate memory simulation model while the
defective device is replaced with its model. This should be
repeated for all possible defects. Next, we will illustrate the
above, first for the memory array and thereafter for the key
peripheral circuits (i.e., address decoder and sense amplifier).

Fault Modeling for memory array

Fault Space: Memory array faults can be described by Fault
Primitive (FPs) [41]. A fault is noted in the 〈S/F/R〉 notation.
In this notation, S denotes the sensitizing sequence for the
fault, i.e., S = x0O1x1 . . . Oixi . . . Onxn. Here, xi denotes
the cell state, i.e., xi ∈ {0, 1}, Oi denotes the operation
that takes place, i.e., Oi ∈ {r,w}, where r and w indicate
a read and write operation, respectively, and n is the number
of operations. F denotes the value that is stored in the cell
after S is performed, i.e., F ∈ {H, 1,U, 0,L}, where ‘U’
denotes the undefined state [41], ‘H’ the extreme logical 1
state, and ‘L’ the extreme logical 0 state, as demonstrated
by measurements performed on defective RRAM and STT-
MRAM devices [12, 18]. Finally, R (read output) describes the
output of a read operation if the last operation in S is a read
operation. R ∈ {0, 1, ?,−}, where ? denotes a random read
value (e.g., the sensing current is very close to sense amplifier
reference current), and ‘−’ denotes that R is not applicable,
i.e., when the last operation in S is a write operation.

Given the above S, F, and R, the fault space for the memory
array can be defined, like it was done in [19] for static single-
cell faults. More complex faults such as those involving more
than one operation (i.e., dynamic faults) or those involving
multiple cells (e.g., coupling faults) can be defined in a similar
manner by extending the FP notation [41].

Fault Analysis: some work on RRAM fault analysis is
presented in [12, 13, 42] where the defects were modeled as
a linear resistor (LR), and other work in [17, 19] where the
authors used Device-Aware (DA) defect modeling. We only
illustrate the results for the forming defect as presented in [19].
Table I lists the results of the static single-cell fault analysis;
the FPs sensitized when assuming LR (both as a series and
parallel resistor) and DA models for the forming defect are
shown. The results are obtained by simulating different sizes of
the defect. The table clearly highlights the difference between
the two approaches. The unique DA faults (7 out of 8 of
the realistic faults) cannot be sensitized with LR approach.
Moreover, the LR model approach triggers 8 unique faults
which are not realistic for forming defects, hence leading to a
waste of test time. Note that only 1 common fault is observed
by both approaches.

A complete fault analysis should consider each potential
defect in the memory array, model it using the DA approach,
and thereafter perform defect injection and circuit simulation.

Fault Modeling for some peripheral circuits

Address Decoder: Address decoder faults (AFs) in semi-
conductor memories are well studied. These faults can be
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TABLE I: Validated faults using LR and DA models.

Range FPs DA LR series LR parallel
5 µA 〈1w0/L/−〉 Yes No No
[5; 13] µA 〈1/U/−〉, 〈1w1/U/−〉, 〈1r1/U/1〉 Yes No No
(13; 34] µA 〈0/L/−〉, 〈0r0/L/0〉, 〈0w1/L/−〉 Yes No No
(13; 34] µA; [4k; 40k] Ω 〈0w0/L/−〉 Yes Yes No
[12k; 16k) Ω 〈0w1/U/−〉 No Yes No
[16k;∞) Ω 〈0w1/0/−〉 No Yes No
[1.6k; 5k] Ω 〈1w0/U/−〉 No Yes No
(5k;∞) Ω 〈1w0/1/−〉 No Yes No
[8k;∞) Ω 〈1r1/1/0〉 No Yes No
[0; 12k] Ω 〈0w1/0/−〉, 〈0r0/0/1〉 No No Yes
[0; 3k] Ω 〈1w0/1/−〉 No No Yes
(3k; 20k] Ω 〈1w0/U/−〉 No No Yes
[0; 6] Ω 〈1w1/H/−〉 No No Yes
[0; 1] Ω 〈1r1/H/1〉 No No Yes
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Fig. 11: WL decoder faults

static or dynamic. Static AFs are mainly caused by completely
broken interconnects (e.g., wordline) or low ohmic bridges
between connections and consist of four possible faults [43]:
1) No-access (AFna): an address does not access its cell, 2)
Multiple cells (AFmc): an address uniquely accesses multiple
cells, 3) Multiple addresses (AFma): a cell is uniquely ac-
cessed by multiple addresses, and 4) Other cells (AFoc): an
address additionally accesses other cells. On the other hand,
dynamic or delay address decoder faults (ADFs) are caused
by partial opens and shorts; they consist of two possible faults
[44]: 1) Activation delay (ActD): the activation, e.g., of a
wordline, is delayed, and 2) Deactivation delay (DeActD): the
deactivation, e.g., of a wordline, is delayed. These faults may
lead to erroneously addressing of multiple cells at the same
time, or to shortening the cell access time which may cause a
e.g., a write operation to fail.

Fault analysis for address decoders has been studied also
very well by assuming a linear resistor as defect model [44,
45]. For example, Fig. 11 illustrates how an open defect in a
WL can cause AFna or ADFs, depending on the defect size.

Sense Amplifier: Sense amplifier faults in semiconductor
memories have been well studied [45, 46]. They can be divided
into static and dynamic faults. Static faults are assumed to be
caused by complete opens, low ohmic shorts to VDD or GND,
or low ohmic bridges [43]; they consist of the traditional SA
Stuck-at fault (SASF), an SASF means that the SA always
outputs the same value, independent of its inputs. Dynamic
faults are caused by partial opens and shorts and consist of
two faults: 1) Unbalanced SA fault (USAF) [46]: the SA has
a continuous tendency to switch to a certain value under equal
input conditions, rather than being balanced, and 2) Slow SA
fault (SSAF) [45]: the SA is too slow to switch, which may
result in incorrect read values.

Fault analysis for SAs has been performed by assuming
that any defect can be modeled as a linear resistor. Fig. 12
illustrates the faults that may occur when performing a r0
operation in an SA in the presence of an open defect (Rdef )
between transistors N2 and N4 of Fig. 9a. This defect leads
to a slower discharge of node B, as the path to GND now has
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Fig. 12: SA faults

a higher resistance. It can be seen that when Rdef < 18.8 kΩ,
the defect causes an unbalance in the SA and thus is slowing
down the sensing operation causing USAFs and SSAFs. When
Rdef ≥ 18.8 kΩ, the SA will always switch to the wrong value,
thus leading to an SASF.

C. Test Development

The output of the fault modeling (i.e., a set of fault models)
is crucial for the development of efficient and high-quality
test solutions. Faults can be classified in two categories [19]:
strong and weak faults. Strong faults cause functional errors
in the memory operation, and can be sensitized (and may be
detected) by a known sensitizing sequence. On the contrary,
weak faults do not result in any functional error; instead, weak
faults are parametric faults, e.g., reduced bit line swing. These
faults also need to be detected, as they may pose a reliability
risk, e.g., increased in-field failure rate. Moreover, depending
on the effort needed to detect them, faults can be divided
into easy-to-detect (ETD) and hard-to-detect (HTD) faults. The
detection of ETD faults can be guaranteed by applying write
and read operations, e.g., by using a March test [43]. However,
March tests cannot guarantee the detection of HTD faults,
although they may detect them. Guaranteeing their detection
may require additional effort; e.g., the use of a special Design-
for-testabilty (DfT) circuitry. An example of an ETD fault is
〈1r1/0/0〉, and an example of an HTD fault is 〈1r1/U/?〉;

In order to develop appropriate test solutions for the CIM
core in its memory configuration, first the obtained faults from
fault modeling should be analyzed and classified into ETD and
HTD faults and thereafter test solutions should be developed.
In the rest of this section, we will illustrate the above for the
previously discussed faults for the three components.

Memory Array: Let us consider the results shown in
Table I for the forming defect when using Device-Aware fault
modeling. The defect can sensitize in total 8 FPs, which can be
grouped into 4 fault classes, where a fault class is a set of FPs
sensitized by the same single defect with a certain range/size.
Inspecting the table reveals that only 〈0w1/L/−〉 is an ETD
fault, while the rest is HTD faults. Detecting 〈0w1/L/−〉 can
be easily done by a March element m (w0,w1, r1).

HTD faults in the memory array are typically related to
the cell being in a forbidden state (i.e., ‘H’, ‘U’, or ‘L’)
[19]. As already mentioned, March tests may detect some of
these faults; repeating tests targeting HTD faults with different
memory backgrounds and different address sequence [44, 45]
will increase the detection probability. For example, the FP
〈1/U/−〉 may be detected with a March element m (w1, r1).
However, detection is not guaranteed. Therefore, using DfT is
a common practice to further increase the chance of detecting
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HTD faults. For example, the scheme in [13] uses shortened
write times and reduced write voltages to detect cells that
are in the ‘U’ state. This scheme can be modified to also
detect cells suffering from an over-formed defect; i.e., cells
whose state is ‘H’ instead of ‘1’ after forming, as illustrated
in Fig. 13. The figure shows a RESET operation on two cells
that are initially in ‘1’ and ‘H’ (i.e., a 1w0 operation) for
the defect-free and over-formed cell, respectively. From the
figure it follows that the defect-free cell switches quicker to
the correct resistance range than the over-formed cell. The
DfT is now used to shorten the write operation time to 1.5 µs
(indicated by the black dashed line in the figure). The defect-
free cell will have switched to ‘0’, while the over-formed cell
is still in ‘1’. A subsequent read operation on both cells will
reveal this, and thus the defective cell can be detected.

Address Decoder: The four static AFs (AFna, AFmc,
AFma, AFoc) belong to the ETD faults, while the two ADFs
(ActD, DeActD) belong to the HTD faults. It has been shown
that the detection of static AFs can be guaranteed by a March
test that contains the following two March elements [43, 45]:
⇑ (rx, . . . ,wx̄) and ⇓ (rx̄, . . . ,wx); here, x ∈ {0, 1} and x̄ de-
notes the negation of x. The ADFs, however, may be detected
by March tests; the detection probability strongly depends
on the delay [44]. Their detection requires: 1) Sensitizing
Address Transitions, and 2) Sensitizing Operation Sequences.
Sensitizing address transition(s) can be caused by an address
pair or an address triplet. For example, a Sensitizing Address
Pair consists of a sequence of two addresses Af and Ag which
have to be applied in sequence because ADFs are sensitized
by address transitions. These transitions are generated using
an Addressing Method such as Address Complement, The
H1 Addressing Method (H1 stands for hamming distance is
1), etc. [44]. On the other hand, the Sensitizing Operation
Sequence should be generated and applied to each of the
generated address pairs (Af , Ag); this sequence consists of two
operations (Oxf ;Oyg), one operation applied to Af and the
other to Ag. O denotes a read or write operation (O∈{r,w})
with expected or written data x, y∈{0, 1}. The operation on
Ag has to be performed with the complement of the data
value applied to Af in order to detect e.g., ActD; because
of the fault, Oxf may fail. It is worth noting that each of
the decoders should be tested individually; hence the test for
address decoders need to be repeated twice for our CIM core
in memory configuration.

Sense Amplifier: the static SASF belongs to the ETD
faults and its detection can be easily guaranteed by any
March test consisting of the two March elements (or a single
March element combining both of them): m (..., rx, ...) and

m (..., rx, ...), with x∈{0, 1} [45]. Detecting dynamic faults
(USAF, SSAF), which belong to the HTD faults may be done
with March tests, although special DfT can do a better job. The
sensitization and detection of SSAF requires the application of
back-to-back operations to the memory using 1) different data
values (0 and 1) and 2) fast-row addressing (i.e., each address
increment or decrement causes an adjacent physical row to
be accessed) [45]; back-to-back operations indicate that the
two operations take place after each other without any delay.
For example, a test consisting of the following March element
(using fast-row addressing) may detect SSAFs: m (rx, ...,wx);
the read and write are back-to-back and use different data. E.g.,
the operation w0 brings the bit lines in the worst case state for
the following r1 operation, applied to the next cell in the same
column. Special DfT which can be used to complement March
tests, can work better in detecting such faults. For example,
the DfT proposed in [47] to detect HTD faults in SRAMs can
be used here; it is based on monitoring the bit line swing at
the input of the SA.

VI. CIM-PR COMPUTATION CONFIGURATION TEST

This section presents the test approach for the CIM-Pr
core in the computation configuration. We follow again the
approach that was presented in Section III. Note that the CIM-
Pr under consideration is based on scouting logic.

A. Defect Modeling

Obviously, the same defect models apply for this configura-
tion as those discussed in the previous section; they are Linear
resistor and Device-Aware defect modeling. Linear resistors
are suitable for interconnect defects and have been also shown
to do a good job for transistor defects, while Device-Aware
defect modeling is suitable for the RRAM defects.

B. Fault Modeling

Next fault modeling will be applied first to the memory
array, then to the address decoders and sense amplifiers.

Memory Array: defining the fault space of memory array
in the computation configuration is still an open question
and can be strongly array design and architecture dependent
[48, 49]. The memory array in the computing configuration
acts as a special case of dual port memory; it allows for
simultaneous access of two cells/locations in the same col-
umn. Hence, this may give rise to new faults. For example,
accessing two cells simultaneously may unintentionally flip
the state of one of them. Defining the fault space will
need also the extension of the FP notation 〈S/F/R〉. We
can build on the notation developed for dual-port memory
faults [50]; we denote a FP due to the simultaneously access
as 〈S1 : S2 / F1 : F2 / R〉OP, where S1 and S1 specify the
sensitizing operations, ‘:’ denotes the fact that S1 and S1 are
applied simultaneously, F1 and F2 describe the value of the
accessed cells after the sensitizing operations, R gives the read
value, and OP specifies the operation performed (e.g., AND,
OR). For example, 〈1r11 : 1r12 / 11 : 12 / 0〉AND describes
an AND operation on two cells containing ‘1’ that results in
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a wrong output ‘0’. To illustrate that such a fault is realistic,
consider an open defect (Rdefect) in the bit line that increases
its resistance slightly. When the AND operation takes place,
the equivalent resistance (see Fig. 10) Req = R‘11’ + Rdefect

can become higher than RAND and thus results in a wrong
read output. In the memory configuration, however, no fault
occurs as R‘1’ +Rdefect < Rread. Hence, this fault only occurs
in the computation configuration. Defining the complete fault
space and validating it, is still an open question.

Address Decoder: The Scouting logic computation config-
uration requires both address decoders to act simultaneously
to select the appropriate word lines. This configuration may
give rise to unique address decoder faults, and is quite similar
to dual-port memories [51]; also here two addresses should
be selected simultaneously. Hence, the same fault space and
fault models can apply. Such faults are called port interference
faults and are due to potential interference/bridges between the
two decoders (between wires of the two different decoders).
They differ from single AFs in the sense that they only
occur when two decoders are accessed simultaneously, and
not when operating sequentially. E.g., one of the decoder
erroneously select an additional world line when the inputs of
both decoders have defined value. Consider Fig. 8a and assume
the two addresses A1A2A1A0=‘1111’ and B3B2B1B0=‘1110’
are selected in a 4-bit WL decoders; these will drive WL0A
and WL1B simultaneously. If now a low ohmic bridge defect
exist between the node Y1 of the decoder circuit driving
WLB1 and the node X2 of the decoder circuit driving WLA2
(see Fig. 8a), then the simultaneous selection of WL0A and
WL1B will result in erroneous selection of WL2A, i.e., WL0,
WL1, and WL2 will be activated.

Sense Amplifier: The modified SA in the computation
configuration may suffer from similar faults as the SA in
the memory configuration. These faults (consisting of SASF,
USAF and SSAF) can take place in each of the computing
configurations of the SA including OR, AND, and XOR;
note that the modified SA uses different reference currents
to perform the different logic operations. The validation of
such faults using fault analysis is still an open question.

C. Test Development

Tests for the computation configuration focus on: 1) testing
the hardware that was not used during memory configuration
test and, 2) on testing of unique faults that may be sensitized
due to simultaneous access of the memory array (due to the
selection of the operands of the logic operation). The test
development approach in the computation configuration is
similar to that of the memory configuration. Next we will
illustrate the approach for (some of) the faults discussed in
previous subsection.

Memory Array: Defining the complete fault space and
validating it is still an open question. Nevertheless, we will
illustrate how to develop an appropriate test for such faults.
Let’s consider the fault 〈1r11 : 1r12 / 11 : 12 / 0〉AND dis-
cussed in the previous subsection. This is an ETD fault as it
produces a wrong output 0 instead of 1. If we assume that this

fault only takes place when two accessed cells/operands (in the
same column) are physically adjacent, then such a fault can
be detected by a March test containing e.g., the following two
March elements: ⇑C−1

c=0 (⇑R−2
r=0 (..., r1r,c : r1r+1,c, ...)). Note

that a nested addressing is used; R and C denote the number of
rows and columns of the array, respectively. For each column
c, cells at row r and r + 1 are simultaneously accessed by an
r1 operation. Note that before such operations are performed,
the cells have to be initialized with an appropriate data-
background [45] (i.e., the pattern of 1’s and 0’s as seen in the
memory array). For example, a solid 1 background (1111...
/1111... /1111...) satisfies this requirement.

Address Decoder: Tests developed for dual-port memory
address decoder faults (i.e., port interference faults) [51], can
be easily adapted and used for testing the unique address
decoder faults in computation configuration. Such tests have
a time complexity (in the worst case) of O

(
R2

)
where R is

the number of array rows.
Sense Amplifier: An SA in each of the computation con-

figuration (e.g., AND, OR) can suffer from the same faults
as an SA in the memory configuration; these faults consist
of SASF, USAF and SSAF. However, testing such faults will
require special attention. For example, to detect the ETD fault
SASF in the AND mode, a March test should contain the two
March elements (or a single March element combining both
of them): mC−1

c=0 (..., r0i : rxj , ...) and mC−1
c=0 (..., r1i : r1j , ...),

where x ∈ {0, 1} and (i, j) two addresses indicating any two
cells/operands in the same column. The fault SASF1 will be
detected by the parallel operations r0i : rxj as this will return
1 instead of 0, while SASF0 will be detected by the parallel
operations r1i : r1j as this will return 0 instead of 1. Note that
actually performing each of the two parallel operations once
is enough for the detection of SSAF, and there is no need to
repeat them for different address combinations (i, j). Next, we
show how we can detect the SSAF in the AND configuration.
As already mentioned in Section V, this fault is HTD and
may be detected by a March test when applying back-to-
back operations resulting in different data values (0 and 1)
and using fast-row addressing. For example, a test consisting
of the following March element (using fast-row addressing)
may detect SSAFs of the SA in the AND configuration:
⇑C−1
c=0 (⇑R−2

r=0 (r1r,c : r1r+1,c,w0r,c, r0r,c : r1r+1,c)); the two
parallel operations are back-to-back and result in different data
output. For example, the operation r0r,c : rxr+1,c results in
0 bringing the SA in the worst case state for the following
r1r,c : r1r+1,c operation that has to result in 1, applied to the
next cells in the same column. w0r,c is just a write operation.
Here also special DfT can be developed to complement March
tests, and even do a better job in detecting such faults.

VII. DISCUSSION AND CONCLUSION

This work highlighted the structural testing of CIM dies.
Although our case study was based on Scouting logic, the
approach is applicable to any CIM design.

Testing CIM dies solely as a memory is not enough, as each
computation configuration needs to be tested as well, where
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the focus is on testing 1) the partial and completely non-tested
hardware during the memory test phase (this hardware consists
of the modified or newly added components to the memory),
2) the unique faults that could take place due to simultaneous
memory access (e.g., when executing a logic operation).

Although a lot of memory fault models and test solutions
can be reused for CIM in the computation configuration,
many new solutions are needed. These are strongly CIM
architecture dependent. For example, the test solutions for CIM
based on Scouting logic will differ from analog vector matrix
multiplication with ADCs. Clearly there are still many open
questions to be worked out such as:
• Fault modeling: defining the fault spaces for the different

CIM architectures in the computation configuration and
validating them using realistic design.

• Test solutions and optimization: developing appropriate test
solutions (test algorithms, DfT, BIST solutions, etc) for
the different architectures; optimizing the test approach by
exploring the combination of the test solutions for the
memory configuration and the computation configuration,
especially for production test.
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