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ABSTRACT

Copyright restrictions prevent the widespread sharing of
commercial music audio. Therefore, the availability of
resharable pre-computed music audio features has be-
come critical. In line with this, the AcousticBrainz plat-
form offers a dynamically growing, open and community-
contributed large-scale resource of locally computed low-
level and high-level music descriptors. Beyond enabling
research reuse, the availability of such an open resource
allows for renewed reflection on the music descriptors we
have at hand: while they were validated to perform suc-
cessfully under lab conditions, they now are being run ‘in
the wild’. Their response to these more ecological condi-
tions can shed light on the degree to which they truly had
construct validity. In this work, we seek to gain further
understanding into this, by analyzing high-level classifier-
based music descriptor output in AcousticBrainz. While
no hard ground truth is available on what the true value of
these descriptors should be, some oracle information can
still be derived, relying on semantic redundancies between
several descriptors, and multiple feature submissions be-
ing available for the same recording. We report on multi-
ple unexpected patterns found in the data, indicating that
the descriptor values should not be taken as absolute truth,
and hinting at directions for more comprehensive descrip-
tor testing that are overlooked in common machine learn-
ing evaluation and quality assurance setups.

1. INTRODUCTION

In many music information retrieval (MIR) applications, it
is useful to include information related to music content.
However, many large-scale music audio collections of in-
terest cannot legally be shared as-is. As a compromise,
efforts have been undertaken to locally pre-compute music
audio descriptors and make these available through APIs
or as part of research datasets. Parties without in-house ac-
cess to large audio corpora need to rely on such data for

c© Cynthia C. S. Liem, Chris Mostert. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Cynthia C. S. Liem, Chris Mostert, “Can’t trust the feel-
ing? How open data reveals unexpected behavior of high-level music
descriptors”, in Proc. of the 21st Int. Society for Music Information Re-
trieval Conf., Montréal, Canada, 2020.

subsequent use. Indeed, large-scale pre-computed descrip-
tor corpora have been feeding into further machine learn-
ing pipelines, empowering music applications, facilitating
benchmarking initiatives [1, 2], and leading to inferences
and statements about the nature of music preferences and
listening behavior at an unprecedented scale [3–6].

Audio-based music descriptors are commonly divided
into low- and high-level descriptors. Low-level descrip-
tors can closely be related to the audio signal, while high-
level descriptors are more semantically understandable to
humans. This does not make high-level descriptors easier
to extract; many of them cannot objectively and directly
be measured in the physical world, and thus consider con-
structs rather than physically measurable phenomena.

The performance of automated music descriptor extrac-
tion procedures is reported according to the common eval-
uation methodologies in the field. For descriptors based
on supervised machine learning, this normally includes a
performance report on a test set that was partitioned out
of the original dataset and not seen during training, or on
cross-validation outcomes. However, descriptors that are
reported and assumed to be successful may still be prone
to sensitivities not explicitly accounted for in their design
and evaluation. In lower-level music descriptors, imple-
mentations of MFCC and chroma descriptors showed sen-
sitivities to different audio encoding formats [7], while
common textual descriptions of audio extractor pipelines
turned out insufficiently specific to yield reproducible re-
sults [8]. For higher-level descriptors, seemingly well-
performing trained music genre classifiers turned out to be
unexpectedly sensitive to subtle, humanly interpretable au-
dio transformations [9]. Such sensitivities are not restricted
to music genre classification; for example, trade-offs be-
tween accuracy and semantic robustness have also been
observed in deep music representations [10]. Generally, in
many MIR tasks, ground truth relies on human judgement
and labeling. This may be imprecise and subjective, lead-
ing to low inter-rater agreement. In its turn, this leads to
questions on whether a clear-cut ground truth exists at all,
while this often is fundamental to machine learning tech-
niques and their evaluation [11–14].

Can we tell whether automated descriptors are as
trustable as initially assumed? Do they truly measure what
they are intended to measure? Do they match broader, less
explicitly encoded assumptions we have on them? These
are important questions to ask: in case of negative an-
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swers, the descriptors may not provide a valid basis for
subsequent work to build upon. However, finding sensi-
tivities that were unnoticed in original evaluation contexts
is non-trivial, requiring a broader, more meta-analytic per-
spective. In this work, we focus on this, by providing an
analysis of music descriptor values obtained through the
AcousticBrainz [15] platform. By soliciting community-
contributed submissions of locally run, but largely stan-
dardized music feature extractors, the platform offers a
large-scale perspective on music that ‘people felt worth
the upload’. As such, it offers a more ecological ‘in-the-
wild’ data perspective than what was studied in the lab,
when the descriptors were originally designed. Indeed,
through cross-collection evaluation procedures employing
independent ground truth validation sets, several well-
known genre classification models were shown not to gen-
eralize well beyond their original evaluation datasets [16].

The AcousticBrainz data is unusually transparent and
rich: more so than e.g. the popular Million Song
Dataset [17]. Many descriptor fields are available for each
submission, multiple submissions can be added for the
same MusicBrainz recording, each submission is encoded
with additional metadata on characteristics of the input
audio and the extractor software, and the extractor soft-
ware is open source [18]. We use this richness to com-
prehensively analyze existing computed descriptor values
in AcousticBrainz. Rather than relying on explicit and
clear-cut ground truth, we look at the data through a meta-
scientific lens, and impose more general assumptions on
descriptor behavior, inspired by psychological and soft-
ware testing techniques. This way, we will reveal several
unexpected patterns in the descriptor values. As original
music audio is not attached to the descriptor entries, we
will not (yet) be able to fully replicate how descriptors
were computed, nor will we be able to recreate experimen-
tal conditions on this data, in which possible reasons for
unexpected behavior can cleanly be statistically controlled.
Still, our analysis will help in pinpointing concrete direc-
tions towards future controlled studies.

In the remainder of this paper, we will discuss related
work in Section 2. Then, we will introduce the data
used for our analyses in Section 3, after which we will
present analyses into intra-dataset correlations (Section 4),
descriptor stability (Section 5), and descriptor value dis-
tributions (Section 6), followed by the conclusion and an
outlook towards future work.

2. RELATED WORK

In conducting science, it is non-trivial to assess whether
the outcomes we are observing, the inferences we are mak-
ing and the conclusions we are drawing are truly correct.
These questions of validity were first acknowledged in
the domain of psychological testing, where the focus was
on measuring psychological constructs: abstracted human
characteristics (e.g. ‘conscientiousness’) that are not di-
rectly and physically observable, but that can still be mea-
sured (e.g. through well-designed surveys). Various sub-
categories of validity exist [19]. Among these, one of the

most intuitive to understand, yet hardest to pinpoint, is the
notion of construct validity: the question whether a mea-
surement procedure can indeed be considered to yield a
“measure of some attribute or quality which is not “oper-
ationally defined”” [20].

The traditional viewpoint on ways to assess construct
validity, is to consider a measure procedure as part of a
nomological network, and relate its outcomes to those of
other procedures, that have previously been shown to be
valid [20]; in practice, in much of psychological research,
this is done by assessing correlations between construct
measurements that are theorized to have an interpretable
relation to one another. This does create dependencies un-
der uncertainty, still boiling down to a philosophical ques-
tion of ‘what the first truth is to start with’—something
that may be disproven during the research process, as more
evidence will come in and further comparisons are being
made. It has therefore been argued that comprehensive in-
quiry into construct validity will not only lead to better as-
sessments, but also leads to fundamental questionings and
improvements of the complete scientific process [21].

Within MIR, while comprehensive meta-scientific ques-
tions on this have not been asked, criticisms of current
evaluation practices, referring to the notions of both valid-
ity and reliability and the way in which they have been used
in the Information Retrieval field, have been presented by
Urbano et al. [22]. In addition, Sturm’s criticisms of ‘horse
systems’ in MIR [9] (machine learning-based systems that
performance-wise appear to make humanly intelligent de-
cisions, but that turn out to pick up on irrelevant confounds
in data) can again be related to construct validity.

As a method to assess whether a system is a ‘horse sys-
tem’, Sturm proposes to investigate how systems react to
input data transformations that are considered ‘irrelevant’
(i.e. imperceptible) to humans. Interestingly, this tech-
nique has been used in another research field focused on
‘testing’: the field of software testing, in which it would
be called metamorphic testing [23]. While software testing
appears to be a much more objective and precise procedure
than psychological testing, from a formal, logical perspec-
tive, many real-life programs may actually be considered
non-testable, and the problem of determining whether a
software artefact is bug-free is undecidable [24]. While
one cannot pinpoint one exact oracle truth, it still may be
possible to derive partial oracle truth through transforma-
tions based on known data relationships [25], e.g. by ap-
plying input transformations that should not change a sys-
tem’s output, which is done in metamorphic testing.

3. ACOUSTICBRAINZ

In our studies, we study descriptor values as found through
the AcousticBrainz platform. More specifically, we will
depart from the most recent high-level descriptor data
dump obtained through the AcousticBrainz website 1 . We
are interested in the high-level descriptors, as they should

1 https://AcousticBrainz.org/download.
The data dump used in our analyses is
AcousticBrainz-highlevel-json-20150130.tar.bz2
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mimic humanly understandable semantic concepts, which
should be relatable in humanly interpretable ways.

The data dump considers 1,805,912 entries of
community-contributed high-level descriptor values, that
can be broken down into genres, moods, and other cate-
gories (e.g. danceability); a full overview can be found in
([15], Table 4). Unless indicated otherwise, our analyses
will consider this full data dump. In all cases, descrip-
tor values consider classification outputs, obtained through
machine learning; for each possible class label within a de-
scriptor (e.g., jazz in the genre_dortmund classifier), the
classifier confidence for that class label is given as a float
value. The performance of each of the classifiers is doc-
umented on the AcousticBrainz website; where possible,
performance is reported on publicly available datasets 2 .

4. INTRA-DATASET CORRELATIONS

Following the psychological concept of the nomologi-
cal network, one way to assess validity is to assess how
the outcomes of related measurement procedures correlate
with each other. For this, we take advantage of semantic
redundancy within the AcousticBrainz high-level descrip-
tors. For example, several musical genres literally re-occur
as class labels within the various genre classifiers. Then,
it is not unrealistic to assume that, given the same audio
input, the output of alternative jazz classifiers should pos-
itively correlate. Furthermore, some ‘softer’ assumptions
on meaningful relationships can be made: e.g., aggressive
music is likely not relaxed, and happy music is likely not
sad. We defined multiple of these relationships for which
we would expect to observe (strong) positive correlations
between classifier label predictions, and computed their
Pearson correlations. The results are displayed in Table 1.

The found correlations were unexpected; we were espe-
cially surprised by the very low correlations found for the
genre classifiers, while they should target the same con-
cepts. A scatter plot of rock classifier confidences in
genre_rosamerica and genre_tzanetakis (which yielded a
negative correlation) is given in Figure 1. It appears that
confidences outcomes do not uniformly distribute over the
full [0.0, 1.0] confidence range; we will investigate this
further in the following sections.

Out of all ‘softer’ assumptions that were compared, the
lowest correlation (.13) is between happy and not sad,
implying that music classified as happy could be sad at the
same time. The classifiers used in AcousticBrainz indeed
allow for this, as separate binary classifiers exist for happy
and sad moods; however, this contradicts Russell’s 2D cir-
cumplex model of affect [26], in which happiness and sad-
ness would have opposite scores on the valence dimension.

5. STABILITY

Our correlation analyses showed unexpected results. How-
ever, as different classifiers were trained on different
datasets, they may have considered different characteristics
of the input data. Inspired by the idea of derived oracles,

2 https://AcousticBrainz.org/datasets/accuracy

Figure 1: Scatter plot of classifier confidences. Each point
indicates an AcousticBrainz submission, with confidences
for genre_rosamerica, roc and genre_tzanetakis, roc.

we can however also consider relationships that should be
closer to the identity, and thus should lead to (nearly) iden-
tical outcomes.

In AcousticBrainz, multiple submissions can be made
for the same MusicBrainz recording ID (MBID). Seman-
tically, a MusicBrainz recording really references one and
the same recording. So while users may have encoded the
recording audio in different ways, and may be using differ-
ent versions of the feature extractor, we should intuitively
be able to assume that re-submissions of one and the same
recording should yield descriptor values that are very close
to one another. In other words, we wish for re-submissions
for the same MBID to display stability.

For this, we need to consider the MBIDs in our
data dump that have more than one associated submis-
sion. Filtering for this led to a corpus of 941,018 sub-
missions for 299,097 different MBIDs. If n submis-
sions are available for a given MBID, a given classi-
fier c and a given classifier label l, the corresponding
classifier confidences for these submissions can now be
grouped into a population (MBID, c, l) of size n. Con-
sidering we have k unique MBIDs in our dataset (in our
case, k = 299,097), we can then enumerate the popu-
lations as [(MBID1, c, l), (MBID2, c, l), ..., (MBIDk, c, l)],
and operate within and/or across them when calculating in-
stability metrics.

We consider two alternative ways to quantify instabil-
ity. First, for each of the submission populations, we can
compute the variance observed for classifier confidences,
for each label l in classifier c. As there may be a varying
amount of submissions within a population, we normalize
for this by computing the pooled variance var(c, l) over
our filtered corpus as follows:

var(c, l) =
Σk

i=1(ni × var((MBIDi, c, l)))

Σk
i=1ni

(1)
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Classifier, label A Classifier, label B Pearson’s r p

genre_rosamerica, cla genre_tzanetakis, cla .29 <.001
genre_dortmund, rock genre_rosamerica, roc .24 <.001
genre_dortmund, jazz genre_rosamerica, jaz .22 <.001
genre_dortmund, pop genre_rosamerica, pop .11 <.001
genre_dortmund, jazz genre_tzanetakis, jaz .08 <.001
genre_rosamerica, pop genre_tzanetakis, pop .06 <.001
genre_rosamerica, hip genre_tzanetakis, hip .05 <.001
genre_rosamerica, jaz genre_tzanetakis, jaz .02 <.001
genre_dortmund, blues genre_tzanetakis, blu .01 <.001
genre_dortmund, pop genre_tzanetakis, pop -.05 <.001
genre_dortmund, rock genre_tzanetakis, roc -.06 <.001
genre_rosamerica, roc genre_tzanetakis, roc -.07 <.001
mood_aggressive, aggressive mood_relaxed, not_relaxed .59 <.001
mood_acoustic, acoustic mood_electronic, not_electronic .58 <.001
danceability, danceable mood_party, party .53 <.001
mood_electronic, electronic genre_dortmund, electronic .48 <.001
danceability, danceable genre_rosamerica, dan .33 <.001
mood_happy, happy mood_party, party .20 <.001
mood_happy, happy mood_sad, not_sad .13 <.001

Table 1: Pearson correlations between high-level classifier outcomes, theorized to positively correlate with another.

where ni is the sample size of the ith population in our
enumeration.

As there are multiple possible labels within the same
classifier, but we want to discuss outcomes at the classifier
level, we then take the mean pooled variance, var(c), over
all possible labels l ∈ Lc for classifier c.

When using variances, classifier confidences are con-
sidered to be informative. Alternatively, one could choose
to rather consider each classifier label as a binary label. To
reflect this perspective, for each population and for each
classifier, we can compute the normalized information en-
tropy Ĥ(MBIDi, c), which uses the Shannon entropy [27],
but normalizes by the amount of possible labels |Lc| for c:

Ĥ(MBIDi, c)

= −Σl∈Lc

P ((MBIDi, c, l)) log2 P ((MBIDi, c, l))

log2 |Lc|
= −Σl∈Lc

P ((MBIDi, c, l))log|Lc|P ((MBIDi, c, l))

(2)

where P ((MBIDi, c, l)) is the probability of label l in
classifier c, following the observed empirical distribution
within the population corresponding to MBIDi. Then, to
have a weighted measure per classifier over the whole fil-
tered corpus, we calculate the pooled normalized entropy
Ĥ(c), similarly to how we computed the pooled variance.

While we want for descriptor values to be stable within
a submission, it is usually not the intention that for a given
descriptor, the classifier would be so stable that it always
predicts a single l throughout the whole corpus. This e.g.
happens for the genre_dortmund classifier, which unright-
fully classifies many AcousticBrainz submissions as elec-
tronic music, as also noticed in [16]. To quantify the un-
biasedness of a classifier, we compute the normalized en-
tropy for each classifier over our complete (unfiltered) cor-
pus, denoted as Ĥ(c)all. A higher Ĥ(c)all denotes a more
uniform distribution over the different possible class labels
for c across the corpus, and thus lower classifier bias.

Plots in which we illustrate var(c) and Ĥ(c) (pooled

with regard to recordings with multiple submissions) vs.
Ĥ(c)all (taken across the whole, unfiltered corpus) are
shown in Figure 2. As we can see, indeed, the genre classi-
fiers turn out stable but highly biased. While in most cases,
observed trends are comparable for the two possible insta-
bility measures, some exceptions are found, most notably
on the gender classifier, which is considered stable when
using var(c), but unstable when using Ĥ(c). Seemingly,
confidences for this classifier are close to 0.5, meaning that
male/female classifications easily flip within a submission.

6. VALUE DISTRIBUTIONS

From Figure 1, it was observed that descriptor values
clustered together in small bands. This behavior oc-
curs for several genre and mood classifiers. To illustrate
this, Figure 3 displays a histogram of descriptor values
for the mood_acoustic, mood_relaxed, mood_electronic
and mood_sad classifiers, as observed across the com-
plete AcousticBrainz corpus. Some confidence values
seem disproportionally represented: in the histogram,
sharp spikes occur for mood_acoustic, mood_relaxed,
mood_electronic, and a minor spike for mood_sad.

There are various reasons why this may be the case.
Possibly, the community may have fed skewed data to the
classifier. Alternatively, the feature extractor may have
shown anomalous responses to specific inputs. For each
submission, we have rich metadata, which e.g. includes
information about audio codecs, bit rates, song lengths,
and software library versions that were used when the sub-
mission was created. While, in the absence of a con-
scious experimental design underlying the data, we can-
not cleanly test for contributions of individual facets, we
still can examine whether major distributional differences
occur for submissions with scores within the anomalous-
looking spikes, when comparing these to submissions with
scores outside of these.

For this, for each of the classifiers, we manually define
range intervals for the classifier confidences, within which
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(a) Instability based on mean pooled variance var(c).

(b) Instability based on pooled normalized entropy Ĥ(c).

Figure 2: Submission instability vs. corpus-wide unbi-
asedness (Ĥ(c)all).

we consider a submission to belong to an anomalous clas-
sifier confidence value spike. We then compare the meta-
data value distributions of submissions within each classi-
fier spike to those of submissions that do not occur in any
of the four anomalous spikes (1,239,882 submissions for
855,266 unique MBID recordings).

To investigate whether the observed anomalies may
have been skewed towards any particular genre, we also
study a subset of our corpus, which was cross-matched
against the AcousticBrainz genre dataset [28]. More
specifically, we only kept MBIDs which also occurred
in all three publicly available ground truth sets (Discogs,
last.fm and tagtraum) of the AcousticBrainz genre dataset,
reducing the corpus to 402,279 submissions for 164,826
unique MBID recordings. Examining confidence value
distributions for this filtered dataset, we still observed
the same anomalous spikes for the same range intervals.
Therefore, we will apply the same range intervals as be-
fore to select values associated to anomaly spikes, and will

Figure 3: Histogram of descriptor values for several clas-
sifiers, considered across the whole corpus.

again compare distributional differences between these and
non-anomalous submissions (now amounting to 267,394
submissions for 128,687 unique MBID recordings), in this
case to see whether certain genres are overrepresented in
the anomalous spikes. For each classifier of interest, an
overview of anomalous spike interval ranges and counts of
corresponding unique recording MBIDs and submissions
is given in Table 2.

To quantify distributional differences, we use the
Jensen-Shannon (JS) distance metric:

JS_distance(p, q) =

√
D(p‖m) + D(q‖m)

2
(3)

where m is the pointwise mean of p and q and D is the
Kullback-Leibler (KL) divergence [29]. The JS distance
is based on the JS divergence [30]; as advantages over the
KL divergence, the JS divergence is symmetric and always
has a finite value within the [0, 1] range [31].

For each metadata category in our overall corpus, and
for each genre category in our genre-filtered corpus, we
calculate the JS distance between the frequency occurrence
profiles of category values, counted over all submissions
within an anomalous spike, vs. all submissions without any
anomalous spike. As some categories can assume many
different values (e.g. replay_gain), we only do compar-
isons for values that occur at least 10 times in both fre-
quency profiles. JS distance values for the metadata com-
parisons are listed in Table 3, while JS distance for the
genre comparisons are listed in Table 4.

As can be observed in Table 3, comparing submissions
within and outside of the anomalous spikes, major distri-
butional differences are found for used extractor software
versions. These go up to the level of Essentia Git com-
mit and build versions that were used for low-level feature
extraction. In addition, we also observe distributional dif-
ferences for bit_rate and codec, likely confirming earlier
observations [7] that low-level feature extractors may dis-
play sensitivities with regard to different audio codecs and
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Classifier Anomalous range Full Genre
#MBIDs #submissions #MBIDs #submissions

mood_acoustic, acoustic [0.09, 0.10] 282,605 358,747 60,261 94,268
mood_relaxed, relaxed [0.805, 0.815] 373,555 485,184 72,739 119,050
mood_electronic, electronic [0.972, 0.982] 315,626 401,151 64,944 101,915
mood_sad, sad [0.346, 0.362] 57,697 75,688 8,854 14,242

Table 2: Details of anomalous spike data slices used for distributional comparisons. For each classifier of interest, we
indicate the classifier confidence range for which a submission was considered to be anomalous. We also list the counts of
unique MBID recordings and overall submissions, both for the full corpus and our genre-filtered corpus.

acoustic relaxed electronic sad

bit_rate .42 .32 .39 .17
codec .34 .26 .32 .06
length .15 .15 .15 .32
lossless .28 .21 .27 .02
essentia_low .61 .52 .59 .15
essentia_git_sha_low .67 .58 .66 .23
essentia_build_sha_low .70 .62 .69 .24

Table 3: JS distances between frequency profiles over metadata categories, for anomalous vs. non-anomalous submissions
considering the four classifiers of interest. For metadata categories that are not listed, found JS distances were always 0.

acoustic relaxed electronic sad

Discogs .12 .09 .11 .11
last.fm .14 .12 .13 .14
tagtraum .14 .11 .13 .14

Table 4: JS distances between frequency profiles over
genre categories, for anomalous vs. non-anomalous sub-
missions considering the four classifiers of interest.

compression rates. In contrast, Table 4 shows that JS dis-
tances are equivalent and low across genre taxonomies and
types of anomalies: from this, it seems more likely that the
anomalies were caused by submission extraction contexts,
rather than the inclusion of anomalous data.

7. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed patterns in high-level descriptor
values in AcousticBrainz. As we showed, while the de-
scriptors were successfully validated under lab conditions,
they show unexpected behavior in the wild, raising ques-
tions on the extent to which they have construct validity.

The unexpected behavior could have two potential
causes. First of all, the construct underlying several
high-level descriptors may be conceptually problem-
atic by itself. For example, the concept of genre [32], as
well as its use in machine learning classification tasks [33]
has been criticized by musicologists and musicians. Fur-
thermore, within music psychology, there have been find-
ings that sad music does not necessarily elicit sad emo-
tions [34, 35]. Further interdisciplinary research will be
needed to better understand these phenomena.

Our current analyses also accumulated evidence that
the AcousticBrainz community confronted the descrip-
tors with audio and extraction contexts that were too
different from the contexts on which classifiers origi-
nally were trained. It should be noted that original train-

ing datasets for the classifiers were far smaller in size (sev-
eral hundreds to thousands of data points) than the current
scale of AcousticBrainz, and that this logically may not
have managed capturing all intricacies of larger-scale, eco-
logically valid data. However, our analyses suggest that
anomalous behavior may also be due to audio codecs, com-
pression rates and different versions of software implemen-
tations and builds that were used during extraction, which
are rarely explicitly considered and reported in evaluation
setups. As for the software versions, it should further be
noted that, while we focused on high-level descriptors, all
found differences occurred in the extraction procedures of
low-level descriptors (feature representations), while the
high-level machine learning models stayed constant. Thus,
low-level descriptor performance should explicitly stay in
scope when studying high-level descriptors.

With this work, we wished to shed light on current
challenges regarding the reproducibility and generalizabil-
ity of research outcomes, and on elements of processing
pipelines that are under-represented in applied machine
learning and signal processing literature, yet play a criti-
cal role for the pipeline’s performance [8, 36]. Inspired by
literature in both psychological and software testing, we
also offered several possible strategies to assess descriptor
validity, even in the absence of a clear ground truth.

While we exposed several potentially problematic pat-
terns, we explicitly do not wish for this work to be seen as a
criticism of AcousticBrainz and/or Essentia. No other MIR
resource or API currently offers similar levels of trans-
parency that allow for analyses like we performed here,
and we would like to explicitly thank the teams behind
these initiatives for their openness. It also is this openness
that will allow for us to perform further research in the near
future—with more systematic testing strategies and exper-
imental designs—towards more holistic quality assurance
procedures for applied machine learning procedures in the
context of humanly-interpretable signal data.
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