
 
 

Delft University of Technology

NLtoPDDL
One-Shot Learning of PDDL Models from Natural Language Process Manuals
Miglani, Shivam; Yorke-Smith, Neil

Publication date
2020
Document Version
Final published version
Published in
Working Notes of the ICAPS'20 Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS'20)

Citation (APA)
Miglani, S., & Yorke-Smith, N. (2020). NLtoPDDL: One-Shot Learning of PDDL Models from Natural
Language Process Manuals. In Working Notes of the ICAPS'20 Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS'20) ICAPS.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



NLtoPDDL: One-Shot Learning of PDDL Models from
Natural Language Process Manuals

Shivam Miglani∗ and Neil Yorke-Smith
Delft University of Technology, The Netherlands

shivam.miglani@pwc.com, n.yorke-smith@tudelft.nl

Abstract

Existing automated domain acquisition approaches require
large amounts of structured data in the form of plans or plan
traces to converge. Further, automatically-generated domain
models can be incomplete, error-prone, and hard to under-
stand or modify. To mitigate these issues, we take advantage
of readily-available natural language data: existing process
manuals. We present a domain-authoring pipeline called NL-
toPDDL, which takes as input a plan written in natural lan-
guage and outputs a corresponding PDDL model. We employ
a two-stage approach: stage one advances the state-of-the-art
in action sequence extraction by utilizing transfer learning via
pre-trained contextual language models (BERT and ELMo).
Stage two employs an interactive modification of an object-
centric algorithm which keeps human-in-the-loop to one-shot
learn a PDDL model from the extracted plan. We show that
NLtoPDDL is an effective and flexible domain-authoring tool
by using it to learn five real-world planning domains of vary-
ing complexities and evaluating them for their completeness,
soundness and quality.

1 Introduction
Acquiring a computational domain model for real-world
planning problem such as space mission (Chien et al., 1998)
requires manual hand-coding via careful collaboration be-
tween Subject Matter Experts (SMEs) and Knowledge En-
gineers (KEs) in a time-consuming and error-prone effort.
In the past two decades, the Automated Planning (AP) com-
munity has devised a variety of automated approaches that
learn the domain models from historical plans or plan traces.
However, these inductive learning approaches require a sub-
stantial amount of structured data to form meaningful mod-
els, which leads to a causality dilemma as a large plan
dataset cannot be generated without a prior domain model.
Moreover, since symbols from structured data are used, the
learned domain models are hard to explain or modify.

This paper focuses on a recent automated paradigm that
uses Natural Language (NL) input data to deal with the
issues of availability and explainability prevalent in auto-
mated methods that use structured data. Fig. 1 summarizes
these three major paradigms of acquiring domain models.

∗Now at PricewaterhouseCoopers Advisory NV, Amsterdam

Although unstructured, the NL data is easily available in the
form of instructions, how-to guides or process manuals. Ad-
ditionally, for an SME, a natural language provides an innate
way to visualize and understand components of a domain
model and for devising few example plans.

We present NLtoPDDL, a flexible domain authoring
pipeline that learns a PDDL model from a single NL pro-
cess manual containing an example plan. To achieve this,
the pipeline tackles two kinds of sub-problems: 1) action
sequence extraction to extract plans from the unstructured

(a)

(b)

(c)

Figure 1: Domain model acquisition paradigms: (a) manual
hand-coding, (b) automated using structured input (plan/-
plan traces), (c) automated using unstructured NL input.

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

1



process manuals, and 2) our usual automated domain acqui-
sition using the extracted structured data.

Specifically, we advance the state-of-the-art by:
• Assimilating transfer learning via contextual embeddings

from pre-trained language models (e.g. BERT) into an
action sequence extraction algorithm called EASDRL
(Feng, Zhuo, and Kambhampati, 2018), to learn gener-
alisable Deep Reinforcement Learning (DRL) models for
extracting action sequences (Section 3.1 and 4).

• Designing interactive-LOCM; a human-in-the-loop ver-
sion of LOCM2 algorithm (Cresswell and Gregory, 2011)
which uses interactive graphs for easy visualization and
user-modifications to learn PDDL models from a few ex-
amples (Section 3.2).

• Establishing the use-case of pre-trained language models
for transfer learning concerning domain model acquisi-
tion, i.e., learning PDDL models from unseen, unrelated
cross-domain free text NL process manuals (Section 5).

• Exemplifying the advantages of incorporating fast-paced
current NL processing within AP tasks (Section 5.1).
The code of NLtoPDDL is available open-source

for reproducibility at: https://github.com/Shivam-Miglani/
contextual drl.

2 Background and Related Work
A planning domain is a tuple 〈Ontology,Actions〉: the on-
tology encompasses predicates and objects of a domain
and the actions represent the collection of action defini-
tions. An action definition is an uninstantiated four-tuple:
〈Name,Parameters,Preconditions,Effects〉, where the pa-
rameters are object types, preconditions are set of neces-
sary conditions (in the form of predicate values) which must
be met before calling it and effects describe the changes in
the environment (predicate values) after an action’s execu-
tion (Segura-Muros, Pérez, and Fernández-Olivares, 2018).
Thus, a plan can be defined as a sequence of instantiated
actions that an intelligent agent takes to fulfil its objective.
With captured state information, a plan trace is a sequence
of interleaved actions and states. Given input in the form of
plans, plan traces or a partial domain model, the task of do-
main acquisition is to learn a planning domain.

The AP community has developed many successful au-
tomated domain acquisition methods. They are scoped for
learning PDDL models from different environments: deter-
ministic effects and full observability (Kučera and Barták,
2018; Zhuo et al., 2010), deterministic effects but partial ob-
servability (Zhuo and Kambhampati, 2013; Segura-Muros,
Pérez, and Fernández-Olivares, 2018), probabilistic effects
and full observability (Pasula, Zettlemoyer, and Kaelbling,
2007; Mourão et al., 2012), and finally probabilistic ef-
fects and partial state observability (Jiménez, Fernández,
and Borrajo, 2008). Our approach, much like LOCM fam-
ily of algorithms (Cresswell and Gregory, 2011; Cresswell,
McCluskey, and West, 2013; Gregory, Lindsay, and Porte-
ous, 2017), is scoped towards deterministic effects and no
state observability.

The type of technique used in the automated domain ac-
quisition method forms another taxonomy. The technique

ranges from inductive (Cresswell, McCluskey, and West,
2013), genetic (Colledanchise, Parasuraman, and Ögren,
2019; Kučera and Barták, 2018), uncertainty-based (Zhuo
and Kambhampati, 2013), MAX-SAT based (Yang, Wu, and
Jiang, 2007), model-lite (Kambhampati, 2007; Zhuo and
Kambhampati, 2017), classical planning (Bandres, Bonet,
and Geffner, 2018; Aineto, Jiménez, and Onaindia, 2018)
to transfer learning (Zhuo and Yang, 2014) and deep learn-
ing (Asai and Fukunaga, 2018; Arora et al., 2018b,a). Our
approach has elements of inductive, transfer learning and
model-lite types but also keeps human-in-the-loop to gen-
erate useful domain models from less data.

On the other hand, extracting action sequences from nat-
ural language instructions is an instance of sequence-to-
sequence (seq2seq) class of problems (Sutskever, Vinyals,
and Le, 2014). Most research in this area has been done on
mapping navigational instructions (Mei, Bansal, and Wal-
ter, 2016). Mapping requires a prior finite set of actions as
it performs sequence labelling instead of sequence extrac-
tion. EASDRL is an algorithm which uses DRL to achieve
state-of-the-art results in extracting action sequences from
free NL instructional data such as cooking recipes (Feng,
Zhuo, and Kambhampati, 2018). We extend this approach
with pre-trained language models (Devlin et al., 2019; Pe-
ters et al., 2018; Akbik, Blythe, and Vollgraf, 2018).

Considering the whole pipeline, i.e., generating domain
models from NL data, very few approaches exist. NL in-
structions have been used to learn partial game dynamics
by mapping them onto their logical action interpretations
(Goldwasser and Roth, 2014). Framer uses a dependency
parser to extract verbs and objects from small restricted sen-
tences to formulate action templates and feeding the result-
ing sequences to LOCM (Cresswell, McCluskey, and West,
2013) to learn PDDL models (Lindsay et al., 2017). Sto-
ryFramer uses natural language stories to generate domain
models in a mixed-initiative fashion (Hayton et al., 2017). In
this paper, we extended the Framer’s (Lindsay et al., 2017)
architecture to work with unrestricted NL data.

3 NLtoPDDL Architecture
The task at hand is building a knowledge engineering tool
which when given input in terms of a few plans (or a sin-
gle plan) described in NL and no interleaved state infor-
mation, should quickly output a valid and intuitive PDDL
model. Moreover, the generated model should be easy to
understand, extend or modify by the end-user. Fig. 2 shows
the architecture of our NLtoPDDL pipeline, divided into two
phases distinguished by the type of data used:

1. Training the DRL model with annotated training data.
In Phase 1, a Deep Q-Network (DQN) based on EASDRL
(Feng, Zhuo, and Kambhampati, 2018) trains on annotated
datasets. This DQN learns to extract words that represent
action names, action arguments, and the sequence of ac-
tions present in annotated NL process manuals. However,
instead of originally-used Word2Vec embeddings (Mikolov
et al., 2013), we incorporate dynamic contextual embed-
dings, namely BERT (Devlin et al., 2019), ELMo (Peters
et al., 2018) and Flair (Akbik, Blythe, and Vollgraf, 2018)

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

2



Figure 2: Pipeline architecture to learn PDDL domain models from natural language instructions. We build on elements from
Lindsay et al. (2017), Akbik, Blythe, and Vollgraf (2018) and Feng, Zhuo, and Kambhampati (2018).

into EASDRL to boost its generalisability and performance.
We call this variant contextual-EASDRL (cEASDRL).

2. Learning the domain model from unseen test data. In
Phase 2, we extract the action sequences by feeding the un-
seen process manual to Phase 1’s trained DQN. From this
extracted sequence, LOCM2 (Cresswell and Gregory, 2011)
algorithm learns a partial PDDL model in one-shot. The
model can be completed with human input in an interactive
fashion. We call this algorithm interactive-LOCM (iLOCM).

3.1 Training the contextual-EASDRL models
EASDRL uses DQNs to produce state-of-the-art results for
action sequence extraction from unrestricted natural lan-
guage texts; not requiring any prior list of actions (Feng,
Zhuo, and Kambhampati, 2018). Since DQNs along with
their improvements work well with discrete action spaces
and are sample efficient (Hessel et al., 2018; François-Lavet
et al., 2018), EASDRL exhibits similar properties. It repre-
sents action sequence extraction as a reinforcement learn-
ing problem and uses two DQNs. Each DQN can perform
only two RL actions: select or reject a word. The first DQN
F1(actions|words; θ1) learns to extract Essential (ES),
Exclusive-Or (EX) and Optional (OP) actions by selecting
the words that represent these actions and rejecting other
words. For this, the RL states consider 500 vectors (words)
at a time and each vector is a concatenation of the word em-
beddings and RL action (NULL, select or reject) performed
on them. The second DQN F2(actions|words; θ2) uses the

Figure 3: In DQN F1, RL states consider 500 words at a
time. The repeat representation used in Feng, Zhuo, and
Kambhampati (2018) leads to huge RL states in cEASDRL.

actions extracted by F1 to find arguments using the same
strategy of selecting relevant words. Here, the RL state con-
siders 100 features at a time, and each feature isF2 is a triple
〈word vector, distance,RL action〉, where the distance is
the distance between the word in consideration and the ac-
tion word. The static Word2Vec embeddings used in EAS-
DRL renders it unable to handle out-of-vocabulary (OOV)
words, multiple contexts (polysemy), and shared representa-
tions at the sub-word level. This restricts its generalisability
beyond the training data.

Contextual-EASDRL extends EASDRL by incorporating
contextual embeddings into it. These dynamic contextual
embeddings include both the semantics of the word and
other neural network parameters that describe their context.
Since we already have a task-specific architecture, we use

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

3



a feature-based instead of fine-tuning approach of the NL
transfer learning to take advantage of following pre-trained
language models: BERT, ELMo, Flair, and POS/NER em-
beddings (Trask, Michalak, and Liu, 2015). These resolve
the mentioned issues of Word2Vec and produce general-
isable DQN models which work with significantly differ-
ent test distributions. Since word embeddings and contex-
tual embeddings work well together, we use Flair library’s
stacked embeddings to combine them (Akbik et al., 2019).
One side-effect of using contextual embeddings is the huge
size of the RL state feature vector as shown in Fig. 3.

3.2 Acquiring PDDL models via iLOCM
In first step of Phase 2, we replace pronouns with nouns
in the unseen process manual to reduce ambiguity using a
neural network based technique (Huggingface, 2018). This
coref-resolved unseen process manual is fed to the trained
DQNs F1 and subsequently F2 of Phase 1 for sequence
extraction. The extracted action sequences are normalized
by doing Wordnet-based lemmatization (Bird, Klein, and
Loper, 2009) to further reduce ambiguity, and are finally
passed to the iLOCM for domain acquisition. The ambigu-
ity reduction steps are necessary because they cluster similar
looking actions and arguments under one template, resulting
in higher quality PDDL models with precise action sets.

Our algorithm iLOCM is an interactive version of
LOCM2 (Cresswell, McCluskey, and West, 2013; Cresswell
and Gregory, 2011) which provides the option of correcting
and modifying learned outputs (e.g. FSMs) of each step in
an IPython (Pérez and Granger, 2007) environment. It sub-
stitutes the knowledge deficit caused by lesser data through
these easily doable human corrections in an incremental
fashion. The major changes include:

1. Interactive graphs of transition matrices and finite state
machines for each object type visualized through Cy-
toscape.js (Franz et al., 2015) which helps in better vi-
sualization and faster modifications.

2. Optional user inputs to rename the object types (a.k.a.
classes), edit the transition graphs and finite state ma-
chines, and enter static preconditions. The human-in-the-
loop helps to achieve completeness from fewer data and
also enhances explainability of the learned PDDL model.

The details of iLOCM are found at https://github.com/
Shivam-Miglani/contextual drl.

4 Evaluating the Trained DQN
Our evaluation of the trained DQN model considers:

Hypothesis 1. Dynamic contextual embeddings would inte-
grate well with DQN of EASDRL and improve its perfor-
mance and generalisability.

Hypothesis 2. Using dynamic contextual embeddings re-
solves the static embedding issues, namely, OOV words,
polysemy, and shared representations at sub-word level.

Hypothesis 3. With a 20% unseen test set, we can have an
unbiased estimate about the generalisation of our approach.

WinHelp Cooking WikiHG

Labelled texts 154 116 150
Training pairs
〈word, annotation〉 1.5K 134K 34M
Action name rate(%) 19.47 10.37 7.61
Action argument rate(%) 15.45 7.44 6.30

Table 1: Annotated datasets used to train the DRL models.
Values from Feng, Zhuo, and Kambhampati (2018).

Hypothesis 4. Transfer learning via contextual embeddings
makes the DQN converge faster with the same amount of
data, i.e., it converges in fewer epochs.

Annotated Datasets. For the training of the DRL models,
the pre-annotated datasets are taken from Feng, Zhuo, and
Kambhampati’s repository1 for three real-world domains:

1. ‘Microsoft Windows Help and Support’ (WinHelp) doc-
uments (Branavan et al., 2009; Feng, Zhuo, and Kamb-
hampati, 2018)

2. ‘CookingTutorial’ (Cooking)2

3. ‘WikiHow Home and Garden’ (WikiHG)3

The datasets are of increasing complexity in view of the
task of finding action names and arguments (Table 1).

Train–Val–Test Split. To avoid over-fitting, we held 20%
of our data as unseen test data to test Hypothesis 3. The final
ratio of training-validation-test data split was 64–16–20. We
did not use cross-validation folds to avoid out-of-memory
issues caused by large dimensionality of the embeddings.

Hyperparameters. We used the same hyperparameters
for the ConvNet (Q-estimator of the DQNs) as mentioned in
(Feng, Zhuo, and Kambhampati, 2018) except for changes
in number of epochs and embedding dimensions. The au-
thors of EASDRL took these parameters from MGNC-CNN
(Zhang, Roller, and Wallace, 2016). We varied the input
dimension according to the embedding used, for example,
ELMo embeddings used (500 x 868 x 2) for action names
and (100 x 868 x 3) for action arguments. The same archi-
tecture was used despite the large variation in embedding
inputs of various baselines because the first Conv2D + Max-
Pool layer performs a dimensionality reduction leading to an
equal-sized second layer irrespective of the size of input di-
mension. An instance of the architecture is shown in Fig. 2.

Evaluation Metrics. F1-scores were computed the same
way as in (Feng, Zhuo, and Kambhampati, 2018) for both
validation and test sets. Specifically:

precision =
#TotalRight

#TotalTagged
, recall =

#TotalRight

#TotalTruth
,

and F1 =
2× precision× recall

precision+ recall

1https://github.com/Fence/EASDRL
2http://cookingtutorials.com/
3https://www.wikihow.com/Category:Home-and-Garden

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

4



where #TotalRight is the number of correctly extracted
action names or action arguments; #TotalTagged is the
number of extracted action names or action arguments; and
#TotalTruth is the number of ground truth action names
or action arguments from the annotations.

Baselines. We compare these to the cEASDRL variants:
1. StanfordCoreNLP: Stanford CoreNLP’s (Manning et al.,

2014) parsing and parts-of-speech (POS) tagging was
used in Framer (Lindsay et al., 2017) to extract verbs as
action names and objects as action arguments.

2. EASDRL and rEASDRL: As EASDRL (Feng, Zhuo,
and Kambhampati, 2018) reports cross-validation results,
we compared it with the results of cEASDRL on our val-
idation set. However, the results of EASDRL are not di-
rectly comparable as they are averaged out on 10 folds of
the cross-validation but still give some indication of rela-
tive performance on F1 score. For direct comparisons on
both validation and test datasets, Reproduced-EASDRL
(rEASDRL) was used. rEASDRL is same as EASDRL
except that it employed our experimental setup of 64-
16-20 train-val-test split without cross-validation but with
hold-out set. In essence, rEASDRL trained on less data,
i.e., 64% instead of 80% and so did our cEASDRL.

3. GloVe + rEASDRL: In GloVe + rEASDRL, static 100-
dimensional GloVe embeddings (Pennington, Socher, and
Manning, 2014) were used instead of Word2Vec.

4. POS-GloVe + rEASDRL: POS-GloVe + rEASDRL is
inspired by Sense2Vec (Trask, Michalak, and Liu, 2015)
and syntax-tree embeddings (Liu et al., 2017). We added
some context to the words by appending parts-of-speech
(POS) information extracted from the Stanford CoreNLP
and then retrained the GloVe embeddings. For example,
if the word was “cheese” is replaced by “cheese—NN”,
where NN stands for “Noun, singular or mass”.

cEASDRL variants. We now specify the variants of our
approach which are distinguished by the choice of contex-
tual embedding employed. The following were our choice
of stacked-embeddings based on empirical evidence of their
performance (Peters et al., 2018; Devlin et al., 2019; Akbik,
Blythe, and Vollgraf, 2018).

1. GloVe + ELMo + cEASDRL: This cEASDRL’s vari-
ant uses 100 dimensional GloVe embeddings (Penning-
ton, Socher, and Manning, 2014) and 768 dimensional
ELMo embeddings (Peters et al., 2018). The pre-trained
dataset used by these embeddings is 1B Word Benchmark
(Chelba et al., 2013; Peters et al., 2018).

2. GloVe + BERT + cEASDRL: This variant uses bert-
base-uncased version of BERT embeddings which are
3072-dimensional long vectors stacked with 100 dimen-
sions of glove making it a 3172-dimensional stacked
embedding. The datasets used in pre-training bert-base-
uncased are BooksCorpus (800M words) and English
Wikipedia (2,500M words) (Devlin et al., 2019).

3. GloVe + Flair-f-b + cEASDRL: This variant uses stacked
mix-forward and mix-backward Flair character embed-
dings (Akbik, Blythe, and Vollgraf, 2018), each of which

is 2048 dimensions. Stacked with GloVe, this makes a
4196-dimensional word embedding. The mix-forward and
mix-backward versions are pre-trained on the mixed cor-
pus (Web, Wikipedia, Subtitles) (Akbik et al., 2019). Due
to high memory requirements, we set character limit to
128 characters per word.

4.1 Comparison with Baselines for Phase 1
Validation dataset results. Validation dataset allowed us
to iterate over it repeatedly and get the best possible model
weights and parameters. Table 2 shows that the validation
results of the contextual-approaches are better than that of
baselines in merely 1 epoch. Specifically, there is an im-
provement of 4-7% in the F1-score from the best baseline
for action names in all three datasets but barely any signifi-
cant improvements in F1-score for action arguments.

On the other hand, baseline POS-GloVe+rEASDRL had
poor results as the average loss of DQN generally increased,
and the RL agent became too conservative to act, neither se-
lecting nor rejecting words to avoid negative rewards. This
was caused by appended POS which created different en-
tries in the lookup-table of GloVe and struggled to generalise
when the same word was used in a different context.

Validation results give us an idea of the performance of
cEASDRL variants compared to non-cEASDRL variants but
is a biased estimate as it underestimates the true test error
substantially. Thus, we look at the performance of all ap-
proaches on 20% of held-out test dataset to get an unbiased
estimate that is closer to the real-world usage.

Test dataset results. In Table 3, we can clearly notice
the advantage of using contextual embeddings. For the ac-
tion names, we see an improvement over the best baseline
by 5-8% in all datasets. For the action arguments, the bi-
ased estimate of the baselines on the validation is revealed,
i.e., they were underestimating the true test error. Hence,
the performance of baselines drops significantly, especially
for complex datasets. In contrast, cEASDRL variants per-
form even better on the test sets than validation, making
them more generalisable to real-world settings. In particu-
lar, GloVe+ELMo+cEASDRL beat the best baselines by 5-
9% in Cooking and WikiHG datasets. This confirms our Hy-
potheses 1, 3 and 4.

Chosen model. Based on the test results, we select
GloVe+BERT+cEASDRL for extracting action names and
GloVe+ELMo+cEASDRL for extracting related action argu-
ments as our final models.

4.2 Qualitative Analysis of Extracted Sequences
What does a 5% increase in F1-score actually mean? To find
out, we qualitatively assessed the extracted action sequences
from unseen data. Fig. 4 shows an example of action descrip-
tions taken from a fire safety manual to emulate the user-
input. Comparing extracted action sequences of Word2Vec
+ rEASDRL and our chosen cEASDRL model, we see that
cEASDRL produces coherent and correct action sequences,
unlike Word2Vec + rEASDRL. In sentence no. 2, Word2Vec
model initialises unseen words as zero vectors and is unable

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

5



Action names Action Arguments
Method Epochs Cross-val WinHelp Cooking WikiHG WinHelp Cooking WikiHG

StanfordCoreNLP* 1 No 62.66 67.39 62.75 38.79 43.31 42.75
EASDRL 20 10-fold 93.46 84.18 75.40 95.07 74.80 75.02
Word2vec+rEASDRL 20 No 92.03 81.99 74.02 94.90 74.05 73.70
GloVe+rEASDRL 20 No 94.08 80.41 64.58 94.35 74.21 73.69
POS-GloVe+rEASDRL 20 No 32.33 0.0 0.0 73.24 38.82 42.66

GloVe+ELMo+cEASDRL 1 No 92.75 87.29 79.22 92.06 75.81 76.99
GloVe+BERT+cEASDRL 1 No 96.22 89.18 82.59 92.78 73.23 76.19
GloVe+Flair-f-b+cEASDRL 1 No 97.32 88.86 79.16 83.43 62.41 72.40

Table 2: F1-scores on 16% of validation dataset in 64–16–20 train–val–test split. * indicates the result taken from Feng, Zhuo,
and Kambhampati (2018). Note that extraction of action arguments uses ground-truth action names.

Action names Action Arguments
Method Epochs Cross-val WinHelp Cooking WikiHG WinHelp Cooking WikiHG

Word2vec+rEASDRL 20 No 91.98 80.17 73.77 85.15 69.65 68.27
GloVe+rEASDRL 20 No 93.96 78.44 57.87 94.02 71.79 47.87
POS-GloVe+rEASDRL 20 No 32.68 0.0 0.0 74.55 38.63 51.27

GloVe+ELMo+cEASDRL 1 No 92.75 85.18 78.43 92.47 76.50 77.12
GloVe+BERT+cEASDRL 1 No 96.15 88.42 82.95 90.56 72.98 74.75
GloVe+Flair-f-b+cEASDRL 1 No 97.46 86.19 80.09 83.64 64.40 72.82

Table 3: F1-scores on 20% of test dataset in 64–16–20 train–val–test split.

to extract essential actions. Contrarily, cEASDRL does ex-
tract correct action from unseen data and even recognises
an exclusive-or between hazardous experiments and proce-
dures. We see a safety-critical scenario in sentence no. 5,
Word2Vec + rEASDRL, incorrectly extracts an action go()
and misses the essential argument heat, whereas the chosen
cEASDRL model correctly extracts the actions described
in the statement. Some arguments are missed by both ap-
proaches, for example, nature of emergency in sentence no. 8
is missed because the models are trained to extract single
word arguments. Also, cEASDRL correctly skips sentence
no. 1 and 10 as they do not have any action names.

From these qualitative experiments, we deduce that the
contextual embeddings do solve for problems of OOV, pol-
ysemy, and shared representation, confirming Hypotheses 2
and 3. This happens because these language models are pre-
trained on either character level (ELMo, Flair) or sub-word
level (BERT), and these algorithms take in the whole sen-
tence as input to consider the context of the word before
generating an embedding dynamically rather than just a dic-
tionary lookup of a static vector. The language models being
trained on large corpora also helps in disambiguating word
senses (Peters et al., 2018; Devlin et al., 2019).

5 Evaluating Learned Domain Models
We use action sequences extracted from Phase 1 to learn
PDDL models of five real-world domains through iLOCM.
We bifurcate these into related-domain transfer learning
where the domain to be learned is similar (but not same)
to the NL instructions DQNs trained on; and cross-domain
transfer learning where the domains to be learned are com-
pletely unrelated to the training data. Later on, we also eval-

uate learning of a non-classical (durative) domain.

Domains and their Input Process Manual. We provide
an unseen process manual (to DQN) for each of the domains:

• Bicycle Tyre4: An instruction set for fixing a flat bicycle
tyre related to WikiHG dataset.

• ChildSnack5: A process manual fabricated from IPC 2014
domain which is about serving gluten and gluten-free
types of sandwiches according to dietary requirements for
customers (children).

• Fire Safety6: A fire safety procedure, for which we ex-
tracted an action sequence in Fig. 4.

• NASA Curiosity7: A transcript of a mission video.
• Tea Domain: A durative action domain (Talukdar, 2019).

Evaluation Metrics. Precision and Recall are respectively
used as measures of robustness and completeness of the
learned PDDL model (Aineto, Jiménez, and Onaindia, 2018)
with reference to the available/hand-crafted domain model.
As there can be many reference models, precision and recall
are subjective. Thus, we lay more emphasis on the quali-
tative analysis on some of the important interactions in the
iLOCM process.

Bicycle Tyre and Childsnack – Related domains. We
passed the lemmatized extracted action sequences of these

4https://theelectricbike.com/how-to-patch-an-e-bike-tire-2/
5https://github.com/potassco/pddl-instances/tree/master/ipc-

2014/domains/child-snack-sequential-optimal
6http://www.fau.edu/ehs/info/fire-safety-manual.pdf
7https://mars.nasa.gov/resources/20024/next-mars-rover-in-

action/?site=msl

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

6



Figure 4: Extraction results of Word2Vec + rEASDRL and
chosen BERT+ ELMo cEASDRL using the weights of
WikiHG dataset.

two related-domains to the iLOCM algorithm. Fig. 5(a)
shows learned parameterized state machine of the tyre class.
It learns the correct behaviour of pinching tube, inserting
lever, hooking lever, flipping bead and inflating tube of the
tyre. The highlighted part shows the over-generalisation that
iLOCM made due to insert action being used twice for both
the valve and lever classes with similar action prototypes.
This transition can be edited out by the end-user.

Fig. 5(b) shows one of the three state machines of the
sandwich class of objects in the Childsnack domain. An ob-
ject has to be present in each state of all state machines to
justify its multiple behaviours. In this state machine, we see
two disconnected components showing two types of make-
sandwich actions. The top component has a state parameter
[Gluten-free] to make only gluten-free sandwiches. Thus the
correct behaviour is learned without user input.

Fire Safety and NASA Curiosity – Cross domains. The
process manuals of these two cross-domains are signifi-
cantly different from the data used to train DQNs. In both
domains, the preconditions and effects of learned actions
mostly reflect the previous action’s end states and next ac-
tion’s start states respectively. It follows an intuitive notion
of the linear sequence of actions prescribed in the corre-
sponding process manuals.

(a)

(b) (c)

Figure 5: Learned state machines via iLOCM for: (a) Tyre
class of domain Bicycle Tyre (b) Sandwich class of Child-
snack, (c) Spacecraft class of NASA Curiosity domain.
States/Nodes are represented in terms of start(transition)
and/or end(transition); edges are transitions themselves on
the domain objects. Entities inside ‘[]’ denote state params.

Figure 6: Time phrases extracted from NER module of
SpaCy library (Honnibal and Montani, 2017).

Fig. 5(c) shows the state machine for the spacecraft.
It learns the correct behaviour of spinning and firing the
thrusters before slowing down and also re-balancing be-
fore landing. However, it is an incomplete state machine. It
misses out on implicitly mentioned spacecraft in many sen-
tences such as while deploying the parachute, dropping the
back-shell, etc.

Summary. Table 5 shows precision and recall scores for
names, arguments, preconditions and effects compared to an
instance of manually constructed or existing PDDL model.
The learned models are syntactically valid and capture valu-
able information about the domain from the limited infor-
mation present in a process manual but they lack com-
pleteness demonstrated by the low recall in arguments, pre-
conditions and effects. Since LOCM2 learns only the dy-
namic behaviour (Cresswell and Gregory, 2011), the learned
model misses out on static conditions which can be provided
through the interactive environment. Since the DQNs were

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

7



Action Names Action Params Preconditions Effects
Domain Similar to P R P R P R P R

Bicycle Tyre WikiHG 1.00 1.00 0.94 0.84 0.80 0.64 0.85 0.72
Childsnack Cooking 1.00 1.00 1.00 0.46 0.66 0.43 0.77 0.50
Fire Safety – 0.92 1.00 1.00 0.66 0.73 0.50 0.75 0.56
NASA Curiosity – 0.95 0.69 1.00 0.54 -* -* -* -*

Table 4: Precision and recall compared to manually-constructed or existing PDDL models. * denotes not enough information
in the process manual to construct a manual (meaningful) domain model to compare with.

trained to extract single words, the learned model extracts
multiple words for the same argument and also misses out on
implicit arguments. Thus, user input and modifications be-
come necessary to make these models more robust and com-
plete. Without the user input, these models can be termed
as shallow models and can be used in approaches such as
model-lite planning (Zhuo and Kambhampati, 2017).

5.1 Incorporating Durative Actions – Tea Domain
One of the advantages of using NL is that we can utilize ex-
isting research in the field to obtain information required for
the non-classical PDDL models. To learn durative actions of
the tea domain taken from Talukdar (2019), we used spaCy
(Honnibal and Montani, 2017) library’s statistical Named
Entity Recognition (NER) to extract time phrases.

Fig. 6 shows that the time phrases are detected with high
precision, however, we still need to assign these time phrases
as action arguments for some action. We follow a simple
heuristic of assigning the time phrase to the action appear-
ing closest to the detected time phrase. This yielded perfect
results for the tea domain. The learned model assigned cor-
rect duration to the actions but missed out preconditions and
effects related to mug argument and static hand argument.

6 Conclusion and Future Work
We presented NLtoPDDL, a flexible domain authoring
pipeline that learns a PDDL model from a single natural
language process manual containing an example plan. NL-
toPDDL enhances, combines and integrates algorithms for
action sequence extraction and automatic domain acquisi-
tion into a single domain authoring framework. Contextual
embeddings pave a way to train generalised sequence ex-
traction DQNs and to do cross-domain transfer learning. Ad-
ditionally, one-shot learning by keeping human-in-the-loop
solves the causality dilemma. The generated PDDL mod-
els produced by NLtoPDDL are valid but shallow: thus, the
generated models can be used in model-lite planning or, al-
ternatively, a user or SME can extend them using the interac-
tive interface or providing more data. Laying the foundations
of NLtoPDDL in the active research field of NL processing
means that we can learn more comprehensive and complex
models than prior work in the automated planning literature.

Since NLtoPDDL decouples its components, we can indi-
vidually enhance or replace them to boost its performance.
We list the following ideas for future research. First, better-
performing contextual embeddings or task-specific fine-
tuned embeddings for larger number of epochs will yield

a performance boost. One issue to resolve here is to find
a smaller RL state representation than the repeat state ver-
sion. Second, DQNs can be replaced by the asynchronous
or theoretically sound alternatives (Mnih et al., 2016; Schul-
man et al., 2017). Third, focussing on extracting words with
adjectives such as “cold milk” or compound nouns such
as “training personnel” will generate a better argument F1-
score. Fourth, user studies should be done to assess the user-
interactions that SMEs prefer and would like to do. Lastly,
training on more NL data or learning the state representa-
tions can open up possibilities of better performing domain
learners which use (partial) state information.

Acknowledgments We thank W. Feng and J. Porteous for
sharing the code for EASDRL and LOCM1 respectively, and
we thank the anonymous reviewers for their suggestions.

References
Aineto, D.; Jiménez, S.; and Onaindia, E. 2018. Learning STRIPS

action models with classical planning. In Proc. of ICAPS’18,
399–407.

Akbik, A.; Bergmann, T.; Blythe, D.; Rasul, K.; Schweter, S.; and
Vollgraf, R. 2019. FLAIR: An easy-to-use framework for state-
of-the-art NLP. In Proc. of NAACL-HLT’19, 54–59.

Akbik, A.; Blythe, D.; and Vollgraf, R. 2018. Contextual string
embeddings for sequence labeling. In Proc. of ACL’18, 1638–
1649.

Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty, S.
2018a. A review of learning planning action models. Knowl-
edge Eng. Review 33:e20.

Arora, A.; Fiorino, H.; Pellier, D.; and Pesty, S. 2018b. Action
model acquisition using LSTM. CoRR abs/1810.01992.

Asai, M., and Fukunaga, A. 2018. Classical planning in deep latent
space: Bridging the subsymbolic-symbolic boundary. In Proc.
of AAAI’18, 6094–6101.

Bandres, W.; Bonet, B.; and Geffner, H. 2018. Planning with pixels
in (almost) real time. In Proc. of AAAI’18, 6102–6109.

Bird, S.; Klein, E.; and Loper, E. 2009. Natural Language Pro-
cessing with Python. O’Reilly Media.

Branavan, S. R.; Chen, H.; Zettlemoyer, L. S.; and Barzilay, R.
2009. Reinforcement learning for mapping instructions to ac-
tions. In Proc. of ACL’09, 82–90.

Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.; and
Koehn, P. 2013. One billion word benchmark for measuring
progress in statistical language modeling. CoRR abs/1312.3005.

Chien, S. A.; Muscettola, N.; Rajan, K.; Smith, B. D.; and Ra-
bideau, G. 1998. Automated planning and scheduling for goal-
based autonomous spacecraft. IEEE Intell. Syst. 13(5):50–55.

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

8



Colledanchise, M.; Parasuraman, R.; and Ögren, P. 2019. Learning
of behavior trees for autonomous agents. IEEE Trans. Games
11(2):183–189.

Cresswell, S., and Gregory, P. 2011. Generalised domain model
acquisition from action traces. In Proc. of ICAPS’11, 42–49.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. The Knowledge
Engineering Review 28(2):195–213.

Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019. BERT:
pre-training of deep bidirectional transformers for language un-
derstanding. In Proc. of NAACL-HLT’19, 4171–4186.

Feng, W.; Zhuo, H. H.; and Kambhampati, S. 2018. Extracting ac-
tion sequences from texts based on deep reinforcement learning.
In Proc. of IJCAI’18, 4064–4070.

François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.; and
Pineau, J. 2018. An introduction to deep reinforcement learning.
Foundations and Trends in Machine Learning 11(3-4):242–253.

Franz, M.; Lopes, C. T.; Huck, G.; Dong, Y.; Sumer, O.; and Bader,
G. D. 2015. Cytoscape.js: A graph theory library for visualisa-
tion and analysis. Bioinformatics 32(2):309–311.

Goldwasser, D., and Roth, D. 2014. Learning from natural instruc-
tions. Machine Learning 94(2):205–232.

Gregory, P.; Lindsay, A.; and Porteous, J. 2017. Domain model
acquisition with missing information and noisy data. In Proc. of
ICAPS’17 KEPS Workshop.

Hayton, T.; Porteous, J.; Ferreira, J.; Lindsay, A.; and Read, J.
2017. Storyframer: From input stories to output planning mod-
els. In Proc. of ICAPS’17 KEPS workshop.

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski,
G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and Silver, D.
2018. Rainbow: Combining improvements in deep reinforce-
ment learning. In Proc. of AAAI’18, 3215–3222.

Honnibal, M., and Montani, I. 2017. spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing.
https://github.com/explosion/spaCy. Last accessed: 2019-
09-14.

Huggingface. 2018. NeuralCoref 4.0: Coreference Resolution in
spaCy with Neural Networks. https://github.com/huggingface/
neuralcoref/. Last accessed: 2020-07-30.

Jiménez, S.; Fernández, F.; and Borrajo, D. 2008. The PELA archi-
tecture: integrating planning and learning to improve execution.
In Proc. of AAAI’08, 1294–1299.

Kambhampati, S. 2007. Model-lite planning for the web age
masses: The challenges of planning with incomplete and evolv-
ing domain models. In Proc. of AAAI’07, 1601–1605.

Kučera, J., and Barták, R. 2018. LOUGA: Learning planning op-
erators using genetic algorithms. In Pacific Rim Knowledge Ac-
quisition Workshop, 124–138.

Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.; and
Gregory, P. 2017. Framer: Planning models from natural lan-
guage action descriptions. In Proc. of ICAPS’17, 434–442.

Liu, R.; Hu, J.; Wei, W.; Yang, Z.; and Nyberg, E. 2017. Structural
embedding of syntactic trees for machine comprehension. In
Proc. of EMNLP’17, 815–824.

Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J. R.; Bethard,
S.; and McClosky, D. 2014. The Stanford CoreNLP natural
language processing toolkit. In Proc. of ACL’14 System Demos.,
55–60.

Mei, H.; Bansal, M.; and Walter, M. R. 2016. Listen, attend, and
walk: Neural mapping of navigational instructions to action se-
quences. In Proc. of AAAI’16, 2772–2778.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient
estimation of word representations in vector space. In Proc. of
ICLR’13 Workshop Track. CoRR abs/1301.3781.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T. P.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asynchronous
methods for deep reinforcement learning. In Proc. of ICML’16,
volume 48 of JMLR, 1928–1937.

Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steedman, M.
2012. Learning STRIPS operators from noisy and incomplete
observations. In Proc. of UAI’12, 614–623.

Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007. Learn-
ing symbolic models of stochastic domains. Journal of Artificial
Intelligence Research 29:309–352.

Pennington, J.; Socher, R.; and Manning, C. 2014. Glove: Global
vectors for word representation. In Proc. of EMNLP’14, 1532–
1543.

Pérez, F., and Granger, B. E. 2007. IPython: a system for interactive
scientific computing. Computing in Science and Engineering
9(3):21–29.

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.;
Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized word
representations. In Proc. of NAACL-HLT’18, 2227–2237.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov,
O. 2017. Proximal policy optimization algorithms. CoRR
abs/1707.06347.

Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J. 2018.
Learning numerical action models from noisy and partially ob-
servable states by means of inductive rule learning techniques.
Proc. of ICAPS’18 KEPS Workshop 46–53.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to se-
quence learning with neural networks. In Proc. of NeurIPS’14,
3104–3112.

Talukdar, A. 2019. Inference in Temporal Planning to Enhance
Planning Performance for Problems with Required Concur-
rency. PhD thesis, Kings College London.

Trask, A.; Michalak, P.; and Liu, J. 2015. sense2vec - A fast and
accurate method for word sense disambiguation in neural word
embeddings. CoRR abs/1511.06388.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models from
plan examples using weighted max-sat. Artificial Intelligence
171(2-3):107–143.

Zhang, Y.; Roller, S.; and Wallace, B. C. 2016. MGNC-CNN:
A simple approach to exploiting multiple word embeddings for
sentence classification. In Proc. of NAACL-HLT’16, 1522–1527.

Zhuo, H. H., and Kambhampati, S. 2013. Action-model acquisition
from noisy plan traces. In Proc. of IJCAI’13.

Zhuo, H. H., and Kambhampati, S. 2017. Model-lite planning:
Case-based vs. model-based approaches. Artificial Intelligence
246:1–21.

Zhuo, H. H., and Yang, Q. 2014. Action-model acquisition for
planning via transfer learning. Artificial Intelligence 212:80–
103.

Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implications.
Artificial Intelligence 174(18):1540–1569.

Appeared at: ICAPS’20 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20), Nancy,
France, October 2020

9


