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Abstract Tropospheric tomography is one of the most important techniques to reconstruct three 10 

dimensional (3D) images of the tropospheric water vapor fields using a local GNSS network. In 11 

the conventional tropospheric tomography method, called voxel-based tropospheric tomography, 12 

the 3D space is divided into many voxels and the amount of water vapor is estimated for each 13 

voxel. This method suffers from three disadvantages. First, it needs empirical constraints in order 14 

to fix the rank deficiency of the coefficient matrix. Second, the amount of water vapor is assumed 15 

to be constant in the 3D space of a voxel despite the large spatial variations of this parameter. 16 

Third, the number of unknown parameters is high compared to the number of observations. 17 

Therefore, an approach based on mathematical functions, called function-based tropospheric 18 

tomography, is presented to overcome these problems. The tropospheric tomography using the 19 

voxel-based and function-based approaches is performed using 17 GPS stations and different 20 

weather conditions have been considered. Radiosonde observations and GPS positioning results 21 

are used to validate the obtained results. Comparison of the results with the radiosonde data 22 

indicates that the use function-based method reduces the mean RMSE by about 0.3 gr/m3. 23 

Validation using positioning shows that in wet weather conditions, the difference between the 24 

RMSE of the two approaches is significant. All the validations show the ability and applicability 25 

of the function-based tropospheric tomography approach. 26 

 27 

Keywords: GPS, Tropospheric tomography, Water vapor, Function-based, B-spline 28 

 29 
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Introduction 30 

The spatiotemporal distribution of water vapor is very important in numerical weather forecasting 31 

and disastrous-weather monitoring. There are many instruments for measuring water vapor, such 32 

as radiosonde, water vapor radiometer, and meteorological satellites and sensors (Merrikhpour and 33 

Rahimzadegan 2017; Merrikhpour and Rahimzadegan 2019). These instruments have low 34 

spatiotemporal resolution and high cost and are dependent on weather conditions. In recent years, 35 

the GNSS tropospheric tomography has been used to retrieve the 3D distribution of water vapor 36 

and to overcome the mentioned drawback of the instruments. The first GNSS tropospheric 37 

tomography experiments to obtain wet refractivity were performed by Flores and Hirahara (Flores 38 

et al. 2000; Hirahara 2000). In the following years, many researchers have tried to improve the 39 

accuracy and performance of this technique (Bender et al. 2011; Perler et al. 2011; Rohm et al. 40 

2014; Yao and Zhao 2016; Haji-Aghajany and Amerian 2017; Haji-Aghajany and Amerian 2018; 41 

Zhao et al. 2018a; Heublein et al. 2019).  42 

In voxel-based tropospheric tomography, due to the geometric distribution of GNSS 43 

receiver and the constellation of GNSS satellites, some voxels are not crossed by any ray. This 44 

problem causes a rank deficiency in the coefficient matrix. Some previous researchers proposed 45 

the methods of using the signals penetrating from the side face of tomography area (Yao and Zhao 46 

2016; Zhao and Yao 2017; Zhao et al., 2020) and using the data of GNSS observations outside the 47 

study area to solve this problem (Zhao et al., 2019). However, in general, the use of constraints to 48 

solve the problem is inevitable. Some researchers have suggested approaches to add constraints to 49 

the tropospheric tomography problem (Flores et al. 2000; Troller et al. 2002; Rohm and Bosy 50 

2009; Bender et al. 2011). These empirical constraints sometimes cause the reconstructed water 51 

vapor field to deviate from the correct distribution. Considering the amount of water vapor fixed 52 

everywhere in the 3D space of a voxel and the high number of unknown parameters compared to 53 

the number of observations are other drawbacks of the conventional tropospheric tomography 54 

method. The high number of unknown parameters reduces the stability of the tomography model.  55 

The first function-based tropospheric tomography studies of water vapor have been 56 

performed by Zhao et al. (2018b). He used the fix-degree polynomial function for different vertical 57 

layers. A high-degree polynomial as an interpolant function oscillates between data points and at 58 

the edges of an interval and reduces the accuracy of modeling. We present a new method based on 59 
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the non-identical degrees of the B-spline scaling function to overcome the disadvantages of the 60 

voxel-based and polynomial function-based methods. The B-spline function has already been used 61 

in ionosphere tomography and has shown high ability in ionosphere modeling (Amerian et al. 62 

2013a, b). Here, the B-spline scaling function with different degrees and resolution levels is used 63 

in the tropospheric tomography. 64 

Function-based tropospheric tomography avoids the use of empirical constraints, and only 65 

an a priori constraint is needed to reconstruct the vertical distribution of water vapor. Moreover, it 66 

reduces the number of unknown parameters. To perform the tomography, we used the observations 67 

of 17 GPS stations for 30 different days under different weather conditions. After applying the 68 

voxel-based and function-based methods, the results are validated using the GNSS positioning 69 

technique and radiosonde observations. In the following, the basics of the voxel-based and 70 

function-based tropospheric tomography are provided. Then, the study area, data set, and the 71 

obtained results from the two tomography approaches are presented. Validation and discussion are 72 

presented in the last section. 73 

 74 

Tropospheric tomography technique 75 

The slant water vapor (SWV) is the total water vapor content from satellite to receiver. This can 76 

be one of the input data types of the tomography problem and is expressed as follows (Braun 77 

2004): 78 

                                                                                                                              (1) 79 

where s represents the path of the ray, and is the water vapor density (WVD). Equation (1) is the 80 

fundamental relation of the tropospheric tomography problem. The SWV can be obtained by the 81 

following formula (Bevis et al. 1992): 82 

                                                                                                              (2)       83 

SWV = ρ(s)ds
Rec.

Sat .

∫

ρ

SWV =
10

Rw[(k3 / Tm )+ k2
' ]
SWD
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where  and  are refractivity coefficients. Tm is 84 

weighted mean tropospheric temperature and SWD is the slant wet delay of the ray which can be 85 

computed using (Davis et al. 1993): 86 

                                               (3) 87 

where GNSW and GEWW are non-hydrostatic delay gradients in N-S and E-W directions, mfwet is non-88 

hydrostatic mapping function,  is satellite elevation and  is the azimuth. ZWD is the zenith 89 

wet delay, which can be estimated by subtracting the zenith hydrostatic delay (ZHD) from the 90 

zenith total delay (ZTD). ZHD can be computed accurately using the following model 91 

(Saastamoinen 1973): 92 

                                                                                                (4)  93 

where  and H are the latitude and height and Ps is the surface pressure. In the following, the 94 

theory of voxel-based and function-based tomography are described. 95 

 96 

Voxel-based method 97 

The tomography area is divided into several voxels in which the WVD is considered a constant 98 

during the specified period of time. Therefore, the equation between the SWV and the WVD can 99 

be discretized as follows (Chen and Liu 2014): 100 

                                                                                                                 (5) 101 

where n, m and q is the number of voxels in the latitudinal, longitudinal, and vertical directions, P 102 

is the counter of rays,  is the distance traveled by the ray P in the voxel (i, j, k) and is the 103 

WVD in the voxel (i, j, k). Equation (5) in matrix form is: 104 

                                                                                                                                (6) 105 

where T is the number of the GNSS rays, A is the coefficient matrix and is the vector of unknown 106 

WVD. An inversion algorithm needs to be applied to solve the unknown parameters. As previously 107 

k2
' = 16.48 KhPa-1, k3 = 3.776×10

5 K2hPa-1 Rw = 461 JKg
-1K-1

SWD = (m fwet × ZWD)+ (mfwet × cot(α )× ((GNS
W × cosaz)+ (GEW

W × sinaz)))+ R

α az

ZHD=
0.002277 P

s

(1-0.00266 cos(2ϕ ) - 0.00000028H )

ϕ

SWV P =
k

q

∑
j

m

∑ di, j ,k
P ρi, j.k

i

n

∑

di, j.k
P ρi, j ,k

T L1 = T Anmq nmqρ1

ρ
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mentioned, in voxel-based tomography, the coefficient matrix is a large sparse matrix, and not all 108 

of the unknowns can be estimated. Therefore, adding constraints using various approaches to solve 109 

this problem is inevitable (Flores et al. 2000; Troller et al. 2002; Rohm and Bosy 2009; Bender et 110 

al. 2011). As a result, the accuracy of the results is influenced since the additional constraint cannot 111 

completely satisfy the actual situation. In this study, the horizontal constraints are performed based 112 

on the assumption that the WVD in a voxel is a mean value of its horizontally nearest neighbors 113 

(Yao and Zhao 2016). In order to form the vertical constraints, the negative exponential function 114 

is used (Flores et al. 2000). 115 

The model resolution matrix is used to select the optimal resolution and geometry for the 116 

tomography model (Haji-Aghajany and Amerian 2017). The 3D ray-tracing technique is used to 117 

compute the distance traveled by the rays in each voxel. More details about this technique can be 118 

found in Haji-Aghajany and Amerian (2017). The tropospheric tomography is a large and ill-119 

conditioned inverse problem due to the high number of observations and a wide area of modeling. 120 

Therefore the use of regularization methods is necessary. We use the least-squares QR (LSQR) 121 

iterative regularization method (Haji-Aghajany and Amerian 2017; Haji-Aghajany and Amerian 122 

2018). 123 

 124 

Function-based method 125 

In previous studies, the study area was divided into many voxels, which caused problems in the 126 

determination of the WVD. In the function-based tropospheric tomography, the study area is not 127 

divided in the horizontal direction, and only a few vertically layers are needed. In this method, the 128 

WVD for each layer is expressed as a function: 129 

                                                                                                                                      (7) 130 

where  and  are the longitude and latitude of intersection between the ray and the center of the 131 

layer. Therefore, the SWV for i-th layer in P-th ray direction can be written as: 132 

                                                                                                                 (8) 133 

where  is the WVD for the location of  and  is the distance travel by the P-th ray in i-134 

th layer. The SWV can be transformed as follows: 135 

ρ = F(λ,ϕ )

λ ϕ

SWVi
P = ρi .di

P = F(λi ,ϕ i ).di
P

ρi (λi ,ϕ i ) di
P
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                                                                                                     (9)       136 

Using to equation (8), this can be written as follows: 137 

                                                                              (10) 138 

where n is the number of layers. It is clear that the distribution of WVD at the different elevation 139 

layers is not the same. Therefore, it is better to use various degree functions for different layers. 140 

Accordingly, equation (10) can be written as follows: 141 

                                                                           (11) 142 

Basic schematic diagram of this method can be seen in Fig.1. 143 

 144 

 145 

Fig. 1 Schematic diagram of four-layer function-based tropospheric tomography 146 

 147 

B-spline function 148 

Due to the spatial variations of water vapor and considering the local modeling ability of different 149 

functions, the B-spline function is used as the base function for regional modeling of the WVD. 150 

B-spline is a special kind of wavelet that presents useful and remarkable properties such as 151 

symmetry, simplicity, semi-orthogonality, and compact support (Amerian et al. 2013a). The 152 

normalized B-spline scaling function is as follows: 153 

SWV P = SWV1
P + SWV2

P + ...+ SWVn
P

SWV P = F(λ1,ϕ1).d1
P + F(λ2 ,ϕ2 ).d2

P + ...+ F(λn ,ϕn ).dn
P

SWV P = F1(λ1,ϕ1).d1
P + F2(λ2 ,ϕ2 ).d2

P + ...+ Fn(λn ,ϕn ).dn
P
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                                                                       (12) 154 

where d is degree of function, J is resolution level, k is shift and x is variable. The scaling function 155 

space has basis functions. It should be noted that when the denominators of (12) are 156 

zero, the fraction will be considered zero (Amerian et al. 2013a). The required initial values can 157 

be obtained using: 158 

                                                                                                            (13) 159 

where are shift values and  is a sequence of spaced values called knots. 160 

                                                                                      (14) 161 

In this method, endpoint-interpolating B-spline on unit interval [0,1] is used to avoid the edge 162 

effect at the boundaries. For this aim, the first and last d+1 knots are set to zero and one, 163 

respectively (Mautz et al. 2005; Amerian et al. 2013a; Amerian et al. 2013b). 164 

The WVD in each layer is expanded into 2D B-spline scaling function  with 165 

unknown scaling coefficients : 166 

                                                                                                         (15) 167 

The 2D B-spline scaling function can be computed using the tensor product of 1D functions: 168 

                                                                                                               (16) 169 

Finally, the tropospheric tomography based on 2D B-spline scaling function is expressed as 170 

follows: 171 

                                         (17) 172 

This system of equations can be written in the following form: 173 

                                                                                                                                                   (18) 174 

φJ ,k (x) = NJ ,k
d (x) =

x − tk
J

tk+d
J − tk

J NJ ,k
d−1(x) +

tk+d+1
J − x
tk+d+1
J − tk+1

J NJ ,k+1
d−1 (x)

KJ = 2
J + d

NJ ,k
0 (x) =

1 if tk
J ≤ x ≤ tk+1

J

0 otherwise

⎧
⎨
⎪

⎩⎪

k = 0, 1,...,KJ −1 t0 ,t1,...,tKJ +d

t0 ,t1,...,tKJ +d =
1
2J

0,....,0
d+1 times
!"# ,1,2,...,2

J −1,2J ,...,2J

d+1 times
!"$ #$

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

φJ1J2k1k2 (λ,ϕ )

CJ1J2k1k2

ρi = CJ1J2k1k2 φJ1J2k1k2 (λi ,ϕ i )
k2=0

KJ2−1

∑
k1=0

KJ1−1

∑

φJ1J2k1k2 (λ,ϕ ) =φJ1,k1 (λ) φJ2 ,k2 (ϕ )

SWV P = (d1
P. C

J1J2k1k2

1 φJ1J2k1k2 (λ1,ϕ1)
k2=0

KJ2−1

∑ ) + ...+ (dn
P. C

J1J2k1k2

n φJ1J2k1k2 (λn ,ϕn )
k2=0

KJ2−1

∑ )
k1=0

KJ1−1

∑
k1=0

KJ1−1

∑

L = A x
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where L is the observation vector, A is the coefficient matrix that includes the base functions and 175 

distance traveled by the rays in each layer, and x is an unknown vector that includes the B-spline 176 

scaling coefficients. The B-spline scaling function provides local support, and not all observations 177 

will contribute to the estimation of an unknown. Therefore, the coefficient matrix A is a sparse 178 

matrix. In this method, it is necessary to use a prior constraint in order to reconstruct the vertical 179 

distribution of water vapor properly. For this purpose, the radiosonde measurements at various 180 

layers have been used. The tropospheric tomography is inherently a Fredholm integral equation of 181 

the first kind. In mathematics, it has been shown that in this kind of integral equation, the output 182 

is not a continuous function of the input parameters (Hansen 1997). It can be proven that inverse 183 

problems based on this kind of integral equation are ill-conditioned problems, and the use of 184 

regularization methods to solve them is inevitable (Hansen 1997). Similar to the voxel-based 185 

approach, the LSQR iterative regularization method is used to solve the inverse problem. The 3D 186 

ray-tracing technique is used to compute the distance traveled by the rays in each layer.  187 

 188 

Study area and data set 189 

In order to study the function-based tropospheric tomography method, a region in North America 190 

has been selected (Fig.2). For a comprehensive review of the effectiveness of the proposed method, 191 

17 dual-frequency GPS observations for 30 days of 2018 between July and December in different 192 

weather conditions have been used. These days have been selected based on the diversity of the 193 

relative humidity index. The distribution of the GPS stations and topography of the study area can 194 

be seen in Figs.3 and 4. In this research, the ERA-Interim reanalysis model published by the 195 

European Center for Medium-Range Weather Forecasts (ECMWF) has been used to perform 3D 196 

ray-tracing technique and to select appropriate degree and level in function-based tomography. 197 

The ERA-Interim reanalysis model presented values of several meteorological data on 37 pressure 198 

levels. The spatial resolution of this data is about 75 km (Dee et al. 2011). These data have been 199 

widely used in various aspects of geodesy and remote sensing (Haji-Aghajany et al., 2017; Haji-200 

Aghajany et al., 2019). The results are validated using observations from the radiosonde station in 201 

the area in addition to the positioning technique. 202 

 203 
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 204 

Fig. 2 Geographical location of the study area 205 

 206 

 207 

Fig. 3 Distribution of the GPS stations. The blue square represents the radiosonde station, and 208 

the green triangle shows the position of the station used to evaluate the results  209 

 210 
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         211 

Fig. 4 Topography of the study area and vertical distribution of the GPS stations. 212 

 213 

Data processing and results 214 

The GPS observations have been processed using Bernese 5.2 software to estimate the 215 

tropospheric delay (Dach et al. 2015). First, the RNXSMT program has been used to detect cycle 216 

slip and outlier. The next step was to convert the RINEX (Receiver Independent Exchange) ASCII 217 

format observation files format to the software format using RXOBV3 program. Then, the standard 218 

orbits have been created using PRETAB and ORBGEN programs. CODSPP and MAUPRP 219 

programs have been used for clock synchronization and to resolve cycle slip and multipath, 220 

respectively. Finally, GPSEST program has been used to parameter determination (Dach et al. 221 

2015). The ionosphere-free linear combination, a ZTD interval of 30 minutes and gradients interval 222 

in north-south and east-west directions of 2 hours have been considered for this processing. The 223 

global mapping function (GMF) has been used to convert the zenith direction to slant direction 224 

(Bohm and Niell, 2006). Examples of obtained ZTDs can be seen in Fig.5. The different behavior 225 

of the delay in these stations are due to the topography of the area and different weather conditions. 226 

 227 

The RESRMS program can be used to screen the post–fit residuals produced in a GPSEST run to 228 

identify outliers. In the following, the results of voxel-based and function-based tomography are 229 

presented. 230 

 231 
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 232 

Fig. 5 Computed ZTD for the three sample stations on one of the processing days 233 

 234 

Voxel-based tomography results 235 

One of the most important steps of voxel-based tropospheric tomography is selecting the optimum 236 

horizontal and vertical resolution for the model according to the topography of the study area. The 237 

model resolution matrix is one of the characteristics of the coefficient matrix and reflects the 238 

geometry and optimal resolution of the tomography model (Bender et al. 2011; Haji-Aghajany and 239 

Amerian. 2017). According to the resolution matrix, the horizontal resolution of 0.2 degrees has 240 

been chosen for the tomography model (Fig.6). The vertical resolution for the first 6 layers is 500 241 

meters. This resolution is reduced to 1000 meters for the next 4 layers in the figure.  242 

 243 

 244 
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Fig. 6 3D voxel-based tomography model 245 

 246 

Based on all the above, the 3D WVD fields have been reconstructed for 30 days under 247 

different weather conditions. The voxel-based tropospheric tomography results of this research 248 

have a temporal resolution of 30 min following the temporal resolution of the estimated 249 

tropospheric delay. An example of the obtained WVD field in different layers can be seen in Fig.7. 250 

The WVD has an irregular spatiotemporal distribution due to the advection, turbulence and 251 

transport. The distribution of the WVD in vertical layers for three epochs is well visible in the 252 

figure. It is correctly seen that the WVD decreases with increasing height. The important point in 253 

the figure is that the WVD is the same everywhere in the 3D space of a voxel. 254 

 255 

 256 

Fig. 7 Example of reconstructed WVD field for three different epochs (07/08/2018-03/10/2018-257 

02/11/2018). The plotted profile shows that the reconstructed water vapor obtained from this 258 

method is constant in each voxel 259 

 260 

Function-based tomography results 261 

In order to perform function-based tropospheric tomography, we have considered the vertical 262 

resolution of the model following the previous method. The most important step in the function-263 

based tropospheric tomography is to select the optimal degree and level of the B-spline function. 264 
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The spatial distribution of WVD varies at different height levels. At higher vertical layers, the 265 

spatial variations of WVD are smoother compared to the lower layers. Therefore it is necessary to 266 

use different degrees and levels of B-spline function in each layer for better modeling of WVD as 267 

well as better management of the number of unknown parameters. The ERA-Interim model has 268 

been used to determine the appropriate degree and level in different vertical layers. For this 269 

purpose, the B-spline functions with different degrees and levels have been fitted to one year of 270 

ERA-Interim data, and then the coefficients of the functions have been computed. The ERA-271 

Interim data of 10 days in different weather conditions and different average relative humidity 272 

have been used to evaluate different degrees and levels of the function in various vertical layers. 273 

Fig.8 shows the comparison of the average Root Mean Square Error (RMSE) between the obtained 274 

WVD using the function coefficients and the ERA-Interim data which indicates the model misfit. 275 

Based on these results and considering the number of unknown parameters produced by 276 

the B-spline function, the optimal degrees and levels of the function in different vertical layers 277 

have been chosen to perform the method. Figure 9 shows the intended degree and level and the 278 

number of unknown parameters in each layer.  279 

Figure 10 shows the example of the estimated WVD field in vertical layers for three 280 

different epochs using the B-spline function-based method in the study area. The 2D distribution 281 

of WVD and profile plotted in the figure shows that the function-based tomography models results 282 

are more detailed and continuous compared to the general and discrete results of the voxel-based 283 

method. In order to compare the two methods and to obtain more precise conclusions, the obtained 284 

results should be validated.  285 

 286 
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 287 

 288 



15 
 

 289 

Fig. 8 Comparison between obtained average RMSE from different degrees and levels at some 290 
pressure levels. This comparison shows that the average RMSE decreases with decreasing 291 
pressure. 292 

 293 

 294 

Fig. 9 Schematic diagram of the considered layer and the number of unknown parameters 295 

 296 
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 297 

Fig. 10 Example of obtained WVD field for three different epochs (07/08/2018-03/10/2018-298 

02/11/2018). 299 

Validation of the tomography modeling 300 

Radiosonde observations can provide accurate WVD profiles. Therefore, the use of these data is 301 

one of the most common ways to validate the results of tropospheric tomography. Radiosonde 302 

balloons are usually launched daily at 00:00 and 12:00 UTC. There is a radiosonde station located 303 

in the study area. In order to validate the WVD from voxel-based and functioned-based methods, 304 

we compared the results for the location of the radiosonde station with radiosonde data (as 305 

reference) for the experimental period of 30 days. Examples of this comparison for six different 306 

epochs are visible in Fig.11. The reconstructed WVD is generally consistent with radiosonde 307 

measurements. However, at some altitudes, significant differences between the obtained WVD and 308 

validation data are visible. The maximum differences between the reconstructed WVD and the 309 

radiosonde measurements are visible in the lower and middle vertical layers. Table.1 shows the 310 

statistical parameters between the results of tropospheric tomography methods and radiosonde data 311 

over the tested period. The scatter plot has been used to better compare the obtained WVD (Fig.12).  312 

 313 
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 314 

 315 

 316 

Fig. 11 Examples of comparison between reconstructed WVD and radiosonde measurements for 317 

three different epochs (07/08/2018-03/10/2018-02/11/2018). 318 

 319 

Table1 Statistical comparison between the reconstructed WVD and radiosonde validation data 320 
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Method RMSE 

(gr/m3) 

Bias 

(gr/m3) 

Min-

Diff 

(gr/m3) 

Max-Diff 

(gr/m3) 

Function-based 0.61 -0.14 0.06 0.91 

Voxel-based 0.89 -0.15 0.11 1.62 

 321 

 322 

 Fig. 12 Scatter plot between reconstructed WVD and radiosonde observations 323 

 324 

The statistical results in Table.1 and the slope of the fitted lines in Fig.12 show that the 325 

results obtained from the two approaches are close to each other, although the results of the 326 

function-based method are closer to the radiosonde observations. The used radiosonde station is 327 

located in the middle of the study area, so the obtained results on the boundary voxels of the 328 

tomography model cannot be validated using this station. On the other hand, in order to compare 329 

these two methods more precisely, it is necessary to examine the results on the sides of the 330 

tomography model. Therefore, the precise point positioning (PPP) technique has been used for this 331 

purpose.  332 

One GPS station in the selected area has been used for this validation. It should be noted that this 333 

station has not been used in the tomography process. First, the position time series of this station 334 

on the days of tomography has been obtained from the Plate Boundary Observatory (PBO) GPS 335 
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network (http://unavco.org). Fig.13 shows the time series of the position components of this 336 

station. The SWD and slant hydrostatic delay (SHD) of GPS observations has been estimated using 337 

reconstructed water vapor from two tomography methods and saastamoinen model, respectively. 338 

Then, the observations of the GPS station have been corrected using these corrections. After this 339 

step, positioning has been performed again using the PPP technique. Previous studies have proven 340 

that the discrepancy between tropospheric effect correction methods is more noticeable in wet 341 

weather conditions. Therefore, the comparison has been made in two types of weather conditions. 342 

The first category includes days with an average humidity of more than 50%, and the second group 343 

includes days with an average humidity of less than 50%. This classification has been done based 344 

on the ERA-Interim data. Fig.14 shows the comparison between obtained 3D positions from two 345 

tomography methods. Finally, the RMSE between the positions obtained using the two 346 

tomography methods and the position obtained from the PBO GPS network has been computed 347 

(Fig.15, Table.2).  348 

 349 

 350 

 Fig. 13 Position time series of this station  351 
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 352 

 Fig. 14 3D difference between obtained positions from two tomography methods and the 353 

positions obtained from the PBO GPS network 354 

 355 

 356 

 Fig. 15 RMSE in different weather condition 357 

 358 

Table2 Comparison of the obtained RMSE  359 

RMSE in Days with humidity 

less than 50%  (mm) 

RMSE in Days with humidity 

more than 50% (mm) 

East North Up East North Up 

Function-based 16.92 11.83 23.58 22.12 14.47 17.51 

Voxel-based 22.71 14.87 31.97 35.86 23.53 37.71 

 360 
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On days with humidity less than 50%, the difference between obtained RMSE in 361 

computing the Up component is about 9 mm. This difference is statistically significant. However, 362 

the obtained RMSE of the East and North components for both tomography methods is very close 363 

to each other, and there is some improvement in the accuracy of the results. This comparison shows 364 

that accuracy improvement in the vertical component is more significant than in the horizontal 365 

components. 366 

On days with humidity more than 50%, the conclusion is quite different. The difference 367 

between the RMSE in East, North and Up components is about 14, 10 and 20 mm, respectively. 368 

Considering the accuracy of the PPP technique, these differences are significant and cannot be 369 

ignored. The highest and lowest differences are observed in the Up and East components. On the 370 

basis of Fig.14, it can be generally said that the effect of using the method to increase the accuracy 371 

of the Up and East components are significant. 372 

Based on all these validations, it can be concluded that using the function-based method 373 

based on B-spline function can increase the ability of the tomography technique compared to the 374 

voxel-based method.  375 

 376 

Conclusion 377 

We presented a new tropospheric tomography approach based on the B-spline function and its 378 

ability was validated under different weather conditions. This function-based method divided the 379 

research area for some layers vertically while the WVD function was introduced horizontally, 380 

rather than discretized the research area into many voxels as performed by the voxel-based method. 381 

Using the function-based tropospheric tomography, we can neglect the empirical constraints. This 382 

method only uses an a priori constraint. The empirical constraints have an unfavorable effect on 383 

voxel-based tomography results due to the unsuitable relationship between voxels in vertical and 384 

horizontal directions. The proposed method also reduces the number of unknown parameters 385 

because it estimates only the coefficients of the WVD function in each vertical layer. Therefore, 386 

this method can overcome the rank deficiency problem in tropospheric tomography resolution. It 387 

was observed that using the function-based method, the WVD can be reconstructed continuously 388 

in each vertical layer, unlike the voxel-based method. The results of two tomography methods 389 

were compared using radiosonde observations and the PPP technique. Validation using radiosonde 390 
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showed that the function-based method is more accurate in reconstructing the water vapor. 391 

However, the results of the two methods were close to each other. Next, the PPP technique was 392 

used to evaluate the results near the edge of the tomography model. The results of this validation 393 

showed that the PPP with a priori data from function-based tomography has better accuracy of the 394 

position components (especially Up) than if we take them from voxel-based tomography. 395 
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