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Abstract

This paper proposes a centralized model predictive control framework to address
logistics management of supply chains of perishable goods. Meeting customer spe-
cific requirements is decisive to gain a competitive advantage in supply chain man-
agement. This fact motivates stakeholders to address solutions that continuously
improve supply chain operations. The solution proposed in this work considers the
supply chain as a dynamical system in a state-space representation where differ-
ent categories of commodities, namely common goods and perishable goods, are
included. Additionally, the dynamical model is able to store information of the com-
plete supply chain regarding the quantity of commodities and the due time associ-
ated to the perishable goods. A centralized controller then collects the supply chain
state information and optimizes the commodity flow based on the model prediction
over a fixed time horizon. The model predictive control solution assigns just-in-time
commodity flows, schedules production according to customer demand (pull system)
and monitors work-in-progress and in-transit commodities. The success of the pro-
posed control approach is demonstrated in a numerical simulation of a three-tier
supply chain following three distinct management policies.

KEYWORDS
State-space representation; Centralized Model Predictive Control; Supply Chain
Management; Logistics Management; Perishable goods

1. Introduction

The Food and Agriculture Organization of the United Nations (FAO), reported that
one third of the food produced for human consumption is wasted (FAO 2011). The
majority of food wastage occurs at pre-consumption stages of the supply chain, from
production to retailing (see Figure 1). While in developing countries the wastage occurs
in the earlier stages of the value chain, namely production and storage, in industrialized
countries the wastage comes mostly from the later stages of the value chain, specifically
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distribution and retailing. The lack of coordination between supply chain stakeholders
was identified as the most relevant contributing factor to supply chain ineffectiveness.

Figure 1. Food wastage, per capita, at pre-consumption and consumption stages of the supply chain, in

different regions of the world (FAO 2011).

Supply Chain Management has attracted intensive research attention over the last
few years and it has been interpreted by various authors, leading to multiple defini-
tions (Jain, Dangayach, Agarwal & Banerjee 2010). Although there is no unanimous
definition, Supply Chain Management focuses on coordinating material, information
and financial flows, involving all Supply Chain stakeholders - suppliers, manufactur-
ers, logistics service providers, distributors, retailers and customers - in the decision
making process, in order to fulfil customer demand requirements. The goal of Supply
Chain Management is to improve the overall performance of the Supply Chain (see
Figure 2) (Min & Zhou 2002; Stadler & Kilger 2008). Additionally, Logistics Manage-
ment (LM) is the component of Supply Chain Management responsible for monitoring
and handling the flows of commodities, logistics services and information from the
origin to the destination (Kukovic, Topolsek, Rosi & Jereb 2014).

Over the years, Supply Chains have been changing from push to pull perspectives.
Manufacturing quality has reached parity across the board, so meeting customer spe-
cific requirements has emerged as the next critical opportunity for competitive advan-
tage (Jain et al. 2010). Today, customers demand products and services to be avail-
able at any time and to be delivered as fast as possible, while meeting high-quality
standards. Consequently, the number of orders are increasing and the quantity per
order reducing, simultaneously, leading supply chain stakeholders to incur in high op-
erational costs. The mismatch between customer requirements and operational costs
imposes additional logistical effort on coordinating operations efficiently in Supply
Chains (Chen, Dong & Xu 2018). The approach proposed in this paper assumes that
all customer demand must be satisfied by available stock of commodities at the re-
tailer (Minner & Transchel 2010).

Many Supply Chains deal with perishable commodities. Nahmias (1982) stated
that perishable goods are commodities with a fixed lifetime, during which they can
be moved across the supply chain or retained in stock and discarded afterwards. For
example, perishability is present in:
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Figure 2. Representation of supply chain dynamics describing the interactions between the stakeholders
(adapted from Min & Zhou (2002)).

• dairy industry - from the raw milk that enters the factories and has to be pro-
cessed under specific conditions, to the intermediate products, whose properties
are limited in time, and, finally, the different final products, such as cheese
and yoghurt, which are labelled with an expiration date, fixing their shelf-
life (Amorim, Meyr, Almeder & Almada-Lobo 2013);
• food industry - fish and seafood should be consumed fresh, requiring specific

conservation conditions as their organisms deteriorate quickly (Boziaris & Par-
lapani 2017), while other type of food, e.g. bananas, go through ripening and
long transportation processes being exposed to several different temperature and
moisture conditions (Lin, Negenborn, Duinkerken & Lodewijks 2017);
• health industry - blood services are constantly at risk of failing due to shortage of

supply and outdating of samples. In 2006, the national estimate of the percentage
of outdated blood units, in the United States, was 8%, representing more than 1
million of units (Nagurney, Masoumi & Yu 2012; Whitaker, Green, King, Leibeg,
Mathew, Schlumpf & Schreiber 2007).

Hence, perishability is critical to efficiently address Supply Chain operations. Stern-
beck & Kuhn (2014) acknowledge that research on Supply Chains of perishable goods
lacks integrative approaches which determine delivery plans and target stock levels
for retail shops accounting for the impact of complementary supply chain tasks. Ad-
ditionally, Ivanov, Sokolov & Raguinia (2014) noted that Supply Chain integration
approaches need to be strongly supported by technological information systems. The
authors define Supply Chains as collaborative cyber-physical systems which combine
physical and information subsystems, and processes, which are inter-dependent re-
sulting in coherent management decisions. Some authors developed approaches to im-
prove Supply Chain performance considering integration and multiple tasks simulta-
neously (Ekşioğlu & Jin 2006; Federgruen, Pastracos & Zipkin 1986; Lee, Chan & Lee
2016; Li 2013; Omar & Zulkipli 2016). However, none of these approaches account for
the whole Supply Chain operation from the upstream to the downstream and ignore
the transformations done on commodities over the Supply Chain.

Traditionally, Supply Chain Management and Logistics Management rely on ad-hoc
heuristics and mathematical programming techniques mostly based on Operational Re-
search (OR) approaches (Li & Marlin 2009; Papageorgiou 2009). The OR approaches,
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typically, model a Supply Chain as a sequence of individual tasks rather than includ-
ing the dynamic interactions between supply chain stakeholders (Amorim et al. 2013).
Stakeholders should be able to access relevant information in real-time regarding the
entire operational process (e.g. capacity limits, task scheduling, transport availability
and demand prediction) to ensure effective decision making throughout the Supply
Chain (Dreyer, Alfnes, Strandhagen & Kollberg 2009). Thus, in order to replicate
closely the behaviour of real Supply Chains, the integration of their multiple pro-
cesses and the coordination between stakeholders should be explicitly modelled (Rong,
Akkerman & Grunow 2011).

Concurrently, control-based techniques are suitable to model the dynamic interac-
tions present in multi-player systems and, therefore, they are useful to coordinate LM
of Supply Chains of perishable goods, often subjected to uncertain demand condi-
tions (Mestan, Türkay & Arkun 2006; Pinho, Moreira, Veiga & Boaventura-Cunha
2015). The approach proposed in this paper develops a centralized Model Predic-
tive Control (MPC) framework to coordinate the LM of integrated Supply Chains
of perishable goods. MPC has been successfully applied in process industry applica-
tions (Wang & Rivera 2009) and in SCM (Alessandri, Gaggero & Tonelli 2011; Fu,
Aghezzaf & Keyser 2014; Maestre, de la Peña & Camacho 2009; Subramanian, Rawl-
ings, Maravelias, Flores-Cerrillo & Megan 2013). Recent papers have extended the
scope of applicability of this method to Supply Chains of perishable goods (Gaggero
& Tonelli 2015; Lin et al. 2017). In MPC, the control algorithm uses current and
historical measurements of the system behaviour to predict its behaviour at future
time instants. The advantages of using MPC algorithms for optimizing Supply Chain
logistics are: i) optimization of the complete Supply Chain operation, ii) design of
robust formulations, even in the presence of disturbances such as uncertain demand,
iii) integration of functional constraints in the optimization problem regarding limits
of operation, namely, production rates, inventory levels and dispatch capacity, and iv)
implementation of distinct management policies through the manipulation of the cost
function (Pinho et al. 2015). The proposed MPC approach operates under a Global
Control Centre. Dreyer et al. (2009) introduced the concept of Global Control Centre
as a virtual or physical Supply Chain player which intends to coordinate and integrate
the entire operational process in supply networks, by enabling efficient management
of material flows, constrained by infrastructural limitations.

The approach proposed in this paper consists of a Model Predictive Control frame-
work to perform logistics management of Supply Chains of perishable goods. The
control algorithm optimizes Supply Chain operations considering, simultaneously, pro-
duction, distribution and inventory management, and the due time of perishable goods.
These processes are modelled from a flow perspective, meaning production consists in
modifying commodities to produce new ones, distribution concerns the movement of
the goods across the different tiers of the Supply Chain and inventory management
focuses on holding and dispatching inventory accounting for the time until expiration
of perishable goods. The dynamical model of the Supply Chain considers multiple
products and distinguishes the flow of commodities according to their nature, type
and remaining time until expiration. Perishable goods are monitored either by being
perishable or as a result of production. They are assumed to have a known lifetime,
leading inventory management to follow an age-based policy. A first-in-first-out (FIFO)
issuing policy is assumed at the retailer, meaning perishable products are displayed at
shelves by order of arrival. The Model Predictive Control algorithm coordinates the
storage and flows between tiers in order to continuously perform the replenishment
of the safety stock at the retailer, which depend on the intensity of the customer de-
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mand. Consequently, this approach is demand-driven, which means the dynamics of
the supply chain operation depends on the intensity of customer demand, a major
feature that is usually neglected in the literature (Jain et al. 2010).

This paper builds on the work of Nabais, Negenborn, Carmona-Beńıtez, Mendonça,
Lourenço & Botto (2013), which proposes a multi-agent model predictive control ap-
proach to manage demand driven supply chains. This work addresses the logistics
management of Supply Chains in general, not considering the specificities of the com-
modities. Besides, it only addresses the movement of commodities between multiple
tiers, ignoring important Supply Chain processes such as production and inventory
management. The approach proposed in this paper adopts a similar Model Predictive
Control strategy as Nabais et al. (2013) but applies it to Supply Chains of perishable
goods, tracking their due time over the entire Supply Chain. Besides, it categorizes
commodities according their nature and models Supply Chain processes, namely pro-
duction, distribution and inventory management based on that categorization. The
goal of this paper is to present a systemic framework to perform logistics management
of supply chains of perishable goods. Hence, the contributions of the current paper can
be summarized as follows: i) the ability to track the due time associated to perishable
goods over the entire Supply Chain, using a state-space representation of the dynam-
ical model of the Supply Chain; ii) it addresses logistics management processes from
a flow perspective: production consists in transforming commodities either to produce
new commodities or to modify the ones that already exist; distribution focuses on the
movement of commodities across the multiple tiers; and inventory management stores
and assigns commodity flow accounting for the due time of perishable goods; and iii)
managerial insights are drawn, concerning the length of the prediction horizon of the
Model Predictive Control algorithm and distinct management goals. This is made us-
ing a demand-driven approach to logistics management, continuously replenishing the
variations in the safety stock of the most downstream tier caused by customer demand.

This paper is organized as follows. In Section 2, a state-space representation de-
scribes the dynamics of Supply Chains of perishable goods. Logistics Management
is formulated using a centralized Model Predictive Control framework in Section 3.
The performance of the proposed approach is tested through numerical simulations
in Section 4. The Logistics Management of a three-tier supply chain is evaluated by
analysing its response to three distinct management policies. In Section 5, conclusions
are drawn and future research topics are indicated. Section 1 of the Appendix contains
a description of the notation used in this paper.

2. Modeling

From a system dynamics point of view, Supply Chains consist of large and complex
networks of nodes, representing physical locations, and links, associated to the move-
ment of commodities between the nodes. Modelling Supply Chains requires a trade-off
between capturing the main dynamics of the system and considering hypothesis and
assumptions to reduce complexity and avoid redundancy.

2.1. Conceptual Approach

The Supply Chain model is conceived taking into consideration two aspects: i) Supply
Chain design, representing the possible paths and processes commodities can follow
from upstream to downstream; and ii) commodity categorization.
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Figure 3. Basic components of the proposed Supply Chain model (Nabais et al. 2013).

2.1.1. Supply Chain Design

At a macroscopic level, a Supply Chain is characterized by two major proper-
ties (Nabais et al. 2013):

• potential: related to the storage capability in specified areas, namely factories,
distribution centres, warehouses and retail shops, where commodities can be pro-
duced, modified or simply stored. These locations are modelled as centre nodes.
Centre node i has an in-degree, ideg(i), and an out-degree, odeg(i), correspond-
ing to the flows of commodities entering and exiting the centre node, respectively
(see Figure 3(a));
• flow: related to production and transport of commodities between physical loca-

tions. The movement of commodities is modelled using connections, which are
composed of a succession of flow nodes each having an in-degree and out-degree
equal to one. Connection j is composed of ncj

flow nodes and ncj
+ 1 flows (see

Figure 3(b)), where ncj
is the number of flow nodes belonging to connection j.

Connections follow a pull-push flow perspective: pulling commodities from the
upstream node of the connection and pushing them to the downstream node.

2.1.2. Commodity Categorization

This paper assumes that commodities in Supply Chains are categorized into two cat-
egories, according to their nature:

• common goods: common goods do not deteriorate over time. The number of
different common goods (e.g. packages, ore, sand) in the Supply Chain is defined
as ng. They are consumed directly at the downstream of the Supply Chain or
used to produce new goods at production connections, either common goods or
perishable goods;
• perishable goods: the economic value of perishable goods is limited in time. The

number of different perishable goods (e.g. bananas, pears, blood) in the Supply
Chain is defined as np. This way, ndtp is the number of time instants until due
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time for perishable good p, right after being available in the Supply Chain. For
each perishable good, the remaining time until due time is considered in dtp,
which is a time-varying property representing the number of time instants until
perishable good p loses its economic value. For the sake of readability, from now
on this property will be mentioned as due time. Perishable goods need to be
available at the retailer before due time.

The total number of commodities, ncomm, in the Supply Chain is given by ncomm =
ng +np. The model stores information regarding the commodity quantity and the due
time, in case of perishable goods. The commodity quantity can be measured discretely,
by units, or continuously, by volume or weight, depending on the type of commodity.
The number of flow classes, nclass, tracked throughout the Supply Chain, is defined as
the sum of the different common goods plus the maximum due time of each perishable
good, i.e.,

nclass = ng +

np∑
i=1

ndti . (1)

2.2. Supply Chain Model

The total number of nodes nt in the model is related to the Supply Chain design and
is given by

nt = ncn +

nc∑
j=1

ncj
, (2)

where ncn is the number of centre nodes and nc is the number of connections.
Apart from the most downstream node, for each node in the Supply Chain a state-

space vector x̄i(k), i = 1, . . . , nt − 1, is defined as follows

x̄i(k) =



x1
i (k)
x2
i (k)
...

x
ng

i (k)

x1,1
i (k)

...

x
1,ndt1

i (k)
...

x
np,1
i (k)

...

x
np,ndtnp

i (k)



, (3)

where xg
i (k) is the quantity of common good g at node i at time instant k, x

p,dtp
i (k) is

the amount of perishable good p with remaining due time dtp at node i at time instant
k, and ndtp is the maximum due time for perishable good p. The quantities xg

i (k) and
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x
p,dtp
i (k) represent the flow classes, thus the length of each state-space vector, x̄i(k),

is nx̄i
= nclass. The demand is seen as a disturbance d(k) at the most downstream

node of the supply chain. Mathematically, it is represented as a vector of dimension
nd = ncomm. This means that the due time of perishable goods is not tracked at
the most downstream node, usually corresponding to the retail shop, where a FIFO
issuing policy is assumed at the selling shelves. For this reason, the state-space vector
of the most downstream node x̄nt

(k) resumes to the quantity of each commodity type
at the node and its dimension is ncomm. In order to quantify the wastage and loss of
perishables in the Supply Chain, the additional state-space vector x̄OD(k) accounts
for the quantity of perishable goods that become overdue across the Supply Chain,
before reaching the shelves of the retail shop, i.e.,

x̄nt
(k) =

 x1
nt

(k)
...

xncomm
nt

(k)

 , x̄OD(k) =

 x1
OD(k)

...
x
np

OD(k)

 , (4)

where xcomm
nt

(k) represents the quantity of commodity of type comm at the most
downstream node nt and xp

OD(k) describes the quantity of perishable good p that
became overdue. It is assumed that perishable goods delivered at the retailer before
due time are sold on time to customers and perishable goods that become overdue
lose their economical value. By merging all these individual state vectors, the overall
state vector x(k) of the entire supply chain is obtained,

x(k) =


x̄1(k)
x̄2(k)

...
x̄nt

(k)
x̄OD(k)

 . (5)

The state vector dimension is nx = nt−1nclass + ncomm + np, corresponding to the
product between the number of flow classes handled at each node and the number
of nodes existing in the Supply Chain, plus the number of commodities at the most
downstream node and the number of perishable goods. For the case there are no
perishable goods in the Supply Chain, the number of flow classes to track reduces to the
number of common goods, ng, and the state-space dimension is simply nx = ntng. The
commodity is always accessible through the state vector, whether in the production,
transport or storage stages of the Supply Chain.

Consider u
p,dtp
j (k) as the quantity of perishable good p with remaining due time

dtp to be pulled from node j at time instant k. For all admissible flows in the Supply
Chain, a control action vector ūj(k) is defined, with dimension nūj

= nclass. All ūj(k)
(j = 1, . . . , nf), where nf is the number of flows in the Supply Chain, are merged to
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form the overall control action vector u(k) with dimension nu = nfnclass,

ūj(k) =



u1
j (k)

u2
j (k)
...

u
ng

j (k)

u1,1
j (k)

...

u
1,ndt,1

j (k)
...

u
np,1
j (k)

...

u
np,ndtnp

j (k)



,u(k) =


ū1(k)
ū2(k)

...
ūnf

(k)

 . (6)

The Supply Chain is fully observable since the output of the model is actually the
state of the system, y(k) = x(k). The model of the Supply Chain can be represented
in a state-space form as follows:

x(k + 1) = Ax(k) + Buu(k) + Bdd(k), (7)

y(k) = x(k) (8)

where A (dimension nx × nx), Bu (dimension nx × nu) , Bd (dimension nx × nd) are
the state-space matrices. The Supply Chain state at the next time instant, x(k + 1),
is determined using (7) as a function of the current Supply Chain state x(k) plus
the contribution from the control action u(k) and the demand disturbance d(k). The
control action u(k) corresponds to the flow of commodities between nodes and is
constrained by the available transport resources.

2.3. Model Insight

In this paper Supply Chain design takes into account the following features:

• Supply Chain processes - Supply Chain design is able to split production from
distribution and considers production activities first, regardless the position in
the Supply Chain;
• flow and potential properties - Supply Chain design addresses separately and

sequentially the flow component (connections and flow nodes) and the potential
component (centre nodes);
• flow perspective - Supply Chain design follows the path of the commodities

through the Supply Chain, from the upstream to the downstream.

Based on the aforementioned design criteria, supply chain nodes should be ordered us-
ing the following policy: i) connections related to production are addressed first (flow
nodes are numbered from upstream to downstream); ii) connections related to distri-
bution are addressed second (flow nodes are numbered from upstream to downstream);
and, finally, iii) centre nodes are addressed (centre nodes are numbered from upstream
to downstream). Flows are also numbered sequentially from upstream to downstream.
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3. Logistics Management

The proposed approach assumes the existence of a Global Control Centre, which con-
sists of an additional node, external to the Supply Chain, which continuously collects
information regarding the operation of the Supply Chain. The information collected
by the Global Control Centre consists of the commodity quantity and due time of
perishable goods at each node, the current storage capacity of the centre nodes, the
current transport capacity of the connections, and predictions on transport capacity,
storage capacity and customer demand profile in future time instants. Global Control
Centre compiles this data and runs a centralized model predictive control algorithm
to determine the flow assignment to implement in the system, in order to optimize
the Supply Chain overall performance. Then, the flow assignment decisions are com-
municated to the agents responsible for the assignment of commodity flow, located at
the centre nodes. The main advantage of using model predictive control is the ability
to include constraints and predictions about the system behaviour and handle distur-
bances within an unified modelling and optimization framework (Maciejowski 2002).
At each time sample, the controller gathers information related to the updated state
of the system, predictions on the storage capacity, transport capacity and demand
profile over a defined prediction horizon, Np, and formulates an optimization problem
considering a control-relevant cost function, which evaluates the performance of the
Supply Chain. The output of the optimization problem is the sequence of future con-
trol actions, which optimizes the supply chain behaviour over the prediction horizon
Np. The predicted control action regarding the first time step is implemented in the
system and the overall system state is updated. At the next time step, the process is
repeated considering the updated state system and the new system predictions.

3.1. Problem Formulation

This paper presents a systemic framework to perform logistics management of supply
chains of perishable goods. The cost function adopted is a linear function which as-
sociates weights qi(k), i = 1, . . . , nt, to the nodes and weights qOD(k) to the overdue
perishable goods, over the prediction horizon, Np . The cost function depends on the
current state of the system, control actions and predicted demand, over the prediction
horizon Np. The weights of the cost function may vary according to the management
policies as different Supply Chain goals require distinct operational behaviour. This
type of cost function is usually used in linear programming and mixed integer lin-
ear programming formulations of Supply Chain optimization problems (Papageorgiou
2009). Thus, the cost function of the MPC algorithm is defined as:

J (x̃k) =

Np−1∑
l=0

q (k + l) x (k + 1 + l) , (9)

where x̃k is a vector composed with the state vectors of each time instant k, over the
prediction horizon Np,

x̃k =
[

xT(k + 1) , . . . , xT(k +Np)
]T
. (10)

10



The MPC optimization problem for the logistics management of the Supply Chain can
be formulated as follows:

min
ũk

J (x̃k) (11)

s.t. x(k + 1 + l) = Ax(k + l) + Buu(k + l) + Bdd(k + l), (12)

x(k + 1 + l) ≥ 0, (13)

u(k + l) ≥ 0, (14)

Pxxx(k + 1 + l) ≤ xmax, (15)

Puuu(k + l) ≤ umax, (16)

x(k + l) ≥ Pxuu(k + l), l = 0, . . . , Np − 1. (17)

where ũk corresponds to the control action vectors computed for each time instant k,
over the prediction horizon Np,

ũk =
[

uT(k) , . . . , uT(k +Np − 1)
]T
, (18)

where xmax (ntncomm×1) is the maximum storage capacity per node, umax (nfncomm×
1) corresponds to the available transport capacity, according to the supply chain layout,
Pxu (nx × nu) is the projection matrix from the control action set U into the state-
space set X , Pxx (ntncomm × nx) is the projection matrix from the state-space set X
into the maximum storage capacity set Xmax, Puu (nfncomm × nu) is the projection
matrix from the control action set U into the available moving capacity set Umax.
Constraints (13)–(17) are necessary to obtain feasible and meaningful control actions,
which means:

• non-negativity of states and control actions: negative storage at the nodes and
negative flows of commodities are not physically possible. The non-negativity of
states and control actions is imposed by constraints (13)–(14);
• maximum storage capacity: each Supply Chain node has to respect its storage

capacity limits. This feature is captured in constraint (15);
• maximum control actions: the maximum handling capacity to move commodities

between nodes, limited by resource availability, is represented by constraint (16);
• flow conservation: not all control actions that satisfy constraints (14) and (16)

are feasible. The flow of commodities to be moved from a node must never exceed
the amount of commodities stored in that node. Constraint (17) illustrates this
restriction.

4. Numerical Experiments

In this section, the centralized MPC framework is applied to perform Logistics Man-
agement of a Supply Chain composed a manufacturer, a distributor, a retailer and a
global control centre. The Supply Chain handles both common goods and perishable
goods, considering three distinct management policies of increasing complexity. The
three management policies can be described as:

• safety stock policy - it focuses on filling the inventory of the retailer in order to
satisfy customer demand;
• waste minimization policy - it intends, simultaneously, to reduce the quantity
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of overdue perishable goods in the Supply Chain and fill the inventory of the
retailer;
• just-in-time policy - it intends to make commodities available at the retailer

shelves as fast as possible, while reducing the amount of overdue perishable
goods and filling the inventory of the retailer.

4.1. Case Study Description

4.1.1. Static Configuration

The sampling time considered in the simulation is one day. The Supply Chain is
composed of one manufacturer, one distributor and one retailer, and its activity is
monitored by a global control centre (see Figure 4). The logistics operations of the

n1 n2 n3 n4 n5 n6
6 6

global control center

?
6

?
6

?
6

?

6

?

6

?

6

?

6

?

6

?

6

--

7 8 9- - - - - -

-flow of information

-flow of commodities

production distribution

manufacturer distributor retailer

Figure 4. Supply chain composed of one manufacturer, one distributor, one retailer and a global control

center, handling two common goods and two perishable goods (vertical boxes - centre nodes; circles - flow
nodes; horizontal box - external control node).

Supply Chain consist of:

• production - occurs at the upstream of the Supply Chain and the manufacturer
is responsible for the production flow assignment. Perishable goods are produced
from common goods. There are two production lines with a lead time of 2 days.
They are composed of two flows and one flow node;
• distribution - consists in transporting the commodities from the manufacturer

to the retailer and it is assured by a logistics service provider. Transportation
connections have a lead time of 3 days. Therefore, they are composed of three
flows and two flow nodes;
• inventory management - consists in monitoring the inventory level at the retailer

and replenish it when it goes under the desired safety stock level.

The Supply Chain storage and transport capacity limits are discriminated per com-
modity at each node and connection (Table 1 and Table 2). They are assumed con-
stant over the entire simulation. Besides, four different commodities are supplied to the
market: two common goods, G1 and G2, and two perishable goods, P1 and P2, manu-
factured from the common goods, with a lifetime of 14 days. The commodity quantity
is measured in units. The common goods are, initially, available at the manufacturer.
They are consumed to produce the perishable goods in separate production lines at
the manufacturer, according to a specific ratio (see Table 3). Once produced and made
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Table 1. Maximum storage capacity, per commodity, at centre nodes (manufacturer, distributor and retailer)

total
commodities

G1 G2 P1 P2

Capacity

Manufacturer 4200 2000 2000 100 100

Distributor 200 50 50 50 50

Retailer 100 25 25 25 25

Table 2. Maximum handling capacity, per commodity, at connections, discriminated by flow nodes and flows

total
commodities

G1 G2 P1 P2

flow nodes

node 1 2 0 0 2 0

node 2 3 0 0 0 3

node 3 14 4 5 2 3
node 4 14 4 5 2 3

node 5 14 4 5 2 3

node 6 14 4 5 2 3

connections

connection 1
1st flow 2 0 0 2 0
2nd flow 2 0 0 2 0

connection 2
1st flow 3 0 0 0 3

2nd flow 3 0 0 0 3

connection 3
1st flow 14 4 5 2 3

2nd flow 14 4 5 2 3

3rd flow 14 4 5 2 3

connection 4
1st flow 14 4 5 2 3

2nd flow 14 4 5 2 3
3rd flow 14 4 5 2 3

Table 3. Ratio of common goods, G1 and G2, consumed to produce perishable goods, P1 and P2, and their
maximum due time, ndtp .

common goods
ndtp

G1 G2

perishable goods
P1 1 1 14
P2 2 1 14

available at the manufacturer, the perishable goods have 14 days to be delivered at
the retail shop. Once delivered at the retailer, the due time of the perishable goods
is no longer tracked and it is assumed that the retail shop follows a FIFO policy at
the shelves. Common goods are also delivered at the retail shop and sold directly to
the customers. The lead time for common goods to be available at the retail shop is
6 days, while for perishable goods is 8 days, due to the production operation.

The Supply Chain graph, G, relates center nodes, flow nodes and flows (see Figure 4).
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The Supply Chain graph can be represented by its incidence matrix, D(G):

D(G) =



1 −1 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1
−1 1 −1 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1


(19)

The rows of D(G) represent the nodes of the Supply Chain, while the columns consist
of the flows. For example, row 1 describes flow 1 entering in node 1 and flow 2 exiting
node 1. Matrices A, Bu and Bd for this case study are presented in the Appendix.

4.1.2. Dynamic Configuration

The Supply Chain behaviour is simulated over 100 days and customer selling starts 20
days after the beginning of the simulation. At the start of the simulation, there is only
inventory of common goods at the manufacturer, in a sufficiently large quantity to fulfil
the expected demand at the retailer, over the entire simulation period. This means
that all perishable goods must be produced. The demand profiles of the four distinct
commodities were generated using gamma distributions (considering the describing
parameters values: k = 2 and θ = 1) (Burgin 1975). The customer demand profiles are
assumed to be deterministic. Furthermore, it is assumed predictions of the demand
are available and match the demand.

The weights of the cost function of the optimization problem describe the manage-
ment policy, therefore three distinct sets of weights are assigned to the three different
management policies:

• Management Policy 1 (MP 1) – safety stock policy - the weights associated to
the inventory at the retailer depend on the commodity quantity. The inventory
is bounded by a lower limit and an upper limit. If the commodity quantity is
below the lower limit, the weights are highly negative to promote the increase
of commodity quantity; if the commodity quantity is above the lower limit and
below the upper limit, the weights are slightly negative to impel the commodity
quantity to reach the upper limit. In turn, if the commodity quantity is above the
upper limit, the weights are highly positive to penalize the excess of commodity
quantity and decrease it below the upper limit;
• Management Policy (MP 2) – waste minimization policy - the cost function has

two components: one associated to the penalty of overdue perishable goods and
the other related to the safety stock at the retailer described in management
policy 1. The weights associated to overdue perishable goods are higher than
the weights associated to the safety stock since reducing wastage is prioritized
relatively to keeping the safety stock desired level at the retailer;
• Management Policy 3 (MP 3) – just-in-time policy - the cost function has three

components: one associated to the penalty of inventory at the distributor, in-
tending to reduce it to the minimum level possible and the other two accounting
for the safety stock and waste minimization described previously.
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Table 4. Cost function weights associated to the supply chain state considering three distinct management

policies.

Commodities

G1 G2 P1 P2

Management

Policy 1

Flow nodes 1 1 1 1

Manufacturer 0 0 0 0

Distributor 0 0 0 0

Retailer
x9 <= LL −10 −10 −200 −200

LL < x9 <= UL −1 −1 −100 −100

x9 > UL 10 10 100 100

Overdue – – 0 0

Management

Policy 2

Flow nodes 1 1 1 1

Manufacturer 0 0 0 0

Distributor 0 0 0 0

Retailer

x9 <= LL −10 −10 −200 −200

LL < x9 <= UL −1 −1 −100 −100

x9 > UL 10 10 100 100

Overdue – – 75 125

Management

Policy 3

Flow nodes 1 1 1 1

Manufacturer 0 0 0 0

Distributor 5 5 5 5

Retailer

x9 <= LL −10 −10 −200 −200

LL < x9 <= UL −1 −1 −100 −100

x9 > UL 10 10 100 100

Overdue – – 75 125

The weights of the cost function are assumed to be constant over the entire simulation.
Besides, the inventory lower limit (LL) at the retailer is 3 units and the upper limit
(UL) is 6 units, for all commodities. The cost function parameters (inventory limits
and weights) are presented in Table 4.

4.2. Numerical Results

The performance of the Supply Chain is evaluated for the three different Management
Policies using the following performance measures:

• overdue perishable goods - the total quantity of perishable goods that became
overdue before being delivered at the retail shop;
• overproduction of perishable goods - the difference between the demand of per-

ishable goods at the retailer and the quantity of perishable goods produced;
• total commodity movements - total amount of commodity movements between

the manufacturer and the retailer;
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• distributor inventory usage - total commodity quantity stored at the distributor,
over the entire simulation;
• retailer inventory error - difference between the desired safety stock level at the

retailer and the retailer inventory level;
• computation time - the amount of time, in seconds, of the entire simulation;
• commodity movements per due time - amount of commodity movements for each

due time.

Supply Chain logistics management is analysed considering two dimensions:

• prediction horizon, Np - for each Management Policy, the logistical behaviour of
the Supply Chain is studied by varying the prediction horizon, from 8 time steps,
which correspond to the lead time of the perishable goods, to 15 time steps, which
covers the entire lifetime of perishable goods. The customer demand profile is
the same for all different simulations;
• customer demand profile - for each Management Policy, the logistics management

of the Supply Chain is analysed imposing three different demand profiles. The
prediction horizon, Np, is fixed for all simulations.

4.2.1. Insights in management policies regarding the prediction horizon, Np

Figure 5 illustrates the customer demand scenario (Scen 1), discriminated by com-
modity.

Figure 5. Profile of the customer demand, discriminated by commodity (Scen 1).

Table 5 and table 6 present the values of the performance measures for each predic-
tion horizon sampled and for each Management Policy. Regarding overdue perishable
goods, MP 2 and MP 3 can minimize and, sometimes, eliminate wastage, for higher
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Np. In turn, MP 1 produces high quantities of overdue perishables, which increase with
Np. While MP 2 and MP 3 define the minimization of wastage as a management goal,
resulting in less overdue commodities for higher Np, MP 1 does not account for it, so
a higher Np produces more overdue commodities. In terms of overproduction, a higher
Np leads to an excess of perishable goods for all management policies. Production is
not considered in the cost function, directly, because the MPC algorithm acts based on
the customer demand intensity. However, by looking further ahead, MPC algorithms
with higher Np, anticipate the customer demand and assign more production flows.
Total commodity movements and distributor inventory usage also increase with the
growth of Np. Nevertheless, comparing the commodity movements and the distribu-
tor inventory usage for the three management policies, MP 3 performs Supply Chain
operations more efficiently, which was expected due to its just-in-time characteristic.
In turn, higher Np results in smaller retailer inventory error, meaning the framework
is able to replenish the safety stock at the retailer and keep it close to desired level.
MP 2 is the management policy that manages the safety stock more efficiently, as its
inventory error values are the lowest (negative values mean the real inventory level
was above the desired inventory level). Although, MP 3 performs operations more
efficiently, MP 2 manages better the safety stock at the retailer, which is decisive to
satisfy the customer demand. Concerning dimensionality, a higher Np lead to larger
computation time because it adds additional constraints to the optimization problem.
The computation time of the simulations grow exponentially with Np, as can be seen
in Table 6.

Table 7 details the flows per due time, showing that MP 1 moves many goods
with low due times and allow them to get overdue. In turn, MP 2 and MP 3 handle
perishable goods in a similar way, moving high commodity quantities of perishable
goods with higher due times and low commodity quantities with shorter due times
flows. The difference between MP 2 and MP 3 regarding the number of movements
of common goods, which is lower for MP 3, is associated to the fact that, in MP 3,
common goods are not supposed to be stored at the distributor. Thus, they only move
downstream of the chain to replenish retailer safety stock, otherwise, they are kept at
the manufacturer and do not create inventory at the distributor.

Figure 6 presents the time evolution of inventory at the distributor and the retailer,
simultaneously, considering Np = 12. Regarding inventory usage, at the beginning of
simulation, while there is no customer demand, MP 2 and MP 3 fill the inventory of
the retailer with perishable goods to avoid wastage. When customer demand starts,
the main driver of Supply Chain operation is replenishing the safety stock at the
retailer. MP 1 and MP 2 perform similarly, after customer selling starts because their
main concern is retailer inventory. In turn, besides managing the safety stock, MP
3 intends to minimize the inventory at the distributor, which is demonstrated to be
lower, compared to the other two management policies.

To conclude, the prediction horizon, Np, is a tuning parameter of the MPC algo-
rithm and the following conclusions can be taken: i) Np should be equal or higher than
the lead time of the whole supply chain, ii) prediction horizons higher than the lifes-
pan of perishable goods do not increase algorithm performance, so prediction horizon
should be set between supply chain lead time and the highest lifespan of perishable
goods iii) decision makers need to find the right trade-off between increasing sup-
ply chain performance and increasing dimensionality, as higher prediction horizons
increase performance at cost of a higher computational effort.

17



Table 5. Performance analysis of the distinct management policies for different prediction horizons, Np,
considering quantity of overdue goods, overproduction and the total number of commodity movements

Prediction
Horizon

Overdue Goods Overproduction Total Commodity Movements

MP 1 MP 2 MP 3 MP 1 MP 2 MP 3 MP 1 MP 2 MP 3

Np = 8 33 – – 39 – – 4006 – –
Np = 10 33 – – 41 – – 4160 – –
Np = 12 36 2 2 42 19 19 4175 4027 3844
Np = 14 35 0 0 41 21 21 4152 4032 3915
Np = 15 41 0 0 44 24 24 4170 4055 4046

Table 6. Performance analysis of the distinct management policies for different prediction horizons, Np,
considering the usage of the distributor inventory, retailer inventory error and the computation time (in seconds)

Prediction
Horizon

Distributor Inventory Retailer Inventory Error Computation time [s]

MP 1 MP 2 MP 3 MP 1 MP 2 MP 3 MP 1 MP 2 MP 3

Np = 8 1370 – – 440 – – 68 – –
Np = 10 2274 – – 128 – – 111 – –
Np = 12 2466 1934 825 131 52 196 197 203 136
Np = 14 2424 2001 871 68 −10 90 286 281 224
Np = 15 2656 1993 1032 108 −14 −9 334 301 271

Table 7. Number of commodity movements per due time in the Supply Chain to measure the risk of perishable

goods to become overdue, considering different prediction horizons, Np.

Prediction
Horizon

Commodities Due Times

Common Goods dt1 dt2 dt3 dt4 dt5 dt6 dt7 dt8 dt9 dt10 dt11 dt12 dt13 dt14

MP 1

Np = 8 1988 6 20 12 19 36 63 78 110 226 247 247 339 322 1029
Np = 10 2145 9 14 18 25 43 76 82 116 229 238 246 327 313 1021
Np = 12 2142 7 24 31 59 82 91 113 155 218 242 253 301 265 938
Np = 14 2139 15 34 40 62 76 110 147 157 219 238 239 274 228 918
Np = 15 2139 21 40 71 64 72 102 129 175 215 229 237 273 233 926

MP 2

Np = 8 – – – – – – – – – – – – – – –
Np = 10 – – – – – – – – – – – – – – –
Np = 12 2136 10 10 8 2 4 4 2 28 287 291 294 317 319 970
Np = 14 2142 12 10 8 0 4 6 6 24 285 289 292 314 319 979
Np = 15 2132 12 10 8 0 2 6 4 28 286 295 298 321 326 999

MP 3

Np = 8 – – – – – – – – – – – – – – –
Np = 10 – – – – – – – – – – – – – – –
Np = 12 1953 10 10 8 6 4 2 6 28 289 293 302 307 311 970
Np = 14 2025 12 10 8 6 4 2 6 28 289 293 299 304 311 976
Np = 15 2123 12 10 8 6 4 2 6 28 290 297 306 311 318 997
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Figure 6. Storage evolution at distributor and retailer for the three distinct management policies considering
Np = 12 : Management Policy 1 (up-left), Management Policy 2 (up-right), Management Policy 3 (down-

center).

4.2.2. Insights in management policies regarding customer demand profile

In order to study the resilience of the proposed framework, two more demand scenarios
are considered (see Figure 7).

Hereupon, logistics management of the case study Supply Chain is performed for the
three management policies, considering a fixed prediction horizon, Np = 12, dealing
with three distinct demand scenarios:

• Scenario 1 (Scen 1) - the demand pattern is irregular, presenting many oscilla-
tions. The maximum demand is 15 units and the minimum 1 unit;
• Scenario 2 (Scen 2) - the demand pattern presents some oscillations but it as-

sumes a constant demand of 8 units between day 40 and day 60. Also, between
day 70 and day 80, there is no customer selling. The maximum demand is 15
and the minimum demand is 0.
• Scenario 3 (Scen 3) - the demand pattern is almost constant. There is a constant

demand of 4 units, 1 of each commodity, with few fluctuations. The maximum
demand is 5 units and the minimum is 3 units.

Table 8 and table 9 present the values of the performance measures for each demand
scenario and for each management policy. Concerning wastage, MP 3 is the most effi-
cient management policy, presenting the lowest values of overdue perishable goods and
overproduction. MP 2 also presented low wastage values. Total commodity movements
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Figure 7. Profile of the customer demand scenario 2 (top) and customer demand demand scenario 3 (bottom),

discriminated by commodity.

and distributor inventory usage measures confirm MP 1 as the least efficient manage-
ment policy and MP 3 as the best policy. However, analysing the retailer inventory
error, regarding the ability to replenish safety stock desired levels, and, consequently

20



customer satisfaction, MP 2 is the management policy that presents the lowest re-
tailer error values for demand scenarios 1 and 2. In demand scenario 3, MP 2 produces
excessive inventory. The main objective of the logistics management is to satisfy the
customer and the MP 2 is the management policy that better fulfils customer demand
and, in case of Supply Chain disruption, it responds faster than the other 2 policies due
to the desired safety stock levels. Nevertheless, MP 3 is the management policy that
optimizes more efficiently Supply Chain operations. It is also a riskier management
policy than MP 2, because it is more likely to fail to satisfy the demand if there are
uncertainties in Supply Chain, such as disruptions and delays. Table 10 illustrates that
MP 3 involves more risk than MP 2, because it moves higher commodity quantities
with lower due times . In terms of dimensionality, high intensity demand profiles result
in longer simulations, according to the values of the computation time, where demand
scenario 1, that is the most intense profile, generate the longer simulations.

Table 8. Performance analysis of the distinct management policies for different customer demand scenarios,
considering quantity of overdue goods, overproduction and the total number of commodity movements

Management
Policies

Overdue Goods Overproduction Total Commodity Movements

Scen 1 Scen 2 Scen 3 Scen 1 Scen 2 Scen 3 Scen 1 Scen 2 Scen 3

MP 1 36 54 55 42 51 77 4175 3892 2505
MP 2 2 6 13 19 26 43 4027 3743 2352
MP 3 2 4 8 19 25 41 3844 3571 2241

Table 9. Performance analysis of the distinct management policies for different customer demand scenarios,

considering the usage of the distributor inventory, retailer inventory error and the computation time (in seconds)

Management
Policies

Distributor Inventory Retailer Inventory Error Computation time [s]

Scen 1 Scen 2 Scen 3 Scen 1 Scen 2 Scen 3 Scen 1 Scen 2 Scen 3

MP 1 2466 2102 1815 131 93 −313 197 167 124
MP 2 1934 1578 1429 52 22 −485 203 148 113
MP 3 825 823 603 196 165 −201 136 161 126

Table 10. Number of commodity movements per due time in the Supply Chain to measure the risk of
perishable goods to become overdue, considering different demand scenarios.

Customer Demand
Scenario

Commodities Due Times

Common goods dt1 dt2 dt3 dt4 dt5 dt6 dt7 dt8 dt9 dt10 dt11 dt12 dt13 dt14

MP 1
Scen 1 2142 7 24 31 59 82 91 113 155 218 242 253 301 265 938
Scen 2 1920 14 26 23 21 16 65 117 157 240 240 254 312 280 953
Scen 3 1181 14 34 39 49 51 59 77 74 110 131 153 206 178 675

MP 2
Scen 1 2136 10 10 8 2 4 4 2 28 287 291 294 317 319 970
Scen 2 1944 18 18 14 2 2 4 2 2 265 274 283 300 305 947
Scen 3 1181 9 12 16 26 20 42 22 36 133 143 177 199 193 558

MP 3
Scen 1 1953 10 10 8 6 4 2 6 28 289 293 302 307 311 970
Scen 2 1784 20 20 16 11 8 4 1 0 262 271 280 289 298 938
Scen 3 1085 12 26 18 46 18 48 22 42 145 153 159 147 179 548
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5. Conclusions and future research

In this paper, a centralized Model Predictive Control framework is proposed to ad-
dress Logistics Management of coordinated Supply Chains of perishable goods. The
proposed framework models the Supply Chain as a dynamical system, capable of
tracking commodity quantity and the due time of perishable goods over the entire
Supply Chain. Furthermore, it addresses simultaneously, production, distribution and
inventory management processes of the Supply Chain. A centralized MPC algorithm,
triggered by a Global Control Centre, optimizes Supply Chain operations in order to
satisfy customer demand, assuming all demand is satisfied by available stock at the
retailer.

The performance of the proposed framework is analysed through the behaviour of
a Supply Chain following three distinct management policies, for different prediction
horizons and customer demand profiles. The numerical experiments revealed that dif-
ferent management goals lead to different logistical decisions. The results obtained
show that the algorithm performed accordingly to the goals set in the cost function
for the distinct management policies. This framework is meant to be a decision support
tool for Supply Chain decision makers and stakeholders.

The proposed approach is innovative in terms of tracking the due time of perishable
goods over the entire supply chain. Furthermore, it is modular, flexible and scalable.
This opens the gate to apply this framework as a decision support tool to help solve
coordination problems of supply chain of perishable goods. The following future devel-
opments are foreseen: i) include uncertainty in the framework by considering uncertain
storage and transport capacities, uncertain and unknown customer demand and fore-
cast modules; and ii) split the Supply Chain system into smaller subsystems, managed
by control agents, and apply a distributed model predictive approach, where the mul-
tiple subsystems and agents communicate and collaborate to achieve Supply Chain
overall goals.
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Appendix

.1. Notation

The following table describes the notation adopted in this paper. The symbols are
sorted according to the order they appear in the text:

Symbol Meaning

ideg(i) in-degree of centre node i

odeg(i) out-degree of centre node i

ncj
number of flow nodes belonging to connection j

ng number of different common goods

np number of different perishable goods

ndtp number of time instants until due time for perishable good p

dtp
time-varying property representing the number of time
instants until perishable good p gets overdue

ncomm number of different commodities

nclass
number of flow classes accounting for the properties of all
commodities

nt total number of nodes

ncn number of center nodes

nc number of connections

x̄i(k) state-space vector for node i at time instant k

xg
i (k) quantity of common good g at node i at time instant k

x
p,dtp
i (k)

quantity of perishable good p with remaining due time dtp
at node i at time instant k

d(k) disturbance vector at time instant k

nd length of disturbance vector d(k)

continue on next page
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Symbol Meaning

x̄nt
(k) state-space vector for the downstream node nt

x̄OD(k) state-space vector for overdue perishable goods

xcomm
nt

(k)
commodity quantity of each commodity type comm
at the downstream node nt

xp
OD(k) quantity of perishable good p that became overdue

x(k) overall state-space vector

nx length of overall state-space vector x(k)

u
p,dtp
j (k)

quantity of perishable good p with remaining due time dtp

to be pulled from node j at time instant k

ūj(k) control action for flow j

nf number of links

u(k) overall control action vector

nu length of overall control action vector u(k)

y(k) output vector

A state-space matrix associated to the state vector x(k)

Bu state-space matrix associated to the control action vector u(k)

Bd state-space matrix associated to the disturbance d(k)

Np prediction horizon of model predictive control algorithm

J (x̃k) cost function of the optimization problem

qi(k) cost function weight associated to node i

x̃k
vector composed of the state-space vectors, for each time
instant k, over the prediction horizon Np

continue on next page
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Symbol Meaning

ũk
vector composed of the control actions vectors, for each time
instant k, over the prediction horizon Np

xmax maximum storage capacity for all nodes

umax available transport capacity for all flows

Pxu
projection matrix from the control action set U into the
state-space set X

U control action set

X state-space set

Pxx
projection matrix from the state-space set X into the
maximum storage capacity set Xmax

Xmax maximum storage capacity set

Puu
projection matrix from the control action set U into the
available moving capacity set Umax

Umax available moving capacity set

.2. Model Matrices

This section presents the matrices A, Bu and Bd for the Supply Chain case study
analysed in Section 4 “Numerical Experiments”.

Matrix Ag accounts for the two common goods, while Ap is the matrix of each
perishable good with dtp = 14,
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Ag =

[
1 0
0 1

]
Ap =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0


Matrix Anode is the commodity matrix for all nodes, except the most downstream,

where Acomm is the commodity matrix, not considering the due time of perishable
goods. In turn, AOD accounts for the overdue perishable goods,

Anode =

 Ag 0 0
0 Ap 0
0 0 Ap

 Acomm =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 AOD =

[
1 0
0 1

]

The model matrix A is the result of Anode ⊗ Int−1 plus the influence of the most
downstream node and the overdue perishable goods,

A =



Anode 0 0 0 0 0 0 0 0 0
0 Anode 0 0 0 0 0 0 0 0
0 0 Anode 0 0 0 0 0 0 0
0 0 0 Anode 0 0 0 0 0 0
0 0 0 0 Anode 0 0 0 0 0
0 0 0 0 0 Anode 0 0 0 0
0 0 0 0 0 0 Anode 0 0 0
0 0 0 0 0 0 0 Anode 0 0
0 0 0 0 0 0 0 0 Acomm 0
0 0 0 0 0 0 0 0 0 AOD


The model matrices Bnode1 and Bnode2 regarding production are built as follows:

Bg =

[
0 0
0 0

]
Bratio1 =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

]

Bratio2 =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

]
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Bp =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



Bnode1 =

[
Bg Bratio1 0
0 Bp 0

]
Bnode2 =

[
Bg 0 Bratio2

0 0 Bp

]
The matrix accounting for the overdue perishable goods along the Supply Chain

BOD is built from:

BOD1 =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]

BOD2 =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]

BOD =
[

0 BOD1 BOD2

]

Btp =
[

1 1 1 1 1 1 1 1 1 1 1 1 1 1
]

At the most downstream node, due time of perishable goods is no longer tracked,
only the total amount of perishable goods through matrix Bcomm:

Bcomm =

 Ag 0 0
0 Btp 0
0 0 Btp


The model matrix Bu results from the combination of the incidence matrix, D(G)

of the Supply Chain and the previous matrices B described:
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D(G) =



1 −1 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1
−1 1 −1 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1



Bu =



Bnode1 −Anode 0 0 0 0 0 0 0 0
0 0 Bnode2 −Anode 0 0 0 0 0 0
0 0 0 0 Anode −Anode 0 0 0 0
0 0 0 0 0 Anode −Anode 0 0 0
0 0 0 0 0 0 0 Anode −Anode 0
0 0 0 0 0 0 0 0 Anode −Anode

−Bnode1 Anode −Bnode2 Anode −Anode 0 0 0 0 0
0 0 0 0 0 0 Anode −Anode 0 0
0 0 0 0 0 0 0 0 0 Bcomm

BOD BOD BOD BOD BOD BOD BOD BOD BOD BOD


Finally, the model matrix Bd is described as follows:

Bd =



0
0
0
0
0
0
0
0

Acomm

0


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