
 
 

Delft University of Technology

Machine-learning-based data recovery and its contribution to seismic acquisition
Simultaneous application of deblending, trace reconstruction, and low-frequency
extrapolation
Nakayama, Shotaro; Blacquière, Gerrit

DOI
10.1190/geo2020-0303.1
Publication date
2021
Document Version
Accepted author manuscript
Published in
Geophysics

Citation (APA)
Nakayama, S., & Blacquière, G. (2021). Machine-learning-based data recovery and its contribution to
seismic acquisition: Simultaneous application of deblending, trace reconstruction, and low-frequency
extrapolation. Geophysics, 86(2), P13-P24. https://doi.org/10.1190/geo2020-0303.1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1190/geo2020-0303.1
https://doi.org/10.1190/geo2020-0303.1


Machine-learning based data recovery and its contribution to

seismic acquisition: simultaneous application of deblending,

trace reconstruction and low-frequency extrapolation

Shotaro Nakayama∗† and Gerrit Blacquière†

∗INPEX Corporation,

Akasaka Biz Tower 5-3-1, Akasaka, Minato-ku, Tokyo 107-6332, Japan

†Delft University of Technology,

Building 23, Stevinweg 1, 2628 CN, Delft, the Netherlands

Email addresses of the corresponding author :

shotaro.nakayama@inpex.co.jp

(September 11, 2020)

Prepared for Geophysics

Running head: ML based data recovery

1



ABSTRACT

Acquisition of incomplete data, i.e., blended, sparsely-sampled and narrowband data, allows

for cost-effective and efficient seismic operations in the field. This strategy becomes techni-

cally acceptable, provided that a satisfactory recovery of the complete data, i.e., deblended,

well-sampled and broadband data, is attainable. We, hence, explore a machine-learning

approach that simultaneously performs suppression of blending noise, reconstruction of

missing traces and extrapolation of low frequencies. We apply a deep convolutional neural

network in the framework of supervised learning where we train a network using pairs of

incomplete-complete datasets. Incomplete data, which are never used for training and em-

ploy different subsurface properties and acquisition scenarios, are subsequently fed into the

trained network to predict complete data. We describe matrix representations indicating

the contributions of different acquisition strategies to reducing the operational effort in the

field. We also illustrate that the simultaneous implementation of source blending, sparse

geometry and band limitation leads to a significant data compression where the size of the

incomplete data in the frequency-space domain is much smaller than the size of the com-

plete data. This reduction is indicative of survey cost and duration that our acquisition

strategy can save. Both synthetic and field data examples demonstrate the applicability

of the proposed approach. Despite the reduced amount of information available in the in-

complete data, the results obtained from both numerical and field data cases clearly show

that the machine-learning scheme effectively performs deblending, trace reconstruction and

low-frequency extrapolation in a simultaneous fashion. It is noteworthy that no discernible

difference in prediction errors between extrapolated frequencies and preexisting frequencies

is observed. The approach potentially allows seismic data to be acquired in a significantly

compressed manner, while subsequently recovering data of satisfactory quality.
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INTRODUCTION

Acquisition of seismic data is almost always considered as a trade-off between data quality

and cost. One way to deal with these conflicting objectives is to reduce the acquisition

effort in the field and then to address deficiencies in the recorded data through subsequent

processing steps. Due to the large imbalance between acquisition and processing cost, the

need for the extra effort in processing is still acceptable. Hence, this strategy is capable

of lowering the overall project cost while making the desired data quality realizable. For

instance, over the last several years, compressive sensing has attained considerable attention

in the industry (Herrmann, 2010; Mosher et al., 2012). The technique aims at recovering

satisfactory data quality from data recorded with efficient sampling schemes which do not

necessarily follow the Nyquist sampling theorem. Blended acquisition, also referred to as

simultaneous source acquisition, is a widely accepted way to enhance the data quality while

maintaining or even reducing the project cost and time (Beasley et al., 1998; Berkhout,

2008; Bouska, 2010; Abma et al., 2012; Nakayama et al., 2015). These acquisition strate-

gies normally coexist with a subsequent data recovery step, such as deblending and data

reconstruction. These processes are generally posed as an inverse problem. The widely used

approach is to exploit either the low-rank structure or sparse representation of seismic data

in some transform domain(s) (Hennenfent and Herrmann, 2008; Oropeza and Sacchi, 2011;

Kutscha and Verschuur, 2012; Kontakis and Verschuur, 2014). Despite its applicability,

the need for an iterative process inherently incurs the computational burden. In addition,

underlying assumptions used in these approaches inevitably impose constraints on the re-

covered data, which may lead to the limitation of capturing subsurface complexities in the

real world.
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The importance of low frequencies in seismic data is well recognized in several aspects

such as deep penetration of source energy, lessened side lobes of the wavelet, absolute

impedance estimation and improved convergence of full-waveform inversion (Ten Kroode

et al., 2013; Berkhout et al., 2017). However, the emission of low-frequency components is

often troublesome in the field. For example, it requires large and/or dedicated devices as

well as extra shooting effort (Dellinger et al., 2016; Wei et al., 2018). In addition to the

operational difficulty, this possibly incurs a financial burden as well. Hence, the creation

of missing low frequencies in a processing step, hereinafter referred to as low-frequency

extrapolation, rather than actually collecting them in the field, is of value. Several studies

have been carried out to extrapolate low frequencies, e.g., by using the envelope of the

recorded signal or convolving a broadband wavelet to an estimated reflectivity model (Wu

et al., 2014; Zhang et al., 2017). Nevertheless, finding an intrinsic relationship between

recorded and missing frequencies is still an extremely difficult task.

In recent years, machine learning (ML) techniques have become increasingly popular

in various domains including seismic applications. Several studies have demonstrated their

capability to handle a deblending or data reconstruction problem with a performance that is

comparable to that of existing geophysical approaches (Siahkoohi et al., 2019; Wang et al.,

2019; Sun et al., 2020). Furthermore, once the networks are trained, the prediction can

be done at a significantly reduced computational cost. Similarly, some recent studies on

synthetic data using ML to extend the bandwidth showed encouraging outcomes, where

the particular emphasis was given to low-frequency extrapolation (Ovcharenko et al., 2019;

Sun and Demanet, 2020). However, the aforementioned processes have been, so far, treated

individually as separate tasks. This study, therefore, explores an ML scheme that aims at

optimal data recovery from seismic data acquired in a blended, sparsely-sampled and nar-
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rowband manner. We describe matrix representations that indicate the effects of different

acquisition scenarios on the survey efficiency, which helps to intuitively indicate the value

of the proposed acquisition strategy. Synthetic and field data examples demonstrate the

capability of the proposed method to simultaneously handle suppression of seismic interfer-

ence, reconstruction of missing traces and extrapolation of low frequencies. Additionally, we

discuss the potential benefits of the proposed scheme making a cost-effective and efficient

seismic survey realizable without compromising data quality.

MATRIX REPRESENTATIONS OF DIFFERENT ACQUISITION

STRATEGIES

We first describe matrix representations that indicate the contributions of sparse acquisition

geometries, source blending and band limitation to the survey efficiency. We can arrange

(2D or 3D) seismic data into a 3D data matrix in the frequency-space domain. With this

arrangement, the two horizontal axes correspond to the spatial coordinates of detectors and

sources, respectively. The vertical axis corresponds to frequency components. Based on

the notation in Blacquière and Nakayama (2019), we describe the seismic response acquired

with the perfect spatial sampling and broad bandwidth, called complete date in this study,

as

X ∈ Cnd×ns×nω , (1)

where nd and ns are equal to the numbers of the detector and source grids along the

acquisition surface where the detector and source intervals satisfy the Nyquist sampling

criterion, and nω corresponds to the number of frequency components. A vertical planar

section of X, parallel to the detector coordinate axis, corresponds to a common shot gather.
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A vertical planar section of X, parallel to the source coordinate axis, then corresponds to

a common detector gather. A horizontal planar section of X corresponds to seismic data

for a given frequency. Therefore, each element contains a complex number that represents

a monochromatic seismic response acquired by a given detector-source pair.

In practice, acquisition of X is too expensive. As mentioned previously, the deployment

of sparse detector and source geometries is one way to enhance the survey efficiency. The

data matrix acquired with a practical acquisition geometry is expressed as

P ∈ Cfdnd×fsns×nω (0 < fd < 1 and 0 < fs < 1), (2)

where fd and fs indicate decimation factors for detector and source side, respectively. A

smaller value of fd or fs indicates fewer active detector points or source points along the

acquisition surface. The matrix representations in Figure 1a illustrate the effect of sparse

geometries. With missing detectors, corresponding sections of X, parallel to the source

coordinate axis, become empty. Similarly, with missing sources, corresponding sections of

X, parallel to the detector coordinate axis, become empty. By removing zero elements

and keeping non-zero elements, it is possible to further rearrange the data matrix in a

smaller form. This change in the size of the data matrix is indicative of acquisition cost

and time that we can potentially save. Nevertheless, a detailed discussion on the particular

relationship between matrix size and acquisition effort is beyond the scope of this paper.

Blended acquisition is another means of contributing to improving the survey efficiency,

thereby reducing the size of the data matrix. We describe a blended data matrix as

P′ ∈ Cnd×n′
s×nω (ns > n′s), (3)
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where n′s corresponds to the number of blended shots. Figure 1b exemplifies matrix represen-

tations in the case of a blending fold of two. Elements with two different colors indicate data 

acquired by two different sources. In blended acquisition, these two sources are activated in 

an overlapping fashion and blended in one blended experiment, leading to one blended shot 

record. Therefore, each element with mixed colors in Figure 1b indicates blended data 

comprising of a contribution from two shot records. With this blending scenario, the size of 

the data matrix along the source axis is reduced by a factor of two.

Acquisition of limited frequencies is also of help in reducing the size of the data matrix 

(Figure 1c), defined as

Ṗ ∈ Cnd×ns×fωnω (0 < fω ≤ 1), (4)

where fω indicate a decimation factor along the frequency axis. As mentioned previously,

our primary focus is on a situation where low-frequency components are not recorded in

the field. In this study, we therefore assume Ṗ to be a data matrix without low frequencies.

As shown in Figures 1a-c, P, P′ and Ṗ are far smaller than X, making these techniques

justifiable instead of acquiring X, provided that the subsequent data recovery leads to

reasonable 〈X〉 where angle brackets indicate estimation.

Additionally, the use of all mentioned strategies in a combined manner further con-

tributes to lowering the acquisition effort, which is the objective of this study. We describe

blended, sparsely-sampled and narrowband data, called incomplete data in this study, as

Ṗ′ ∈ Cfdnd×fsn′
s×fωnω . (5)

This acquisition scenario significantly reduces the size of the data matrix as depicted in Fig-
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ure 1d. As mentioned, Ṗ′ is assumed to be a situation where low frequencies are missing.

The data recovery scheme introduced in this study aims to simultaneously handle suppres-

sion of blending noise, reconstruction of missing traces and extrapolation of missing low

frequencies such that prediction of the complete data from the incomplete data is possible.

MACHINE LEARNING FRAMEWORK

Following our previous study (Nakayama and Blacquière, 2020), we utilize a deep convo-

lutional neural network (CNN) in the framework of supervised learning. CNNs are imple-

mented with linear convolutions optionally followed by non-linear operations. As compared

to standard fully-connected neural networks with similarly-sized layers, CNNs have much

fewer connections and parameters. Although CNNs already exist for long, notable exper-

imental results have been achieved more recently (LeCun et al., 2015). One of the most

well-known cases was the ImageNet Large Scale Visual Recognition Challenge in 2012,

where a CNN achieved an error rate of 15.3% in an image classification task, compared to

26.2% by the second-best entry (Krizhevsky et al., 2012; Russakovsky et al., 2015). CNNs

have also provided remarkable performances in a variety of areas such as speech recognition

(Hinton et al., 2012), biomedicine (Leung et al., 2014) and natural language understanding

(Sutskever et al., 2014). Additionally, the implementation of CNNs in the seismic industry

has recently emerged, as mentioned previously.

In this study, we apply a network architecture based on the U-Net (Ronneberger et al.,

2015; Enokiya et al., 2018). Figure 2 depicts our network architecture applied for the field

data example. It consists of four encoding and four decoding blocks with skip pathways

that enable the encoder and decoder feature maps to be directly connected. This helps us to

transfer some detailed information which may be smeared through down- and up-sampling
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processes. Figure 3a shows layers applied to encoders. Each of them utilizes the repeated

application of a convolutional layer (LeCun et al., 1998), a rectified linear unit (Hahnloser

et al., 2000) and a batch normalization layer (Ioffe and Szegedy, 2015), along with a residual

learning framework to make accuracy gains with increasing network depth realizable (He

et al., 2016). In each encoding block, there is a stack of three layers having 1 × 1, 3 × 3

and 1 × 1 convolutions based on a bottleneck design (He et al., 2016). Here, the 1 × 1

convolutional layers account for reducing and restoring the depth dimension, meaning that

the 3×3 convolutional layer between the two employs smaller input and output dimensions.

Each encoding block halves the spatial resolution via a 2 × 2 max pooling layer with a

stride of 2, while doubling the depth dimension (Nagi et al., 2011). In between encoding

and decoding steps, there is a center block (Figure 3b). Each decoding block doubles

the spatial resolution via a 2 × 2 up-convolution layer, while halving the depth dimension

(Dumoulin and Visin, 2016). The two feature maps from an up-convolution layer and from

the corresponding encoding block through the skip pathway are concatenated (Figure 3c).

The following 3× 3 convolutional layer further halves the depth dimension. A set of layers

utilizing a residual framework along with a bottleneck design are subsequently applied.

The last decoding block then accounts for mapping each sampling point of the output data,

regarded as 〈X〉 (Figure 3d). For the numerical example, a similar yet simpler architecture

(three pairs of encoders and decoders) is used. The applied ML framework is empirically

derived, which does not necessarily guarantee the best performance for a data recovery

problem. However, an investigation into the choice of an optimum network architecture

along with its hyperparameters is outside of the scope of this study.

For the application of supervised learning to data recovery, we first create a set of

suitably chosen input-output training pairs, i.e., pairs of incomplete-complete data. Prior to
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feeding these datasets into the training process, we apply pseudo-deblending (Mahdad et al., 

2011) to the incomplete data and insert zero elements that correspond to data associated 

with missing detectors and sources. Additionally, we transform the data matrix to the time-

space domain where the two horizontal axes correspond to detector and source coordinates, 

and the vertical axis corresponds to recording time. These operations make the size of 

the input data identical to that of output data. This means that our input and output 

data are 3D matrices in the time-space domain with the size of nd × ns × nt where nt 

is the number of time samples. In our case, we apply a 2D CNN with multiple channels 

where the time axis is treated as the channel axis. Hence, the spatial information along 

the detector and source coordinate axes is compressed and then de-compressed through the 

encoding-decoding process, while vice versa for the dimensional information along the time 

axis.

In general, seismic data exhibit a rapid amplitude decay due to wavefront divergence 

and attenuation losses. In a marine environment, the seabed is normally responsible for 

the largest impedance contrast. As pointed out by Sun and Demanet (2020), the trained 

network may be biased by strong events, e.g., reflectors at shallow levels, while weak events, 

e.g., reflectors at deep levels, may be neglected. To compensate for the amplitude decay 

and ensure proper recovery of weak reflectors, we apply a time gain to pairs of incomplete-

complete data prior to the training. This means that our trained network is designed to 

deal with gain-compensated data. The gain can be easily reversed after the prediction.

SYNTHETIC DATA EXAMPLE

We numerically simulate 20,000 small complete datasets using a full wavefield modelling 

scheme (Berkhout, 2014). In the complete data, 32 detectors and 32 sources are deployed 
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regularly, both with a 20 m interval. We derive 20,000 subsurface models, all with three

anticlinal reflectors. While synthesizing each complete dataset, we arbitrarily alter the

subsurface structures, i.e., geometry and depth of each anticline, as well as subsurface

properties, i.e., reflectivity of each interface and propagation velocity between each reflector.

Additionally, for incomplete datasets, we apply 50% detector and 50% source decimation in

an irregular fashion. The blending fold is two, and the blending code is random time dither

between 0 s and 0.064 s. Low frequencies are missing in the incomplete data, where the

applied low-cut and low-pass frequency are 10 Hz and 16 Hz, respectively. This indicates

that each dataset employs different subsurface responses and acquisition scenarios. This

experimental setup consequently corresponds to a significant reduction in the size of the

incomplete data with respect to the complete data. We arbitrarily select 19,000 complete-

incomplete data pairs to train the network, while the remaining 1,000 pairs are used for

the purpose of testing. Hence, these testing datasets employ acquisition configurations and

subsurface responses that differ from those of the training datasets.

Figures 4 and 5 show the results of our numerical example. Here, the median result is

selected among the 1,000 testing datasets in terms of prediction errors, which we assume to

be the representative result of the proposed approach. The incomplete data exhibit blending

noise and lack a considerable amount of information in frequency and space (Figures 4b and

5b). Despite significant deficiencies in the incomplete data, the applied network reasonably

suppresses blending noise, reconstructs missing traces and extrapolates low frequencies in

a simultaneous manner (Figures 4c and 5c). It is noteworthy that missing low frequencies

in the incomplete data are correctly predicted. Recovery errors are reasonably minimized

for the whole frequency range (Figures 4d and 5d). Consequently, the quality of recovered

data becomes fairly comparable to that of the complete data.
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To quantify the prediction performance, we compute the SNR (signal-to-noise ratio)

defined as

SNR = 10 log10

(
‖x‖2

‖x− 〈x〉‖2

)
, (6)

where x is a vectorized form of X. Figure 6 shows the resultant SNR values from the 1,000

testing datasets. The median result in Figures 4 and 5 yields the SNR value of 19.27 dB.

A certain amount of variation in the SNR values can be observed among different testing

sets. It is noticed that some datasets show relatively large prediction errors. Figures 5a-b

show the incomplete data from the 796th testing set which exhibits the lowest SNR value 

of 11.92 dB among the 1,000 datasets. We also generate different incomplete data and then

apply the trained network from our numerical experiment as follows. The two datasets in

Figure 7 are simulated with the same subsurface properties and the same frequency content

where low frequencies are missing. Additionally, the same numbers of detectors and sources

with the same blending fold of two are used. However, we apply different a detector and

source distribution as well as different blending code. The recovery result obtained from

the incomplete data in Figures 7c-d leads to the improved SNR value of 19.02 dB. This

number is fairly comparable to our median result. As the two datasets in Figure 7 are

simulated with the same subsurface model, this difference is solely attributable to the choice

of survey parameters. Although they use the same number of detectors and sources, the

data in Figures 7a-b exhibit relatively large acquisition gaps both in the common shot and

detector domains. They are a probable cause of the suboptimal prediction result. Similar

observations can be made in other datasets with relatively low SNR values in Figure 6. This

is in agreement with (Wang et al., 2020) that showed a larger gap hampers the network

from extracting key features to characterize the local data and recovering data from these

extracted features. This result indicates that attention should be given towards the choice
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of acquisition parameters, which is of potential help in ensuring the performance of ML

based data recovery.

FIELD DATA EXAMPLE

We selected a subset of 2D towed-streamer data acquired in the Troll field offshore Norway.

The survey was performed with 25 m detector and source intervals. Some preprocessing

is applied prior to our experiments such as removal of direct arrivals, near-offset interpo-

lation, surface-related multiple elimination and trace equalization. Additionally, the data

is arranged into a fixed-spread geometry using source-detector reciprocity. This data is

considered as the complete data, X, which we aim to recover.

A further subset of this field data is used to generate 12,000 training datasets, i.e.,

pairs of complete-incomplete data. To obtain the incomplete datasets, both detectors and

sources are arbitrarily and irregularly decimated by 25%. The blending fold is two, and

the blending code is random time dither between 0 s and 0.256 s. Low frequencies are

also removed by applying the low-cut and low-pass frequency, respectively, of 10 Hz and

16 Hz. These complete-incomplete datasets are used to train the network shown in Figure

2. For testing, we selected a portion of the field data from a different area, such that

there is no overlap between training and testing datasets. Using the complete data selected

for testing, we generate 500 incomplete datasets, each having different spatial sampling and

blending schemes as well as lacking low frequencies. Figures 8 and 9 shows the data recovery

result from the field data example. As in the numerical example, we show the median

result among 500 testing datasets. Here, we again observe that the ML scheme reasonably

suppresses blending noise, reconstructs missing traces and extrapolates low frequencies. The

difference plots notably exhibit insignificant prediction errors along with no clear frequency
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dependency (Figures 8d and 9d). Despite satisfactory recovery results obtained from the

applied network particularly for major reflectors, a close inspection of the prediction residual

reveals that some subtle events are still smeared. We expect that further study on the ML

framework would enable us to minimize the prediction errors although such a study is

beyond the scope of this paper.

Figure 10 shows the SNR values of the 500 testing datasets. Our median result shown

in Figures 8 and 8 yields the SNR value of 9.17 dB. As these incomplete datasets are

derived from the same complete data, subsurface characteristics are an irrelevant factor

of the variation in the resultant SNR values. As described previously, they use the same

numbers of detectors and sources along with the same blending fold of two, whereas different

geometries and activation times are applied. Hence, the latter parameters are responsible

for the differences in the prediction performance among the testing sets. Figure 11 compares

the two incomplete datasets that attain the lowest (8.38 dB) and the highest SNR value

(9.42 dB), respectively. As observed in the numerical example, the incomplete data with the

lowest SNR value shows a relatively large acquisition gap in the common detector domain,

which likely deteriorates the quality of data recovery (Figures 11a-b). It is also interesting

that a certain variation in the SNR values is still recognizable even among datasets having

no significant gap, e.g., our median result (Figures 8b and 9b) and the data in Figures 11c-d.

This implies that, besides the size of acquisition gap(s), the choice of spatial sampling and

blending schemes is one of the factors determining the quality of the recovered data. Hence,

an investigation of the rationale behind this aspect would provide a future research avenue.
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DISCUSSION

Although various aspects are still up for discussion, here we focus specifically on the poten-

tial benefits of our approach along with future directions related to seismic acquisition.

One of the key features in the applied ML scheme is the capability to deal with multiple

tasks in one step. This permits seismic data to be recorded in a highly compressed fashion

as illustrated in Figure 1d. With the ML approach, acquisition of the complete data is

only needed in a portion of the area for training purposes, while the rest of the area can be

acquired in an incomplete manner. Once a network is trained, the computational burden of

data recovery is insignificant, unlike in the case of existing iterative algorithms. This way

of data acquisition along with the subsequent data recovery therefore potentially leads to a

considerable reduction of turnaround time and cost incurred from acquisition to processing.

To make the aforementioned benefits realizable, supplying proper input-output datasets

for training in terms of quality and quantity is of primary importance. The collection of

more samples for training certainly helps a network to reliably learn subsurface characteris-

tics in the area of interest. However, this inevitably limits the contribution to an efficiency

perspective. The collection of fewer training samples is economically beneficial, yet it po-

tentially hampers the network from being properly trained. Hence, a trade-off likely occurs

between the collection of more data for training and that of more data to be recovered.

Finding a strategy to strike a proper balance for splitting a survey area into two (one for

training and the other for testing) would be an important research goal. It is also worth

exploring the possibility to train the network using existing data from other fields, e.g.,

adjacent or neighbouring ones in the same basin, or even synthetic data. This approach

obviously makes the prediction challenging as a certain discrepancy in seismic responses
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between training and testing datasets is likely anticipated. On the other hand, this would 

be a highly attractive way from operational and economical perspectives as acquisition of 

complete data in the area of interest is no longer needed.

As for the spatial sampling of detectors and sources, Siahkoohi et al. (2019) applied ML 

to a data reconstruction problem and demonstrated the superior performance of irregularly-

sampled data over regularly-sampled data. They speculated that the principle behind com-

pressive sensing may also be applicable in the case of an ML approach. In existing blended 

acquisition schemes, the source wavefield is often made incoherent in at least one of the sort-

ing domains by the use of a random time delay, a randomized distance between concurrent 

sources for each blended shot, a unique encoding for each source, or by their combination 

(Baardman and van Borselen, 2013). Recent applications of ML to deblending implemented 

this acquisition strategy (Sun et al., 2020; Baardman and Hegge, 2020). Our numerical and 

field data examples also incorporate irregularity into the acquisition parameters such as 

detector and source geometries and activation times. This study shows the variation of 

data recovery results related to their choices. There have been several studies that aim 

to design the irregularity in acquisition parameters, such as spatial sampling and blending 

schemes, to improve the existing, geophysics-based data recovery processes (Mosher et al., 

2012; Mueller et al., 2015; Nakayama et al., 2019). Similarly, an investigation into the design 

of acquisition parameters for the incomplete data would lead to enhancing the performance 

of ML based data recovery.

As mentioned, the primary focus of this study is to explore the applicability of an ML 

approach to derive the complete data from the incomplete data and to describe its potential 

benefits to seismic acquisition. However, further studies are needed to reduce uncertainties in 

predicted data, particularly in terms of extrapolated low frequencies. Recent
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studies have demonstrated to enhance the performance of full waveform inversion by the use 

of predicted low frequencies (Ovcharenko et al., 2019; Sun and Demanet, 2020; Fang et al., 

2020). Additionally, there have been some studies providing theoretical frameworks showing 

that high and low frequencies are relatable under certain assumption(s), e.g., when small 

dispersion effects are expected (Li and Demanet, 2015) and the Born approximation 

reasonably describes wavefields (Ovcharenko et al., 2019). Nevertheless, to fully realize the 

aforementioned values that low frequency components hold, detailed investigation into the 

fidelity of predicted data along with a wider range of applications in different geological and 

geophysical contexts is certainly needed. This should be considered as our future research 

avenue, allowing us to properly understand the capability as well as limitations of the 

proposed approach.

CONCLUSIONS

We describe matrix representations that indicate benefits of acquiring incomplete data, i.e., 

blended, sparsely-sampled and narrowband data, coupled with subsequent data recovery. 

For this purpose, we implement an ML approach and explore its applicability using syn-

thetic and field data. We utilize the U-Net based network architecture, consisting of an 

encoding path and a decoding path, in the framework of supervised learning. Although the 

acquisition scenarios applied in this study significantly compress the size of the data in the 

frequency-space domain, the results obtained from both numerical and field data examples 

clearly demonstrate that the trained network effectively performs suppression of blending 

noise, reconstruction of missing traces and extrapolation of low frequencies in a simulta-

neous fashion. It is noteworthy that no discernible difference in prediction errors between 

extrapolated frequencies and preexisting frequencies is recognized, which is hardly realiz-
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able with existing geophysical approaches. Additionally, this study shows the variation of

recovery results, attributable solely to the choice of acquisition parameters. This infers that

properly designed survey parameters are of help in enhancing the quality of recovered data.

Although further studies are needed, the ML scheme potentially enables seismic acquisition

in a blended, sparsely-sampled and narrowband manner without seriously compromising

the data quality.
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Figure 1: Matrix representations indicating the effect of different acquisition strategies on
the size of the data matrix in the frequency-space domain. The two horizontal axes (Xd and
Xs) correspond to detector and source coordinates, while the vertical axis (ω) corresponds
to frequency components. Each element indicates monochromatic seismic data acquired by
a given detector-source pair. White-colored elements contain no information due to absence
of detectors or sources or both, or band limitation. Different colors indicate data acquired
by different sources that are activated simultaneously. Elements with mixed colors indicate
blended data. The combined implementation of sparse geometry, blending and frequency
limitation leads to a significant data compression.
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Figure 2: Network architecture applied in the field data example.
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Figure 3: Layers of different blocks within the applied network architecture (Figure 2). (a)
Encoders 1-4. (b) Center block. (c) Decoders 1-3. (d) Decoder 4. Parameter D indicates
the depth dimension of input data in each block. Conv, ReLU and BN mean a convolutional
layer, a rectified linear unit and a batch normalization layer, respectively.
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Figure 4: Data recovery results in the common shot domain (numerical example). Top, mid-
dle and bottom rows show data in the time-space, the frequency-space and the frequency-
wavenumber domain, respectively. (a) Complete data. (b) Incomplete data. (c) Recovered
data. (d) Residual.
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Figure 5: Data recovery results in the common detector domain (numerical example).
Top, middle and bottom rows show data in the time-space, the frequency-space and the
frequency-wavenumber domain, respectively. (a) Complete data. (b) Incomplete data. (c)
Recovered data. (d) Residual.
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Figure 6: A cross-plot (left) and a histogram (right) of SNR values from testing datasets
(numerical example).
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Figure 7: Incomplete data from two different acquisition scenarios in the time-space and the
frequency-wavenumber domain. They are numerically simulated with the same subsurface
responses. Subplots in the odd and even columns are common shot gathers and common
detector gathers, respectively. They use the same numbers of detectors and sources, yet
their distributions and blending codes are different. The resultant SNR values are 11.85
dB with data in (a)-(b) and 19.02 dB with data in (c)-(d), respectively. The choice of
acquisition parameters accounts for this difference.
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Figure 8: Data recovery results in the common shot domain (field data example). Top, mid-
dle and bottom rows show data in the time-space, the frequency-space and the frequency-
wavenumber domain, respectively. (a) Complete data. (b) Incomplete data. (c) Recovered
data. (d) Residual.
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Figure 9: Data recovery results in the common shot domain (field data example). Top, mid-
dle and bottom rows show data in the time-space, the frequency-space and the frequency-
wavenumber domain, respectively. (a) Complete data. (b) Incomplete data. (c) Recovered
data. (d) Residual.
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Figure 10: A cross-plot (left) and a histogram (right) of SNR values from testing datasets
(field data example).
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Figure 11: Incomplete data from two different acquisition scenarios in the time-space and
the frequency-wavenumber domain. They are derived from the same complete data. Sub-
plots in the odd columns and in the even columns are common shot gathers and common
detector gathers, respectively. They use the same numbers of detectors and sources, yet
their distributions and blending codes are different. The resultant SNR values are (a)-(b)
8.38 dB and (c)-(d) 9.42 dB, respectively. The choice of acquisition parameters accounts
for this difference.
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