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Abstract— Conventional computing architectures and the
CMOS technology that they are based on are facing major
challenges such as the memory bottleneck making the memory
access for data transfer a major killer of energy and performance.
Computation-in-memory (CIM) paradigm is seen as a potential
alternative that could alleviate such problems by adding compu-
tational resources to the memory, and significantly reducing the
communication. Memristive devices are promising enablers of a
such CIM paradigm, as they are able to support both storage
and computing. This paper shows the power of memristive
device based CIM paradigm in enabling new efficient application-
specific architectures as well as efficient implementations of
some known domain-specific architectures. In addition, the paper
discusses the potential applications that could benefit from such
paradigm and highlights the major challenges.

I. INTRODUCTION

Data-intensive applications are becoming more important
in various domains such as artificial intelligence, health-care,
and business in the recent years. They demand larger storage,
more computing power, and higher energy efficiency from the
IT infrastructure [1]. However, CMOS technology is facing
significant challenges that make them inefficient in delivering
the higher required performance as CMOS scaling is slowing
down due to three walls [2]: (1) the reliability wall as further
technology scaling leads to increased failure rate and reduced
device lifetime; (2) the leakage wall as static power dominates
and may even exceeds the dynamic power due to volatile
technology; (3) the cost wall as the cost per transistor via
pure geometric scaling of process technology saturated. On
the other hand, today’s computer architectures also face three
well-known walls [3]: (1) the memory wall due to the growing
gap between processor and memory speed, and the limited
memory bandwidth; (2) the Instruction-Level parallelism (ILP)
wall due to the difficulty of extracting sufficient parallelism
to fully exploit all the cores; (3) the power wall as the CPU
clock frequency has reached the practical maximum value
that is limited by cooling. In order for computing systems
to continue delivering the required performance given the
economical power constraints, novel computer architectures
in the light of emerging non-volatile (practically no leakage)
device technologies have to be explored.

Many alternatives architectures and technologies are un-
der investigations. Resistive computing [4], quantum com-
puting [5], and neuromorphic computing [6] are couple
of alternative computing notions, while memristive devices,
quantum dots, spin-wave devices are couple of emerging
device technologies [7]. Memristive device is seen as a
very a promising candidate to complement and/or replace

traditional CMOS (at least in some applications) due to
many advantages including CMOS process compatibility [8],
zero standby power, great scalability, and high density, etc.
Note that the memristive device (or memristor) refers to a
two terminal non-volatile memory device, which could, for
example, be a spin-transfer-torque magnetic random access
memory (STT-MRAM) device, phase-change random access
memory (PCRAM) device, or resistive random access memory
(RRAM) device. Due to its properties, memristive device
has the potential to simultaneously implement high density
memories [9] as well as different computing styles [10], [11],
enabling new computing paradigms, namely, Computation-in-
memory (CIM); CIM can alleviate the memory wall as data
can be processed locally inside the memory and hence, no
needed to be fetched and computed by the processors. In order
to study its potentials, intensive research has been done on the
concept of CIM. From the circuit design perspective, several
primitive operators were developed, such as IMPLY (executing
material implication logic function) [12], Scouting (executing
OR, NOR and XOR functions) [13], DPE (executing vector-
matrix multiplication kernel) [14], etc. Other work cascaded
these primitive operators to realize more complex functions
such as arithmetic adders [12], [15] and multipliers [16], [17].
Many researchers also used one or multiple of these circuits
to propose application-specific (and even general-purpose)
architectures such as MPU [18], PLiM [19], Pinatubo [11],
ISAAC [20], etc. Given this interest in memristive device
based CIM, it is of great importance to explore the potential
of such architectures and the application domains that could
benefit from them.

This paper presents a classification of CIM architectures and
shows the strong dependency between the targeted application,
the CIM architecture as well as its circuit design. This is
illustrated by targeting three different applications: query
select for a data-base, automata processor, and compressed
sensing. The paper will not only show the superiority of CIM
based on memristive device for such applications, but also
will present the design considerations during the development
process.

The rest of this paper is structured as follows. Section II
presents a classification of CIM architectures. Then, Section
III describes a methodology for developing a CIM architecture
for a given application, provides a list of potential applications
that could make use of each class, and highlights the selected
applications for this paper. Thereafter, Section IV and V apply
this methodology to the three case studies at the circuit and
system level respectively. In Section VI, we highlight the
potential and challenges of memristive device based CIM
architectures. Finally, Section VII concludes the paper.
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Fig. 1. CIM circuit classification [27].

II. CIM CLASSIFICATION

A memory core, including memristive device based cores,
consists of a memory array and its peripheral circuits. Each
circuit design that aims at implementing a logic or arithmetic
operation inside the memory core produces the computing
result either within the array or within the periphery. Hence,
depending on where the result of the computation is produced,
the CIM architecture can be divided into two classes as shown
in Fig. 1.
• CIM-Array (CIM-A): the computing result is generated

within the memory array. In other words, the output is
stored in a memristive device in the array, e.g., in form
of a resistance state.

• CIM-Periphery (CIM-P): the computing result is gener-
ated within the peripheral circuitry. Given the fact that
memory periphery is based on CMOS technology, the
output is physically generated as voltage.

As shown in Fig. 1, we further divide the CIM-A and
CIM-P classes into two subcategories. In the first category,
all operands of the operation are stored in the array, e.g.,
in the form of resistance. In the second category, only part
of the operands is stored in the array and the other part is
received via the memory port(s). Hence, the logic values of
the second category are hybrid, e.g., resistive and voltage.
If none of the operands is stored in the array, then CIM
concept is not applicable as the data is not stored in the
same physical location as the computation will take place.
The above classification results into four sub-categories as
indicated in the figure: CIM-Ar, CIM-Ah, CIM-Pr and CIM-
Ph; the additional letters ’r’ and ’h’ indicate the nature of the
inputs (operands), namely resistive and hybrid, respectively.
The bottom part of the figure shows the existing circuit designs
for each of the classes. In the next sections, some of these
designs will be discussed in the case studies.

III. DESIGNING CIM ARCHITECTURES FOR
DOMAIN-SPECIFIC APPLICATIONS

Developing an appropriate CIM architecture and its design
is strongly dependent on the targeted application domain;
different applications with different requirements result in
different designs. Next we will show this at the circuit level
as well as at the system level. Then we will provide a list
of potential applications that could benefit, and highlight the
three cases studies for this paper.

Application

Kernel Architecture

Circuit Design

PeripheryMemory Array
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CMOS-Accessed

…

Analog CMOS Circuits Digital CMOS Circuits
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DAC
ADC
…

Controller
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Fig. 2. CIM design flow.

A. Circuit-level design

CIM architectures have a great potential to improve the
overall performance and energy of some emerging applica-
tions. These applications may have different requirements that
may lead to different circuit designs; i.e., the circuit design of
the array and the periphery. Therefore, to design an efficient
CIM circuit, two pieces of information must be extracted from
the targeted application: (1) the kernel(s) to accelerate, and (2)
the CIM architecture.

• Kernel(s): the kernel is the most time/energy consuming
function in the targeted application. It dictates the size
of the operands, i.e., whether one-bit or multiple-bit
numbers. For example, database applications require bit-
wise logic functions, while compressed sensing requires
arithmetic vector-matrix multiplication.

• Architecture: the architecture is mainly related to the
location and type of inputs and outputs of the kernel;
i.e., the architecture can be CIM-Ar, CIM-Ah, CIM-Pr
or CIM-Ph. For example, database applications extract
information from a database (stored in the memory)
using queries [28]; hence it requires CIM-Pr (or CIM-Ar)
architecture. Compressed sensing application converts a
sensory signal (i.e., the first voltage input) using many
pre-defined weights (i.e., the second resistive input) to
another signal (i.e., a voltage output); hence, it requires
e.g., CIM-Ph architecture [28].

After analyzing the kernel and suited architecture, we can
start the designing the CIM circuit as shown in Fig. 2. A CIM
circuit can be roughly divided into two parts, i.e., the memory
array and the periphery. For the memory array, a suitable mem-
ristive technology such as RRAM, PCRAM, or STT-MRAM,
should be selected based on the requirements of the endurance,
resistance variation, etc. Thereafter, the structure of the array
should be determined. It could be a crossbar containing only
memristive devices or one with additional CMOS transistors
that control the access, e.g., the one-transistor-one-memristor
(1T1R) structure. For the periphery, the analog components in-
cluding drivers, digital-analog converters (DACs) and analog-
digital converters (ADCs) must be designed based on the
needed functionality. In some cases, digital components such
as controllers and shift-and-add (S+A) are required as well.
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Fig. 3. Conventional architecture and potential CIM architectures.

B. System-level design

Fig. 3b, 3c, 3d, and 3e present four possible ways to embed
a circuit design aiming at realizing CIM (denoted by CIM)
into the conventional computer architecture of Fig. 3a; they
are, respectively, CIM used as cache, as main memory, as
complete memory hierarchy, and as accelerator [29]. They are
discussed next.

Fig. 3b shows the CIM cache (CIMC) architecture where the
memristive circuit replaces one or more cache levels. Besides
the normal cache functionality, the memristive circuit can be
used to perform in-memory operations as well. The in-memory
operations are performed in the cache and prevent moving data
towards processors. Hence, it reduces the cost (i.e., latency
and power) of moving data between caches and processors,
and vice-versa. As cache is more frequently accessed than
main memory, the limited endurance and high read/write
latency of resistive devices are the main bottlenecks of this
approach [30]. Hence, this architecture makes sense only if
the endurance is high enough (> 1016).

Fig. 3c shows the “CIM main” (CIMM) where the memris-
tive circuit replaces the main memory. The trade-off between
capacity and performance is similar as in the approach as
CIMC. Although a memristive device is naturally to be used as
memory, a lot of efforts are still required for build CIMM. The
challenges include high write latency, endurance limitation,
and memory coherence management and complexity [31].

Fig. 3d shows the CIM universal (CIMU) where the mem-
ristive circuit replaces the entire memory hierarchy. One
or multiple processors are used to execute the conventional
instructions and fetch data directly from memristive devices;
in-memory instructions can still be used to accelerate memory-
intensive parts of an application. This reduces the pressure
on the registers. However, to be competitive in terms of
performance, CIMU must have a low write and read latency,
and the endurance needs to be high enough to service write
accesses.

Fig. 3e shows the CIM accelerator (CIMX) where the mem-
ristive circuit is used as an on-chip data-centric accelerator.
CIM executes parts of the program that cannot be efficiently
handled by conventional processors, e.g., a loop that consists
of simple operations on a huge data set. This CIM accelerator
differs from a traditional accelerator such as an FPGA or GPU
in the amount of data that can be stored in the accelerator. This
advantage alleviates the latency and energy cost caused by

TABLE I
EXAMPLES OF POTENTIAL APPLICATIONS [27]

Kernels
(operations)

CIM
arch.

Applications

OR Ar, Ah
Pr database (bitmap indices, bitWeaving) [33]

AND
Ar, Ah

Pr
database (bitmap indices, bitWeaving),

hyper-dimensional computing, language
recognition, biosignal processing [34]

Ph

XOR
Ar

Pr

database (bitmap indices, bitWeaving),
encryption, hyper-dimensional computing:
language recognition, biosignal processing,

k-mean clustering [35]
Ph CAM[36]

IMPLY,
Majority Ar, Ah

Addition
Ar
Ah temporal correlation, factorization [37]
Pr

Multiplication Ar

Ph

Vector-
Matrix

Multip.
Ph

automata processor, compressed sensing
and recovery, image and signal

processing, feature extraction, filtering,
neural networks, pattern recognition,

convolutional neural networks, recurrent
neural networks, compressed sampling,
image compression[25], [20], [28]

Vector-
Matrix-
Matrix

Multip.

Ph transitive closure[38]

frequent data movement. Compared with an ALU operation,
loading a word from on-chip SRAM or off-chip DRAM costs
50× and 6400× energy, respectively [32].

C. Potential and targeted applications

Table I shows the different kernels (primitive operations)
that can be implemented using memristive devices, the type of
CIM architecture they enable, and some potential applications
that make use of the kernels [27]. Note that not all kernels
have been covered by this table and that a kernel may be
implemented with different CIM circuit types. For example,
an OR logic function can be implemented based on CIM-
Ar (IMPLY), CIM-Ah (Majority logic), or CIM-Pr (Scouting
logic); see also Fig. 1. The third column of the table lists
different applications that could make use of the corresponding



kernel. The three applications given in bold font will be
the focus of this paper; these include database, compressed
sensing and recovery, and automata processor.
• Database: This requires bit-wise operations such as OR,

AND, and XOR. The CIM-Pr as the right architecture
for this applications as it is less demanding from design
and technology point of view [29], [39].

• Automata processor: Implementing such processor using
memristive device based CIM requires the binary vector-
matrix multiplication. Also here the CIM-Ph is the most
suitable for this design [25].

• Compressed sensing and recovery: This requires multi-
level vector-matrix multiplication. Here CIM-Ph is the
right architecture due to the nature of the application and
the implementation constraints [37].

In the rest of this paper we will first show the circuit
implementation of the above three kernels. Thereafter, show
the system design of the three CIM-P architectures together
with their potential.

IV. CIM CIRCUIT

Several CIM circuits based on memristive devices have been
proposed, as shown in Fig. 1. Among them, we are particularly
interested in CIM-P as these architectures do not reduce the
lifetime of memristive devices. Next the implementation of
the three kernels needed for the targetd applications in this
paper will be discussed.

A. Bitwise logical operations

Scouting Logic [13] is of the schemes that fits in the
CIM-Pr type, i.e., the inputs are resistive and the output is
voltage. Fig. 4(a) shows which parts of the memory are used
in Scouting Logic; the figure contains two memristive devices
(M1 and M2) and a sense amplifier for a single column.
Normally, when a cell (e.g., M1) is read, a read voltage Vr is
applied to its row and the switch S1 connects. Subsequently,
a current Iin flows through the bit line to the sense amplifier
(SA). This current is compared to the reference current Iref. If
Iin is greater than Iref (i.e., when M1 has low resistance RL),
the output of the SA is logic 1. Similarly, when M1 has high
resistance RH , the output is logic 0.

Instead of reading a single device at a time, performing
Scouting Logic requires reading two devices simultaneously
(e.g., M1 and M2 in Fig. 4a). As a result, the input current
to the sense amplifier is determined by the equivalent input
resistance. This resistance results in one of the three values:
RL

2 , RH

2 or RL//RH ≈ RL. By changing the value of Iref,
we can implement different gates. For an OR gate, Iref should
be set between 2Vr

RH
and Vr

RL
as depicted in Fig. 4c. As a

result, only when R1//R2 = RH

2 the output is 0. Similarly,
to implement an AND operation, Iref should be set between
2Vr

RL
and Vr

RL
. The XOR operation requires two references and

only when R1//R2 ≈ RL, the output is logic 1. Note that it is
also possible to support multiple fan-in logic gates by setting
proper reference currents.

SPICE simulation shows that Scouting Logic operates faster
than other logic styles such as Resistive Boolean Logic [40]
and Material Implication Logic [41]. In addition, the states
of the memristive devices are kept unchanged during the
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Fig. 5. Resistance distribution of two memristive devices in different
configurations

execution of the logical operations. Therefore, their lifetime
is not reduced. This is an important feature for today’s
immature memristive devices that suffer from low endurance.
However, and due to variations, the high and low resistance
of memristive devices have a distribution rather than a single
value; this may lead to incorrect operations. E.g., the resistance
range of RL

2 and RL//RH ≈ RL overlap in Fig. 5a; hence, it
is impossible to set a proper reference to implement an AND
gate.

To solve this problem, we can change the connection
style of the memristive devices being read during the logic
operations in such way that they can be figured in series or
in parallel depending on the operation to be performed (AND
versus OR). Fig. 5b shows how the reading devices should be
configured during the AND operation in order to reduce the
impact of the variations; the equivalent resistance of two read
elements being both in logic 1 will be RL +RL = 2RL while
it will be RL +RH ≈ RH when reading two elements one in
logic 1 and one in logic 0. This solution is known as Enhanced
Scouting Logic (ESL) [42]. The implementation of ESL as
shown in Fig. 6a; each memristive device is connected to two
transistors which control its connection style. In addition, an-
other bit line is added to each column. For OR operations, the
input memristive devices are connected in parallel as shown
in Fig. 6b, which is similar to Scouting Logic. However, for
AND operations, the input memristive devices are connected
in series as shown in Fig. 6c. The robustness of ESL has been
verified with Monte Carlo simulations. Even when the input
memristive devices have a large resistance variation, ESL can
still guarantee the operation correctness.

B. Binary vector-matrix multiplication

A memristive array can be used to compute a binary vector-
matrix product [25], as illustrated in Fig. 7a; the figure consists
of multiple bit lines each connected to a sense amplifier (SA).
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Each box at the crossing point of a bit line and a word line
denotes a memristive cell as shown in Fig. 7b. One end of
the cell is connected to the ground, and the other end to a
transistor that act as a switch. The transistor connects the bit
line (BL) and the memristive device, and it is controlled by
the word line (WL). The memristive device can be configured
as a binary value. Low and high resistance represent logic 1
and 0, respectively. Therefore, the whole array represents a
binary matrix.

The vector-matrix product operation is performed by special
read instructions. During a read operation, the bit lines are first
precharged to a high voltage. Subsequently, a binary vector is
applied as input to the word lines; note that multiple word
lines are activated simultaneously. Each column computes the
inner product of the word line vector and a column vector. If
at least one memristive cell is configured as a low resistance
(logic 1) and its word line is active (representing logic 1),
then the bit line discharges to a low voltage. In this case, the
dot-product of the word line vector and the column vector
results into logic 1. Otherwise the bit line remains high and
the dot-product results into logic 0. Therefore, by comparing
the voltage of the bit lines with a fixed reference voltage,
the SAs can generate the product of an input vector and the
configuration matrix.

Compared to similar binary vector-matrix multiplication
circuits based on other memory technologies such as SRAM,
SPICE simulations shows that the memristive device based
one achieves shorter discharge time (hence faster) and lower
energy consumption [25]. It is mainly because that the mem-
ristive device based circuit has less devices, especially less
transistors, and hence smaller intrinsic capacitance. Note that
the area of the memristive device based circuit is much smaller
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than the other ones as well.

C. Multi-level vector-matrix multiplication

Memristive arrays can also be used for multi-level vector-
matrix multiplication. Fig. 7(c) shows how this can be im-
plemented based memristive devices/crossbar. It consists of
multiple rows and columns, with memristive devices placed
at the crosspoints. Each row and column is connected to
a driver and a sense amplifier, both supporting multi-level
precision as each memristive device has multiple resistance
levels. The matrix used in the computation is stored in the
array as resistances while the vector is applied to rows in the
form of voltages. The computation result is produced by the
sense amplifiers by measuring the total current flowing into
each of them.

Compared to the circuit presented in Section IV-B, this
circuit supports a more complex computation. However, due to
the resistance variation of memristive devices, the computing
result may not be accurate enough; hence, suitable for specific
domains such as approximate computing.

V. CIM-BASED SYSTEM DESIGN

The circuits presented in Section IV can be used for
implementing various applications. In this section, we present
three case studies, where memristive device based CIM en-
ables novel architectures (the cases of database analytics and
compressed sensing) and improves the implementation of an
existing architecture (the case of automata processor).

A. CIM for database analytics

Database queries often involve many logical operations.
Therefore, we can develop a CIM architecture using Scouting
Logic that supports such bitwise logical operations. As the
queries also contain other types of operations, we adopt the
CIMX architecture that is shown in Fig. 3e where the CPU is
used for processing such operations.

We use a bitmap indexing scheme to implement database
queries. Fig. 8 shows an example; Fig. 8a contains the
original database containing information related to planets and
Fig. 8b its corresponding bitmap. Each column in the dataset
(i.e., distance (dist.), size and the year of discovery) can be
characterized using binary values. For example, the distance is
considered to be far if it is longer than 40; otherwise, it is near.
Note that the bitmap shown in Fig. 8b is transposed. Typical
database queries consist of searching for specific data patterns,
e.g., searching for entries that are of medium size and new.
These queries are carried out by performing bitwise operations



on the bitmaps; e.g., the above query can be acquired with an
AND operation marked by the red boxes in Fig. 8b.

To evaluate the CIM solution, two analytical models are
developed for conventional architecture and CIMX, respec-
tively [28]. The conventional architecture uses Intel Xeon
E5-2680 multicore as a baseline with 4 cores (each with a
frequency of 2.5GHz, L1 cache of 32KB and L2 cache of
256KB) sharing 4GB DRAM memory. On the other hand,
CIMX contains a host processor (same as an individual core
with 1GB DRAM) and a CIM unit with a size of equivalent
to a size of 3GB DRAM.

The evaluation results show that the speedup of CIMX
over the multi-core system reaches up to 35× for a problem
size of 32 GB. In case that only 30% of the instructions
are accelerated using the memristive circuit, the multi-core
system consumes 6× more energy compared with the CIMX
architecture.

B. Automata processor

Automata Processing (AP) is widely used in diverse fields
such as network security, computational biology, and data min-
ing; they offer significant advantages over the traditional von
Neumann architectures as they as they enable computation-
in-memory [43], [44]. An AP can be represented using a 5-
tuple: (Q,Σ, δ, q0, C). Q denotes a set of states, Σ is a set of
possible input symbols, δ is a function describing the set of
possible transitions among the states, q0 is one of the states
from Q and presents the start state, and C is a subset of
Q and contains the accepting states. An automaton processes
an input symbol sequence and produces a Boolean value A
that indicates whether the input sequence is accepted. The
processing is done by altering the set of active states P based
on the input symbol and δ. If P ∩ C 6= ∅, then the input
sequence is accepted.

Fig. 9 shows the block diagram of RRAM-AP [25]. In
every clock cycle, an input symbol I is processed using three
major steps:

1 Input symbol matching. All the states that have incom-
ing transitions occurring on I are identified in this step.
The N states are presented by column vectors called
state-transit elements (STEs) which are pre-configured
based on the targeted automaton. The decoder activates
one of the word lines according to the input symbol I .
If an STE has an incoming transition occurring on I , its
corresponding output is logic 1; otherwise, it is logic 0.
The outputs of all STEs are mapped to a vector called
Symbol Vector s.

2 Active state processing. It generates all the possible
states that can be reached from the currently active
states (stored in Active Vector a) based on the transition
function (stored in the switching network), and stores the
result in the Follow Vector f .

3 Output identification. Accept Vector c is pre-configured
based on the automaton’s accepting states. This step
checks the intersection of a and c to decide whether the
input sequence is accepted.

As the STE matrix is huge, it is fragmented across the entire
chip and we refer to each fragment as a tile. To determine the
next states, RRAM-AP uses a hierarchical switching network
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Fig. 10. Switching network in RRAM-AP and TDM-AP [45].

that consists of global and local switches as shown in Fig. 10a.
If the communication takes place inside a tile, only local
routing is used; otherwise, global routing is used as well. The
Active Vector a is divided into several groups each containing
several signals entering global switches (represented by the
box G). The outputs of the global switches combined with
the initial vector a forms a Global Vector g and is used as the
input to the local switches (represented by boxes L1, L2, and
L3). The outputs of local switches form the Follow Vector f .

The STE arrays, global, and local switches all conduct
binary vector-matrix product operations, and hence they can
be implemented using the memristive device based circuit
presented in Section IV-B [25]. In fact, the simulation results
reported in [25] even reveals that the RRAM-AP outperforms
the two known hardware implementation of AP, namely APs
based on SDRAMs [43] and SRAMs [44], in terms of speed,
area and energy consumption.

By inserting buffers between the global and local switches
as shown in Fig. 10b, we can change the switching network
into two pipeline stages and further improve the working
frequency of the chip. However, due to data dependency, the
automata states can no longer be updated within a cycle.
To grantee the processing correctness and fully utilize the
hardware, multiple input streams enter the chip in a time-
division multiplexing (TDM) manner. We refer to this design
as TDM-AP [45]. A multiplexer and a demultiplexer are
added to process the input and output signals. They can
be control by the same selection signal with two additional
buffers. Although these components increase the chip area
by 2.8%, they raise the working frequency by 86%. With
this improvement, TPM-AP can process input streams with a
throughput of 24.0 Gbps, which is the highest reported number
among all automata accelerators [45].

C. Compressed sensing and recovery

Compressing (and reconstruction) of a sparse high-
dimensional signals is a common practice in in many applica-



Fig. 11. CIM based compressed sensing with AMP recovery [47].

tions such as image processing and data compression. Assume
the original signal is x0 ∈ IRN , the compression process can
be expressed as

y = Ax0 + w

where A ∈ IRM×N is a known measurement matrix, w ∈
IRM represents the measurement noise, and y ∈ IRM is the
compression result. M is much smaller than N , and hence,
the compression can reduce the bandwidth for data transfers.

After data transferring, the original signal can be recovered
using y and A. We use a first order approximate message
passing (AMP) technique [46] that can be represented as

zt = y −Axt +
N

M
zt−1

〈
η

′

t−1(A∗zt−1 + xt−1)
〉

xt+1 = ηt(A
∗zt + xt)

where xt ∈ IRN represents the current estimate of x0 at
iteration t, zt ∈ IR M the current residual, A∗ the transpose of
A, ηt(·) a scalar threshold function, η′t(·) its derivative, 〈·〉 the
mean, and x0 = 0. The final value of xt provides the estimate
of x0. The AMP algorithm requires only multiplications and
additions, making it suitable for a CIM implementation.

Inspecting the AMP algorithm reveals that the main cost
comes from the vector-matrix multiplications (i.e., Axt and
A∗zt), assuming that ηt(·) and η′t(·) involve only O(N ) or
less operations. Each vector-matrix multiplication requires
O(MN ) operations for dense matrix A. The remaining op-
erations in the AMP algorithm are vector additions and mul-
tiplications that require O(N ) operations. If we use the circuit
presented in Section IV-C for vector-matrix multiplication,
the complexity of AMP can be easily reduced from O(MN )
to O(N ). Note that the expectation is that in an memristive
crossbar, matrix-vector multiplications can be performed with
constant time complexity O(γ), where γ is independent of the
crossbar size. The precise value of γ depends on settling time
of the read current and the sending time of the peripheral
circuitry. As a result, larger crossbars may eventually lead
to higher γ since some of the readout circuitry may need to
be shared across columns/rows and multiplexed. Nevertheless,
significant speedup is expected when using normal memristive
crossbar sizes.

Fig. 11 illustrates how the memristor based multi-level
vector matrix multiplication (of Fig. 7(c)) can be used to
implement the compress and recovery processes. The elements
of A are mapped to conductance values on memristive devices.

One possible mapping method is an iterative program-and-
verify procedure [47]. After the matrix A is programmed in
the crossbar array, the measurements y can obtained through
a vector-matrix multiplication as illustrated in Fig. 11. When
the AMP algorithm is performed, qt=Axt and ut=A∗zt is
conducted using the (same) memristive crossbar. The vector
qt is computed by applying xt as voltages to the rows and
acquiring the result through the column sense amplifiers, and
ut by applying zt as voltages to the columns and acquiring
the resulting currents through the row sense amplifiers.

VI. POTENTIAL AND CHALLENGES

In general, memristive device based computing, if success-
ful, will be able to significantly reduce the power consumption
and enable massive parallelism; hence, increase computing
energy and area efficiency by orders of magnitudes. This may
enable new (economically affordable) computing paradigms
such as Neuromorphic computing, Artificial neural networks,
Bio-inspired neural networks, etc [6]. As memristive device
based computing enables computing at the edge (e.g., at the
sensors), a lot of application domains can strongly benefit
from this computation; examples are IoT devices, wearable
devices, wireless sensors, automotive, avionics, etc [48]. In
short, if successful, memristive device based computing will
enable the computation of currently (economically) infeasible
applications, fuelling important societal changes.

Research on memsristive device based computing is still
in its infancy stage, and the challenges are substantial at all
levels, including material/technology, circuit and architecture,
and tools and compilers.

• Materials/Technology: At these stage, there are still many
open questions and aspects where the technology can help
in making memristive device based computing a reality.
Examples are device endurance [8], high resistance ratio
between the off and on state of the devices [42], multi-
level storage, precision of analog weight representation,
resistance drift, inherent device-to-device and cycle-to-
cycle variations, yield issues, etc.

• Circuit/Architecture: Analog Computation-in-Memory
comes with new challenges to the design of peripheral
circuits. Examples are high precision programming of
memory elements, relatively stochastic process of analog
programming, complexity of signal conversion circuit
(digital to analog and analog-to-digital converters), ac-
curacy of measuring (e.g., the current as a metric of the
output), scalability of the crossbars and their impact on
the accuracy of computing, etc.

• Tools/Compilers: Design automation is still an open ques-
tion. Profiling and simulation tools can help the user to a)
identify the kernels that can be accelerated on memristive
device based computing and estimate the benefit, b)
perform design exploration to select appropriate device
technology/ architecture/ design/ etc.

As of today, most of the work in the public domain
is based on simulations and/or small circuit designs. It is
not clear yet when the technology will be mature enough
to start commercialization for the first killing applications.
Nevertheless, some start-ups on memristor technologies and



their application are already emerging; examples are Crossbar,
KNOWM, BioInspired, and GrAI One.

VII. CONCLUSION

This paper showed the potential of memristive devices in
enabling new energy efficient Computation-In-Memory (CIM)
paradigm through two cases studies (database analytics and
compressed sensing), and in enabling efficient and cost ef-
fective implementation of some known architectures such as
automata processing. The paper also highlighted some major
challenges that have to be solved at different levels before
CIM becomes a reality.
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