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Abstract—The rapidly growing size of genomics data bases,
driven by advances in sequencing technologies, demands fast
and cost-effective processing. However, processing this data
creates many challenges, particularly in selecting appropriate
algorithms and computing platforms. Computing systems need
data closer to the processor for fast processing. Traditionally,
due to cost, volatility and other physical constraints of DRAM, it
was not feasible to place large amounts of working data sets in
memory. However, new emerging storage class memories allow
storing and processing big data closer to the processor. In this
work, we show how the commonly used genomics data format,
Sequence Alignment/Map (SAM), can be presented in the Apache
Arrow in-memory data representation to benefit of in-memory
processing and to ensure better scalability through shared mem-
ory objects, by avoiding large (de)-serialization overheads in
cross-language interoperability. To demonstrate the benefits of
such a system, we propose ArrowSAM, an in-memory SAM
format that uses the Apache Arrow framework, and integrate
it into genome pre-processing pipelines including BWA-MEM,
Picard and Sambamba. Results show 15x and 2.4x speedups
as compared to Picard and Sambamba, respectively. The code
and scripts for running all workflows are freely available at
https://github.com/abs-tudelft/ArrowSAM.

Index Terms—Genomics, Whole Genome/Exome Sequencing,
Big Data, Apache Arrow, In-Memory, Parallel Processing

I. INTRODUCTION

Genomics is projected to generate the largest big data
sets globally, which requires modifying existing tools to take
advantage of new developments in big data analytics and new
memory technologies to ensure better performance and high
throughput. In addition, new applications using DNA data are
becoming ever more complex, such as the study of large sets
of complex genomics events like gene isoform reconstruction
and sequencing large numbers of individuals with the aim
of fully characterizing genomes at high resolution [1]. This
underscores the need for efficient and cost effective DNA
analysis infrastructures.

At the same time, genomics is a young field. To process
and analyze genomics data, the research community is actively
working to develop new, efficient and optimized algorithms,
techniques and tools, usually programmed in a variety of
languages, such as C, Java or Python. These tools share com-
mon characteristics that impose limitations on the performance
achievable by the genomics pipelines.

• These tools are developed to use traditional I/O file
systems which incur a huge I/O bottleneck in computation

due to disk bandwidth [2]. Each tool reads from the I/O
disks, computes and writes back to disk.

• Due to the virtualized nature of some popular languages
used to develop genomics tools (such as Java), these tools
are not well suited to exploit modern hardware features
like Single-instruction multiple-data (SIMD) vectoriza-
tion and accelerators (GPU or FPGAs).

This paper proposes a new approach for representing ge-
nomics data sets, based on recent developments in big data
analytics to improve the performance and efficiency of ge-
nomics pipelines. Our approach consists of the following main
contributions:

• We propose an in-memory SAM data representation,
called ArrowSAM, created in Apache Arrow to place
genome data in RecordBatches of immutable shared
memory objects for inter-process communication. We
use DRAM for ArrowSAM placement and inter-process
access.

• We adapt existing widely-used genomics data pre-
processing applications (for alignment, sorting and du-
plicates removal) to use the Apache Arrow framework
and to benefit from immutable shared memory plasma
objects in inter process communication.

• We compare various workflows for genome pre-
processing, using different techniques for in-memory data
communication and placement (for intermediate applica-
tions), and show that ArrowSAM in-memory columnar
data representation outperforms.

The rest of this paper is organized as follows. Section II
discusses background information on genomics tools and
Apache Arrow big data format. Section III presents the new
ArrowSAM genomics data format. Section IV shows how to
integrate Apache Arrow into existing genomics tools, while
Section V discusses the measurement results of these new
tools. Section VI presents related work in the field. Finally,
Section VII ends with the conclusions.

II. BACKGROUND

This section provides a short description of DNA sequence
data pre-processing tools, followed by a brief introduction to
the Apache Arrow framework.
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Fig. 1. a) Genomics pipeline using ArrowSAM format for all intermediate steps to allow in-memory intermediate data storage, which means I/O disk access
is only needed to load data into memory at the beginning and to write data back to disk at the end. b) Arrow RecordBatch enclosed in plasma object store.
c) SAM file in ASCII text format. d) SAM file in RecordBatch format. e) Schema specifies the data types of ArrowSAM.

A. DNA pre-processing

After DNA data is read by sequencing machines, alignment
tools align reads to the different chromosomes of a reference
genome and generate an output file in the SAM format.
BWA-MEM [3] is a widely used tools for this purpose. The
generated SAM file describes various aspects of the alignment
result, such as map position and map quality. SAM is the
most commonly used alignment/mapping format. To eliminate
some systematic errors in the reads, some additional data pre-
processing and cleaning steps are subsequently performed,
like sorting the reads according to their chromosome name
and position. Picard [4] and Sambamba [5] are some tools
commonly used for such operations. This is followed by
the mark duplicates step, where duplicate reads are removed
by comparing the reads having the same map positions and
orientation and selecting the read with the highest quality
score. Duplicate reads are generated due to the wetlab pro-
cedure of creating multiple copies of DNA molecules to make
sure there are enough samples of each molecule to facilitate
the sequencing process. Again, Picard and Sambamba are
commonly used here.

B. Apache Arrow

To manage and process large data sets, many different
big data frameworks have been created. Some examples in-
clude Apache Hadoop, Spark, Flink, MapReduce and Dask.
These frameworks provide highly scalable, portable and pro-
grammable environments to improve storage and scalability of
big data analytics pipelines. They are generally built on top
of high-level language frameworks such as Java and Python
to ensure ease of programmability. However, such high-
level languages induce large processing overheads, forcing
programmers to resort to low-level languages such as C to

process specific computationally intensive parts of big data
applications. On the other hand, heterogeneous components
like FPGAs and GPUs are being increasingly used in cluster
and cloud computing environments to improve performance
of big data processing. These components are, however, pro-
grammed using very close-to-metal languages like C/C++
or even hardware-description languages. The multitude of
technologies used often results in a highly heterogeneous
system stack that can be hard to optimize for performance.
However, combining processes programmed in different lan-
guages induces large inter-process communication overheads
(so called data (de)serialization) whenever the data is moved
between such processes.

To mitigate this problem, the Apache Arrow [6] project
was initiated to provide an open standardized format and
interfaces for tabular data in-memory. Using language-specific
libraries, multiple languages can share in-memory data without
any copying or serialization. This is done using the plasma
inter-process communication component of Arrow, that han-
dles shared memory pools across different processes in a
pipeline [7].

III. ARROWSAM DATA FORMAT

This paper proposes a new in-memory genomics SAM
format based on Apache Arrow. Such a representation can
benefit from two aspects to improve overall system throughout:
one is related to the tabular nature of genomics data and the
other related to cross-language interoperability. Using Arrow
ensures efficient genomics data placement in memory to gain
maximum throughput and parallel data access efficiency. The
tabular genomics data format can benefit from the standard-
ized, cross-languages in-memory data representation of Arrow,



that provides insight into the organization of the data sets
through its schema.

In order to enable genomics applications to use Apache
Arrow, two different contributions are needed. First, we need
to define an Arrow in-memory representation of the corre-
sponding genomics SAM data format. Second, the applications
and tools using the data need to be adapted to access the new
format as shown in Figure 1(a). In the following, these two
contributions are discussed.

The SAM file format is an ASCII-based tab delimited
text format to represent DNA sequence data as shown in
Figure 1(c). Its in-memory SAM representation is a columnar
format that consists of the same fields (columns) used in SAM
to store the corresponding sequence mapping data as shown
in Figure 1(d). The Arrow frameworks requires defining the
data types for each field in a schema stored as part of the
data object, as shown in Figure 1(e). The schema defines the
ArrowSAM data format as listed more explicitly in Table I.

TABLE I
ARROWSAM SCHEMA

Index Field Datatype
0 QNAME String
1 FLAG Int32
2 RNAME Int32
3 POS Int32
4 MAPQ Int32
5 CIGAR String
6 RNEXT Int32
7 PNEXT Int32
8 TLEN Int32
9 SEQ String

10 QUAL String
11 TAG String

Arrow stores the columnar data fields in contiguous memory
chunks in so-called RecordBatches as shown in Figure 1(b).
Each RecordBatch is a combination of a schema, which
specifies the types of data fields of the ArrowSAM record,
the data itself, in addition to some meta data.

IV. IMPLEMENTATION

A. BWA-MEM integration

BWA-MEM aligns the raw read sequences against a large ref-
erence genome such as that of a human. We used ArrowSAM
to store the mapping data produced by BWA-MEM from query
and reference genome files. We modified BWA-MEM to use
Arrow libraries to write each chromosome (1-22, X, Y and
M) sequence mapping data in a separate Arrow RecordBatch.
At the end of the alignment process, all the RecordBatches
are assigned to a shared memory pool of plasma objects. Each
plasma object has its own identifications (objectID). Tools that
need to use the data generated by BWA-MEM can access this
data managed by plasma through zero-copy shared memory
access [8]. Doing so enables other tools to access all shared
RecordBatches in parallel.

B. Sorting through pandas dataframes

Pandas is a powerful and easy to use Python library,
which provides data structures, data cleaning and analysis
tools. Dataframes is an in-memory data library that provides
structures to store different types of data in tabular format to
perform operations on the data in columns/rows. Any row in
a dataframe can be accessed with its index, while a column
can be accessed by its name. A column can also be a series in
pandas. Using dataframes illustrates the powerful capabilities
of in-memory data representation. First of all, dataframes is
able to sort the chromosomes in parallel using pandas built-
in sorting function with Python Arrow bindings (PyArrow)
while accessing data residing in-memory, which takes place
across two applications written in different languages (one in
C and the other in Python). Secondly, tools like Picard and
Sambamba are used to sort the SAM file according to the
chromosome name and start positions of each chromosome.
This type of sorting becomes computationally intensive when
the whole SAM file needs to be parsed and sorted based on
the values stored in only two fields of that file. This can be
parallelized and made more efficient in our approach. Using
pandas dataframes, sorting each individual chromosome is
performed based on the start position of reads in that partic-
ular chromosome. All the RecordBatches are fed to pandas
dataframes to sort all the chromosomes in parallel. After
sorting, the sorted chromosomes RecordBatches are assigned
to plasma shared memory again for subsequent applications to
access.

C. Picard MarkDuplicate integration

After sorting the chromosomes data by their coordinates,
the duplicate reads with low quality should be removed.
The Picard MarkDuplicate tool is considered as a
benchmark for this task. This tool reads the SAM file two
times, first when building the sorted read end lists and then
removing marked duplicates from the file. To overcome this
I/O overhead, we just read the data as ArrowSAM format
in-memory once, accessing only five fields (QNAME, FLAG,
RNAME, POS, CIGAR and RNEXT) needed to perform the
MarkDuplicate operation. We modified htsjdk (a java API
used in Picard and many other tools for managing I/O
access of DNA sequencing data files) and MarkDuplicate
to read data from all RecordBatches in parallel from plasma
shared memory. Our implementation processes this data in
parallel in Picard and writes back the updated FLAG field
in ArrowSAM which sets duplicate bit. After finishing this
process, the shared memory plasma objects are available for
further variant calling processes for in-memory and parallel
execution.

V. EVALUATION

This section evaluates the speedup and efficiency achieved
using ArrowSAM for pre-processing of sequence data while
mapping, sorting and marking duplicates against existing
frameworks.



A. Experimental setup

All the experiments and comparisons are performed on a
dual socket Intel Xeon server with E5-2680 v4 CPU running at
2.4 GHz. A total of 192 GB of DDR4 DRAM with maximum
of 76.8 GB/s bandwidth is available for whole system.

We use Illumina HiSeq generated NA12878 dataset of
whole exome sequencing (WES) of human with 30x se-
quencing coverage with paired-end reads and a read length
of 100 bps. Similarly for whole genome sequencing (WGS),
we use Illumina HiSeq generated NA12878 dataset sample
SRR622461 with sequencing coverage of 2x with paired-end
reads and a read length of 100 bps. Human Genome Reference,
Build 37 (GRCh37/hg19) is used as a reference genome for
all workflows in our experiments for both WES and WGS.

The code and scripts for running all workflows is freely
available at https://github.com/abs-tudelft/ArrowSAM. Tools
and libraries and their version numbers used in our experi-
ments are listed in Table II.

TABLE II
TOOLS AND LIBRARIES USED IN THE EXPERIMENTAL SETUP

Tools/APIs Version
BWA-MEM [3] 0.7.17
Picard [4] 2.18.14
Sambamba [5] v0.6.8
elPrep [9] v4.1.5
Arrow C/C++/Java [6] 0.11.0
PyArrow [10] 0.11.0
Plasma object store [7] 0.11.0

B. Performance evaluation

In this section, we compare our approach with state-of-the-
art tools and approaches used for pre-processing of genomics
sequencing data. All speedups are compared for best perfor-
mance scenarios.

1) Picard: tools are considered as benchmarks in genome
analysis pipelines, such as Picard MarkDuplicate. This
tool was adapted to use our ArrowSAM in-memory format.
The MarkDuplicate process is compute intensive but there
is a significant amount of time (approximately 30%) spent
in I/O operations. Picard uses htsjdk as a base library
to read/write SAM files. We modified this tool from two
perspectives:

• Instead of reading from and writing to files, it now
reads/writes from in-memory RecordBatches, using only
those fields/columns necessary for MarkDuplicate
operations.

• Picard is single threaded. We changed it to be multi-
threaded so that each thread can operate on a separate
chromosome data set.

The first modification provides the benefit of using only
the required fields to perform MarkDuplicate operations
instead of parsing all the reads in a SAM files. As shown in
Figure 2, our implementation gives 8x and 21x speedups on
Picard sorting for genome and exome data sets, respectively.
Similarly for Picard MarkDuplicate, we achieve 21x
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Fig. 2. Execution time of Picard, Sambamba, elPrep and ArrowSAM based
sorting and MarkDuplicate for whole genome (top) and whole exome (bottom)
data sets.

and 18x speed-ups on for genome and exome data sets,
respectively.

2) Sambamba: is a multi-threaded tool to manipulate SAM
files for pre-processing steps in genomics pipelines. This
tool gives close to linear speedup for up to 8 threads but
adding more threads provides diminishing returns in per-
formance on a multi-core system. The main reason behind
this is the file system itself. The I/O communication gets
saturated by initiating more threads and CPU performance
also degrades because of cache contention [5]. As shown in
Figure 2, our implementation gives 2x speedup on Sambamba
sorting for both genome and exome data sets. Similarly for
Sambamba MarkDup, we achieve 1.8x and 3x speedups for
genome and exome data sets, respectively.

3) elPrep: is the latest set of multi-threaded tools for
pre-processing SAM files in-memory. We have also tested
and compared these tools with our implementation for pre-
processing applications and results show that our implemen-
tation gives more than 5x speedup over elPrep. elPrep
performs sorting and mark duplicate in a single command,
with a total run-time for both stages equally divided in run-
time graphs Figure 2. Samblaster is yet another tool used for
pre-processing SAM files, which is faster than Sambamba, but
has not been considered for performance comparison here be-
cause it produces a different output for the MarkDuplicate
stage than Picard.

C. Discussion

1) CPU usage: Figure 3 shows CPU utilization for standard
Picard (left) as well as ArrowSAM-based (bottom) sorting



Fig. 3. CPU resources utilization for standard Picard (left) as well as ArrowSAM-based (right) sorting and MarkDuplicate for whole exome data.

and MarkDuplicate for whole exome data. In both sorting
and duplicates removal stages, the parallelization offered by
shared memory plasma objects results in a large speedup. All
25 chromosomes are sorted and duplicates are removed in
parallel. In Picard sorting the CPU utilization is poor and the
tool is mostly waiting for I/O. The average CPU utilization is
only 5%. The Picard MarkDuplicate also has very low
CPU utilization, although better than sorting. On the other
hand, the CPU utilization of our implementation, which uses
pandas dataframes is much better than Picard sorting. The
CPU utilization of MarkDuplicate in our implementation
remains close to 95% during the whole execution stage.
The improved CPU utilization is due to Arrow in-memory
storage and parallel execution of processes, each working on
a different chromosome.

2) Memory access: Picard tools read a whole line from
the SAM file and then parse/extract all the fields from it.
Using ArrowSAM, we only access those SAM fields which are
required by that specific tool to process. In addition, due to the
columnar format of ArrowSAM, our implementation is able to
better exploit cache locality. Figure 4 shows a comparison of
level-1 (L1), level-2 (L2), and last-level cache (LLC) statistics
for Picard as well as ArrowSAM-based sorting (left) and
MarkDuplicate (right) applications for whole exome data
set. The figure shows that, all levels of cache accesses decrease
due to the fewer number of in-memory fields that need to be
accessed for the sorting and marking duplicates processes in
WES. Cache miss rate also decreases in all cache levels and
particularly in L1 cache.

3) Memory usage: Unlike other tools, ArrowSAM data
resides fully in-memory. Therefore, all the data is placed in a
shared memory pool of plasma objects. After sorting, input
plasma objects can be removed to free space for the new
sorted data which is used in subsequent applications. Other
than this, no additional memory is required for intermediate
operations. elPrep is an alternative tool that also uses in-
memory processing. Memory used by ArrowSAM and elPrep
for WES and WGS data sets in pre-processing applications is

shown in Table III.

TABLE III
MEMORY FOOTPRINT FOR IN-MEMORY PROCESSING TOOLS

Tool Exome Genome
elPrep 32GB 68GB

Arrow-based pandas and Picard 20GB 48GB

VI. RELATED WORK

Many in-memory implementations of genomic variant dis-
covery pipelines have been proposed. Almost all these imple-
mentations are cluster scaled and do not specifically exploit
single node performance. Many use the input data parallelism
to distribute the jobs on a cluster [11] and some of them take
the benefit of the Apache Spark big data framework for in-
memory data management [12], [13]. Our focus is to exploit
performance of single node systems.

In addition, some research focuses on creating new ge-
nomics tools and algorithms that are more efficient than
existing standard genomics pipelines [14]. ADAM [15], a set
of formats and APIs uses Apache Avro and Parquet for storage
and the Spark programming model for in-memory data caching
to reduce the I/O overhead. The results show that ADAM is
3x slower than multi-threaded Sambamba in small number of
cluster cores up to 64. In elPrep [9], the authors report 13x
speedup over GATK best practices pipeline for whole-exome
and 7.4x faster for whole-genome using maximum memory
and storage footprints. The main drawback of these tools is
lacking validation in the field which reduces their impact.

Other research focuses on innovative hardware platforms
to execute genomics algorithms more efficiently [16]. In [17]
a large pool of different types of memories are created and
connected to processing resources through the Gen-Z commu-
nication protocol to investigate the concept of memory-driven
computing. The memory is shared across running processes
to avoid intermediate I/O operations. This systems also allows
byte-addressability and load/store instructions to access mem-
ory. They reported 5.9x speedup on baseline implementation
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for some assembly algorithms, the source code is not available.
Some researchers use high-performance hardware accelerators
such as GPUs [18] and FPGAs [19] to accelerate computation-
ally intensive parts of genomics pipelines, but availability of
such accelerators in the field remains limited.

VII. CONCLUSION

This paper proposed a new in-memory SAM data repre-
sentation called ArrowSAM that makes use of the columnar
in-memory capabilities of Apache Arrow. The paper showed
the benefit of using ArrowSAM for genomic data storage and
processing for genomics data pre-processing: mapping, sorting
and mark duplicates. This allows us to process genomics data
in-memory through shared memory plasma objects in parallel
without the need for storing intermediate results through I/O
into disk. Results show speedup of 28x for sorting and 15x for
mark duplicates with respect to I/O based processing, more
than 4x and 30% memory access reduction for sorting and
mark duplicates, respectively, high CPU resources utilization,
as well as better cache locality. These results indicate the
potential of adopting a standard in-memory data format and
shared memory objects for genomic pipeline processing. Fu-
ture research will focus on extending our work for the com-
plete genomics variant calling pipeline. In addition, we plan
to integrate ArrowSAM into big data frameworks like Apache
Spark to enable cluster scale scalability of genomics appli-
cations. The code and scripts for running all workflows are
freely available at https://github.com/abs-tudelft/ArrowSAM.
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