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How proper similitude can improve our understanding of crack closure and 

plasticity in fatigue 

R.C. Alderliesten 

Structural Integrity & Composites, Faculty of Aerospace Engineering, TU Delft 

Kluyverweg 1, 2629 HS, Delft, The Netherlands, R.C.Alderliesten@tudelft.nl 

 

Abstract 

The appropriateness of some common similitude principles with respect to describing and predicting 

fatigue damage propagation is discussed. Linear elastic fracture mechanics have provided a basis to 

describe damage growth using stress intensity factors or strain energy release rates, both related to 

the work of Griffith and Irwin. The fatigue crack growth equations presented in the literature are 

discussed, and it is demonstrated that the principles of similarity in current methodologies have not 

yet been well established. As a consequence, corrections for the stress ratio effect are 

misunderstood. An alternative principle of similitude using cyclic work and strain energy release is 

proposed. 
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Nomenclature 

A Area, or Crack surface     [mm
2
] 

a Crack length      [mm] 

C Correction factor or Constant 

ε Strain       [-] 

G Strain Energy Release Rate    [N/mm] 

γe Surface energy per unit area    [mJ/mm
2
] 

K Stress Intensity Factor     [MPa√mm] 

Kt Stress Concentration Factor    [-] 

L Length       [mm] 

m Exponent 

N Number of load cycles     [cycles] 

n Exponent 

P Applied load      [N] 

P Pressure      [Pa] 

Q Heat       [mJ] 

R Stress ratio Smin/Smax     [-] 

rp Plastic zone size     [mm] 

S Global stress      [MPa] 

Sy  Yield strength      [MPa] 

U Strain energy      [mJ] 

V Volume       [mm
3
] 
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Y Crack closure correction    [-] 

1. Introduction 

Although many researchers these days may not realise this explicitly, anywhere in the field of 

engineering and science, a principle of similarity is adopted. For example, to predict when quasi-

static failure occurs in a complex 3-dimensional Finite Element simulation, often stresses are 

correlated under the assumption that similarity between stresses in the model and in a tensile 

specimen will yield similar consequences. 

Scrutinizing the vast number of papers in the literature on fatigue damage growth, illustrates that 

most discussions on the validity of proposed methodologies narrow down to the question: what is 

the most appropriate principle of similitude? Once a principle of similitude has been agreed upon, 

most studies tend to follow this approach without further questioning the fundamentals underlying 

this principle [1]. From an engineering perspective this is preferred, because continuous questioning 

of basic principles will hinder progress in research and technology. However, from an academic or 

scientific perspective, one may expect continuous criticism with respect to fundamentals of selected 

principles of similarity. 

In this paper the appropriateness of the principles of similitude currently adopted for fatigue damage 

growth within the context of linear elastic fracture mechanics is questioned. Various observations 

seem to indicate that currently trends are being misinterpreted simply because similitude has not 

been well established. 

 

2 Reviewing current fatigue approaches 

2.1 Stress and strain based fatigue approaches 

Traditionally, mechanics of materials has been dealt with using stresses and strains. For most quasi-

static loading conditions, this principle seems appropriate and has proven its usefulness in the field 

of science and engineering. 

Once fatigue as a degradation or wear-out phenomenon was acknowledged [1], engineers and 

scientists initially approached the problem using these similarity principles at hand, i.e. engineering 

stresses and strains. The early days of fatigue research are characterised by studies and papers that 

propose approaches based on stress and strain. For example, August Wöhler proposed to plot the 

observed failure life against the stress amplitude [1],  because he regarded this as being most 

decisive for the destruction of material cohesion. According to him, the maximum stress is of 

influence only in so far as the higher it is, the lower is the stress amplitude which leads to failure. This 

principle of similitude has never really been questioned and most engineering handbooks [2,3,4] 

presently utilise these S-N curves for design. 

 

2.2 Crack propagation approaches 
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At some point, a distinction was made between the phases of fatigue. The first phase covers the 

nucleation and propagation of microscopically small cracks, while the second phase covers the 

propagation of macroscopically sized cracks [5]. 

Crack propagation required a different approach compared to the evaluation of the fatigue initiation 

life. People attempted to relate the rate of propagation to a variety of parameters representing 

similarity. Hence, various crack propagation equations were proposed, which erroneously often are 

referred to as crack propagation laws, like for instance ‘the Paris law’ [6,7,8,9]. The field of crack 

growth description is characterised by an engineering approach rather than a scientific approach, as 

illustrated by the many corrections to parameters describing the conditions. Thus it is the author’s 

opinion that the word ‘law’ should be considered highly inappropriate in this field in particular. 

The first well known crack growth relation was proposed by Head [10,11], which was based upon a 

mechanical model using rigid-plastic work hardening assuming a constant plastic zone size. After 

correction for the increase in plastic zone size proportional to the crack length [12], this equation was 

modified to [13] 

 
��
��

= ����
��	�

 (1) 

Frost and Dugdale [12] observed that the propagation of cracks in metallic materials seem to 

correlate to the cube of the stress rather than its square, i.e. 

 
��
��

= �
�
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 (2) 

McEvily and Illg [14] proposed another formulation based upon a fictitious crack tip radius and using 

the stress concentration factor Kt, resulting in 

 
��
��

= ��
��� (3) 

with Kt obviously a function of the given crack tip radius. Meanwhile, Paris [15] proposed to adopt 

Irwin’s [16] Stress Intensity Factor (SIF) K, arguing that this parameter reflects the influence of 

external load and geometry. His relation can be formulated as 
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= �∆�� = ��∆
√���
�

 (4) 

where n is commonly between 2-4 for metallic materials. Frost et al. [17] reanalysed existing data 

with equation (4) and concluded that it was less satisfactory than equation (2). Another formulation 

was proposed by Liu [18,19] who hypothesized that the saturation of hysteresis energy absorbed by 

the material during every cycle could be used as a criterion. The resulting formulation may be written 

as 

 
��
��

= �
�� (5) 

Paris and Erdogan discussed these crack growth formulations in detail in [13], but in their discussion 

they seem to suggest that correlation between empirical relation and data validates the empirical 

relation. Obviously, all above empirical crack growth relations correlate to data, but that is simply 
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because of their empirical nature. However, both authors correctly conclude in [13] that more data 

should be employed to verify whether any of these formulations is appropriate. 

Reviewing the above equations, one observes that the general observation of all of the above 

mentioned authors is that the crack propagation rate correlates to the applied stress and the crack 

length according to 

 
��
��

~
��� (6) 

Where n may range between 2 and 4, and m between 1 and 2. But the fundamental question to be 

asked is: What does this mean? 

 

2.3 Capturing the cyclic nature 

What may be observed reviewing the above referenced literature is the ambiguous use of either S or 

∆S. Where, for example, originally the relation was proposed in terms of S, other papers refer to the 

original relation while using ∆S. In the end, it seems that generally it is deemed appropriate to use ∆S 

to represent fatigue crack growth, which seems in agreement with the original stress based 

approaches for fatigue life that describe the fatigue life using the stress amplitude Sa. 

 

2.4 On the Stress Intensity Factor range ∆K for similitude 

At a given point most people applied the SIF concept to describe similitude in fatigue crack 

propagation [20]. The SIF is generally referred to as ‘the controlling variable for analysing crack-

extension rates’ [21]. To describe the cyclic nature of fatigue loading, in general, the Paris relation 

given by equation (4) is adopted. However, the SIF range does not provide a comprehensive 

description of similitude, which is illustrated by the vast amount of data reported that show an 

apparent stress ratio effect [22,23, 24,25]. 

Although state-of-the art, it seems incorrect to consider the SIF concept beyond any dispute. Various 

authors [26-32] have discussed the inappropriateness of using a single parameter ∆K to describe 

crack growth. Indeed, where the load (or stress) cycle requires 2 parameters to be described, it does 

not seem reasonable to assume that a single parameter equivalent to ∆S suffices to describe growth 

as result of that load cycle. 

Consequently, two major lines of reasoning may be identified while reviewing the literature. Either 

an effective SIF range ∆Keff was derived based on a proposed stress ratio correction, for which the 

observations of Elber [33,34] on crack closure were introduced to substantiate the correction 

 ( )0.5 0.4eff max opK K K U K R K∆ = − = ∆ = + ∆  (7) 

Or, in disagreement with concepts of crack closure, authors proposed to describe the problem with 

two parameters similar to how the load cycle itself is described by two parameters [35,36] 

 ∆��� = ∆��1 − � ! = ∆��"	! ���#
!

 (8) 
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Either way, both perspectives propose a correction to the cyclic component of the SIF, implicitly or 

explicitly correcting for mean stress or stress ratio. The primary difference between the two views 

concerns the opinion about what phenomenon or mechanism necessitates the correction. 

To conclude this brief review, the observation that one can make while reviewing the vast number of 

crack propagation relations, is that they are completely phenomenological and not derived from 

physics. In educating engineers, often emphasis is put on dimensional analysis when formulating 

equations and relations. This obviously does not apply to the phenomenological equations reviewed 

in this paper. A quick dimensional analysis can illustrate the physical inappropriateness of most 

equations, unless the fit parameters are assumed to also have units for which no physical reasoning 

is given. 

What seems to be missing in the literature is the scientific dissection of the fatigue problem from a 

physics perspective in order to identify the appropriateness of using these stresses to describe the 

cyclic nature. In general, people tend to acknowledge (implicitly) that a stress cycle relates to cyclic 

work, but equations are rarely scrutinised for their appropriateness for describing the cyclic work 

applied. 

 

3 Key observations justifying the current analysis 

There is a variety of observations reported in the literature, that at first glance seem to be non-

related, or attributed to completely different aspects or mechanisms. However, when investigating 

these observations more closely, one can observe some peculiarities, that seem to require further 

explanation. 

 

3.1 Same stress ratio effect – different reason 

Let us begin with the phenomenon termed stress ratio effect, observed when plotting data in the 

form of a Paris relation, i.e. da/dN versus ∆K. For metallic materials it seems the general opinion that 

this effect is caused by plasticity induced crack closure, as first observed by Elber [33,34]. 

Occasionally other closure mechanisms are considered, but plasticity induced closure is considered 

the most important or dominant mechanism [5]. 

This explanation for the stress ratio effect requires, however, a second thought. The problem here is 

that identical stress ratio effects have been reported for ply-delamination propagation [36-41], in-

plane fatigue testing of composites [42,43,44], and fatigue testing of polymers [45]. The problem 

with these observations is that most of these material systems do not exhibit significant plasticity. 

Fatigue in composites and ply-delamination growth in composite systems generally occur in a rather 

brittle manner. Nonetheless, a similar stress ratio effect is observed [46]. The fundamental question 

to be asked is: Why? 

It seems that people do realise the discrepancy, but since plasticity induced closure seems an 

accepted explanation for the stress ratio effect in metals, other mechanisms are studied to explain 

the stress ratio effect for these other material systems, like roughness closure, or visco-elastic 
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phenomena. The problem is that in many cases, a good explanation cannot be given. For example, it 

was demonstrated in [47] that closure or shielding mechanisms do not explain the stress ratio effect 

in ply-delamination growth. So why should plasticity induced crack closure explain the stress ratio 

effect in metals, if similar explanations cannot be given for similar stress ratio effects observed in 

other material systems? 

 

3.2 Stress ratio correction – crack closure or….? 

For crack growth in metals, it is the general perception that this effect is predominantly, or even 

solely, induced by the phenomenon of plasticity induced crack closure. The first correction for crack 

closure was proposed by Elber [33,34], described by 

 0.4 0.5Y R= +  (9) 

with Y = ∆Seff/∆S. This correction was later modified by a number of researchers, amongst which 

Schijve [48,49], Newman [50, 51] and De Koning [52]. These crack closure corrections can be 

graphically presented in the form of Sop/Smax versus R, as illustrated in Figure 1. For this 

representation equation (9) is rewritten to [48, 49] 

 
2

max

0.4 0.1 0.5opS
R R

S
= + +  (10) 

 

Originally, this expression was only validated for 0.1<R<0.7. Extending the curve over the entire 

range of -1<R<1, as illustrated in Figure 1, yields an increase for larger negative R values. As this was 

deemed physically unrealistic, Schijve [48,49] proposed 

 
3 2

max

0.12 0.21 0.22 0.45opS
R R R

S
= + + +  (11) 

Newman proposed an even more complex expression [50, 51] which for the constraint factor α = 1 

yields a curve that is very similar to the others, see Figure 1. 

Now the peculiar aspect with these corrections is that they in fact represent a mean stress 

correction. Mean stress effects have been observed before when plotting for example fatigue S-N 

curves, as reported by Wöhler. Then what is the difference between these mean stress effects and 

the aforementioned crack closure corrections? 

To answer that question, the crack closure corrections could be recalculated from Sop/Smax versus R to 

Sa versus Sm. This is easily done with equation (11) using the failure and fatigue strength of 2024-T3, 

considering that Schijve developed his equation specifically for this alloy. 

If we consider that 
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max max
max

1

2
1

2 2 2

m

eff op op
a

R
S S

S S S S S
S S

+=

∆ − −
= = =

 (12) 

then equation (12) can be rewritten to Sa versus Sm assuming for failure Sult = 483 MPa [53]. The 

result is illustrated in Figure 2, where the curve is compared to the Gerber parabola for the fatigue 

limit for aluminium 2024-T3 (Sf = 138 MPa [53]).  

The similarity and correlation between the two curves is striking. In particular, if one considers that 

the one curve claims to correct for plasticity induced crack closure in the wake of macroscopic cracks, 

while the other one corrects for a case where macroscopic cracks are deemed to be absent or at 

least insignificant. 

Then the fundamental question to be asked here is: If these corrections are so similar, aren’t they 

correcting for the same physical principle, instead of correcting for completely different 

mechanisms? 

 

3.3 Observation by Paris on influence of Young’s modulus 

With the above two observations, the question arises whether the stress ratio effect is really a 

physical effect, or whether it is an artefact of the similarity parameters used. Here, another 

observations seems of particular interest, especially because it has been reported by Paris. In [54], 

Paris reviews earlier observations reported by Anderson, and Harris and himself [55], where it was 

identified that the measured fatigue crack growth rates (in inert environments) were identical for 

various base materials and their alloys, if the K value was normalized with the elastic modulus E. 

Interestingly, Paris notes that these observations were done with normalizing by E, but not with 

normalizing by the density. Obviously, there is no physical reason to expect that normalising K by the 

density would help, but it illustrates the engineering approach of people used to work with quasi-

static properties like strength, and specific strength. 

Noteworthy in this context is Paris’ statement 

“With every physical model proposed to date, nothing has shown better results for the 

comprehensive data than this simple normalization taking ∆K over E. Pondering on this fact over 

the years has led to stating that perhaps this should be explained with some reasoned physical 

model before anyone claims a correct model or more detailed effects!”[54] 

The fundamental question to be asked is: Why would a similarity parameter like K need to be divided 

by the Young’s modulus E? 

The answer to that question is given later in this paper. 

 

3.4 Threshold dependence on stress ratio 
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Mackay [56] reported a study on the crack growth rates in the low ∆K regime for two common 

aerospace aluminium grades, i.e. 2024-T3 and 7075-T6 (clad). The study is of interest, because the 

threshold SIF range ∆Kth is reported for various stress ratios between 0.05 and 0.6. The conclusion of 

the study is that the ∆Kth were dependent on R in a predictable manner. The dependency is 

illustrated in Figure 3. For 2024-T3 the data from Mackay could be extended with the data provided 

by Taylor [57], as illustrated in Figure 4. 

The threshold SIF range ∆Kth obtained by Mackay and Taylor can be recalculated to threshold SERR 

range ∆Gth using the relation between SIF and SERR derived by Irwin [16] 

 ( )
2 2

2 2
max, min, max, min,

1 1

1 1
th th

th th th th th

K R K
G G G K K

E E R R

 ∆ ∆   ∆ = − = − = −    − −     
 (13) 

These threshold SERR range values calculated with equation (13) are also plotted against the stress 

ratio R in Figure 3 and Figure 4. What becomes immediately obvious is that when ∆Gth is plotted 

against R, there is no stress ratio dependency. Note the 1/E in equation (13) following from the 

relation between K and G, with reference to the observation by Paris discussed in the previous 

section. 

The fundamental question to be asked here is: Is the stress ratio dependency something physical, or 

just an artefact of the selected similitude parameter ∆K? 

 

4 Current hypothesis 

Thus, in this paper it is hypothesized that the strain energy release is the correct approach to 

describe the similitude in fatigue damage growth. The argument supporting this hypothesis is that 

rather than applying cyclic load or cyclic stress to a structure or specimen, one applies cyclic work. 

 

5 Compliance with the 1
st

 and 2
nd

 law of thermodynamics 

Since all processes in nature are governed by energy principles, obeying the principal laws of 

thermodynamics, it is believed that the similitude should be sought in parameters reflecting the 

strain energy release or applied work. 

In a theoretically elastic problem the elastic strain energy stored under the application of a quasi-

static stress S is described by 

 

21 1 1

2 2 2 2

S
U P SA L S V V

E
δ ε ε= = = =  (14) 

with, P the applied load, δ the elongation,  ½Sε the strain energy density and V the volume of the 

specimen. 
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Griffith and Irwin used this concept to develop a fracture criterion for a panel containing a crack 

under quasi-static loading. They deduced that once fixed-grip conditions are considered, i.e. the 

displacement remains constant,  the additional work induced by crack extension remains zero. This 

implies that conservation of internal energy yields that the release in strain energy due to crack 

extension should be equated to the energy needed to create the additional crack surfaces. 

The fact that the strain energy release here is a consequence of crack extension and not primarily the 

driver is not of interest; if the released strain energy exceeds the energy required to further extend 

the crack growth, then unstable crack growth is achieved. Hence, a stability criterion could be 

developed. 

This seems to have been misinterpreted by others when addressing fatigue problems. In the case of 

fatigue loading, fixed grip conditions certainly do not apply. During the fatigue cycle, the strain 

energy and applied work continuously change. 

Another aspect that seems to be ignored in current approaches is that Griffith and Irwin considered 

instantaneous crack extension for a static problem with an already applied stress S, thus assuming 

the theoretical elastic problem of work equalling internal energy up to that stress S. In fatigue, 

however, the crack extension and plastic deformation occur while loading the sample from Smin to 

Smax. Hence, equation (14) is not completely correct here. This can be illustrated with Figure 5, where 

for a CCT specimen the corresponding force displacement curve is plotted. At any crack length a, one 

could assume perfect linear elastic behaviour (indicated by dotted lines) if brittle behaviour is 

assumed. However, while loading from Pmin to Pmax the crack extends with ∆a. This extension does 

not occur instantaneously at Pmax, but propagates with the increase of loading. This increase is not 

linear with the load level (indicated by the arrow), but occurs at higher load levels. Thus during the 

load cycle, increments of crack extension can be identified that are at another effective crack length, 

corresponding to another linear elastic force-displacement curve, effectively yielding a non-linear 

force-displacement curve. 

The discrepancy with common linear elastic methods, based on for example Gmax, ∆G, Kmax, or ∆K, can 

be illustrated with Figure 6, where for the problem illustrated in Figure 5, the strain energy can be 

equated to the area under the load-displacement curves. In displacement controlled problems, the 

amount of applied work (and internal strain energy) is less than calculated with equation (14), while 

for force-controlled problems the amount exceeds the amount calculated with equation (14). 

To summarize, the process of fatigue could be written with an equation in terms of energy similar to 

Griffith’s proposal but such that it represents the irreversible fatigue process. Thus for a single 

fatigue cycle this could be for example 

 
*

0 0 a plU U U U U U↑ ↓+ → + + +  (15) 

where U0 represents the monotonic strain energy available at minimum load described by ½Pminδmin, 

U↑ represents the work applied by the test machine to the specimen during the loading part of the 

cycle, U↓ the work applied by the specimen to the test machine during unloading, Ua the energy 

dissipated to create new fracture surfaces and Upl the energy dissipated in plasticity. Note that U↑  

and U↓ relate to the cyclic work or energy, i.e. the energy associated to ∆P = Pmax – Pmin, but that they 

are not the same in magnitude in case of hysteresis or energy dissipation. With the reduction in 
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strain energy due to energy dissipation mechanisms like plasticity and crack growth, also a portion of 

the monotonic energy is dissipated, which at the end of the load cycle results in U0
*
<U0. 

 

6 Equating damage growth to applied work  

The difference between U↑ and U↓ is somewhat difficult to measure for a single fatigue cycle. The 

solution to that would be to measure at any load cycle during the fatigue test the applied work to the 

specimen, i.e. UN=i. In case of displacement controlled tests, this will yield a reduction of strain energy 

measured against the number of load cycles, of which the derivative could be written as dU/dN. 

It does not require a lot of reasoning to say that the derivative of strain energy with respect to the 

fatigue cycle can be decomposed as 

 
dU dU dA

dN dA dN
=  (16) 

with which the correlation between crack extension over a single load cycle and strain energy release 

rate is illustrated. However, one should keep in mind that this dU/dA represents an average strain 

energy release rate Gav which is not equal to Gmax – Gmin nor to (√Gmax - √Gmin)
2
. Nor is it equal to the 

critical Strain Energy Release Rate (SERR) Gc [58]. 

This can be illustrated by elaborating further on the illustrations in Figure 6, as presented in Figure 7 

for two different stress ratios. All load displacement curves in Figure 7 refer to the problem 

illustrated in Figure 5, assuming brittle crack growth, i.e. all energy dissipation relates to crack 

extension and not to plasticity. 

Regardless of whether the comparison is made based on equal minimum or maximum load (both 

cases illustrated in Figure 7), the stress ratio evidently has an effect on the actual cyclic work applied 

U↑, the strain energy dissipated dU, and on the crack extension da. This implies that the stress ratio, 

or mean stress, has a similar effect on both dU and da for a given cycle. Hence, the characteristic 

equation (16) in which both dU/dN and da/dN are plotted against each other, may not exhibit a 

stress ratio effect as generally observed in Paris relationships.  

Then how should damage or crack growth be related correctly to the applied loading through the 

applied cyclic work? 

To begin with, it is generally acknowledged with the strain energy release rate concept that during a 

single load cycle hysteresis occurs, which equals the strain energy dissipated during the load cycle. In 

equation form, one could thus state that 

 
*

0 0

dU
U U U U

dN↑ ↓+ = + +  (17) 

With this equation, it is important to realise that here the roads towards development of a 

fundamental theory and a prediction model may depart. In a prediction model, parameters are 

equated that relate consequence (i.e. crack growth) to the cause (i.e. applied load or work). 



 

11 

 

However, in a fundamental theory, only these parameters of similitude are considered that directly 

equate to the mechanisms, but may not necessarily link the original cause with the consequence. 

Thus where a prediction model would try to quantify U↑ in terms of loading as a parameter to 

describe da/dN, the fundamental theory could focus on relating dU/dN to da/dN. It is the author’s 

opinion that first the fundamental theory should be disclosed, before an appropriate prediction 

model can be proposed. 

Now let us start hypothesizing on the fundamental theory for illustration. The energy is dissipated 

primarily by crack extension and formation of plasticity [59]. Thus it could be argued that 

 
pl pl pla a

pl

dU dU dVdU dUdU dA

dN dN dN dA dN dV dN
= + = +  (18) 

With Ua the strain energy release due to crack extension da and Upl the strain energy released due to 

formation of additional plasticity volume Vpl. Here, the term dUa/dA is obviously the effective strain 

energy release rate Geff  

 a
eff

dU
G

dA
=  (19) 

related to the extension of the crack with length da in one cycle. But one should note, that despite 

the cyclic nature of the load cycle, this term is written as Geff and not ∆Geff. Hence, it is not calculated 

as the difference between an artificial strain energy release rate at Smax and one at Smin (both related 

to instantaneous crack extension), but represents an actual strain energy release rate during a single 

load cycle. 

Reviewing equation (18) reveals that it is obviously dimensionally correct. It also illustrates how the 

crack growth rate da/dN relates to the strain energy release rate Geff together in relation to the 

actual strain energy dissipated. It represents not merely an empirical correlation between two 

parameters, it constitutes the physics of the problem! With reference to [58,60], it may be argued 

that the Geff in equation (19) is to be considered a material characteristic independent of the applied 

load cycle. 

Additionally, as described by Irwin, plasticity has a significant contribution to the strain energy 

dissipation and Griffith’s theory could be modified for plasticity [62]. But rather than putting it all 

together like the resistance proposed by Irwin and later by Orowan [61] 

 ( )2 e pR γ γ= +  (20) 

it seems more appropriate to dissect the energy dissipation over two dissipative mechanisms as in 

equation (18). Hence, the strain energy release rate due to the formation of additional plasticity is 

defined as dUpl/dVpl. Now, Irwin has illustrated how a circular plastic zone size for plane stress relates 

to the crack length (unit width assumed) 

 

2 2 2

1 1

2 2 2
I

p
y y y

K S a a S
r

S S S

π
π π
     

= = =          
     

 (21) 
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with Sy the yield strength of the material. This means that the plasticity growth rate could be 

approximated to relate to the crack growth rate by taking the derivative of the square of equation 

(21) 

 
( )2 4

2
ppl

y

d rdV a S dA

dN dN S dN

 
=   

 
∼  (22) 

with the maximum size determined with the maximum stress in the load cycle, i.e. S = Smax. 

Combining equation (18) and (22) yields for arbitrary thicknesses 

 

4

2
pla

y pl

dUdUdU a S dA

dN dA S dV dN

  
 = +      

 (23) 

Note that the term between the straight brackets is equal to dU/dA in equation (16). The energy 

dissipation dU/N due to plasticity in case of force controlled fatigue tests is thus linearly related to 

the crack length a.  Relating the SERR G=dU/dA to the resistance R in equation (20), implies that 

 4

2

a
e

pl
p

y pl

dU

dA

dUa S

S dV

γ

γ
 
  
 

∼

∼

 (24) 

 

7 Further discussion on principles of similitude 

7.1 Example: Crack propagation in aluminium sheet 

The above discussion illustrates that the fundamental theory for describing fatigue crack growth 

could equate the strain energy dissipation, revealed by strain energy release, to the crack extension 

and formation of plasticity. That having said, one must be careful in selecting the boundaries of the 

system for which energy preservation is considered. This could be important when stress energy 

density is taken as parameter of similitude [63-66], which implicitly homogenises the strain energy 

over the entire volume. Here, the system was taken equal to the entire specimen illustrated in Figure 

5 without specifying any detail about the direct vicinity of the crack tip. 

This can be illustrated with an actual test. For the current study, a 6 mm thick Aluminium 2024-T3 

Alclad sheet specimen has been tested with L = 300 mm and W = 160 mm (see Figure 5). The crack 

growth was monitored optically at the side using a digital camera and recorded with the number of 

applied load cycles. The test was executed in load controlled conditions on a closed-loop 250 kN MTS 

fatigue testing machine with a maximum stress of Smax = 75 MPa, and R = 0.05. 

Together with the crack extension, the applied force P and the displacement δ were recorded, which 

allows calculation of the strain energy U applied to the specimen at each load cycle N. The resultant 
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a-N and U-N curves are provided in Figure 8. The crack growth rate da/dN and rate with which the 

strain energy changes dU/dN is obtained by taking the derivative of both curves. 

Instead of applying data reduction techniques as proposed by for example ASTM standards [67], 

equations were fitted straight through the curves in Figure 8 with a coefficient of determination close 

to 1. Derivatives were taken analytically using these equations providing a clear trend in da/dN 

versus dU/dN. The result is presented in Figure 9 both using double logarithmic and linear scales. 

One should note that in this approach any energy dissipation mechanisms present are assumed to be 

included in the dU/dN. Looking at the correlation in both curves in Figure 8 immediately illustrates 

the purpose of so-called geometry correction factors: despite applying constant amplitude loading, 

the applied cyclic work is substantially increasing in these conditions, leading to an increase in da/dN. 

The curve presented in Figure 9 seems close to linear, but if approximated with a power law, it would 

yield an exponent less than 1. The linear trend indicated in this figure assumes that once twice the 

amount of energy is dissipated in a single load cycle, also twice the amount of crack area has been 

created. 

The non-linearity of this curve indicates that with increasing crack growth rates more energy is 

dissipated in other mechanisms compared to the dissipation by crack formation. One can safely 

assume that plasticity will be the most dominant dissipation mechanisms to cause this deviation from 

the linear trend. 

 

7.2 Example: Delamination growth in carbon fibre reinforced polymer composites 

Considering cyclic work and strain energy release rather than cyclic stress does not only apply to 

fatigue cracking in metals, it applies to any damage extension under cyclic loading in any engineering 

material or system. This can be illustrated with two examples. The first is provided by Pascoe et al. 

[68,69] who determined the reduction in strain energy in displacement controlled fatigue disbond 

tests in adhesively bonded aluminium double cantilever beam (DCB) specimens. The decrease in 

measured strain energy over the load cycles is subsequently plotted against da/dN in line with 

equation (16). The first observation by Pascoe is that the power law describing the relationship has a 

power of about 0.8 (similar to the case in the previous section), and that the stress ratio has 

negligible or no effect on the relationship. 

A similar example is provided by Yao et al. [70] where displacement controlled fatigue interlaminar 

ply-delamination tests were performed on carbon fibre DCB tests, see Figure 10. The obtained 

delamination growth curve and the reduction in applied strain energy Utot are given in Figure 11. 

Similarly, equations were fitted through the data with R
2
 close to 1, of which subsequently the 

derivative was taken analytically to enable plotting da/dN against dU/dN. 

Figure 12 presents the reduction in strain energy per cycle against the crack growth rate da/dN, 

clearly indicating that this trend is fairly linear over the entire regime. Small deviations were reported 

by Yao that are attributed to failure or pull-out of bridging fibres. 

These examples by Pascoe and Yao teach us several lessons: 
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- The stress ratio effect is not a physical effect, i.e. it is only there, where incorrect parameters 

of similitude have been selected. 

- The SERR dU/da in equation (16) is neither defined by Gmax – Gmin or (√Gmax - √Gmin)
2
, nor is it 

equal to the critical SERR Gc. The relationship between dU/dN and dA/dN suggests that a 

single relationship between dU/dA and dA/dN can be derived. 

- Describing fatigue damage growth based on plastically dissipated energy alone [71,72] may 

not always be appropriate, as it assumes that the ratio between strain energy release due to 

crack extension and plasticity formation is constant. The power 0.8 in Pascoe’s data and 

similar values in the data provided in section 7.1 suggests that this ratio may not be constant, 

as was suggested before by Broberg [73,59]. 

- There may be dissipating mechanisms related to shielding mechanisms, like for example fibre 

bridging in composites, but in terms of dU/dN bridging fibres only contribute once they fail, 

not when they are intact, as demonstrated by Yao et al. [70]. 

It is therefore recommended to dissect the SERR into terms that describe the dissipating mechanisms 

individually. Thus Ga = dUa/dA is related to crack extension only, and for example Gpl = dUpl/dVpl is 

related to the formation of plasticity. In doing so, the SERR due to crack extension Ga could be related 

to a single material characteristic. In addition, a relationship characterized by a power law with 

power different from 1, could be quantitatively interpreted by evaluating the ratio between the two 

terms. 

 

7.3 Prediction models 

Comparing the equations (17) and (23) illustrates that what describes crack growth is the offered 

strain energy and work at the left-hand side of equation (17), i.e. U0 and U↑. Substitution of equation 

(23) into equation (17) illustrates that a model predicting crack extension da should be based on 

 ( )0

da
f U U

dN ↑= +  (25) 

This is illustrated by the example study [74], where the applied load cycle is governed by 

 max max min min

1 1

2 2
U S Sε ε↑ = −  (26) 

instead of Smax – Smin. As demonstrated in [74], most of the so-called crack closure corrections are 

explained by this difference in selection of similitude parameters, explaining the observations 

presented in section 3. Only a small difference is observed between the relationship based on cyclic 

energy and these crack closure corrections, exactly in that range of stress ratios where one could 

expect an influence of closure, i.e. R < 0.3. 

These closure or shielding mechanisms imply a non-linearity in the load-displacement curve at the 

minimum load, which affects the applied cyclic work to the system. Closure mechanisms like 

plasticity induced crack closure, or roughness closure, should therefore aim at quantifying the 

difference between calculated applied linear elastic work and the actual work [74]. 
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In addition, studies on for example the threshold in fatigue should aim at understanding and 

describing the minimum applied work before strain energy is dissipated, i.e. before the crack starts 

to extend. Only that portion of the work beyond the energy threshold is expected to contribute to 

growth, and should therefore be considered in prediction models. Here one should consider that this 

threshold energy includes the monotonic energy below the minimum load in case of positive stress 

ratios. This means that here a little effect of stress ratio may be present, which could be accounted 

for by taking 

 0, thresholdeff
U U U U↑ ↑= + −  (27) 

Obviously, this formulation implies that the threshold is related to a minimum (i.e. threshold) load 

below which no energy dissipation due to crack extension occurs. This could be equivalent to a 

minimum crack tip opening. 

 

8. Conclusions and recommendations 

The similitude parameters commonly applied in fatigue evaluations were reviewed and discussed. 

The general conclusion is that the SIF range ∆K is not the appropriate parameter for similitude, 

because it does not reflect well the cyclic nature of the work applied. 

The required additional corrections for the stress ratio, seem to compensate this shortcoming, but 

also seem to be misunderstood, illustrated by the plasticity induced crack closure explanation. In 

addition, the crack growth relationships like the Paris equation are purely phenomenological, and 

they lack any fundamental substantiation using the physics of the crack growth problem. 

Dimensional analysis reveals that constants in the equations have dimensions, which cannot be 

explained from the perspective of physics. 

When based on the SERR, the relationships tend to equate parameters to crack growth that are the 

consequence of that growth rather than the driver. Nonetheless, the parameters are often 

inconsistently considered crack driving parameters. 

It is therefore recommended to first develop fundamentally the theory that describes how the 

offered strain energy (work) is dissipated in the individual mechanisms, without the intention to 

develop prediction models. Once the theory is sound and verified, one should attempt to further 

develop it into a prediction model. 
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Figure 1 Illustration of various crack closure corrections proposed for the range of -1<R<1 [33,34,48,49,50,51,52] 

 

 

Figure 2 Correlation between the Gerber parabola describing the fatigue limit of 2024-T3 and the crack closure 

corrections of Schijve and Elber for the same alloy. 
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Figure 3 Correlation between the threshold SIF ∆∆∆∆Kth and stress ratio R, and the threshold SERR ∆∆∆∆Gth and R (data for 

2024-T3 and 7075-T6 from [56]). 

 

Figure 4 Correlation between the threshold SIF ∆∆∆∆Kth and stress ratio R, and the threshold SERR ∆∆∆∆Gth and R (data for 

2024-T3 from [56,57]). 
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Figure 5 Illustration of a Centre-Cracked Tension (CCT) panel loaded by applied load P inducing an elongation δδδδ = f(a) 

(left), and the corresponding force displacement diagram for crack increments dai during the extension ∆∆∆∆a 

created in the part of the load cycle from Pmin to Pmax. 

 

  

Figure 6 Illustration of the non-linear response during the uploading part of the fatigue cycle induced by the energy 

dissipating mechanism of crack extension if brittle behaviour is assumed (shaded areas represent difference 

with common linear elastic approaches: pink = work not applied, green = additional work applied) 
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Figure 7 Illustration of the relation between applied work U↑↑↑↑ (a,c,e) and the strain energy release dU (b,d,f) for three 

different stress ratios; R(e,f) = P2min/P2max > R(a,b) = P1min/P1max > R(c,d) = P1min/P2max (brittle crack growth assumed – 

no plasticity) 
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Figure 8 Measured crack growth (left) against the applied number of load cycles, and (right) the measured strain energy 

Utot = ½Pmaxδδδδmax plotted against the number of load cycles. 

 

  

Figure 9 Correlation between da/dN and dU/dN taken from Figure 8, presented on double logarithmic scale (left) and 

linear scale (right). 

 

 

  

Figure 10 Illustration of delamination growth in a DCB specimen made of carbon fibre polymer composite with fibre 

bridging as a crack shielding mechanism [70]. 
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Figure 11 Measured delamination growth (left) against the applied number of load cycles, and (right) the measured strain 

energy Utot = ½Pmaxδδδδmax plotted against the number of load cycles, data from [70]. 

  

Figure 12 Correlation between da/dN and dU/dN taken from Figure 11, presented on double logarithmic scale (left) and 

linear scale (right). 
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