
 
 

Delft University of Technology

Full wavefield migration: Seismic imaging using multiple scattering effects

Davydenko, Mikhail

DOI
10.4233/uuid:1cda75d5-8998-49fe-997e-b38c9b7f8b8b
Publication date
2016
Document Version
Final published version
Citation (APA)
Davydenko, M. (2016). Full wavefield migration: Seismic imaging using multiple scattering effects.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:1cda75d5-8998-49fe-
997e-b38c9b7f8b8b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:1cda75d5-8998-49fe-997e-b38c9b7f8b8b
https://doi.org/10.4233/uuid:1cda75d5-8998-49fe-997e-b38c9b7f8b8b
https://doi.org/10.4233/uuid:1cda75d5-8998-49fe-997e-b38c9b7f8b8b


Full wavefield migration: Seismic imaging
using multiple scattering effects

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op DINSDAG 6 DECEMBER 2016 om 12:30 uur

door

Mikhail DAVYDENKO

Master of Science in de geologie
Staatsuniversiteit van Novosibirsk, Rusland

geboren te Novosibirsk, Sovjet-Unie



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. L.J. van Vliet

en de copromotor:
Dr. ir. D.J. Verschuur

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. L.J van Vliet, promotor, Technische Universiteit Delft
Dr. ir. D.J. Verschuur, copromotor, Technische Universiteit Delft

Onafhankelijke leden:

Prof. dr. ir. C.P.A. Wapenaar, Technische Universiteit Delft
Prof. dr. ir. C.Vuik, Technische Universiteit Delft
Prof. dr. S.A. Shapiro, Freie Universitaet Berlin
Prof. dr. A. Ramirez, Universidad Industrial de Santader
Dr. G. Eisenberg-Klein, TEECware GmbH

ISBN 987-94-6186-768-1

Copyright ©2016, by M. Davydenko. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the author.

SUPPORT
The research for this thesis was financially supported by the Delphi consortium.

Typesetting system: LATEX.

Printed in The Netherlands by Gildeprint.



Посвящаю семье
To my family



Contents

1 Introduction 1
1.1 Seismic imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief historical overview of seismic imaging . . . . . . . . . . . . . . 2
1.3 Imaging using surface and internal multiples . . . . . . . . . . . . . . 4
1.4 Closed-loop approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Forward model 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Propagation operator W . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Reflectivity operator R . . . . . . . . . . . . . . . . . . . . . 16

2.3 Wavefield relationship . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Round trips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Modelling of primaries and its internal multiples . . . . . . . 21
2.5.2 Modelling of the total wavefield . . . . . . . . . . . . . . . . . 25
2.5.3 Separate modelling of the surface multiples . . . . . . . . . . 26
2.5.4 Modelling of blended wavefields . . . . . . . . . . . . . . . . . 27

2.6 Adjoint modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Imaging 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Imaging and gradient computation . . . . . . . . . . . . . . . . . . . 36

3.2.1 Gradient for upward reflectivity and transmission . . . . . . . 38
3.2.2 Gradient for downward reflectivity and transmission . . . . . 40
3.2.3 Remarks on parameter selection . . . . . . . . . . . . . . . . 41

3.3 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Angle-independent mode . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Angle-dependent mode . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Reflectivity updating . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5



6 Contents

3.6 Wavefield options in FWM . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.1 FWM applied to total data . . . . . . . . . . . . . . . . . . . 49
3.7.2 FWM applied to primaries and internal multiples . . . . . . . 51
3.7.3 FWM applied to surface multiples only . . . . . . . . . . . . 53
3.7.4 Imaging of internal multiples with FWM . . . . . . . . . . . . 55
3.7.5 3D extension of FWM . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Omnidirectional extension 61
4.1 Omnidirectional modeling . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Omnidirectional imaging . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Dipping structure example . . . . . . . . . . . . . . . . . . . 64
4.3.2 Vertical anomaly example . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Duplex waves imaging by horizontal modeling . . . . . . . . . 65
4.3.4 Salt model example . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Applications 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Imaging surface multiples . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Joint primaries and surface multiples imaging . . . . . . . . . . . . . 73
5.4 Ocean bottom node imaging . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Source estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Interpolation using Full Wavefield Modelling . . . . . . . . . . . . . . 82
5.7 Separated primaries and multiples prediction . . . . . . . . . . . . . 85
5.8 Deblending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Field data examples 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Imaging of surface multiples . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Deep water scenario . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Shallow water scenario . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 3D ocean bottom node data . . . . . . . . . . . . . . . . . . . 97

6.3 Impact of internal multiples . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Pre-processing and events prediction . . . . . . . . . . . . . . . . . . 103
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents 7

7 Conclusions and Recommendations 107
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Recommendations for further research . . . . . . . . . . . . . . . . . 108

7.2.1 Using the estimated wavefields . . . . . . . . . . . . . . . . . 108
7.2.2 More accurate and complete FWMod . . . . . . . . . . . . . 109
7.2.3 Geometrical spreading in 2D FWM . . . . . . . . . . . . . . . 109
7.2.4 Complex-valued angle-dependent reflectivity . . . . . . . . . . 109
7.2.5 Extension to 3D . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.6 Transmission effects . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.7 Elastic case and other effects . . . . . . . . . . . . . . . . . . 110

Appendices 113

A Practical observations 115
A.1 Model sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Transmission effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 Starting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.4 Complex-valued angle-dependent reflectivity estimation . . . . . . . 120

B Theoretical observations 123
B.1 Link with one-way wave equation . . . . . . . . . . . . . . . . . . . . 123
B.2 Including geometrical spreading . . . . . . . . . . . . . . . . . . . . . 125

C 3D implementation 129
C.1 Propagation operators in 3D . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Reflectivity operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 137

Summary 143

Samenvatting 145

Acknowledgements 147

Curriculum Vitae 151

Publications 153



8 Contents



1
Introduction

1.1 Seismic imaging

Seismic imaging plays a key role in the geophysical exploration for hydrocarbons.
Reservoirs containing oil and gas might be located along very complex subsurface
geological structures that should be revealed in the best possible way for further
geological interpretation, geological model building, drilling and production. Due
to the high production costs and risks there is an increasing demand on the quality
of such information as a seismic image. Figure 1.1 shows as an example the com-
plexity of such structures that can be observed in so-called outcrops. Different rock
materials, characterised by different physical properties, can be easily distinguished
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Figure 1.1: a) Example of geological structures observed in an outcrop. b) Example of a
seismic image using the data obtained at the surface.
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2 1. Introduction

visually. To put it very simply, seismic imaging aims at almost taking a picture of
the geological structures but located several hundred to thousands of meters beneath
the surface.

In a seismic reflection experiment, acoustic impedance (propagation velocity times
density) variations of the rock material causes a reflection of the incident signal that
can be registered by an array of sensors, usually located at the surface. However,
the measured signal that has to be translated to the image is very complex, because
it contains a reflection response that is made up of various events. Figure 1.2 shows
this classification in detail. Figure 1.2a depicts the total wavefield that occurs in
the subsurface initiated by the source (shown as a red star). The primaries are
shown in Figure 1.2b – those events occur due to a single scattering of the inci-
dent wavefield. Next, every primary event generates a sequence of surface-related
multiples (shown in Figure 1.2c), which can be also referred to briefly as surface
multiples. This happens when a primary reaches the surface that acts as a mirror.
Every secondary source at the surface again generates a reflection at any of the
subsurface reflectors. Note that surface multiples are also reflected at the surface
and thereby generate a next order of scattering. Finally, Figure1.2d depicts another
type of events – interbed or internal multiples. These events are generated by
the scattering that takes place at the lower side of each reflector inside the medium.
Again, each downward reflected wave creates a sequence of events with reflectors be-
low this downward scatterer and, after upward propagation, such waves can create
a next order of internal multiples or surface multiples. Note that internal multiples
can be generated not only also by primaries, but also by any of the surface-related
multiples.

Over the years, only primaries (due to their simplicity) have been used in the
seismic imaging algorithms. Therefore, all other events used to be considered as
noise. In the next section a brief history on seismic imaging will be given.

1.2 Brief historical overview of seismic imaging

Seismic imaging algorithms have been evolving over almost a century since the first
reflection seismic surveys appeared in the first decades of the 20th century. As
mentioned in Bednar (2005) in the early days the ”images” were purely interpreted by
looking at the measured data. At some time, there were attempts to automate it by
applying a kind of geometrical construction to the measured data (Robinson, 1958).
Probably, Hagedoorn (1954) was the first who introduced the term migration as ”the
procedure of determining the true reflecting surface from a surface determined by a
number of vertically plotted points”.

Next, such geometrical approaches – using the Huygens’ principle – led to Kirch-
hoff migration algorithms that operated in common mid points (between source and
receivers) domain. After moveout correction CMP gathers were stacked and this re-
sult was transformed to the image domain using diffraction stacking. This approach
can be referred to as a post-stack migration.
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Figure 1.2: Events classification. (a) Total data, (b) primaries, (c) surface multiples and
(d) internal multiples.)

The next major step was taken in the seventies – wave equation principles were
introduced in seismic imaging by Claerbout (1971) and by Stolt (1978). At the same
time magnetic tapes had been replaced by digital devices.

Another attribute of the ”digital era” was applying the so-called pre-stack migra-
tion. Operating with pre-stack data allowed to consider complex velocity models
with lateral and vertical variations and so-called depth migration algorithms ap-
peared. The amplitudes were computed directly at the depth domain meaning that
it already became an imaging procedure, rather than migration. Although the for-
mer is commonly used as a synonym to the latter. At the same time a new method
has been introduced – Reverse-time migration – that involves the two-way wave
equation for propagating wavefields and allowed to image steep dips (Baysal et al.,
1983; Whitmore et al., 1983).

In the 1990’s-2000’s inversion-based imaging algorithms arose (Schuster et al.,
1993; Nemeth et al., 1999; Wang and Sacchi, 2007) that allowed to improve the image
quality, mainly in terms of resolution and signal to noise ratio (S/N). Nowadays
we observe combinations of inversion-based imaging with full waveform inversion
(FWI) – method that estimates elastic layer properties (density,velocities) using
diving (refracted) waves - in order to perform reflection waveform inversion for layer
properties jointly with the imaging process (Virieux and Operto, 2009; Wang et al.,
2013; Staal et al., 2014).

Nevertheless, most of the imaging methods still do not distinguish between mul-
tiples and primaries, and every event is treated as a primary. Consequently, the
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resulted images contain plenty of spurious reflectors (artefacts) that are also called
crosstalk in the literature. The conventional approach to get the correct image is
to separate primary reflections (i.e. eliminate multiples) and feed the imaging algo-
rithm by the ”correct” input, being only the primaries. Therefore, the algorithms
that separate primaries (eliminate multiples) have been evolving as intense as imag-
ing methods.

Elimination of surface multiples (Robinson, 1957; Berryhill and Kim, 1986; Ver-
schuur et al., 1992; Verschuur and Berkhout, 1997; Weglein et al., 1997; Guitton and
Cambois, 1999) and elimination of interbed multiples (Araujo et al., 1994; Jakubow-
icz, 1998; Berkhout and Verschuur, 2005) are done by separate methods. Surface
multiples are usually more strong than internal multiples because they originate from
the upgoing energy reflected at the strong and well-known reflector – the surface (see
Figure 1.2c).

Internal multiples can be important when generated between strong reflectors
located in the subsurface (see Figure 1.2d). Elimination of internal multiples is
more difficult because the geometry of those multiples-generating structures is un-
known.

Due to the fact that imaging condition (usually being either cross-correlation
or deconvolution of the source-side and receiver-side wavefield) considers only one
order of scattering, events of different scattering orders that match in time and
space are considered as false primaries and, therefore, create false structures in the
resulted image. Current multiple elimination algorithms allow to perform a good
separation of primaries and surface multiples and, therefore, provide crosstalk free
images using primaries. However, multiples are not noise in the sense that they do
contain additional information about the subsurface. This will be more extensively
discussed in the next section.

1.3 Imaging using surface and internal multiples

An appealing feature of multiples is that for a given single shot experiment, multiples
increase illumination and therefore the area of the resulting image. It happens
because strong reflectors in the medium serve in a way as additional sources that
illuminate the subsurface via the multiple scattering. For a given source-receiver pair
multiples will propagate at the surface at different (usually more vertical) angles that
will also enhance the angle-coverage. The more vertical ray – due to the longer path
of the multiple event – will increase vertical resolution. Moreover, for the same
reason multiples also bring an extra sensitivity to velocity errors, which allows to
use this fact for velocity estimation.

Note, however, that multiples are weaker than primaries and their information
can be overshadowed by information from the latter. Therefore, multiples can be
extremely useful in situations when there is lack of primary illumination – in the
so-called shadow zones. For instance, in current acquisition designs, source sam-
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Figure 1.3: a) Using surface multiples in imaging. Note the extension of the illumination,
as receivers act as additional sources (indicated by yellow dots). b) Reflectors also act as
additional sources that generate internal multiples, thus providing additional illumination.

pling is usually coarser than receiver sampling, which especially applies for the
cross-line direction, where source sampling can be 5-10 times coarser than that of
receivers.

Over the last two decades efforts have been taken to perform imaging with in-
corporating surface multiples (Verschuur and Berkhout, 1994; Guitton, 2002; Brown
and Guitton, 2005; Whitmore et al., 2010). One critical issue is the involved gen-
eration of crosstalk during imaging. This led to the development of methods that
use inversion-based approaches in order to deal with crosstalk (Zhang and Schuster,
2013; Lu et al., 2014a; Wong et al., 2014; Tu and Herrmann, 2015). It has been shown
that incorporating surface multiples tremendously extended illumination especially
in the shallow shadow zones.

Only few works relate to using internal multiples in imaging (Malcolm et al., 2009;
Fleury and Snieder, 2012; Broggini et al., 2013; Wapenaar et al., 2013). Comparison
with those methods will be done later on in this thesis.

Figure 1.3 shows the advantage of using surface and internal multiples respec-
tively. If the total measured data at the surface is re-injected as an additional
source wavefield it can drastically increase the illumination when imaging is per-
formed (Figure 1.3a). It also improves the resolution because the ray path of a
surface multiple is usually more vertical than that of primaries for a given imaging
point (Lu et al., 2014b). However, the deeper the imaging point the smaller the dif-
ference between the imaging of primaries and surface multiples. Therefore, at some
depth angle coverage of surface multiples becomes very close to the angle coverage
of primary illumination.

For deep locations, internal multiples become very interesting for imaging as they
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Figure 1.4: a) Velocity model. b) Density model. c) True reflectivity. d) Image when the
wavelet was used as a source-side wavefield (Figure 1.5a). e) Image when the total data
was used as a source-side wavefield (Figure 1.5b).

are generated inside the medium and yield illumination with parameters completely
different from the (primary and secondary) sources at the surface. Figure 1.3b shows
that every grid point in the subsurface serves as a potential secondary source that
can generate internal multiples. In case primary illumination is lacking to image
specific areas (shadow zones) the information coming from those secondary sources
can also be used to enhance the illumination.

In most cases, a pre-stack shot record-based imaging algorithm can be described
in three simple steps. The first step is based on extrapolating the source wavefield
downwards through the subsurface and forward in time (schematically shown as a
solid line in Figure 1.3). The second step is also based on extrapolating the wavefield,
but received at the surface and propagating though the subsurface backward in
time (shown as dashed lines in Figure 1.3). Finally, at every grid-point of the
subsurface an imaging condition is applied. Usually, the imaging condition involves a
linear operation with the source-side wavefield and the receiver-side wavefield at that
grid-point. Such operation usually is a cross-correlation or deconvolution (Leveille
et al., 2011). This procedure is basically an event matching (in space and in time)
criterion at the imaging point: if events from both the source-side and the receiver-
side wavefields coincide, then this point is a reflector. However, this criterion applies
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Figure 1.5: Source-sides: only source wavefield (a), source wavefield and re-injected mea-
sured data (b); Receiver-side: measured total data (c).

to events that are related to the same order of scattering. Matching of events with
different order of scattering generates the cross talk. It is also indicated in Figure 1.3
– a back propagated multiple at some point can also match with a non-related
event in the forward propagated source-side wavefield and, therefore, produce false
matching criteria called cross talk, shown as an orange point. Hence, such points
can create an entire false reflector (indicated by red dashed curves in Figure 1.3)
that can be misinterpreted as a real geological structure.

As a brief example we consider the imaging of the data that comes from the
velocity and density model shown in Figures 1.4a,b respectively. In this thesis this
model will be extensively used in various examples. First, imaging is accomplished
with a wavelet only as a source-side wavefield and the total data (including all
multiples) as a receiver-side wavefield. Figure 1.4d shows the result of such imaging
process. It contains a lot of spurious events: S1 is crosstalk caused by imaging of the
first-order surface multiple coming from the upper horizontal reflector, I1 is crosstalk
obtained via imaging of internal multiples generated in-between the high contrast
layer, I2 is crosstalk due to the imaging of an internal multiple generated between
the horizontal boundary and the top of the anomaly, S2 and S3 are crosstalk from
the first and the second-order multiples of the high velocity anomaly, respectively.
Such crosstalk might be classified as causal, because lower-order scattering events
at the source-side interfere with higher-order scattering events at the receiver-side.
Causal crosstalk always appears deeper than the corresponding imaged primary
event.

Next, the source-side wavefield is modified such that we can also image surface
multiples (Figure 1.5b). Note that in this case the wavelet (shown separately in
Fiugure 1.5a) allows to image the primaries whereas the measured total data (Fig-
ure 1.5c) is being re-injected (multiplied by -1) and allows to image the next order of
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scattering – surface multiples. The result is shown in Figure 1.4e. It is visible that
additional artefacts are created (A1 and A2) if the image is obtained in the con-
ventional way. Those artefacts are created due to surface multiples that appeared
at the source-side and that are matching with the primaries or lower-order multiples
at the receiver-side. Therefore, such crosstalk can be classified as anti-causal as the
higher-order scattering events from the source-side interfere with the lower order of
scattering at the receiver-side.

This simple example with three major reflectors already produces quite a number
of crosstalk artifacts. For real data or complex numerical examples, such analysis
becomes even more complex. In the next section an approach is discussed that allows
to handle the crosstalk in an automatic way.

1.4 Closed-loop approach

In the previous section it was demonstrated that imaging of non-corresponding or-
ders of scattering leads to the formation of artefacts in the image. One of the
solutions that would come to mind is to separate orders of scattering and image
them separately. However, that is not possible in a straighforward manner and also
might be a computationally demanding task. In this section, it will be discussed
how to resolve the crosstalk via an inversion approach.

Figure 1.6 shows the general block diagram of an inversion scheme that is al-
ready an accepted approach in solving various physical problems and was pio-
neered by Tarantola (1987). It can be characterised by the following common four
steps:

1. Data comparison: In this step the modelled data are compared to the mea-
sured data. Various matching criteria might be applied such as minimum
difference or maximum correlation.

DelphiGeneral inversion (closed) loop

1

Adjoint model

Forward model

Gradient

ModelSimulated data

Observed data

Residual

Figure 1.6: A general inversion scheme



1.4. Closed-loop approach 9

2. Adjoint of the forward model: This process maps the residual in the data
domain into the model domain and provides the model update. Note that this
model update still needs to be scaled properly.

3. Model update: The model space is renewed by scaling the update calculated
at the previous step and adding it to the current model. The involved scaling
factor should be estimated.

4. Forward operator: The forward model calculates the new data from the
updated model space such that it can be used for the next data comparison
iteration.

Such procedure can be also seen as a closed-loop or feedback loop. It will suppress
noise if the correct forward model is applied. For instance, blending noise can
be resolved during migration for simultaneous shots if the correct source encoding
is taken into account (Tang et al., 2009). In the same way, the crosstalk from
multiples during imaging can be removed. Actually, multiple scattering might be
even considered as natural blending (Verschuur and Berkhout, 2011). Therefore, in
order to explain crosstalk from surface multiples it is necessary to include it in the
forward model. The simplest way to include surface multiples is to re-inject the
measured data at the surface with a negative sign.

Figure 1.7a shows the closed-loop procedure for a conventional inversion-based
imaging approach, which is also known as least-squares migration. Its forward model
basically uses the Born approximation, where at each grid point an incident wavefield
is multiplied by the reflectivity at the same point and forward extrapolated to the
surface. The superposition of these diffraction responses will produce the simulated
primaries. This process is also called ”de-migration” because it allows to recreate the
data from the reflectivity estimated during the imaging process. The simulated data
is compared with the measured data and the difference (residual) is again imaged,
thereby producing an update for the reflectivity for the next iteration. The imaging
condition is linear and uses the incident wavefield as a source-side wavefield and the

DelphiLeast squares migration

2

Imaging

De-Migration 
(linear)

Gradient

Reflectivity
Simulated data 
at every grid 

point

Observed data

Residual

Velocity

Source-side 
wavefield

(a) Least-squares migration

DelphiFWM

3

Imaging

FWMod  
(non-linear)

Gradient

Reflectivity
Simulated data 
at every grid 

point

Observed data

Residual

Velocityincl. coda
and transmission

Source-side 
wavefield

(b) Full wavefield migration

Figure 1.7: The general scheme of the PWM or least-squares migration (a) and FWM (b)
inversion processes (i.e. closed-loop approaches).
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back-propagated data residual as a receiver-side wavefield. Note, that this approach
also allows to handle surface multiples by simply changing the source-side wavefield,
as discussed above. The crosstalk caused by surface multiples can be sufficiently
suppressed as the right physics describes the scattering at the surface. However,
in the least-squares migration implementation internal multiples are not properly
described. Therefore, the crosstalk caused by internal multiples will be updated as
well as other real reflectors, in order to explain the data given the linear modelling.
Therefore, this procedure will be referred to as a Primary Wavefield Imaging
(PWM), where the surface multiples are considered just as a complex incident
(’primary’) wavefield.

Figure 1.7b shows the aforementioned closed-loop process for the method being
studied in this thesis – Full Wavefield Migration (FWM). The main feature
of FWM is its forward model – Full Wavefield Modelling (FWMod) – that
generates the total reflection data (Berkhout, 2014a). In this case multiple scatter-
ing (surface-related and interbed) and also transmission effects are automatically
included. Its forward model generates the total reflection wavefield driven by the
same inputs as in PWM – estimated reflectivities (controlling the amplitudes of the
simulated data) and a given migration velocity model that controls the phase of
the modeled events. The modeled data is also compared with the observed data
and the resulted residual is imaged again. Note that FWM uses a different source-
side wavefield for the imaging condition – it uses the simulated wavefields provided
by FWMod, which allows transmission effects and the internal multiple coda to
contribute to the reflectivity estimation. Therefore, FWM not only suppresses the
crosstalk but also uses the complex scattering effects in imaging. In fact, the reflec-
tivity image shown in Figure 1.4c is the result of FWM, as we will see later in this
thesis.

1.5 Thesis objectives

This study aims at developing an imaging algorithm that:
• Provides a true-amplitude, angle-dependent reflection coefficient im-

age:
The imaging will benefit from the inversion-based approach. Moreover, its for-
ward model will be based on a realistic forward model that takes into account
effects as transmission and (interbed and surface-related) multiple reflections.

• Takes all multiples into the account:
Including of correct physics will result into the suppression of the cross-talk
caused by multiples.

• Uses multiples to illuminate shadow zones
The aim is not only removing the crosstalk from multiples, but using the addi-
tional information from multiples in order to recover areas weakly illuminated
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by primaries.
• Is suitable within current acquisition geometries

The algorithm should be suitable for coarse source (or receiver) sampling. Such
requirement is very important for current three-dimensional surveys.

• Does not require ‘multiple generators’ to be provided in advance
Internal multiples generating boundaries are not pre-defined in advance as a-
priori information (model-driven), but automatically incorporated from the
imaged reflectivity (data-driven).

1.6 Thesis outline

In this section a further outline of this thesis is given.

Chapter 2:

This chapter describes the forward model (Full Wavefield Modelling) that is used in
the proposed methodology. Firstly, the reflectivity and propagation operators used
in the modelling are described followed by the wavefield relationships forming the
basis of the modelling scheme. Next, the main principles of generating the scattering
are described by introducing the so-called roundtrip. Various numerical examples
demonstrate modelling of primaries and their internal multiples, as well as surface
multiples. At the end it is briefly shown how it is possible to use this scheme in the
adjoint mode, as an introduction to the following chapters.

Chapter 3:

This chapter focuses on the imaging block and the inversion aspects of the proposed
algorithm. Some derivations show that the gradient computation in (steepest) de-
scent methods is basically a process of data-misfit imaging. Next, it is shown that
parameters from the resulting gradient can be extracted in different ways. Two
main parameterisations are introduced: structural and angle-dependent. The first
one characterises the subsurface grid-point by one angle-independent scalar (aiming
at estimating the structural image), whereas the latter describes each subsurface
grid-point by an angle-dependent vector of parameters, and therefore angle gathers
are estimated. Next, it is shown that imaging can be performed by two imaging
conditions: from above and from below. The second option is interesting, because
it exploits information coming directly from internal multiples. Various numerical
examples demonstrate the FWM process, with specific focus on effective cross-talk
suppression.
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Chapter 4:

This chapter investigates a possibility to extend the FWM method such that imag-
ing steep dips can be handled. The involved propagation operator (discussed in the
previous chapter) is based on the one-way wave equation and, therefore, it has a
preferred direction (depth) and hence horizontal propagation is limited. As a result,
imaging of the boundaries close to the vertical (orthogonal to the preferred wavefield
continuation direction) becomes very difficult. In this chapter we perform modelling
and imaging not only in vertical depth directions, but additionally operate in the
horizontal direction. Horizontal reflectivity parameters are introduced. Numerical
examples demonstrate the potential of this omnidirectional imaging approach.

Chapter 5:

Various extensions of the FWM methodology are described in this chapter. Firstly,
advantages and disadvantages of different imaging options (total data, separated
primaries and separated surface multiples) are discussed. Then, the joint imaging of
separated primaries and separated multiples is introduced. This allows to take the
best of each approach individually and avoid their downsides. Next, the specific case
of imaging ocean bottom node data is introduced (based on the surface multiples
imaging). It is also shown how the source wavelet required for imaging primaries
can be estimated from imaging surface multiples. Next, the 3D implementation of
the method is discussed. After that it is shown that the output of the forward model
can be used for missing data reconstruction that, again, can be used for a next ap-
plication of FWM, thus providing a better image. After that it is shown that the
output of the modelling tool can also be used for prediction of multiples as well as
de-blending simultaneous source data.

Chapter 6:

In this chapter the application of FWM on several marine field datasets is demon-
strated. Most of the aspects discussed in the previous chapters are verified on both
2D field and 3D field data.

Chapter 7:

In this chapter the main conclusions of this thesis are described, followed by some
discussions and recommendations for further research.



2
Forward model

2.1 Introduction

As was discussed earlier, the choice of forward model is one of the main components
of any closed-loop procedure. It is used to generate the data that is compared with
the observed one in order to calculate the residual for the next iteration of the inver-
sion. The main idea of the forward model of FWM - full wavefield modeling (FW-
Mod) - is based on generating the data by a data-driven approach (Berkhout, 2014a).
The observed seismic data is a result of the impedance variations (product of density
and propagation velocity) that occur in the subsurface. Hence, FWMod attempts to
model the total data, and thereby explain the measured one, with reflectivity-driven
scattering. Thus, the scattering is generated only from the reflectivity (seismic im-
age) whereas the propagation effects are controlled by a given migration velocity
model. In this case, the reflectivity controls mainly the amplitude of the reflection
event whereas the phase is separately controlled by the velocity model. Such ap-
proach is also very beneficial for simultaneous estimation of reflectivity and velocity
and allows to avoid local minima during the inversion (the so-called Joint Migra-
tion Inversion or JMI process, see Berkhout (2014c)). However, in this thesis we
will restrict ourselves to the estimation of reflectivity only. In this section the main
aspects of the FWMod will be described, illustrated by various examples.

13



14 2. Forward model

2.2 Notation

This section briefly introduces the notation used in this thesis. It mainly follows the
matrix notation from Berkhout (1982).

In this notation the subsurface is considered to be located on a rectangular grid.
The monochromatic component of the pressure wavefield registered at any jth grid-
point at any depth level zm and emitted at depth level zn by the kth source can be
written as Pjk(zm, zn). The wavefield at a depth level is described as a column-vector
P⃗ (zm, zn), the elements of which contain monochromatic values of the wavefield at
the grid-points belonging to that level. In the case of a multi-shot experiment,
the matrix P(zm, zn) is formed by combining the introduced column-vectors for all
sources. Note that for the sake of simplification, the source-depth level might not
be indicated, assuming that the source is located at the surface (unless a different
location is specified).

Various operations might be applied to the shot-experiments. In this thesis prop-
agation operator W and reflection operator R will be commonly used. The one-way
propagation operator W(zm, zn) extrapolates the wavefield from depth level zn to
depth level zm. Finally, reflectivity operator R(zn) is applied to the wavefield in
order to simulate reflection at arbitrary depth level zn.

Although the 2D matrix notation is described as a default, the method works
equally well for the 3D case, where a similar matrix notation can be used. It means
that one column vector now contains concatenation of the wavefield values along a
two-dimensional grid of (x, y) values. Thus, a shot record is still represented by a
column vector and operators are still matrices. For a more thorough explanation of
the 3D matrix notation, the reader is referred to Kinneging et al. (1989).

Table 2.1 collects the aforementioned objects that will be used in this thesis. The
so-called WRW notation describes the propagation and reflection of seismic data.
It was proposed by Berkhout (1982). The concept has been initially proposed for

Table 2.1: Matrix notation.

Indices:
j grid-point index
k shot-record index

Wavefields:
Pjk wavefield from shot k at the current grid-point
P⃗k(zm) wavefield from shot k at the current depth-level
P(zm) wavefields from many shots at that depth-level
∗+,− wavefield direction (’+’ is downgoing, ’−’ is upgoing)

Operators:
R(zm) reflectivity matrix
W(zm, zn) one-way propagation operator
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primaries. Therefore, primary reflection data (neglecting the transmission effects)
can be written as:

P−(z0) =
∑
n>0

W−(z0, zn)R(zn)W+(zn, z0)S+(z0). (2.1)

Equation 2.1 basically says that the primary data at the surface is a superposition
of the following round-trip: the source wavefield S(z0) at the surface is propagated
downwards via W+(zn, z0) to the arbitrary depth level zn, reflected there with the
aid of the reflectivity operator R(zn) and forward propagated upwards by operator
W−(z0, zn) to the surface depth level z0.

In the following subsections the propagation and reflectivity operators will be
further explained.

2.2.1 Propagation operator W

Propagation is described by the W±(zm, zn) operator from horizontal depth level zn
to depth level zm. The sign ± indicates the propagation direction (’+’ for downgoing
and ’−’ for upgoing). For laterally inhomogeneous media the wavefield extrapolation
in the wavenumber-frequency domain is described by a phase-shift:

P (kx, zn +∆z) = P (kx, zn)exp(ikz∆z), (2.2)

where ∆z is the difference between zm and zn. In the space-frequency domain
Equation 2.2 is represented by a spatial convolution that can be described by a
convolution operator W :

P (x, zn +∆z) =

∫
P (x− h, zn)W (h)dh, (2.3)

where W (h) is a Fourier-transformed version of the exponential term in Equation 2.2
and h represents a spatial lag or local offset.

=
h

h

W ~P (z)~P (z +�z)
Pj(z +�z)

(a)

=
h

h

W ~P (z)~P (z +�z)
Pj(z +�z)

(b)

Figure 2.1: Propagation operator.
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In the discrete form the integral becomes a discrete summation (see Figure 2.1b)
and it can be written as a vector inner product:

Pj(zm) = [W⃗ (zm, zn)]
T P⃗ (zn). (2.4)

For all locations j of the depth level zm this becomes (see Figure 2.1a):

P⃗ (zm) = W(zm, zn)P⃗ (zn). (2.5)

In case of lateral inhomogeneities, the W has no longer a Toeplitz structure, but
every row contains a local convolution operator. Usually, we make the assumption
of a local homogeneous medium within some area (i.e. the operator length) around
each lateral location, because then we can easily calculate this operator from the
phase shift-operator in the wavenumber domain by a spatial Fourier transform. The
shorter this operator, the more accurate lateral inhomogeneities can be handled.
However, short operators might create numerical errors during the propagation. An
elegant way to optimize such short operator is discussed in Thorbecke et al. (2004).
Moreover, these propagation operator can also be extended for the anisotropic case
(Zhang and Wapenaar, 2002; Alshuhail et al., 2014) and may also contain attenuation
effects.

Note that there are also different ways to arrive at such one-way wavefield propa-
gation. An alternative approach to handle lateral inhomogeneities would be extrapo-
lation using a selection of homogeneous reference velocities followed by interpolation
of the result at each location depending on the local velocity. Such approach is called
phase-shift-plus-interpolation (PSPI) (Gazdag and Sguazzero, 1984). It can be more
applicable for 3D problem, as for that case the convolution operator becomes two di-
mensional for each frequency, which also increases computational costs, while PSPI
might be more efficient.

2.2.2 Reflectivity operator R

This section introduces the reflectivity operator that describes reflection of the wave-
fields. Basically, the reflectivity operator R(zm) connects the reflected wavefields
P⃗±(zm ± ϵ) and the incident ones P⃗±(zm ∓ ϵ):

P⃗−(zm − ϵ) = R∪(zm)P⃗+(zm − ϵ)

P⃗+(zm + ϵ) = R∩(zm)P⃗−(zm + ϵ),
(2.6)

where ϵ is a small number indicating whether the wavefields are considered either
above or below the depth level zm and superscripts ∪ and ∩ of the reflectivity
operator stand for the case of upward or downward reflection respectively. Note that
in the remainder of this thesis we will omit the epsilon in our wavefield notation.
Furthermore, note that P⃗+ refers to downgoing wavefield and P⃗− denotes upgoing
wavefields (see also Table 2.1).

Figure 2.2a shows the structure of the reflectivity matrix. In analogy to the prop-
agation operator W, in the case of homogeneous horizontal reflector, this operator
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Figure 2.2: Reflectivity operator.

also represents a stationary convolution process. However, if lateral variations are
present, we change the rows of this matrix according to the lateral reflectivity values.
Therefore, the reflected wavefield at spatial gridpoint j at depth level zm (let’s say
P−
j ) is a sum of multiplications of the downgoing wavefield P+

j−h at the (j − h)
th

location with the reflectivity function R(h) as a function of the local offset h (or lat-
eral lag). Such convolutional operation is identical to multiplication of the jth row
of the reflectivity matrix with the data column-vector P⃗+ (see Figure 2.2b).

This spatial lag links the angle of reflection and it’s amplitude. In this thesis we
consider two different descriptions of the reflectivity: angle-independent and angle-
dependent. In the first approach only the zero lag during reflection is considered.
It means that the reflectivity matrix has a diagonal structure and matrix multipli-
cation, therefore, means simple scaling of the wavefield P+

j (at every location j) by
the reflectivity at this point Rj . Thus, this approach does not simulate amplitude
versus offset (AVO) variations in the resulted reflection data (except for geometrical
spreading effects). The more complex approach involves angle-dependent parame-
terisation. Rows of the reflectivity matrix contain reflection coefficients that serve
as weights. The weighted sum calculates the wavefield at the certain point not only
using the reflection of the incident wavefield at this point but also including the
contribution from various grid points around the considered one. Figure 2.2a illus-
trates this approach. If the angle-dependent reflectivity operator is transformed to
the wavenumber domain, the angle-dependent reflection coefficients are obtained.
From that point of view the angle-independent description via a spike in the spatial
domain corresponds in the wavenumber domain to a constant reflection coefficient
for each angle. For more information about angle-dependent reflectivity the reader
is referred to de Bruin et al. (1990); Berkhout (1997).
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2.3 Wavefield relationship

The forward model of our wavefields considers a regularly gridded volume of the
subsurface (Figure 2.3a). By taking one horizontal slice the depth level zm is se-
lected (Figure2.3b). Each depth level contains grid-points with arbitrary index j
(Figure 2.3c).

At every subsurface grid-point the full wavefield relationship is considered. As
it is shown in Figure 2.4, every depth level zm (set of all grid-points belonging to
that level) can be illuminated from above by downgoing wavefield P⃗+(zm) and from
below by upgoing wavefield P⃗−(zm) all related to one specific physical experiment.
At the same time the total wavefields Q⃗± leave this depth level in both directions
and include the potential scattering.

Following Berkhout (2014a), the total outgoing wavefield can be represented as a
sum of the transmitted (by the T operator) incoming wavefield in the same prop-
agation direction and the reflected (by the R operator) wavefield coming from the
opposite direction:

Q⃗+(zm) = T+(zm)P⃗+(zm) + R∩(zm)P⃗−(zm)

Q⃗−(zm) = T−(zm)P⃗−(zm) + R∪(zm)P⃗+(zm),
(2.7)

where T± can be represented as sum of unity matrix I and additional term δT±

(T± = I + δT±):

Q⃗+(zm) = P⃗+(zm) + δT+(zm)P⃗+(zm) + R∩(zm)P⃗−(zm)

Q⃗−(zm) = P⃗−(zm) + R∪(zm)P⃗+(zm) + δT−(zm)P⃗−(zm).
(2.8)

The two additional extra terms can be considered as secondary sources:

δS⃗+(zm) = δT+(zm)P⃗+(zm) + R∩(zm)P⃗−(zm)

δS⃗−(zm) = R∪(zm)P⃗+(zm) + δT−(zm)P⃗−(zm).
(2.9)

Subsurface

(a)

Depth-level zm

(b)

Grid-point j

(c)

Figure 2.3: Subsurface definitions in FWMod.
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Figure 2.4: Full wavefield relationship at depth level zm.

Thus, we have the relationships:

Q⃗+(zm) = P⃗+(zm) + δS⃗+(zm)

Q⃗−(zm) = P⃗−(zm) + δS⃗−(zm).
(2.10)

If we assume small contrasts for shear wave propagation velocity, δT+ and δT−

can be approximated as R∪ and R∩ respectively, and Equations 2.8 are transformed
to:

Q⃗±(zm) = P⃗±(zm) + δS⃗(zm), (2.11)

where:
δS⃗(zm) = R∪(zm)P⃗+(zm) + R∩(zm)P⃗−(zm) (2.12)

is a two-way secondary source field.
The second wavefield relationship (Figure 2.4) says that after propagation, the

total outgoing wavefields Q⃗± become approaching wavefields at the neighboring
depth level zm±1:

P⃗+(zm+1) = W+(zm+1, zm)Q⃗+(zm)

P⃗−(zm−1) = W−(zm−1, zm)Q⃗−(zm),
(2.13)

where W±(zm±1, zn) is a propagation operator from depth level zm to the neigh-
boring depth level zm±1. As mentioned in Section 2.2.1 for each frequency slice
applying this operator can be considered as a spatial convolution with local phase-
shift operators (also including lateral variations). As mentioned before, W± may
also include attenuation effects as well as anisotropic propagation behaviour.

Note that the above description is not limited to purely acoustic wave propaga-
tion, but describes the P-wave reflection events in an elastic medium. The reflec-
tivity operators contains the elastic Rpp, although Equations 2.11 and 2.12 are then
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approximations. In principle the forward model can also be extended to include
converted waves (see also Berkhout (2014a)). Some further remarks on this can be
found in Chapter 7.

2.4 Round trips

By looking at Equations 2.11 and 2.12 we see that these equations are interdepen-
dent: computation of the wavefield (Equation 2.11) requires the scattering term
(Equation 2.12), while the scattering term is also a function of the modeled wave-
fields. Therefore, the modeling is done in a recursive manner. Usually, we start
with the wavefield at the surface that may include the source wavelet and/or the
re-injected reflection data to simulate surface multiples as well as any combination
with simultaneous/blended sources. This wavefield is extrapolated downwards with
accumulation of all secondary sources and also possible physical sources:

P⃗+(zm) =
∑
n<m

W(zm, zn)[S⃗
+(zn) + δS⃗(zn)]. (2.14)

Therefore, after calculations via Equation 2.14, the incident field with transmission
effects included, is computed. Then, this downgoing wavefield can be substituted
into Equation 2.12 to update the scattering term. Next, the upgoing wavefield can
be computed in a similar manner:

P⃗−(zm) =
∑
n>m

W(zm, zn)[S⃗
−(zn) + δS⃗(zn)]. (2.15)

In these equations S⃗+(zn) and S⃗−(zn) represent possible physical source fields at
level zn. For traditional surface data, all S⃗±(zn) are zero except S⃗+(z0). In that
case the data modeled at the surface is an upgoing wavefield that can be written as
follows:

P⃗−(z0) =
∑
n>0

W(z0, zn)δS⃗(zn). (2.16)

After one iteration, the resulting upgoing wavefields include the primary reflec-
tions. Next, if the scattering term is updated by the upgoing wavefield via Equa-
tion 2.15, the new modeled downgoing wavefield by Equation 2.14 will contain not
only the incident wavefield but also first-order downgoing multiples. Therefore, each
round-trip – meaning applying Equations 2.14 and 2.15 and substituting the results
into Equation 2.12 – will add a new order of multiple scattering. This process is
schematically illustrated in Figure 2.5.

Note that this way of recursively modeling wavefields is similar to the Bremmer se-
ries (Bremmer, 1951; Gray, 1983; de Hoop et al., 2000). Coupling of Equations 2.11
and 2.12 shows similarities to the generalized Bremmer series (Corones, 1975; Wape-
naar, 1996).
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(a) (b) (c) (d)

Figure 2.5: Illustration of how Bremmer series work. a) Firstly, the downgoing wavefield
is computed. b) Next, an upgoing wavefield is constructed as a reflected incident wavefield
using (a). c) Next, a new version of downgoing wavefield is computed using (a) and (b).
d) Then, upgoing wavefield is updated basing on (b) and (c)

2.5 Numerical examples

The following numerical examples will demonstrate FWMod and compare it with
finite-difference modelling. It will be shown that the method is able to model various
datasets depending on the source-side wavefield: primaries and/or surface multiples
or any blended shot-records.

2.5.1 Modelling of primaries and its internal multiples

Figure 2.6 demonstrates comparison of finite-difference modelling with FWMod
based on a realistic self-estimated reflectivity model (FWM image). The finite-
difference modeling solves the two-way acoustic wave equation by approximation of
partial derivatives by differences of the wavefield at neighboring grid-points (Car-
cione et al., 2002). Therefore, the velocity and density models (Figures 2.6a,b re-
spectively) are required to perform the modeling. All reflections will be generated
by sharp variations of the velocity and/or the density (impedance variation). In
the case of seismic imaging, the actual velocity model is not always known and an
approximated model (the migration or macro velocity model) is used that usually
contains the smoothened variations of the medium. The FWM modeling tool (FW-
Mod) allows to generate the scattering by using the macro model (Figure 2.6d) and
reflectivity distribution of the subsurface (i.e. the estimated image, see Figure 2.6e).
Next, the iterative wavefield construction is shown. Note that the data contains
all transmission effects and all kinds of multiples: Figures 2.6 f-i show the two-way
wavefield (sum of two one-way upgoing and downgoing wavefields) constructed from
the first and the second iteration respectively: the wavefield is constructed iteration
by iteration, where every iteration contributes an additional order of scattering.
Note that transmission effects are automatically included as well. Figure 2.7 shows
the modelling from the zero-offset pseudo VSP point of view where at x=1500m the
wavefield is extracted at all depth levels. It is clearly visible how internal multiples
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(d) Migration velocity model
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(e) Estimated reflectivity
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Figure 2.6: Comparison of finite-difference modelling (FD) and full wavefield modelling
(FWMod). a) Velocity model; b) Density model containing weak reflectors located below
the salt body; c) Two-way wavefield obtained by finite-difference modelling; d) Migration
velocity model; e) Reflectivity model estimated by FWM; f-i) Total (upgoing + downgoing)
FWMod wavefields at the first and second modelling iterations, respectively.
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Figure 2.7: Pseudo VSP zero-offset section extracted at x = 1500m during FWMod. a)
1st iteration down only; b) 1st iteration down and up; c) 2nd iteration down only; d) 2nd

iteration down and up.

are generated mostly within the salt body and the water bottom horizon (the first
horizontal reflector) and the wavefield becomes more complex after each modelling
step. Figure 2.8 shows how orders of multiples are also accumulated at the sur-
face as an upgoing wavefield. The complex upgoing wavefield at the surface is also
very important as it is used in the inversion as the difference between modeled and
the observed wavefield, which should be minimized. Figure 2.9 shows the downgo-
ing wavefield at one of the last depth levels of the subsurface. It also visible that
the illuminating wavefield becomes more complex due to the coda of all multiples.
Note, that conventional imaging does not take into the account internal multiples
and transmission effects and, therefore, the downgoing wavefield that is used in
such migration process will be similar to the result of FWMod at the first iteration.

However, modeling using the reflectivity close to normal incidence for angle-
independent modelling can not be accurate in terms of AVO. Figure 2.10a shows
the surface data computed by the finite-difference algorithm. Data modeled by the
angle-independent FWM approach and angle-dependent FWM approach are shown
in Figures 2.10b,c, respectively. Figure 2.10d shows the difference between the finite-
difference data and the data modeled by angle-independent FWMod. Figure 2.10e
shows a much smaller different in a case of angle-dependent FWMod.
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Figure 2.8: Upgoing wavefield at the surface depth level, modeled after: a) first iteration;
b) second iteration; c) third iteration.
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Figure 2.9: Downgoing wavefield modeled at depth level 950m after the: a) first iteration;
b) second iteration; c) third iteration.
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Figure 2.10: Comparison of angle-independent and angle-dependent version of FWMod. a)
Finite-difference modelled data; b) Angle-independent FWMod; c) Angle-dependent FW-
Mod; d) Difference between a) and b); e) Difference between a) and c).
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2.5.2 Modelling of the total wavefield

Modelling of the ’total wavefield’ refers to simulating all reflection events including
surface multiples and their internal multiples in addition to the previous experiments.
Adding of surface multiples can be done in two ways. In the first way we address
the free-surface boundary condition by representing the total downgoing wavefield
at the surface as:

Q⃗+(z0) = S⃗+(z0) + R∩(z0)P⃗
−
obs(z0), (2.17)

where R∩ is a free-surface reflectivity and P⃗−
obs(z0) is an observed total reflection

wavefield. Since Equation 2.17 is applied, the reflectivity at the surface in FWMod
is set as zero.

The second way to model surface multiples is to set R∩(z0) as a free surface
reflectivity operator and to calculate the total wavefield accordingly to the FWMod
scheme:

Q⃗+(z0) = S⃗+(z0) + R∩(z0)P⃗
−
mod(z0). (2.18)

In the first scenario (Equation 2.17) the propagation and reflectivity will have a
linear effect – all orders of surface multiples will have the same roundtrip as primaries
but with corresponding traveltimes. In the second scenario (Equation 2.18) surface
multiples are modeled from the upgoing modeled wavefield in a non-linear manner,
meaning that they will finally be modeled originally from the source wavelet S⃗(z0)
that is going back and forth each modelling roundtrip. Therefore, the reflectivity
and propagation operators will affect each order of surface scattering differently, and,
thus, this modeling of surface multiples can be referred to as non-linear.
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Figure 2.11: Snapshots of the FWMod of modeling total data by re-injecting the ’observed’
wavefields at the surface together with the original source wavelet. a-d) Total (upgoing +
downgoing) FWMod wavefields at the first and second modelling iterations, respectively.
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Figure 2.12: VSP zero-offset section of modeling total data by re-injecting the ’measured’
wavefield at the surface together with the original source wavelet. a) 1st iteration down
only; b) 1st iteration down and up; c) 2nd iteration down only; d) 2nd iteration down and
up.

In our numerical example, by simple changing the so-called source-side (input
source wavefield) from the source wavelet to the source wavelet combined with re-
injected ’observed’ data (i.e. the finite-difference data) it is possible to model the
full reflection data in the first option as described above. Figure 2.11 shows the
snapshots obtained after different roundtrip steps. Corresponding VSP plots are
shown in Figure 2.12.

In the second option the surface multiples are modeled directly from the wavelet,
and orders of surface of multiples appear after each modelling iteration. This ap-
proach can also be very interesting for the velocity model estimation as this case
is more sensitive to velocity errors, while the first approach of modelling surface
multiples has the same sensitivity as that for primaries.

Note, finally, that modeling of internal multiples is always non-linear: the modeled
data is ’re-injected’ downward at each subsurface grid-point.

2.5.3 Separate modelling of the surface multiples

Surface multiples can also be modelled separately. In this case we simply neglect
the source term in Equation 2.17. Note that again the two re-injecting options are
possible: the ’observed’ data or modelling all orders of surface multiples by applying
R∩ at the surface. Figure 2.13 shows the snapshot of the modeled surface multiples
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Figure 2.13: Snapshots of the FWMod of the surface multiples modeled by re-injecting the
’measured’ wavefields at the surface. a-b) Total (upgoing + downgoing) FWMod wavefield
after the downward trip and after the upward trip respectively.
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Figure 2.14: VSP zero-offset section of the modeled surface multiples by re-injecting ’mea-
sured’ date. a) 1st iteration down only; b) 1st iteration down and up; c) 2nd iteration down
only; d) 2nd iteration down and up.

and figure 2.14 shows the pseudo VSP plots. In both cases we used the ’observed’
data for the re-injection at the surface.

2.5.4 Modelling of blended wavefields

It is also possible to simulate the blended (simultaneous) sources that should be
necessary for closed-loop imaging of blended data. In this way the total downgoing
wavefield at the surface will be as follows:

Q⃗+
bl(z0) = Q+(z0)Γ⃗bl, (2.19)



28 2. Forward model

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

D
ep

th
 [m

]

15 12 9 6 3 0 3 6 9 12 15(a) 1st roundtrip down

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

D
ep

th
 [m

]

15 12 9 6 3 0 3 6 9 12 15(b) 1st roundtrip down and up

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

D
ep

th
 [m

]

15 12 9 6 3 0 3 6 9 12 15(c) 2nd roundtrip down

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

D
ep

th
 [m

]

15 12 9 6 3 0 3 6 9 12 15(d) 2nd roundtrip down and up

Figure 2.15: Snapshots of the FWMod of a blended source experiment; a-d) Total (upgoing
+ downgoing) FWMod wavefield at the first and second modelling iterations, respectively

where Γ⃗bl is one column of the so-called blending matrix (Berkhout, 2008) and
Q+ represent all total downgoing wavefields in a multi-shot seismic experiment
(Q+ = R∩P−).

Snapshots of the modeled wavefields as well as VSP zero-offset sections are shown
in Figures 2.15 and 2.16 respectively.

It is visible that this is a very complex wavefield, however FWMod simply models
any combination of surface and internal multiples.

2.6 Adjoint modelling

In this section we start moving towards the inversion part of the algorithm. FWM,
as a member of the inversion-based imaging algorithms family, uses an iterative
approach to estimate the solution, being the reflectivity, that explains the input data.
An adjoint modelling can be used in order to calculate the gradient for the parameter
(reflectivity) updating. In this section the implementation of such modelling is
discussed and demonstrated.

In the previous sections a causal propagation operator W was used for the forward
modelling: after each propagation step the wavefield was extrapolated forward in
time. By applying the time-reversed mode we can perform the extrapolation that is
inverse in time (simply by using WH). In this case the so-called back-propagation
of the wavefield is applied. Furthermore, using the equations of FWMod, an inverse
extrapolation can also be done in a two-way manner.

In principle, the adjoint modelling is performed by equations similar to 2.15 and
2.14 using the adjoint (conjugate transpose) WH operator:
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Figure 2.16: Pseudo VSP zero-offset section for FWMod in a blended source experiment.
a) 1st iteration down only; b) 1st iteration down and up; c) 2nd iteration down only; d) 2nd

iteration down and up.

P⃗−
a (zm) =

∑
n<m

WH(zm, zn)[P⃗
−
a (zn) + δS⃗a(zn)]

P⃗+
a (zm) =

∑
n>m

WH(zm, zn)[P⃗
+
a (zn) + δS⃗a(zn)],

(2.20)

where δS⃗a connects the back-propagated (modeled in adjoint way) wavefields P⃗−
a

and P⃗+
a :

δS⃗a = R∪(zm)P⃗+
a (zm) + R∩(zm)P⃗−

a (zm). (2.21)

It is important to note that this modelling is not complete in terms of the scat-
tering, as in the inverse version of FWMod the scattering should be removed while
propagating the wavefield forward in depth (Berkhout, 2014a). But such two-way
back-propagation approach is used for estimating the reflectivity from below, R∩,
and estimating the source properties where two-way back-propagation of the data is
required. Both applications will be discussed later on in this thesis.

The adjoint modelling is done in the following manner. Using Equation 2.20,
firstly the upgoing wavefield P⃗−

a is back-propagated downwards into the subsurface
and stored at every depth level, like we do for the P⃗+ in the forward modelling.
Then, the stored wavefield is multiplied by the (potential) reflectivity and is used
for the computation of the back-propagated upgoing wavefield P⃗+

a , which due to this
reflection has now become downgoing.
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Figure 2.17: Original surface data (a) and result of one roundtrip of adjoint FWMod for
non-free surface data (b) and free-surface data (c).

By one roundtrip of adjoint FWMod, the primaries are focused into the wavelet,
whereas surface multiples become the new primaries. Basically, each roundtrip of
adjoint FWMod removes an order of scattering.

As a numerical example the process is demonstrated on the already familiar
dataset used in the forward modelling exercises. Figure 2.17a shows the input data
and the result of one roundtrip of adjoint modelling is displayed in Figure 2.17b.
It is visible how the primaries are collapsed into the source wavelet. However, it
also contains other events like back-propagated internal multiples. Figure 2.17c
demonstrates the adjoint FWMod on the data with a free-surface boundary condi-
tion. It is visible that, besides the primaries being mainly focused to the source,
the first-order surface multiples are transformed to primaries, although only kine-
matically, with the amplitudes having opposite polarity. Therefore, it visible that
the adjoint modelling does not preserve correct amplitudes and creates non-physical
events. However, it can be used in the inversion process for the computation of
the gradient for estimating the source as well as a wavefield that is used for the
estimation of the reflectivity from below.

Figure 2.18a shows in a VSP mode the result of the downward back-propagation of
the wavefield (P⃗−

a ) into the subsurface and the following upward back-propagation
of the wavefield P⃗+

a back to the surface is displayed in Figure 2.18b. It is also visible
that the adjoint FWMod does not remove the scattering. However, the scattering can
be removed if full inverse FWMod is applied (Berkhout, 2014a), where subtraction
and not addition of the scattering term is performed.

2.7 Discussion

The introduced forward model allows to calculate the upgoing and downgoing wave-
fields that include the complex scattering effects (transmission and coda) using the
Bremmer series. This approach has similarities with other iterative or recursive and
integral-based seismic modelling approaches:

Besides the Bremmer series approach two methods based on similar principles are
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Figure 2.18: Result of the downward back-propagation (half round-trip) (a) and result of
one full adjoint FWMod roundtrip (b).

discussed below – Kennett modeling (reflectivity method) and the scattering integral.
All methods explain the scattering as the incoming wavefield scaled by a factor that
can be either reflectivity or a function based on the difference between bainground
and true parameters. However, all methods have different ways to compute the
resulted scattered wavefield.

Kennett modelling (Kennett, 2009), also known as the ’reflectivity method’ (Fuchs
and Müller, 1971), constructs the wavefields by first considering the impulse response
for unit sources and receivers at the deepest depth level and recursively shifting depth
levels upwards from one to another until the final depth level (i.e. the surface) is
reached: at every step virtual sources and receivers of that response are kept at
equal depths. Therefore, this approach operates with one impulse response that
is continuously updated and does not require to compute and store both upgoing
and downgoing wavefields at every depth level of the subsurface. Moreover, during
the recursive modelling process, everything that is above the virtual depth level is
assumed to be homogeneous. So in each modelling step the effect of adding one
extra layer to the current model is added. This method takes internal multiples into
account via a prediction series. The method assumes horizontally layered media and
is usually calculated in the plane wave domain. Afterwards, by combining different
plane wave responses, the impulse response in the spatial domain can be obtained
by inverse spatial Fourier or linear Radon transformation.

Alternatively to Kennett modelling and the Bremmer series (FWMod), the method
of the scattering integral (van den Berg et al., 1999; De Hoop, 2008) is based on a
two-way approach and considers omnidirectional propagation of wavefields (no pre-
ferred propagation direction). In a similar way as in FWMod, it allows to include
multiple scattering by iterations. However, the computation of the wavefield within
one iteration is not recursive in depth – as there is no preferred direction – and it
requires computation of point-by-point Green’s functions in a background model for
each pair of subsurface grid-points. Scattering is described by multiplying the total
data in each grid-point by a contrast function. The latter guarantees the difference
in medium parameters of background and true medium.
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Table 2.2 summarizes similarities and differences between FWMod and other
integral-based modelling approaches.

Table 2.2: Comparison of the integral-based modeling.

Method Scattering inte-
gral

FWMod / Brem-
mer series

Kennett

Calculation Point-to-point Recursive in depth Recursive in depth
Scattering
order

Iteratively Iteratively In one step

Scattering
mechanism

Property con-
trasts

Reflectivity Reflectivity

Direction Two-way Green’s
functions

One-way propaga-
tion operators

One-way propaga-
tion operators

Illustration

1
2
3
4

4
3
2
1

4
3
2
1

2.8 Conclusions

In this chapter the main aspects of the full wavefield modelling process (FWMod)
have been described. The main features of FWMod are:

1) The forward model strictly separates propagation (phase) and the dynamics
(amplitude) of the modeled data by two ’orthogonal’ parameters: velocity (layer
properties) and reflectivity (boundary properties). Such separation plays an impor-
tant role when performing inversion, which is discussed in the next chapter. Such
approach also allows to generate multiple reflections and transmission effects even
when a smooth migration velocity model is used. Note that this is not possible when
finite-difference modelling is used as a forward modelling algorithm.

2) The modelling can be done in an angle-independent and an angle-dependent
manner. The former is relatively easy (requires a structural image), however is not
accurate in case of big velocity contrasts (causing AVO effects), whereas the latter
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is more accurate, but more complex as it requires full reflectivity matrices at each
depth level and is, therefore, computationally more expensive.

3) The modelling is recursive and similar to the Bremmer series. At each iteration
(roundtrip) a new order of scattering is included. The input wavefields can be
differently defined for different modelling modes. There is a choice of modelling
primaries, surface multiples, total wavefield, blended sources. Independently of the
source wavefield, the algorithm will simulate the correct transmission effects and
internal multiples. Orders of multiples is under user control, so it is possible to
model specific order of multiples by subtracting the data with nth and (n − 1)th

order of scattering.
4) The modelling can be done in an adjoint manner (back-propagation). Such

approach can be used in the imaging process for estimating the reflectivity from
below or for the source wavelet estimation.
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3
Imaging

In the previous chapter it was extensively discussed how to model the total reflec-
tion data using Full Wavefield Modeling (FWMod). This chapter covers another
important part of the FWM scheme: the imaging. The basics of this method have
been described in Berkhout (2012) with initial examples given by Davydenko et al.
(2012). Later on, Berkhout (2014b) more extensively described the main theoretical
aspects of FWM.

As an inversion-based method, FWM comprises a gradient computation step. In
this chapter it will be shown that the gradient is obtained via a cross-correlation
imaging condition applied to the total modeled wavefield (that also contains multiple
scattering and the coda) and the back-propagated data residual. Next, the options
to parameterize the model space will be discussed (i.e. the angle-dependent versus
the angle-independent approach). Further, different ways of parameter updating will
be described, namely imaging from above and imaging from below. It will be shown
that imaging from below involves the use of internal multiples explicitly. Finally,
numerical examples will illustrate all aspects of this chapter.

3.1 Introduction

An important part of the closed-loop process (shown in Figure 1.7) is the imaging. At
every iteration of this loop the forward modeled data is compared with the observed
data and the residual is computed by subtraction. This misfit is then imaged, which
means that it is translated from the data to the model domain, and serves as an

35
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update for the reflectivity. The residual may contain spurious events caused by the
modeling process, such as crosstalk from multiples that was mapped in the image.
Such events will have a polarity opposite to the corresponding events in the image
as they are the result of the subtraction of the (wrongly) modeled data from the
measured one. Therefore, by imaging the residual and updating the image such
crosstalk, iteration by iteration, will be suppressed in an oscillating manner.

3.2 Imaging and gradient computation

Generally speaking, the FWM algorithm aims at minimizing the difference between
the observed and the modeled data, where the latter is computed using the estimated
reflection and/or transmission coefficients. The objective function can be described
as:

J = J∆ + Jf , (3.1)

where the first term quantifies the data mismatch and the second term:

Jf = ϵF (m) (3.2)

is responsible for the regularization of the estimated model space m being an argu-
ment of some constraining functional F .

The first term in Equation 3.1 is a misfit norm function:

J∆ =
∑
ω

tr(∆P∆PH), (3.3)

where ∆P is a data residual – being the difference between observed data P−
obs and

modeled data P−
mod:

∆P = P−
obs −P−

mod, (3.4)

where P−
mod and P−

obs describe now data in a multi-shot experiment.
Each column of the modeled data P−

mod describes one shot record and is defined
as:

P⃗−
mod(z0) =

∑
n>0

W−(z0, zn)δS⃗
−(zn), (3.5)

when all sources are assumed at z0 and δS⃗−(zn) is defined as:

δS⃗−(zn) = R∪(zn)P⃗
+
mod(zn) + δT−(zn)P⃗

−
mod(zn). (3.6)

The downgoing wavefield is given as:

P⃗+
mod(zn) = W+(zn, z0)S⃗

+(z0) +
∑
m>0

W+(zn, zm)δS⃗+(zm), (3.7)
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where
δS⃗+(zn) = δT+(zn)P⃗

+
mod(zn) + δR∩(zn)P⃗

−
mod(zn). (3.8)

By substituting Equation 3.8 into Equation 3.7, Equation 3.7 into Equation 3.6
and finally Equation 3.6 into Equation 3.5 it can be seen that the modeled data is a
function of the parameter space M = [R∪,R∩, δT+, δT−]. Note, that propagation
operators W± and the source wavelet S⃗+ can also be part of the model space.
However, estimation of the propagation operators is outside the scope of this thesis.
This is described by the Joint Migration-Inversion (JMI) process, as described as
by Berkhout (2014c) and Staal et al. (2014). Estimation of the source wavelet is
discussed further in Chapter 5.

The second term from Equation 3.1 can be considered as a penalty function applied
to M and, thereby, F produces an undesired feature of M to be penalised. The
importance of this term is controlled by the ϵ scalar. For instance one can penalize
variations of the model by applying a first-order derivative operator and, thereby,
promote flatness of the solution. Smoothness of the solution can be promoted by
involving a second-order derivative operator. A sparsity constraint (e.g. Cauchy
constraint) can be included in order to suppress reflector side-lobes and crosstalk
remainders and, thereby, increase the resolution. An objective function for the
Cauchy constraint takes the following form:

Jf = ϵ
∑
i

1

2
ln(1 +

M2
i

σ2
), (3.9)

where index i stands for the sample of the model space. The gradient of this term
is given as follows:

[
∂Jf
∂M ]i = ϵ

Mi

σ2 +M2
i

, (3.10)

where again index i indicates a single sample of the gradient.
The term described in Equation 3.9 is non-quadratic and, therefore, the contribu-

tion of its gradient (Equation 3.10) to the gradient of the first term J∆ will make the
total gradient to be affected by the amplitude of the model space sample. There-
fore, the main peaks of the reflectors can be enhanced with simultaneous side-lobes
suppression, which may lead to higher resolution of the estimated image. Parameter
σ controls the ’aggression’ of the constraint. For more details the reader is referred
to Sacchi et al. (2006) or Schouten (2012).

Figure 3.1 shows an impulse response for each parameter. As visible in Equa-
tion 3.5 and 3.6 a grid-point response of the reflectivity from above R∪ (Figure 3.1a)
and upward transmission T− (Figure 3.1b) are mostly linearly related to the mea-
sured data, whereas impulse responses for the reflectivity from below R∩ and down-
ward transmission T− have a non-linear relationship with the measured data due to
the extra round-trip via reflection at every reflector located below the depth level
of consideration (Figure 3.1c and d respectively). Note that transmission coeffi-
cient may also partly include additional scattering effects also known as duplex or
prismatic reflections (N. Marmalevskyi, 2007).
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Figure 3.1: Impulse responses for upward reflectivity (a), upward transmission (b), down-
ward reflectivity(c) and downward transmission (d).

3.2.1 Gradient for upward reflectivity and transmission

Estimation of four independent parameters from measured surface data can be a
difficult task. If we assume an acoustic case it is not necessary to estimate this
complete set. Provided the estimated reflectivity from above R∪ it is possible to
constraint other parameters as follows:

R∩ = −R∪

δT+ = R∪

δT− = −R∪.
(3.11)

Note that for elastic media angle-dependent reflectivity can still contain true elas-
tic PP-reflectivity. However, the above assumptions will be less valid for higher
angles, but given the improved robustness of FWM, this approximation can be ac-
ceptable.

In this case the objective function is dependent on one parameter set:

J(R∪) = J∆(R∪) + Jf (R∪). (3.12)

In order to compute the model update we need to compute the gradient of the
objective function 3.1 with respect to parameters R∪. According to Petersen et al.
(2008) one can use the derivative:

∂

∂X tr[(AXB + C)(AXB + C)
H
] = 2AH(AXB + C)BH , (3.13)

and link it with Equation 3.3 such that:



3.2. Imaging and gradient computation 39

AXB + C = ∆P(z0),
A = −

∑
n>0

W−(z0, zn),

X = R∪(zn),
B = P+

mod(zn),
C = Pobs −

∑
n>0

W−(z0, zn)δT−(zn)P−
mod(zn).

(3.14)

According to Equation 3.13 and Equations 3.14 the derivative of the objective
function, defined in Equation 3.3, in respect to the upside reflectivity R∪(zn) (for
given the depth level zn and frequency ω) will be as follows:

[ ∂J∆

∂R∪(zn)
]ω = −2[W(z0, zn)]

H [∆P(z0)][P+
mod(zn)]

H . (3.15)

Therefore, according to Equation 3.15, we see that the reflectivity update at level
zn, described by this gradient, is obtained by cross-correlation of the data residual
∆P(zm) - back-propagated to the depth level zm by operator W - with the downgo-
ing wavefield P+(zm) given by the full wavefield modeling. This is also identical to
the cross-correlation imaging condition used in regular migration algorithms.

The imaging condition involves wavefield propagating in opposite directions. There-
fore, R∪ estimation implies matching the opposite wavefields during the last bounce
of corresponding events.

Although it is quite efficient to estimate the transmission part as δT− = −R∪

one can estimate it explicitly by calculating the gradient similar to Equations 3.13
and 3.14. For this derivation, matrices for Equation 3.13 need to be chosen as
follows:

AXB + C = ∆P(z0),
A = −

∑
n>0

W−(z0, zn),

X = δT−(zn),
B = P−

mod(zn),
C = Pobs −

∑
n>0

W−(z0, zn)R∪(zn)P+
mod(zn),

(3.16)

and the resulting gradient will be:

[
∂J∆

∂T−(zn)
]ω = −2[W(z0, zn)]

H [∆P−(zn)][P−
mod(zn)]

H . (3.17)

Equation 3.17 shows that gradient for the upward transmission part can be ob-
tained by a cross-correlation of wavefields that propagate in the same direction: the
back-propagated upgoing receiver-side residual wavefield and the forward modeled
upgoing source-side wavefield.
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3.2.2 Gradient for downward reflectivity and transmission

As was mentioned earlier, recursive substitutions of Equations 3.8, 3.7 and Equa-
tion 3.6 in Equation 3.5 makes it possible to realise the link of the measured data
with the downward reflectivity R∩ and the downgoing transmission δT+.

Using the principles discussed in the previous section we can compute the gradient
for the downward reflectivity by choosing matrices in Equation 3.13 as follows:

AXB + C = ∆P(z0),
A = −

∑
n>m

W−(z0, zn)R∪(zn)
∑

m<n
W+(zn, zm),

X = R∩(zm),
B = P−

mod(zm),
C = Pobs −

∑
n>0

W+(z0, zn)δS+(zn)−

−
∑

n>m
W−(z0, zn)R∪(zn)

∑
m<n

W+(zn, zm)δT(zm)P+(zm),

(3.18)

and finally the derivative is:

[
∂J∆

∂R∩(zn)
]ω = −2

∑
m<n

[W−(z0, zm)R∪(zm)W+(zm, zn)]
H [∆P−(z0)][P−

mod(zn)]
H .

(3.19)
As it can be observed in Equation 3.19, for updating the reflectivity from below

R∩, the upgoing modeled wavefield is cross-correlated with the data residual that
was firstly back-propagated downwards at every depth-level located below the target
depth level, multiplied by the reflectivity of these levels (zm > zn) and finally back-
propagated upwards to the target depth level zn. Note that downward reflectivity is
mainly responsible for generating the internal multiples as it translates the upgoing
incoming wavefield downwards to the subsurface, which make it possible to reach
the surface only by one extra upward reflectivity R∪. Therefore, by estimating the
downward reflectivity we directly address internal multiples for imaging, whereas the
reflectivity from above is mainly driven by information coming from primaries. The
process of estimating the reflectivity from below is similar to imaging of internal
multiples proposed by Malcolm et al. (2009). However, in case of FWM, every
combination and all orders of the internal multiples are automatically included,
whereas the work of Malcolm et al. (2009) focuses specifically on first-order internal
multiples.

In order to estimate the downward transmission we need to slightly modify the
Equation 3.13 as follows:



3.2. Imaging and gradient computation 41

AXB + C = ∆P(z0),
A = −

∑
n>m

W−(z0, zn)R∪(zn)
∑

m<n
W+(zn, zm),

X = δT+(zm),
B = P+

mod(zm),
C = Pobs −

∑
n>0

W−(z0, zn)δS+(zn)−

−
∑

n>m
W−(z0, zn)R∪(zn)

∑
m<n

W+(zn, zm)R∩(zm)P−(zm),

(3.20)

such that we get the final derivative with respect to the downward transmis-
sion:

[
∂J∆

∂δT+(zn)
]ω = −2

∑
m>n

[W(z0, zm)R∪(zm)W(zm, zn)]
H [∆P−(z0)][P+

mod(zn)]
H .

(3.21)
This imaging condition involves cross-correlation of the downgoing forward mod-

eled wavefield with the back-propagated data residual via reflections at the levels
below the target level, which is also downgoing at the target level.

3.2.3 Remarks on parameter selection

In the previous section we only considered the gradient from the data misfit J∆.
In addition the gradient note for the constraint term Jf should be calculated sepa-
rately.

Thus, the gradients for all four types of parameters that are responsible for the
scattering in the forward model are as follows:

∆R∪(zm) ≃ [∆P−(zm)][P+(zm)]H + ∂
∂R∪ (Jf )

∆R∩(zm) ≃ [∆P+(zm)][P−(zm)]H + ∂
∂R∩ (Jf )

∆δT−(zm) ≃ [∆P−(zm)][P−(zm)]H + ∂
∂R∪ (Jf )

∆δT+(zm) ≃ [∆P+(zm)][P+(zm)]H + ∂
∂R∩ (Jf ),

(3.22)

As discussed before, the most easy and robust inversion approach is to estimate
the upward reflectivity R∩ only and express all three parameters dependent on it (see
again Equation 3.11). However, additional information can be extracted from multi-
ple scattering if we estimate reflectivity from below separately, as will be shown later
on in this chapter. In order to put more emphasis on getting good reflectivities in
areas of weak illumination and amplify reflectivities in the early iterations Berkhout
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(2014b) suggests to use a deconvolution imaging condition instead (implemented by
weighted cross-correlation).

Regarding the differential transmission operators δT±, the additional information
can be obtained via so-called duplex waves (i.e, internal multiples with two reflections
where one of the reflections does not change its vertical propagation direction), which
allows to estimate vertical structures. Examples of the estimation of the transmission
effects will be shown from the perspective of duplex waves imaging in Chapter 4.
For the rest of this chapter we will focus on the reflectivity operators.

Independent of the choice of parameterization, correct estimation of the model
parameter(s) should lead to the correct explanation of the observed data in terms
of the primary and multiple reflections and including transmission effects at every
step. The crosstalk that is formed when the forward model assumes a linear rela-
tionship between the reflectivity and the observed data, as is done in conventional
least-squares migration (Nemeth et al., 1999). Another advantage of FWM is that
an additional coda is included in the source-side wavefield, which provides additional
subsurface illumination by internal multiples. Note that, as discussed in Chapter 2,
the source-side wavefield can be any type: a point source or an areal source that
represents surface multiples. It is also possible to incorporate blended sources. Each
source wavefield will have its own internally scattered wavefields (internal multi-
ples).

In the next section we will discuss two possibilities to parameterize the model
space: in an angle-dependent and an angle-independent mode, and their associated
gradients.

3.3 Parameterisation

The reflectivity update ∆R, after being transformed to the time-domain, for each
subsurface location contains a spike event focused around zero-time. However, it also
contains causal and anti-causal components. It is not desired to have these causal
and anti-causal arrivals in the reflectivity operator as they are not physically linked
to the depth level of consideration where the potential reflector is. Therefore, it is
important to exclude such events. In order to constrain the reflectivity around zero
time we apply summation over all frequencies and, thereby, apply zero-time selection
from the gradient data. However, for angle-dependent reflectivity this process needs
to be applied in the angle or ray parameter domain. The options are discussed in
the next two subsections.

3.3.1 Angle-independent mode

The simplest parameterization of the model space is related to structural imaging.
In this case each grid point of the subsurface is characterized by a single reflection
coefficient, that can efficiently explain the complete reflection event in the data
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domain. Such choice is suitable when the medium contrasts are present mainly
by density variations, when the offsets in the data are small, or when obtaining a
structural image is the only aim of the process.

Since there is only one reflection coefficient per grid point, the reflectivity process
is described by a simple, local scalar multiplication of the wavefield with these coef-
ficients and the reflectivity matrix is composed of the diagonal elements. Therefore,
the gradient is computed by diagonal selection and summing over frequencies in
Equation 3.22, which will correspond to selecting the zero-time component from the
conventional cross-correlation imaging condition:

∆R
∪
ij(zn) = 2Re{

∑
ω ∆R∪

ij(zn)δij}
∆R

∩
ij(zn) = 2Re{

∑
ω ∆R∩

ij(zn)δij}.
(3.23)

The angle-independent imaging condition may be computed by trace-by-trace cross-
correlation of source-side (P⃗+) and receiver-side (∆P⃗−) wavefields for each source
experiment and sum these results. In principle, for every depth level the diagonal
elements of the reflectivity matrix R(zm) for each frequency component contains
the seismic image, where each diagonal element corresponds to one specific lateral
location.

3.3.2 Angle-dependent mode

In the angle-dependent mode the reflection coefficient at every point is estimated as
a function of angle or ray-parameter. de Bruin et al. (1990) showed that the angle-
dependent reflection information can be transformed from the wavenumber to the
space domain and these reflectivity operators fill the columns of the R-matrix. Extra
information that describes of angle-dependent reflection coefficients comes from the
off-diagonal elements of the reflectivity matrix. These off-diagonal elements can be
considered as a local offsets of the reflectivity functions. As in the angle-independent
version we would like to select zero-time from the source-side and receivers cross-
correlation result. However, due to the angle-dependency this time constraint is best
applied in the linear Radon domain. It is computed as follows:

∆R(zn) = L{2Re(
∑
ω

LH{∆R(zn)})}, (3.24)

where operators L{} and LH{} mean forward and backward linear Radon trans-
formation, respectively. The reflectivity is constrained at zero-time by summing
all frequencies ω. Matrix ∆R is described in equation 3.22. Diagonal elements of
this matrix represent again the ’standard’ imaging condition, whereas off-diagonal
elements represent so-called extended imaging conditions - source and receiver side
wavefields are selected in a such way that they are being cross-correlated with some
lateral shift related to each other. The larger the distance from the diagonal, the
larger the lateral shift. The angle-dependent information is contained along these
lateral shifts, or subsurface offsets h (Berkhout and Verschuur, 1997; Sava and Fomel,
2003).
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Figure 3.2: Example of the angle-dependent reflectivity estimation. a) Column of the ∆R
matrix in the time domain. b) Estimated AVP values at the depth level with a horizontal
boundary. c) Result of applying the zero-intercept time imaging constraint to b) in the
linear Radon domain and transforming the result back to the space-time domain.
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The L matrix is a Radon transform matrix:

Lij = eiωpihj , (3.25)

where p is a ray parameter and h is an offset. As it contains offset lateral vector h,
it is applied to the offset axis: the diagonal elements of the gradient correspond to
zero-offset and decreasing/increasing column-wise. Therefore, the gradient matrix
is skewed (indicated by the {} signs) before the Radon transform is applied.

Note that in principle reflectivity operator R (when considered for all frequen-
cies) has the same size as the complete data volume, which has the danger of
over-parameterisation. Therefore, the estimate of R in the linear Radon domain
is constrained at zero-time by stacking all frequencies. However, the Radon do-
main keeps the angle-dependent information along the ray parameter axis. In this
interpretation, the angle-independent case (with non-zero diagonal elements only)
may be considered as a spike operator in the space domain, meaning that in the
angle-domain all values are constant along the ray parameter axis. Note that for
the angle-dependent case the resulting reflectivity operator is still frequency depen-
dent, because it involves a frequency-dependent transformation (See Equation 3.24
and 3.25).

After estimating the reflectivity (convolution) matrix as described in Equation 3.24,
this matrix can be used for the forward modeling in order to explain the observed
data. Figure 3.2 shows the estimation process for the first horizontal reflector of the
model shown in Figure 1.4. As an example (Figure 3.2), for each frequency slice one
column of the ∆R matrix has been selected and transformed to the time-domain
(see Figure 3.2a). Figure 3.2b shows the Radon transform of the

∑
ω

LH∆R matrix

(at τ = 0). Note that the post-critical reflectivity effect can be clearly observed. Fig-
ure 3.2c demonstrates how the adjoint Radon transform can recover the reflectivity
operator from the AVP plot. Such operator contains only a spatially band-limited
spike-like event, in which angle-dependent reflection information is encoded and
which can be used in the forward modeling process.

It can be observed that the model space for the angle-dependent case is repre-
sented by angle-domain common image gathers (ADCIGs) and Figure 3.2 basically
displays a horizontal selection of ADCIG volume. Theoretically, various constraints
can be applied to this type of model space. For example a regularisation penalty
function was used in Sava and Fomel (2003) in order to regularize solution and
achieve smoothness of the estimated ADCIGs. Applying sparsity constraint can be
also included, but one has to be careful in order to avoid provide sparsity along the
angle dimension. In this thesis sparsity constraint for the angle-dependent case was
not yet implemented.
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3.4 Reflectivity updating

Independent of the choice of parameterization we need to update the reflectivity
during the FWM process. As a first option we can choose to use the information only
from the reflectivity from above and keep reflectivity from below hard-constrained
based on an acoustic approximation:

R∪
i = R∪

i−1 + α∆R∪
i−1

R∩
i = −R∪

i ,
(3.26)

where i stands for iteration number. In this case, the reflectivity is updated mainly
from primaries and surface multiples. Internal multiples only contribute implicitly
as they become part of the downgoing wavefield. Thus, internal multiples play a
more passive role: they are explained and removed from the residual, and thereby
don’t provide crosstalk in the image.

However, it is also possible to include imaging information from the internal mul-
tiples more explicitly by the following imaging condition:

R∪
i = R∪

i−1 + α[∆R∪
i−1 −∆R∩

i−1]
R∩

i = −R∪
i .

(3.27)

Here, the reflectivity is updated jointly from above and from below.
As a third option, it is also possible to update the reflectivities from above and

from below completely independently:

R∪
i = R∪

i−1 + α∆R∪
i−1

R∩
i = R∩

i−1 + β∆R∩
i−1.

(3.28)

Note that for this option optionally a link between R∩ and R∪ can be incorporated
during optimisation, e.g. by including an extra constraint term to the objective
function, like min||R∩ + R∪||2.

3.5 Scaling

The ∆R obtained from the imaging condition (Equation 3.22) is not at ’true-
amplitude’ scale and mathematically represents a direction in the steepest descent
(or conjugate-gradient) scheme. Therefore, we need to get a scalar for retrieving
true amplitudes while updating the reflectivities as mentioned in Equations 3.26 –
3.28. The scalar is computed by minimizing the following quantity:

||∆P− αA||22 → min, (3.29)

where A = P−
mod(∆R) is the simulated wavefield based on the gradient ’reflectivity’.

In other words, the following expression is minimized:

J = tr[(∆P−A)H(∆P−A)] = tr[∆PHA−α∆PHA−αAH∆P+α2AHA]. (3.30)
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We need to find α such that J will be minimum. Therefore, the derivative with
respect to α is taken:

∂J

∂α
= Tr[−∆PHA−AH∆P + 2αAHA] = 0, (3.31)

and the scalar factor is given by:

α =
tr[∆PHA + AH∆P]

2tr[AHA]
. (3.32)

In the case of multi-parameter inversion (like in Equation 3.28) we have:

J(α, β) = tr[(∆P− αA− βB)H(∆P− αAβB)] =
= tr[∆PH∆P− αAH∆P + α2AHA + αAHβB− βBH∆P + βBHαA + β2BH ],

(3.33)
where A and B are wavefields at the surface, modeled with the corresponding gra-
dient updates. Two derivatives are taken, and therefore, α and β might be solved as
a following system of equations:

∂J(α,β)
∂α = tr[−AH∆P + 2αAHA + β(AHB + BHA)] = 0,

∂J(α,β)
∂β = tr[−BH∆P + α(BHA + AHB) + 2βBHB] = 0.

(3.34)

More generally, in the case of more than two parameters, this system of equations can
be observed as a matrix-vector equation, where the matrix has off-diagonal elements
that are cross-products between different gradient-responses and diagonal elements
that are traces of auto-correlated responses.

After finding α and β, all parameters are updated according to Equations 3.26
– 3.28 and also all wavefields can be updated via Equations 3.5-3.8. The modeled
wavefields will provide the new residual that can be used for updating parameters
at the next iteration.

3.6 Wavefield options in FWM

Keep in mind the difference between FWM and conventional lease-squares imag-
ing algorithms (Nemeth et al., 1999), which we will refer to as primary wavefield
imaging (PWM). The latter are usually based on the simplified Equation 2.14 where
the scattering term δS⃗ is neglected, meaning that transmission effects and internal
multiples are not included in the forward modelling scheme, although including sur-
face multiples in this approach is still possible. In the next section we will make a
comparison between the FWM and PWM approaches.

In Table 3.1 we show how both FWM and PWM can be implemented in three
different ways. The difference with PWM is mentioned: in FWM the scattering
term δS⃗ is included at each depth level. Note that primary wavefield imaging can
be implemented not only to the primary data itself (PWM-prim), but also to the



48 3. Imaging

imaging of surface multiples (PWM-surf) and total data (PWM-tot). In each case,
the internal multiples are neglected, whereas FWM takes care of the corresponding
internal multiples, independent on the input. Note that any of the six options can
describe the situation of simultaneous sources, by redefining S+ and S−. Table 3.1
shows that if the illuminating wavefield (at the source-side) is the downgoing source
wavefield together with the re-injected total data (Q+ = S+ + R∩P−), then the
total data (at the receiver-side) will be explained. If only the source wavefield S+ is
used as an illuminating wavefield, then only primaries P−

0 (and its internal multiples)
will be explained. The third situation refers to the re-injection of total data R∩P−

and in this case the modeled data should match only the surface multiples M− and
their corresponding internal multiples.

Table 3.1: All three imaging options in the FWM process.

Options Source side Receiver Side δS⃗ included
1a) FWM-tot S+ + R∩P− Q− Y
1b) PWM-tot S+ + R∩P− Q− N
2a) FWM-prim S+ P−

0 Y
2b) PWM-prim S+ P−

0 N
3a) FWM-surf R∩P− M− Y
3b) PWM-surf R∩P− M− N

Work flows of options 1a, 2a and 3a are demonstrated in Figure 3.3. Note that
the same elements of the closed-loop approach are present. It is only the source-
side and receiver-side wavefields that are changed. It is also important to mention
that surface multiples may be treated differently when the total data is imaged
(Figure 3.3b). Surface multiples can be modeled either in a linear way (observed
data is re-injected at the surface and used as a source-field for surface-related multiple
illumination). Alternatively, the modeled data can be re-injected as indicated by the
dashed path in Figure 3.3b. In this case surface multiples are modeled non-linearly -
they are modeled during the iterative FWMod procedure in the same way as internal
multiples, all starting from the original source field S+.

3.7 Numerical examples

In this section we demonstrate the FWM process with numerical examples. We will
make use of the flexibility of the FWM process to run it in various modes: total
data, primaries and internal multiples only, or surface multiples only as described
by Table 3.1. In addition, we will consider the use of imaging the reflectors from
below via internal multiples only.
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Figure 3.3: Different FWM workflows according to Table 3.1.

3.7.1 FWM applied to total data

In the first example we consider options 1a and 1b from Table 5.1. We use the
velocity and density model shown in Figure 3.4a and b, respectively. As can be ob-
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served, the subsurface is featured by a horizontal pack of the layers, representing the
target area, and a salt structure that serves as a strong internal multiple generator.
It is expected that internal multiples, when being imaged as crosstalk at the first
iteration of FWM or at the any iteration of conventional inversion-based imaging,
will overwhelm the target reflections.

Reflection data has been modeled by an acoustic finite-difference modeling scheme
with sources every 50 meters along the surface. A free-surface boundary condition
has been applied. Therefore, the full wavefield, including primaries, surface and
internal multiples is considered. The image at the first iteration (Figure 3.4c) rep-
resents standard imaging with a cross-correlation imaging condition. The strong
crosstalk formed by all multiples is evidently visible. The PWM image is shown
in Figure 3.4d. The resulted image has improved in terms of the amplitude and,
moreover, the crosstalk from the surface multiples is efficiently suppressed. How-
ever, it retains the crosstalk from the internal multiples, as it is not included in
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Figure 3.4: Example of FWM. a) Velocity model; b) Density model; c) Image at the 1st

iteration; d) Image at the last iteration of PWM; e) Image at the last iteration of FWM;
f) Difference between (d) and (e).
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the forward model of PWM. The iterative process of FWM is able to successfully
suppress this noise such that the target reflectors below the salt are clearly marked
(see Figure 3.4e).

3.7.2 FWM applied to primaries and internal multiples

Next, we demonstrate options 2a and 2b from Table 5.1 by imaging primaries only.
We assume that surface multiples have been perfectly removed in advance. It is
clearly visible in Figure 3.6a that the target zone is still overwhelmed by the inter-
nal multiples caused by the salt body. The PWM image (Figure 3.6b) improves the
image, however, it also contains spurious events that create via FWMod false pri-
maries that have the same travel times as the internal multiples and, therefore, mask
the actual structure of the target area. However, when using FWM (Figure 3.6c)
most internal multiples crosstalk is resolved and the target reflections can be well
interpreted.

Figure 3.5 compares the image resulted by PWM (Figure 3.5a) and FWM (Fig-
ure 3.5b) for imaging primaries, one shot only. It is visible that when internal multi-
ples and transmission are not taken into the account the shadow zone is quite visible
(area is marked by the dashed rectangle). Internal multiples in FWM drastically
increase the illumination and recover the shadow zone. Moreover, the amplitude
is also corrected for transmission effects. Note that the horizontal target reflector
of the multiple shots PWM image (Figure 3.6b) also show the effects of neglecting
transmission.
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Figure 3.5: Comparison of PWM (a) and FWM (b) for one shot only. The image is zoomed
at the left corner of the salt body (around x=250m).
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Figure 3.6: Imaging of primary wavefield including interbed multiples for the same model
as in Figure 3.4. a) Image at the first iteration; b) PWM image at the 20th iteration; c)
20th iteration FWM image.
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Figure 3.7: Comparison of FWM for large offset input data using a diagonal reflectivity
operator (angle-independent approach) with FWM using the band-diagonal reflectivity op-
erator (angle-dependent approach). a) Structural image; b) Angle-averaged image. The red
lines show locations of the angle gathers from Figure 3.8.
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Note that the results from Figure 3.6 are obtained by angle-independent imaging
using only small-offset data (up to 700 meters in this example). Figure 3.7 demon-
strates the comparison between the angle-independent and the angle-dependent ap-
proach when the full data aperture is considered. Figure 3.7a shows the structural
image at the 20th iteration, while Figure 3.7 shows the angle-dependent image after
summation all angle contributions. Figure 3.8 shows angle gathers resulting from
angle-dependent imaging. Results at the first and the 20th iteration are compared
in Figures 3.8(a,b), respectively. It is visible that the angle gathers after iterating
have a better resolution and that most of the crosstalk (visible as curved events in
the gathers) is suppressed.

Ray parameter [s/m]
-0.0006 0.0006

(a) 1st iteration

Ray parameter [s/m]
-0.0006 0.0006

(b) 20nd iteration

Figure 3.8: Angle-gathers at five lateral locations (50m, 100m, 150m, 200m and 250m)
resulting from angle-dependent imaging. a) Result after the first iteration; b) Result after
20 FWM iterations.

3.7.3 FWM applied to surface multiples only

Another application is the imaging of surface multiples alone (options 3a and 3b from
Table 3.1). This option is demonstrated on the same model shown in Figure 3.4a,b.
For imaging of surface multiples only it is required to use re-injected measured
data at the surface as the source-side wavefield and separated surface multiples at
the receiver side. Such approach might be helpful for imaging shallow areas where
surface multiples play a significant role in terms of illumination and angle coverage
(Lu et al., 2014b).

The interesting feature of migrating the surface multiples is that the source wavelet
information is not required. Only surface multiples (and their internal multiples)
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are treated as useful information. Figure 3.9b shows the closed-loop imaging of the
surface multiples without internal multiples included in the forward model. Fig-
ure 3.9c shows that the FWM approach on imaging of surface multiples also allows
to suppress the resulting crosstalk from it’s own internal multiples.
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Figure 3.9: Imaging of surface multiples and their interbed multiples for the same model as
in Figure 3.4. a) Image at the first iteration; b) PWM image at the 20th iteration; c) 20th

iteration FWM image.
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Figure 3.10: Internal multiples imaging example. a) Velocity model; b) Estimated reflectivity
from above; c) Estimated reflectivity from below via the internal multiples.
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3.7.4 Imaging of internal multiples with FWM

In the previous set of examples the reflectivity has been estimated from above and
the reflectivity from below has been approximated as opposite polarity of the former
one (i.e. R∩ = −R∪). As it was discussed in the imaging section, the refectivity
from below can be estimated independently by imaging of internal multiples.
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Figure 3.11: a) Density model. b) FWM image using the imaging condition from above. c)
FWM based on joint (”from above” together with ”from below”) reflectivity estimation.
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This will be demonstrated for the velocity model shown in Figure 3.10a. Sources
and receivers are located at the surface but excluding the area between 1250m
at 1700m (i.e. around the anomaly). Because of such acquisition gap the image
obtained by imaging from above has an illumination hole that is visible in Fig-
ure 3.10b. Because internal multiples propagate with different ray paths and arrive
at later times, they contain additional subsurface information. Figure 3.10c shows
the image with the reflectivity from below estimated by internal multiples. Note
the structure of the near-surface anomaly that is also well imaged. Moreover, one
additional advantage of such approach is that the propagation velocity knowledge
of the anomaly itself is not required, because the measured internal multiples don’t
propagate directly within this area, but only get reflected at the lower side.

Next, we consider the effect of coarse source sampling in Figure 3.11 The model
contains a complex near surface and few strong reflectors beneath. The input data
has sources every 500m, while receivers are densely sampled at the surface.

Figure 3.11 shows a comparison between imaging from below only (Figure3.11b)
and imaging using the combined imaging condition via Equation 3.27 (Figure 3.11c).
Both images are the results after 10 iterations of FWM. Coarse source sampling
creates illumination holes when imaged from above only. However, this gap can be
infilled by information coming from internal multiples as they first propagate in the
subsurface and, therefore, can reach different areas.

It is also visible that some of the diffractors are better imaged, which can be
also explained by improved illumination from multiple angles by internal multi-
ples.

3.7.5 3D extension of FWM

In this section the three dimensional extension of the FWM algorithm is demon-
strated. The method is governed by the same equations, with the difference being
that one extra dimension is included. As remarked earlier, all formulas as men-
tioned in this chapter can be used for both the 2D and full 3D case (see Kinneging
et al. (1989)). However, the additional dimension opens various challenges that are
discussed separately in Appendix C.

In the three dimensional case, each depth level represents a horizontal slice of the
subsurface. The propagation is now performed by 2D spatial convolution operators
in the x, y, ω domain. In case of a homogeneous velocity within a certain depth layer
a simple phase shift operator can be applied in the frequency–wavenumber domain
(kx − ky − ω) in order to speed up the calculations. The additional challenge for
3D FWM is extra memory requirements, because FWM needs to save both upgoing
wavefields at every grid-point of the subsurface. In order to reduce the memory
requirement (numerical) source blending can be applied.

Our 3D example is based on the three-dimensional SEG EAGE salt model (Am-
inzadeh et al., 1994). The velocity model is shown in Figure 3.12 and represents a
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(a) Velocity model (m/s) (b) Velocity model (m/s)

Figure 3.12: Middle cube of 1× 1× 1km selected from the 3D SEG EAGE salt model.

1x1x1 km subset of this 3D model. The density model is considered to be homoge-
neous. The grid size of the model is 5m and receivers are located at the surface on
a regular grid of 20m spacing. In order to reduce computation time we blend shot
records numerically: nine shot records include three blended sources each. The lat-
ter are randomly distributed at the surface such that the minimum distance between
sources in each group is greater than 500m.

Figure 3.13a shows the image after the first iteration. It is visible that the image
is weak in the lower part. Moreover, strong artifacts due to the blending (red
arrows) are present in those images. Figure 3.13b demonstrates the advantages of
the closed-loop imaging approach: after 15 iterations of the inversion process the
blended crosstalk is largely suppressed and illumination is improved. Also note
that the latter images have higher resolution, although those results are based on
the conventional least-squares imaging approach that considers multiples as noise
and involves primary-only illumination in the downgoing wavefield. Crosstalk from
internal multiples is present (indicated by green arrows). Next, we show results of
FWM after 15 iterations (Figure 3.13c), where the modeled wavefields were updated
at every iteration by the estimated reflection coefficients. Differences between FWM
and PWM are shown (at the same amplitude scale) in Figure 3.13d. It shows
the amplitude enhancement in the lower half of the model, which is caused by the
transmission effects and internal multiples included in FWMod.
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(a) PWM image (1st iteration) (b) PWM image (15th iteration)

(c) FWM image (d) Difference between FWM and PWM

Figure 3.13: Example on the 3D SEG EAGE salt model. a) PWM image at the 1st iteration;
b) PWM image at the 15th iteration; c) FWM image at the 15th iteration; d) Difference
between b) and c), indicating the impact of internal multiples on the image.
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3.8 Discussion

In this chapter it was shown that the imaging step within FWM provides a gra-
dient computation for the descent algorithm that solves an inverse problem. As
an inverse problem FWM has to address issues like parameterisation and solution
uniqueness. It is required to constrain the reflectivity operator in order to avoid over-
parameterisation. The most straightforward way is considering angle-independent
reflection coefficients. Angle-dependent reflectivity, in its turn, has slightly more
freedom and is obtained by estimating the angle gather per grid-point of the subsur-
face. However, this way might already be dangerous, because it gives an opportunity
to explain the data in different ways (more discussion in Appendix B) and the final
solution will be dependent on the initial model.

The demonstrated modelling and imaging methodology considers horizontal slic-
ing of the subsurface (depth levels). At every grid-point of any arbitrary depth level
the presence of a local, flat horizontal reflector is assumed. Between these levels the
velocity model is assumed to be homogeneous.

Therefore, such approach is designed for waves travelling preferably in the vertical
direction. However, there is also a strong interest to image vertical structures via
waves traveling more horizontally. In the next chapter both modeling and imaging
will be extended such that it will be possible to model horizontally propagating
diving waves and scattered wavefields by including also horizontal wavefield extrap-
olation, both forward for modelling and backward for imaging.

It is also interesting to compare FWM with different imaging methods that address
internal multiples. The method of Malcolm et al. (2009) may be considered as a
predecessor of FWM. The downgoing and upgoing wavefields are also computed
in the one-way manner. Two-way back-propagation is involved in the similar way.
Internal multiples are also used for imaging the down-side reflectivity. However, the
difference is in the iterative approach of FWM, whereas the first method is based on
a ’single-step’ migration (i.e. the first iteration of FWM). As shown in this chapter,
the closed-loop (inversion) approach is important in order to obtain the best estimate
of the reflectivity and suppress crosstalk.

The two-way method introduced by Fleury and Snieder (2012) incorporates in-
ternal multiples in RTM. In this method the scattered wavefield is computed using
information based on the imaged reflectivity that comes from conventional RTM
(that addresses the so-called reference wavefield). Therefore, it creates a non-linear
relationship between the scattered data and the reflectivity. Four different imaging
conditions are used such that each image requires the decomposition of the two-way
reference and scattered wavefields into upgoing and downgoing components. This
method is also not inversion-based.

Marchenko imaging (Broggini et al., 2013; Wapenaar et al., 2013) is based on the
interferometric approach of recovering the Green’s functions (upgoing and down-
going) that are used in the multiple-free imaging condition. The crosstalk is ele-
gantly removed without applying a direct inversion approach. However, full two-way
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Green’s functions are estimated via an iterative process. Moreover, the method is
target-oriented. It means that in order to image a specific subsurface point there is
no need to resolve the whole subsurface as required by applying the Bremmer series
(used in the FWMod approach). The main limitation of this method is in the acqui-
sition requirements - source and receiver spacing should be dense - as this method
is fully data-driven. This is in strong contrast to FWM, which can work pretty
well with sparse sampling (see e.g. the 3D OBN data in Chapter 5). So you might
say that the subsurface wavefields relationships act as a physical constraint in the
inverse problem, such that acquisition requirements can be greatly reduced

3.9 Conclusions

In this chapter the imaging aspects of FWM has been discussed. It was shown that
the main parameters of the model space (reflection and transmission both for the
upgoing and downgoing direction) can be obtained by the corresponding gradient
computations. The update for the reflectivity is a cross-correlation imaging condition
of wavefields in opposite directions: the forward modeled incident wavefield and
backward propagated residual wavefield. The update for the transmission effects is
a cross-correlation of coinciding wavefields.

It is sufficient to estimate only the reflectivity from above and use it to express
the rest of parameters. On the other side, it is possible to perform multi-parameter
inversion of separate parameters with optional soft-constraints applied.

Various numerical examples showed the benefits of the approach of imaging us-
ing multiples: enhanced illumination by multiples (surface and internal) with the
crosstalk – being an issue for conventional imaging methods – being suppressed.



4
Omnidirectional extension

As explained in the previous chapters, the machinery of the FWM algorithm is
based on one-way wavefield extrapolation. The extrapolation in the wavenumber-
frequency domain in a homogeneous medium is done by phase shift of plane waves
(Berkhout, 1982):

P̃ (z +∆z) = P̃ (z)exp−jkz∆z, (4.1)

where, for the 2D case, kz =
√
ω2c−2 − k2x and P̃ represents a wavefield in the

wavenumber-frequency domain. We can see that there is no propagation assuming
k2x = ω2c−2 (i.e. for 90 degree propagation angle). Therefore, one-way equation
migration algorithms suffer from dip-limitation.

There are several ways to avoid such limitation. An interesting approach was pro-
posed by Sava and Fomel (2005), in which the wavefield extrapolation is performed
in the Riemannian coordinate system that conforms with main wavefield propaga-
tion direction. Such grid adjustment is performed using ray-tracing that, thereby,
forms a skeleton of the grid. However, this grid will vary for different choices of
source or receiver location. Another solution is to perform propagation in a tilted
medium (Biondi and Shan, 2002).

In this chapter we investigate the idea of using a tilted medium for the extreme
case of performing FWM additionally on an orthogonal grid. A similar approach,
but for primaries only, is described in Xu and Jin (2007). In the modeling section it
is discussed how it is possible to interchange scattering information between different
grids. The imaging section describes the variety of imaging conditions that are used
in this approach.

61
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4.1 Omnidirectional modeling

The FWM forward model is based on the so-called wavefield relationship, as de-
scribed in Berkhout (2012, 2014a) and in chapter 2 of this thesis. According to the
already established version of the algorithm, the depth level can be approached from
above by the downgoing wavefield P+ and it can be approached from below by the
upgoing wavefield P−.

When the modeling is performed in an orthogonal direction, the corresponding
wavefield relationship takes place for left-going and right-going wavefields. Note
that the same relationships between total and incoming wavefields are valid.

(a) (b) (c)

Figure 4.1: Full wavefield relationships for (a) the vertical propagation case, (b) the hori-
zontal propagation case and (c) the total propagation case.

The corresponding set of equations can be written as:

Q+(zm) = P+(zm) + δS(zm)
Q−(zm) = P−(zm) + δS(zm)
Q+(xm) = P+(xm) + δS(xm)
Q−(xm) = P−(xm) + δS(xm).

(4.2)

Note that depth level indication (zm) indicates the horizontal depth level, while xm

considers a vertical screen for wave propagation.
In contrast to the single-direction wave propagation, the scattering term not only

contains upgoing wavefields and downgoing wavefields multiplied with the corre-
sponding reflectivity operator, but it also contains the contribution from the orthog-
onal component:

δSnm = [P⃗∪(zm)]n + [P⃗∩(zm)]n + [P⃗∪(xn)]m + [P⃗∩(xn)]m, (4.3)

where:
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P⃗∪(zm) = R∪(zm)P⃗+(zm)

P⃗∩(zm) = R∩(zm)P⃗−(zm)

P⃗∪(xm) = R∪(xm)P⃗+(xm)

P⃗∩(xm) = R∩(xm)P⃗−(xm).

(4.4)

With the aid of Equation 4.3 it is possible to interchange the scattering between
the vertical and the horizontal wavefields. In this way, it basically means that δS
does not just describes the two-way scattering, but an omnidirectional source (like
a monopole).

However, in this implementation the information interchange between the orthog-
onal coordinate systems can be done only via scattering. For example, it cannot
accommodate complete turning waves as they transform from vertical to horizontal
wavefields without scattering.

According to Equations 4.2, 4.3 and 4.4, the modeling can be performed as a se-
quence of forward one-way propagations into two opposite directions (both vertical
and horizontal), while including the potential scattering δP at any passing screen
level (zm or xm). Note, that it is required to save all wavefields P in order to recur-
sively recompute δS, which will be used again in the next modeling iteration. Thus,
every modeling iteration will create an additional order of scattering in the modeled
data. Finally, the general modeling equation can be written as follows:

P+(zm) =
∑
s<m

W+(zm)S(zs) +
∑
n<m

W+(zm, zn)δS(zn)

P−(zm) =
∑
s>m

W−(zm)S(zs) +
∑
n>m

W−(zm, zn)δS(zn)

P+(xm) =
∑
s>m

W+(xm)S(xs) +
∑
n>m

W+(xm, xn)δS(xn)

P−(xm) =
∑
s<m

W−(xm)S(xs) +
∑
n<m

W−(xm, xn)δS(xn).

(4.5)

Note that the first term on the right hand side of each sub-equation is only non-zero
for physical sources at zs or xs. Due to the combined propagation in both spatial
dimensions some angles of propagation (around 45 degrees) can be present on both
wavefield components. This can lead to over-amplifying the total wavefield, because
our omnidirectional extension is mostly based on physical intuition.

4.2 Omnidirectional imaging

As it was mentioned before, FWM aims at explaining the observed reflection data
by the modeled one. The objective function describes a misfit (to be minimised)
between the observed and the modeled data, but now the last one comprises vertical
and horizontal components, as described in Equation 4.5. Also note that in principle
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the method has no limitation in source/receiver positioning and can, for example,
be suitable for VSP data (El-Marhfoul and Verschuur, 2014).

In the current setup the both vertically and horizontally modeled data is influenced
by the horizontal reflectivities R∪(xm) and R∩(xm) as well. Therefore, the full set
of gradients will be as following:

∆R∪(zm) = [∆P−(zm)][P+(zm)]H

∆R∩(zm) = [∆P+(zm)][P−(zm)]H

∆R∪(xm) = [∆P−(xm)][P+(xm)]H

∆R∩(xm) = [∆P+(xm)][P−(xm)]H .

(4.6)

Next, the reflectivities are updated at each iteration:

R∪
i+1(zm) = R∪

i (zm) + α[∆R∪
i (zm)−∆R∩

i (zm)]
R∪

i+1(xm) = R∪
i (xm) + β[∆R∪

i (xm)−∆R∩
i (xm)]

R∩
i+1(zm) = −R∪

i+1(zm)
R∩

i+1(xm) = −R∪
i+1(xm) ,

(4.7)

where α and β are scalar values that are computed as described in Section 3.4.
Thus, the main loop of FWM is based on imaging the residual wavefield, updating
the reflectivity, subsequent forward modeling, scaling the reflectivity update and
recalculating the residual wavefield, etc. In the next section, this process will be
demonstrated based on a few basic examples.

4.3 Examples

4.3.1 Dipping structure example

The first imaging example is based on a simple model with one flexure-like reflector
that is shown in Figures 4.2a,b,c. Figure 4.2a shows the reflectivity estimated in
the vertical direction only. Note that in the estimated image, the amplitude of
the dipping reflector is weaker. This can be explained, because the other part of
the amplitude is contributed to the image estimated by the horizontal propagation
(Figure 4.2b). In Figure 4.2c the sum of the images is shown, where it is visible
that the amplitude of the reflector is now corrected along the full reflector. The
finite-difference modeling snapshot of the wavefield with the source located at the
surface, at x=1500m, is shown in Figure 4.2d. The snapshot of the one-directional
FWM modeling scheme is shown in the middle plot (Figure 4.2e). The lack of
amplitudes corresponding to the horizontal propagation is clearly visible. The right
plot (Figure 4.2f) demonstrates the data modelling via omni-directional FWMod
(using Equations 4.5), which is very close to the results of finite-difference modeling.
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Figure 4.2: Imaging results of the omnidirectional FWM version: a) vertical reflectivity, b)
horizontal reflectivity and c) combined one. Modeling results: d) finite-difference wavefield
snapshot of the source located at the surface at x=1500m, e) same snapshot by standard
FWM, f) snapshot of the extended FWM version.

4.3.2 Vertical anomaly example

The second example of the extended FWM scheme is demonstrated using the model
shown in Figure 4.3. The velocity model is represented by an increasing velocity
according to a linear gradient towards the depth axis, while it is laterally invari-
ant. The geological vertical structure is represented by density variations only.
Figure 4.3c demonstrates the total image (superposition of both vertical and hor-
izontal estimated reflectivities) at the first iteration. Note that crosstalk from the
horizontally propagating internal multiple can be observed. Figure 4.3d shows the
omnidirectional FWM image after the fifth iteration. Note that the resolution has
improved and that the crosstalk has been largely resolved. Figure 4.3e displays the
snapshot of the total wavefield calculated by omnidirectional FWMod, which can be
well compared with the result achieved by finite-difference modelling (Figure 4.3f).
Note that the boundaries in the finite-difference modeling (Figure 4.3f) are not fully
absorbing.

4.3.3 Duplex waves imaging by horizontal modeling

This section studies the possibility to include so-called duplex waves (or prismatic
waves) into the modelling and imaging process. Such waves can be basically classified
as internal multiples that scatter only twice within the subsurface.

It was shown (Marmalyevskyy et al., 2005; Zhang et al., 2006; Xu and Jin, 2007)
that duplex wave imaging can be formulated as an extension of the one-way migra-
tion methods to image vertical structures. It involves the reflected upgoing wave-
fields P−(zm, z0) (basically, the first roundtrip of omni-directional FWM modeling)
at the source-side, whereas the receiver wavefield is the again the back-propagated
measured wavefield. In other words, the reflectivity is estimated for waves that are
initially reflected at a horizontally oriented structure and then approach the vertical
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Figure 4.3: Example of omnidirectional FWM. a) Velocity model represented by a positive
linear vertical gradient; b) Density model, including a vertically structured anomaly; c)
Total image at the first iteration (note the artifact from the vertically oriented internal
multiple); d) Total image at the fifth iteration, where crosstalk has been suppressed; e)
snapshot of the total (all directions) FWM wavefield at 1.12ms; f) snapshot of the wavefield
computed by finite-difference modeling.

one. The imaging condition is applied to this last reflection.
The example shown in Figure 4.4 demonstrates how duplex imaging is automati-

cally incorporated in the omnidirectional extension of FWM. Figure 4.4a shows the
result of the vertical-only FWM. Modeled wavefields at 0.68s and 0.96s are shown
respectively in Figures 4.4d,e. It is visible that the estimated reflectivity has a lack-
ing vertical structure and modeled wavefields do not completely model the prismatic
reflection (with the first bounce at the lower horizontal boundary and the second
bounce at the vertical boundary, or vice versa). However, the omnidirectional ex-
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tension overcomes this problem (Figure 4.4f,g.)
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Figure 4.4: Example of duplex wave imaging. a) Density model; b) Image in the vertical
FWM mode; c) Image obtained via the omnidirectional FWM mode; d) vertical FWMod
wavefield snapshot at 0.68s and (e) at 0.96s; f) omnidirectional FWMod wavefield snapshot
at 0.68s and (g) and at 0.96s.
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4.3.4 Salt model example

A geologically more realistic example is demonstrated on the BP 2004 Benchmark
model (Billette and Brandsberg-Dahl, 2005). Velocity and density models are shown
in Figures 4.5a,b, respectively. Figure 4.5c shows the FWM image in the vertical
mode: the vertical flank of the salt body is not imaged because of diving waves
that are missing in the conventional FWMod (down and up only). Omnidirectional
FWM is able to include the vertical flank of the salt body (Figure 4.3d). Note the
artifacts located in the shallow part (above the first reflector) that are especially
visible in the area around each source position. Additional muting of the reflectivity
close to the source location can be used to avoid such artifacts.
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Figure 4.5: Example based on BP 2004 Benchmark model. a) Velocity model; b) Density
model; c) FWM image (vertical mode); d) FWM image (omnidirectional mode).

4.4 Discussion

It was shown that the full wavefield modeling can be performed separately in two
orthogonal directions in order to compensate for emphasizing only one preferred
direction and, therefore, loosing the accuracy in the orthogonal one. The current
approach allows wavefields from orthogonal directions to intercommunicate via the
scattering term δS.

Note that the approach discussed in this chapter needs to be extended to the three
dimensional case. For instance, in addition to up/down, two horizontal North/South
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and West/East round-trips need to be applied.
Also note that, as mentioned in Wapenaar and Grimbergen (1996), in theory the

lateral variations of the medium must be taken into account by the propagation
operator. In such description, the W operator does not only contain propagation
effects but it also includes scattering in the direction coincident to the propagation.
However, such description requires an accurate density and velocity model of the
subsurface, like used in FD modelling. However, in this chapter we followed a differ-
ent path by assuming the horizontal horizontal reflectivity as a separate operator in
the orthogonal grid, such that a more data-driven approach can be utilized.

We have shown in this chapter that the horizontal reflectivity is able to scatter the
horizontal wavefield omitting the duplex waves in the vertical component. However,
as mentioned in the previous chapter, imaging of transmission coefficients can cap-
ture such information from the vertical component. Figure 4.6a shows the reflectivity
estimated in the vertical sense, whereas Figure 4.6b shows the estimated upgoing
transmission part where we can see not only the horizontal part of the image but also
the vertical boundary. Therefore, the most complete approach would be estimation
of the transmission coefficients independently rather than constraining it by reflec-
tivity that lacks imaging vertical structures. However, this option is not yet fully
investigated due to the artifacts and difficulties appearing during cross-correlation
of the source-side and receiver-side wavefields from the same direction.
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Figure 4.6: FWM applied in the vertical mode with estimation of the upgoing transmission
as independent parameter. a) Estimated reflectivity R∪; b) Estimated upgoing transmission
part δT−.

4.5 Conclusions

An omnidirectional extension of Full Wavefield Migration has been proposed, where
one-way wave propagation in the vertical and in the horizontal direction is combined
such that reflectivity under all angles can be properly estimated. Four synthetic
examples showed the virtues of this extended FWM algorithm.

However, the wavefields at some angles are presented on both components, yielding
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the danger of over-parametrisation. Therefore, the wavefields possibly should be
filtered. Some further research is required to properly represent the wavefields at all
angles.



5
Applications

5.1 Introduction

This chapter demonstrates various application options and strategies that are pos-
sible via FWM and full wavefiel modelling (FWMod).

In Chapter 3 different imaging input options were already introduced. In the next
section imaging of surface multiples and its various modifications will be described.
It will be shown that imaging of surface multiples will increase the illumination and
may drastically improve the image quality especially in cases of coarse source or
receiver sampling. The latter is discussed in the OBN imaging subsection.

When imaging surface multiples, the original source wavelet is not required as the
measured wavefield is reinjected at the surface and is used as a source wavefield.
This feature can be used for the actual source estimation by running FWMod in a
time-reverse (adjoint) mode, which translates primaries into the source wavelet. A
special section demonstrates the source estimation approach.

Finally, it is demonstrated how to apply missing data reconstruction and deblend-
ing using FWMod.

5.2 Imaging surface multiples

Imaging of surface multiples has been already introduced in Chapter 3. In this
section we will demonstrate the benefits of this approach. Surface multiples allow

71
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to image the subsurface without actual knowledge of the source wavelet, whereas
knowledge of the source wavelet is necessary when imaging primaries. Previously,
it was discussed that FWM can be applied to different types of data: depending
on the choice of the source-side wavefield that is used, primaries, surface multiples
or total data can be imaged. The options are gathered again in Table 5.1. In
particular, surface multiples for the marine case can be generated after re-injection
of the measured data multiplied by the surface reflection coefficient.

As mentioned before in Chapter 3, that there are two possibilities to model the
surface multiples. In the first, linear way, the source wavefield at the surface is taken
as Q⃗+(z0) = S⃗+(z0) + R(z0)P⃗

−
obs(z0), i.e. as a superposition of the wavelet and the

re-injected observed wavefield, meaning that re-injected measured data takes one
extra roundtrip through the subsurface. Thus, the last bounce of each event is
used in the imaging process. Surface multiples, in this case, would have the same
sensitivity to the velocity model errors possibly present. You could say that the
wavefield relationship at the surface is passive, because multiples are included by
adding the measured data in the source term.

Table 5.1: Three imaging options in the FWM process.

Options Source side Receiver side
1) FWM-tot S⃗+ + R∩(z0)P⃗

− P⃗−

2) FWM-prim S⃗+ P⃗−
0

3) FWM-surf R∩(z0)P⃗
− M⃗−

Another, non-linear way, is to model surface multiples via active wavefield rela-
tionship at the surface, starting from the original source wavelet. It means that the
total downgoing wavefield is actually Q+(z0) = S+(z0) + R(z0)P−

mod(z0), being the
source wavelet and the re-injected modelled data (generated with FWMod). In this
case, the knowledge of the source wavelet is required in order to generate the surface
multiples.

In most cases we do the first, linear, option, especially because then surface multi-
ples are correctly imaged even without knowledge of the source wavelet. Moreover,
it has a better convergence rate: the surface multiples are started being explained
already at the second iteration (right after the first estimate of the reflectivity ob-
tained at the first iteration). The second option might be very useful for estimating
velocities with high resolution in Joint Migration Inversion (JMI) (Berkhout, 2014c;
Staal et al., 2014) or when there are large acquisition gaps.

Figure 5.1 compares the imaging result of primaries on the model shown in Figure
3.4, which was also used in the previous chapter. The source spacing has been
slightly increased from 50m to 100m. In Figures 5.1a,b,c the AVP functions selected
at the depth level of the first horizontal reflector are shown for primaries, surface
multiples and total data, respectively. Figures 5.1d,e,f show corresponding angle-
averaged reflectivity plots. The acquisition imprint is strong and clearly visible
(see Figure 5.1a) as gaps with a period matching the source sampling. By looking
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Angle-dependent imaging of primary data: AVP plot (a) and angle-averaged
image (d); imaging of surface multiples only: AVP plot (b) and angle-averaged image (e)
and imaging of the total data: AVP plot (c) and angle-averaged data.

at Figure 5.1b it is visible that imaging of surface multiples does not have such
strong acquisition imprint and illuminates all angles for all lateral locations more or
less homogeneously. This can be explained as the surface detectors act as secondary
sources, reflecting all upgoing energy and, thereby, generate additional illuminations.
Imaging of surface multiples might be very useful for detecting shallow structures
(see Lu et al. (2014b)). Imaging of the total wavefield uses both information from the
surface multiples and the primaries. However, it is clearly visible that information
coming from the primaries overwhelms the contribution from the surface multiples,
such that a residual acquisition imprint remains visible (Figure 5.1c).

5.3 Joint primaries and surface multiples imaging

Given the observations in the previous section, it is interesting to consider joint-
FWM when two datasets (primaries and surface multiples) are being inverted via a
closed-loop process separately, while their image is connected. The strategy can be
described as follows:

1. Total data imaging. FWM for the first option from Table 5.1 is performed.
2. Prediction of surface multiples and primaries. Wavefields are predicted using

FWMod based on the reflectivity obtained at the previous step. The predicted
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wavefields are subtracted from the total data: the modeled primaries are sub-
tracted from the total data in order to achieve an estimate of surface multiples
a subtraction of the modeled surface multiples is used to calculate an estimate
of the primaries. Thereby, the separation is performed (see also Section 5.7).

3. Joint primary/surface multiples FWM. In the last step separated wavefields
are inverted independently, while updating and using the joint (combined)
image that aims at explaining both wavefields simultaneously. Weighted sum
of the separated images can be applied in order to calculate a total image.
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Figure 5.2: Velocity model (a) and density model (b) used to generate numerical data using
acoustic finite difference modelling.

We study this approach on a numerical example. Figure 5.2 shows the velocity
and density model used for acoustic finite-difference modelling in order to generate
the total reflection data (one of the experiments is shown in Figure 5.4a). Sampling
of the sources is 350m and the receivers are sampled with 10m. Note that Gaussian
noise has been added to the generated wavefields.

First we image the total data. The resulting image after 20 iterations is shown in
Figure 5.3a. The image is good (crosstalk has been successfully suppressed), how-
ever, due to the coarse source sampling (350m) the first reflector has an acquisition
imprint. Next, we use the reflectivity from this result in order to model primaries
and surface multiples using FWMod. The resulting modelled primaries and surface
multiples are subtracted from the given total data in order to estimate surface mul-
tiples and primaries, respectively, from the total data. The resulting datasets are
shown in Figure 5.4b and c, respectively.

The FWM images for separated primaries and surface multiples are shown in
Figure 5.3c and d. It is visible that the image of the primaries has an acquisition
imprint as well in the shallow part, whereas the image of the surface multiples is
better in this area. However, the surface-multiples image is more noisy in the deeper
part.

Finally, we apply the proposed joint imaging process (see Figure 5.3b). The joint
image was combined such that above 300 meters the surface multiples imaging con-
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Figure 5.3: a) Total wavefield FWM image, b) joint FWM image, c) separated primary
FWM image and d) separated surface multiples FWM image.
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Figure 5.4: Wavefield separation results via FWM. a) Total data, b) Separated primaries
by using FWMod and c) Separated surface multiples by using FWMod.

dition was used, whereas beneath the primary imaging was involved. Note, that the
shallow area now has no acquisition imprint and there is slightly improved resolution
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in comparison to the surface multiples image at the shallow part (Figure 5.3d). At
the deeper part this image is made up of the primary image that takes the advantage
over the noisy result coming from Figure 5.3d.

In this example a straightforward separation between the contribution of multiples
(z < 300) and primaries (z > 300) was used. Of course, more advanced weighting
schemes and additional constraints can be used for potentially better results.

5.4 Ocean bottom node imaging

Another important application of imaging surface multiples is the ocean bottom
node (OBN) acquisition. OBN becomes a common acquisition method (Mitchell
et al., 2010). Because of various practical and economic constraints the distance
between two nodes can be in the order of a few hundred meters in both spatial
directions. Due to the sparse receiver sampling the acquisition design should be
compensated by dense source sampling at the surface. In the reciprocal domain
several common receiver gathers can represent shot records – with sources on the
ocean floor – with well-sampled receivers at the surface. Because the number of
shot-records is small and the source (in the reciprocal domain) is located close to
the water bottom, imaging of primaries becomes difficult, especially close to the
water bottom. However, the data is very suitable for using surface multiples to
image the subsurface. Usually this is done via the mirror source principle. This will
only allow the imaging of first-order multiples, while it can create crosstalk from
other events. In this section we describe the capability of FWM to image OBN data
in a more complete sense.

Figure 5.5 shows the mentioned options. It is visible that imaging of primaries
is limited to an area around each ocean bottom node (Figure 5.5a), whereas imag-
ing via the mirror source and surface multiples (Figure 5.5b,c) drastically increases
illumination.

In previous publications a so-called mirror imaging is applied. In this case a
source-wavelet is forward propagated to the depth twice deeper than the actual
OBN station, which makes it possible to image surface multiples (Figure 5.5b) of
the first order. This approach works well in the case of a deep water bottom, as
then separation of primaries and surface multiples is guaranteed (Pacal et al., 2015).
Wong et al. (2012) demonstrated that the mirror imaging technique can be enhanced
by the joint inversion-based imaging approach with surface seismic data.

Lecerf et al. (2015) showed the advantage of using all surface multiples over the
mirror source imaging process – every additional order of surface multiple brings
additional information about the subsurface (instead of using only the first order).
Using the same reasoning FWM also uses all orders of surface multiples but at the
same time it also includes transmission effects and interbed multiples. Thus, a phys-
ically more correct forward model, in combination with the closed-loop approach,
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allows to use the information from all reflection events (see Figure 5.5c) and to
suppress the crosstalk.

Next, a numerical example demonstrates the three described approaches of OBN
imaging, starting with imaging primaries, then using mirror source imaging and,
finally, imaging the full wavefield (excepting primaries). The velocity and density
models for this set of examples are shown in Figures 5.6a,b respectively. The data
was modeled using finite-difference modelling with an OBN configuration: a dense
regular source distribution at the surface with a sparse set of the receivers (ocean
bottom nodes) measuring the components of the particle velocity and the pressure,
which can provide up/down wavefield separation by PZ summation. Because of
sparse source sampling (150m) it is important to mention that multiple elimina-
tion in this situation is challenging such that imaging of multiples provides a great
alternative: it works on a shot basis and multiples will largely enhance the illumi-
nation.

Four imaging approaches have been performed on these data: imaging of primaries
(Figure 5.6c), closed-loop mirror source imaging (Figure 5.6d) and surface multiples
imaging using PWM (Figure 5.6e) and FWM (Figure 5.6f). All steps were carried
out in the reciprocal domain considering sources at the water bottom with a dense
receiver array located at the surface.

For imaging of primaries a receiver-side wavefield contained separated up-going
component, whereas source-side wavefield contained the actual source wavelet that
was injected at the depth of the water bottom. Note, the image contains crosstalk
as visible in Figure 5.6c and the water bottom is not imaged. The crosstalk is
caused by linear mapping of surface multiples with a source wavelet (see also Fig-

(a) (b) (c)

Figure 5.5: Imaging options considered in this paper. a) Imaging primaries; b) Mirror
source imaging; c) FWM of surface multiples. Red paths represent source-side wavefield
continuation. Green paths represent receiver-side wavefield back-propagation. Light green
paths indicate events being not imaged correctly and a dashed line means a wrongly back-
propagated event that creates crosstalk after being cross-correlated with a non-relevant event.
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ure 5.5a).
The next imaging approach is based on the mirror-source principle. In this exam-

ple we use the direct arrival as a source-side wavefield, whereas the receiver-side wave-
field is the separated downgoing component of the measured data. This approach
shows a significant improvement for imaging the water bottom, as can be observed
in Figure 5.6d. Note, however, that the mirror-source image is not yet crosstalk free.
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(b) Density model
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Figure 5.6: Numerical 2D example for imaging OBN data. a) Velocity model; b) Density
model; c) Imaging of primaries; d) Mirror source imaging of first-order surface multiples;
e) FWM imaging of all multiples.
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As shown in Figure 5.6d again crosstalk is formed, but now by interference of the
second-order surface multiple with the reflected direct arrival (being only one event
representing the source-side wavefield, as also shown in Figure 5.5b).

Imaging of the surface multiples by PWM and FWM approaches are shown in
Figures 5.6 e,f respectively. Note that there is no crosstalk with primaries, because
they are not present in the downgoing component that is used for imaging. The
receiver-side wavefield was muted before the arrival time of the earliest second order
of surface multiple. Note that imaging results for FWM (Figure 5.6f), as expected,
have resolved internal multiples and transmission effects, which provides more ac-
curate result than one of PWM (Figure 5.6e).

5.5 Source estimation

It was already discussed that in order to obtain a true-amplitude image from primary
reflections a correct source wavelet, especially in terms of its amplitude, is required.
If the amplitude of the wavelet wavelet is overestimated it will lead to the underesti-
mation of the reflection coefficients. As result, FWMod will model too weak internal
multiples and, therefore, the crosstalk from internal multiples will not be sufficiently
suppressed. On the another hand, underestimation of the source amplitude leads to
the overestimation of the reflectivity. In that situation, instability in the forward
modelling may arise: internal multiples can be modeled with amplitudes stronger
than original primaries if the reflection coefficients get larger than 1.

In the previous sections we already demonstrated the benefits of imaging surface
multiples. The source estimation procedure is also based on the surface multiple
image as a starting point.

First, we start imaging using the re-injected total data at the source-side and
the total data at the receiver side. The final image will show anti-causal crosstalk
that will remain in the final image in order to explain primaries by re-injected data.
In order to minimise this crosstalk, the image can be muted above the water bot-
tom. Alternatively, this crosstalk can be avoided if purely separated multiples are
imaged.

Next, it is possible to perform one roundtrip of FWMod in the adjoint mode for
the measured total data: it will be visible that primaries will be focused at the
position of the source, whereas surface multiples will be kinematically located at the
position of the primaries. Selecting the resulting wavefield only around the source
location and for small travel times, thus retrieving only the focused part, may be
considered as a gradient for the source estimation.

Figure 5.7 shows the closed-loop (inversion) approach for this source wavelet esti-
mation process. The total data serves as an input. If separated primaries are avail-
able, they will be even more desirable. Next, a roundtrip of the adjoint FWMod
is applied, which provides the gradient for updating the source. Next, we perform



80 5. ApplicationsDelphiSource estimation closed-loop

8

Adjoint FWMod

FWModSimulated 
primaries

Data

Residual

Velocity

(from surface multiples imaging)

Gradient 

Reflectivity

Source 
wavefield

Figure 5.7: Source estimation scheme using iterative focusing of the data and modeling of
the primaries. Reflectivity is considered to be given (by imaging from surface multiples)
whereas the source wavelet is assumed to be unkwown.

forward modelling using the updated source wavefield and the resulted modeled pri-
maries are subtracted from the input data. Then, the new residual is computed
and it can be used for computation the gradient for the source wavefield in the next
iteration. It is noticeable that this closed-loop scheme is very similar to FWM, but
instead of estimating reflectivity the source wavefield is estimated, while reflectivity
is kept as is. Thus, the difference is only in the model space (source wavefield instead
of image) and in the adjoint operator (source focusing instead of imaging).

A simple synthetic example demonstrates the source estimation procedure. There
is one horizontal boundary represented by a homogeneous velocity and a density con-
trast shown in Figure 5.8. The data was generated by an acoustical finite-difference
modelling scheme with a free-surface boundary condition.

The modeled shot record with a source located in the middle (x=1500m) of the
model is shown in Figure 5.9a. First, six iterations of FWM were performed without
knowledge of a source wavelet, meaning that the measured data, scaled with -1, was
used as the source-side wavefield and, thereby, primaries are considered to be noise,
ending up in the residual (see Figure 5.9b). Anti-causal crosstalk located in the image
needs be muted, otherwise primaries can be wrongly explained by reflected surface
multiples. The corresponding estimated images are shown in Figures 5.10a,b.

Primaries for each shot record were re-datumed towards the source position in
the described iterative manner. Figure 5.11a shows the true source wavefield and
the estimated source wavefield (Figure 5.11b). When the source is estimated we can
re-start FWM and migrate from scratch using both estimated source wavelet and
re-injected data, thereby imaging the total wavefield. The final residual is shown in
Figure 5.9c, while the estimated images are shown in Figures 5.10c,d.
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Figure 5.8: Subsurface model (density) for generating numerical data.
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Figure 5.9: Residuals at different iterations: a) First iteration (data); b) Last iteration
without the source knowledge; c) Last iteration after using the total data and including the
estimated source wavefield.
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Figure 5.10: Images at different iterations: at the first iteration (a), at the last iteration
without source wavefield (b), at the first iteration with the estimated source wavefield (c)
and at the last iteration with the estimated source wavefield (d).

The focused wavelet is truncated along the time axis such that it excludes artifacts
surface multiples that are translated to primaries. Hence, forward modelling is
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Figure 5.11: Estimated source wavefield (a) versus true source wavefield (b).
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Figure 5.12: Estimated wavelets for different shot-records.

performed with a source side wavefield containing the estimated source wavelet only.
It is also possible to truncate the wavelet spatially. For instance we can estimate
only one trace of the wavelet per shot record. The results of such estimation is shown
in Figure 5.12. It is important to mention that a spatially truncated wavelet loses
its directivity information, whereas the fully sampled source wavefield (as shown in
Figure 5.11) will have directivity effects included.

It appears that using a spatially truncated wavefield is good for missing data
interpolation using FWMod. For example, the source can be estimated when near
offsets are present and the result of the forward modeled data using the spatially
truncated source wavelet can be used for near-offset reconstruction. In this way it
becomes possible to estimate missing data using FWM and FWMod. Interpolation
using FWMod is discussed in the next section.

5.6 Interpolation using Full Wavefield Modelling

In this section it will be shown that full wavefield modelling can also be used as an
interpolation tool. The data can be modelled using the reflectivities obtained by
FWM but in a denser sampling than the actual receivers. Next, the modelled data
can be infilled in the missing traces, after which imaging can be repeated again.
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Figure 5.13 shows how missing data interpolation can be introduced in the FWM
closed-loop algorithm as an additional outer loop. It is proposed to perform several
FWM computations with repeating a complete reset of the reflectivities and the
wavefields. Before each ’reset’ the upgoing wavefield can be infilled in the missing
data, therefore, the new residual can be calculated from a combination of the original
traces with the missing data filled in by traces obtained from FWMod.

A first interpolation example is based on the model introduced in Figure 3.4,
but the input data has a smaller amount of traces as it represents marine streamer
acquisition: we simulate a moving spread acquisition with a minimum offset of 100
meters and a maximum offset of 350 meters. The original shot record is shown in
Figure 5.14b. Note that the negative offsets are sparsely sampled because of the
source sampling that is being coarser than the receiver sampling (50 meters and 10
meters, respectively). Figure 5.14a demonstrates obtained FWM image after some
iterations of using the incomplete data.

Next, the missing traces from Figure 5.14b are replaced by traces obtained by
FWMod using the image from Figure 5.14a. The new complete shot record is shown
in Figure 5.14c.

It is interesting to note that interpolation by FWM can be more efficient in the
angle-independent mode. The reason is that by using a single parameter per grid-
point ’spreads’ the energy equally along the offset, while during the angle-dependent
mode the data including missing areas will create distorted angle-dependent reflec-
tivity behaviour, from which missing data cannot be properly estimated.

Of course, such data reconstruction approach will be especially useful for 3D
situations, where the cross-line direction is usually coarsely sampled due to the
typical marine streamers configuration. The next synthetic example demonstrates
implementation of FWMod interpolation in 3D. There are 4 sources located at the
center of the surface. The receiver spacing is 10m in the in-line and 50m in the
cross-line direction. The original input data is shown in 5.15a. The image obtained
using this data is shown in Figure 5.15c. After this, the missing data is reconstructed
using the modelled upgoing wavefield, shown in Figure 5.15b. Note, that the final
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Figure 5.13: Interpolation strategy using modelled wavefields obtained by FWM(od).
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image (Figure 5.15d) is improved with aliasing artifacts reduced, which were visible
in the horizontal slice in Figure 5.15c as a striping pattern across the coarse sampling
direction.

This set of examples demonstrates that FWM can be designed as a self-sufficient
approach that handles the missing data. At each reset of FWM, the modelled traces
from FWMod are re-inserted at the missing locations, which provides a better image
for the following run of FWM.
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Figure 5.14: Reflectivity image (a) obtained by imaging the data shown in (b) and data
reconstructed by Full Wavefield Modeling (c).
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(a) (b)

(c) (d)

Figure 5.15: Original data (a) and data interpolated by FWM (b). Images using the original
data (c) and interpolated data (d).

5.7 Separated primaries and multiples prediction

Once an FWM image is obtained, FWMod allows to model specific events depend-
ing on the source-side input. Therefore, the forward model can be used as a pri-
mary/multiple separation process. This option was already briefly discussed in the
joint imaging of primaries and surface multiples. However, the primaries and mul-
tiples from FWMod can also be considered as the output of FWM process. As an
example, Figure 5.16a shows the total surface data based on the model shown in Fig-
ure 3.4 a,b. After FWM a crosstalk free, true-amplitude image has been obtained.
Using this image, the primaries can be modelled (predicted) by using the source
wavelet at the source side (Figure 5.16b). Surface multiples can be predicted as well
by using the re-injected measured, total wavefield, excluding the source wavelet, at
the source side, for which the result is shown in Figure 5.16c.

Optionally, the predicted primary wavefield can be (adaptively) subtracted from
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Figure 5.16: Example of predicting primaries and surface multiples: a) total input data, b)
predicted primaries and c) predicted surface multiples

the original shot-record in order to calculate more accurate surface multiples, al-
though potentially leaving some residual primary energy as noise. Vice versa, pre-
dicted surface multiples can be subtracted from the input data in order to get more
accurate primaries.

5.8 Deblending

Another application of FWM can be used for de-blending purposes. The approach
can be described as follows. Given the blended shot-records with known source en-
coding and source signature FWM imaging can be performed, which eventually will
produce the image with suppressed blending noise. Next, the unblended shot record
can be computed in two ways. In the first way a straightforward modelling can be
applied where the source wavefield contains its wavelet at zero-time. Alternatively,
deblended shot record can be achieved by modeling of the encoded source wavefield
excluding the wavelet of the ’target’ shot record. Next, the modeled blended shot
records can be subtracted from the complete data in order to retrieve the shot record
of interest.

Figure 5.17a shows one of the numerically blended shot records containing three
simultaneous sources simulated on the model shown in Figure 3.4. After obtaining
a crosstalk-free FWM image (as the closed-loop approach also deals with the simul-
taneous sources crosstalk), each separated shot record can be optionally predicted
using FWMod, as shown in Figure 5.17b.

Alternatively, the de-blended shot record can be computed as a sequential sub-
traction of all predicted blended source responses except the source record of inter-
est.
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Figure 5.17: Example of predicting de-blended shot-record: given blended data (a) and
predicted unblended shot (b) after modelling from the FWM image.

5.9 Discussion

In this chapter it was demonstrated that FWM can be used to perform data re-
construction (interpolation), simultaneous sources deblending and source wavelet
estimation. It is interesting to compare FWM with other algorithms recently de-
veloped and closely related to FWM - being the Focal domain method (Kutscha
and Verschuur, 2012; Kontakis and Verschuur, 2014) and Estimation of Primaries
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by Sparse Inversion (EPSI) (Van Groenestijn, 2010). Both the focal domain method
and EPSI aim at explaining the observed data via a specific data-driven parame-
terisation and are used for data preprocessing (deblending, prediction of primaries
and source estimation). Table 5.2 compares the main features of the three meth-
ods.

The aim of the focal domain method is to estimate the focal domain wavefields
X(zn) obtained by focusing the surface data at the major reflectors of the subsurface.
Besides the focused primary event each focal domain wavefield also contains other
events in the anti-causal and causal parts. Actually, each focal domain wavefield
can be considered as the response of virtual sources and receivers positioned at the
depth level of interest. The forward model of focal domain method is described as
follows:

P−(z0) =
∑
n

W−(z0, zn)X(zn)W+(zn, z0). (5.1)

Equation 5.1 says that the reflection data can be presented as a sum of such focal
domain wavefields with linearly applied W operators on both sides. Typically, a
sparseness constraint imposed on the focal domain suppresses acquisition footprint
effects. Therefore, after applying the forward model, the reconstructed data can
be obtained. Because there are usually few depth levels, some of the events can
be represented by different focal operators simultaneously. Such freedom in the
parameters space allows to fit the observed data very well. Using just a macro
velocity model is sufficient, which is convenient because usually at the pre-processing
stage accurate velocity model is not yet present.

FWM can be approximately considered as an extreme case of the previous method
in the sense that the reflectivity is also a focused wavefield but containing only the
reflection event and not other events. To achieve this, FWM requires an accurate
velocity model and imaging at every depth-level. Upside and downside reflectivities
being respectively multiplied with a downgoing wavefield and upgoing wavefield gives
a two-way scattering term that can be linearly propagated to the surface. The sum of
such operators gives the modeled data. The main difference with the focal domain
is that the modelling of the downgoing and upgoing wavefields is non-linear (see
scheme in Table 5.2). Moreover, it mainly aims first at estimating the reflectivity
(construct an image), although in this chapter it was shown that it can also used for
providing the data (and not only at the surface depth level). In such mode FWM can
be considered as a data transformation, just like the focal domain method.

FWM in this case is more expensive than the focal domain, but it can be more
accurate because it comprises the scattering terms at every depth level with a step
size of imaging. The reflectivities contain only information at zero-time (imaging
condition) and does not contain the anti-causal and causal parts that are present
in the focal domain and which should be kept in order to explain the surface data.
Because the zero-time is selected in FWM, no sparsity (in time domain) constraint
is required. The upgoing and downgoing wavefields contain only causal components.
However, as mentioned before, FWM relies on having accurate velocity model.
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Table 5.2: Comparison of FWM with the focal domain method and EPSI.

Method Focal FWM EPSI
Forward model

∑
n W−X(zn)W+

∑
n W−δS(zn)

∑
n X0S

Model space X R X0

…

Depth levels (n) Few Many Only one
Velocity information Approximate Accurate None

Another development – EPSI – aims at explaining the primary impulse response
data X0 from the measured data including all surface multiples. Actually, the es-
timated response should contain only primaries and its interbed multiples. The
forward model can be described as follows:

P−
obs(z0) = X0(z0)[S+(z0) + R∩(z0)P−

obs(z0)], (5.2)

where the first term on the right hand side (X0S) explains the observed primaries
(and their internal multiples) and the second term (X0R∩P−) explains the observed
surface multiples (and their internal multiples). Via inversion, X0 and S+ are esti-
mated by explaining the observed data.

It is also important to mention that hybrid approaches can be implemented. For
example, the so-called focal closed loop SRME method (Lopez and Verschuur, 2015)
implies the forward model that is based on the coupling of the forward modal of
the Focal domain method (Equation 5.1) with the forward model of EPSI (Equa-
tion 5.2).

5.10 Conclusions

In this chapter it was demonstrated that FWM can have various applications and
strategies in imaging. It was shown that imaging of surface multiples can be very
beneficial for revealing structures located close to the source: shallow reflectors, such
as the water bottom, or even the area close to a deep water bottom in case of ocean
bottom node (OBN) data imaging. Imaging of surface multiples can also be very
useful for the full 3D case as usually sources and receivers are relatively sparse in at
least one dimension.
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It was also shown that it is possible to estimate the source wavelet using imaging
of surface multiples. A closed-loop procedure was introduced for estimation of the
effective source wavefield.

In the rest of this chapter it was also demonstrated that it can be important to
consider not only the resulting image as an output of FWM but also the modelled
wavefields that are accessible at every grid-point on the subsurface. FWM can be
considered as a transformation that decomposes the surface data in terms of the
subsurface wavefields related to the subsurface reflectivities at the corresponding
grid-points. Successful application of this approach are primaries/multiples separa-
tion, deblending and data reconstruction.



6
Field data examples

6.1 Introduction

This chapter will demonstrate the application of FWM to several field datasets.
All datasets are offshore but have different depths of the water bottom. First, the
chapter is focused on the role of the surface multiples in imaging in shallow and deep
water scenarios. An example of imaging of multiples in 3D sparsely sampled OBN
data is demonstrated as well. Next, suppression of crosstalk from internal multiples
is demonstrated. Additionally, the source wavelet estimation and data prediction
process, as discussed in the previous chapter, are demonstrated.

6.2 Imaging of surface multiples

In this section applications of imaging of surface multiples by FWM to field data is
studied. Firstly, a 2D deep water case scenario is discussed. Next, the application
to 2D data acquired in shallow water is shown. Finally, the features of using surface
multiples are demonstrated for 3D OBN data, where primaries cannot provide a
decent image at all.

91
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6.2.1 Deep water scenario

As a first example a dataset from the Gulf of Mexico (kindly provided by PGS)
is used. The available data consists of a dual-streamer sail line with only positive
offsets, the minimum offset being 125m. Regarding the pre-processing, a deconvo-
lution has been applied to separate downgoing and upgoing wavefields using P-Z
summation. The source wavelet was not known and only positive offsets (actual
measurements) were used.

First, imaging without source wavelet has been performed using only the re-
injected surface total data as a source-side wavefield, such that only surface multiples
contribute to the image. Figure 6.1a shows the imaging results at the first iteration.
The red arrow indicates crosstalk formed due to the first order of scattering surface
multiple at the source side interfering with the second order of surface multiple at
the receiver side. Note that after 6 iterations (Figure 6.1b) this crosstalk has been
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Figure 6.1: Field data FWM results on Gulf of Mexico data. a) First iteration of imaging
only surface multiples; b) 6th iteration of imaging only surface multiples.
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greatly suppressed.
Next, using the given image, the source wavelet has been estimated, as described

in the previous chapter, and a new imaging process of the total wavefield has been
performed. This means that the total data is used at the receiver side, while at
the source side the measured data is re-injected together with the source wavelet
(Q⃗+ = S⃗+ + R∩P⃗−). The result of imaging the total data is shown in Figure 6.2.
The image at the first iteration is displayed in Figure 6.2a. Kinematically the same
crosstalk is observed. Because the incident source wavefield is also present, crosstalk
is generated due to the cross correlation of that wavefield with the first order of
surface multiples. The image at the 15th iteration (Figure 6.2b) shows successful
crosstalk suppression. Also note an increased resolution in the deeper part.

Comparing the image of the total wavefield (Figure 6.2b) versus imaging by sur-
face multiples only (Figure 6.1b) we can observe that including the primaries in
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Figure 6.2: Continuation of Figure 6.1. a) First iteration of imaging the full wavefield; b)
15th iteration of imaging the full wavefield.
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imaging still has advantages: they are strong, thereby, will have a better S/N ra-
tio. Moreover, at deeper locations angle coverage by surface multiples will not be
distinguishable anymore from angle-coverage of primary illumination. The better
S/N ratio of primary imaging is clearly visible around the water bottom (the water
layer is less noisy). Thus, for deep water the added value of using surface multiples
in imaging may not be too large, as primary illumination for this data is already
quite good. However, for 3D data in the cross-line direction there will be more ben-
efits. Still, for this 2D line, an important contribution of using surface multiples was
getting an accurate source field.

In the next section, however, it will be demonstrated how surface multiples do
have advantages over primaries in the actual image.

6.2.2 Shallow water scenario

Next, using FWM in a shallow water situation has been investigated. The dataset,
provided by PGS, has been acquired in the Nelson field located in the British sector
of the North Sea. Figure 6.3 shows the nearest-offset gather of the available survey.
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Figure 6.3: Nelson data nearest-offset sub-section. Note that reflections from channels and
their multiples are well visible in the section around 2000-3500m in the lateral direction
and between 0.15-0.5s in time.
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The relatively shallow water bottom causes strong reverberation between the water
bottom and the surface. Other strong surface multiples are also present due to the
reflections from the so-called paleo channels that are more clearly present in the
right part of the image.

The marine streamer data used as input for FWM has the following parameters:
receiver sampling 12.5m, time sampling 0.004s, source sampling 25 m, record time
(used) 2s. The basic preprocessing included near-offset interpolation. Surface mul-
tiples estimation has been done using the Estimating Primaries by Sparse Inversion
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Figure 6.4: Full Wavefield Migration, imaging of surface multiples in shallow water. a)
Image at the first iteration; b) Image at the 10th iteration.
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(EPSI) method (Van Groenestijn, 2010).
Figure 6.4 shows the imaging of separated surface multiples. The image at the

first iteration is shown in Figure 6.4a. It visible that there is a lot of crosstalk visible
as repetitive structures. The 10th iteration of FWM suppresses such crosstalk, as
expected (shown in Figure 6.4b). Also note the improved resolution of the image due
to the closed-loop approach of FWM. Next, imaging of primaries is performed, for
which results are shown in Figure 6.5. Note, that the primaries were computed as a

0 500 1000 1500 2000 2500 3000 3500 4000
Lateral location [m]

0

200

400

600

800

De
pt

h 
[m

]

(a)

(b)

Figure 6.5: Full Wavefield Migration, imaging of primaries in shallow water. a) Image at
the first iteration; b) Image at the 10th iteration.
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result of adaptive subtraction of the surface multiples (as used in the previous set of
examples) from the total data. The first iteration image (Figure 6.5a) seems to be
already crosstalk free, because internal multiple crosstalk is not observable in this
data. Note, however, that some residual multiple energy (from EPSI) is visible in the
image (indicated by red line in Figure 6.5b), whereas imaging of surface multiples
did not show such crosstalk. Also note the strong acquisition imprint on the water
bottom and other shallow reflectors (Figure 6.5a and b).

Hence, this data example demonstrates that imaging of surface multiples has
advantages as there is almost no acquisition imprint at small depths. It is shown
that the crosstalk might be better suppressed by the closed-loop approach rather
than eliminating it as a separated pre-processing step. However, the advantage of
using surface multiples is decreasing with depth: at larger depths (starting from
around 600 meters in this example) it is visible, that the primary image become
more consistent than the image obtained by surface multiples.

6.2.3 3D ocean bottom node data

Even if primaries take the advantage over surface multiples at larger depths, there are
situations, when there is hardly any illumination at all coming from the primaries.
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Figure 6.6: a) Geometry of the OBN nodes and sources. b) Common receiver gather along
the y-coordinate for a fixed x-coordinate for one of the OBN stations. Note that primaries
and surface multiples are well separated in time.
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In this section we study the imaging of ocean bottom node (OBN) data in the
reciprocal domain, where coarse ’source’ (i.e. OBN stations) sampling fails to image
the area close to the water bottom (where the stations are located). Therefore, as
discussed in the previous chapter, imaging of the area around the water bottom is
only possible via the surface multiples.

The data used in this section is kindly provided by TEEC. The data originates
from offshore New Zealand (Bialas et al., 2013) and was acquired by GEOMAR.
Figure 6.6a shows the geometry of the sources and receivers.

Figure 6.6b shows one common receiver record for a fixed x-coordinate. The
missing traces have been linearly interpolated and extrapolated in the move-out
corrected domain. The water bottom is so deep that surface multiples don’t overlap
with primaries in the data domain. Therefore, we used time muting in order to split
the primaries and surface-related multiples.

Due to memory limitation, only four OBN stations were selected and, therefore,
considered as shot-records (see the red dots in Figure 6.6). Figures 6.7a,b show the
result of imaging of OBN data by using primaries only. Note the poor illumination
due to the small number of shots (OBN nodes in the reciprocal domain) selected for
imaging. Next, surface multiples are used for the imaging, the result being show in
Figures 6.7c,d and 6.7e,f. Figure 6.7c and Figure 6.7e show the images at the first
iterations. The same pair of images at the 10th iteration are shown in Figure 6.7d
and Figure 6.7f. Note that the difference between Figure 6.7c,d and Figure 6.7e,f is
in the depth slice that is plotted on top of the image cube.

This example clearly demonstrates the extended illumination by surface multiples
comparing to imaging by primaries. It is clearly visible, that the water bottom is
nicely imaged. Also, due to the inversion process embedded in FWM, the resolu-
tion is increased and the lateral extend of the image has also improved. At the
deeper horizontal slice in Figure 6.7f, some fault structures are now visible. Note
that imaging of primaries, as discussed before, might perform better for the deep
structures. However, imaging of the part that is relatively close to the water bottom
by primaries is simply impossible in an OBN acquisition configuration.



6.2. Imaging of surface multiples 99

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Full Wavefield Migration of OBN data using primaries only: image at the first
iteration (a) and image at the 10th iteration (b); Full Wavefield Migration of OBN data
using surface multiples only. Image at the first iteration (c) and image at the 10th iteration
(d) when horizontal slice is selected at the water bottom and (e) and (f) are the same as
(c) and (d) but for the horizontal slice selected at 800m depth.



100 6. Field data examples

6.3 Impact of internal multiples

This section demonstrates how FWM can deal with internal multiples in field data.
The survey - provided by Statoil - originates from the Norwegian Sea and is located
in the Vøring basin.

Because of the deep water bottom ( 1.5km), surface multiples are quite well sepa-
rated from most of the primary reflections. It was known from previous studies that
internal multiples are visibly present in the area between 2.5 and 3.0s (Berkhout
and Verschuur, 2005).

The following pre-processing steps were done to the dataset:
• Interpolation of near offsets;
• Deconvolution for removing the air gun bubble effect;
• Surface-related multiple elimination;
• Estimation of the source wavelet using EPSI;
• Applying reciprocity and create a split-spread dataset.
In this example only the primaries will be imaged, meaning that surface multiples

are separated upfront. The area of internal multiples crosstalk is located at smaller
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Figure 6.8: Near-offset cross-section from the Vøring basin dataset.
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Figure 6.9: Field data from Vøring basin. a) Measured shot-record. b) Residual from the
FWM process.

times than the possible crosstalk obtained by interference with residuals from surface
multiples, which guarantees that internal multiples are not misinterpreted.

Figure 6.9 shows one of the measured shot-records after SRME (Figure 6.9a) and
the residual (Figure 6.9b) obtained after the FWM procedure. Figure 6.10 shows
the PWM image where internal multiples are not taken into account. Below the
anticline structure it is possible to observe two groups of dipping events. The group
of events that tends to be more horizontal is a result of crosstalk between the source
wavefield and the internal multiples (shown by yellow arrows in Figure 6.10a).

The forward model of FWM includes internal multiples and, therefore, they are
removed from the residual. As a result, the FWM image (Figure 6.10b) has the
internal multiples crosstalk suppressed. Particularly, it is visible that in the FWM
result the dipping structures at (x= 2000m, z= 2250m) are more clear.

The difference plot (Figure 6.10c) contains the crosstalk from the internal multiples
that are suppressed in the FWM image. Note that the difference plot contains not
only crosstalk but also actual reflector imprints because of the transmission effects
that is taken into account in the forward model of FWM.

As a final remark, it can be seen from the residual data after FWM (Figure 6.9)
that apparently some artifacts are present in the input data, showing up as lateral
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Figure 6.10: (a) Conventional least-squares migration image or PWM image; b) FWM
image (note the suppressed crosstalk from internal multiples that was indicated with yellow
arrows in a that was indicated with yellow arrows in a))); (c) Difference between (b) and
(a).
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inconsistencies in amplitude and phase in the residual. Ideally, FWM should fully
reject them, as they are not physically consistent. These lateral inconsistencies
are most probably acquisition-related and can be considered as noise in the input
data.

6.4 Pre-processing and events prediction

The following set of examples demonstrates the interpolation and data prediction
that can be obtained using FWMod, as discussed in the previous chapter. Exam-
ples will be based on the Vøring dataset, which was already used in the previous
section.

The first example shows the potential of FWM to reconstruct missing traces. The
fully sampled data has 25m trace sampling. For this experiment we keep only 1
out 5 traces. The original data with missing traces is shown in Figure 6.11a. As
discussed in the previous chapter, FWMod can be applied to the current FWM
image obtained by incomplete data. After FWM imaging has been applied, next the
FWMod modelled traces were infilled in the missing traces of the original dataset,
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Figure 6.11: Data reconstruction example where 1:5 trace decimation was applied. Shot
record before (a) and after (b) interpolation via FWM.
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Figure 6.12: Event prediction example: (a) Total data, (b) modelled primaries and (c)
modelled surface multiples.

thus creating a consistent result (Figure 6.11b).
Next, a brief example is shown for the primary/multiple separation on this field

data (Figure 6.9). Figure 6.12a shows the original, total data. Figure 6.12b shows
the modelled primaries using the estimated reflectivity from FWM and the given
velocity model. Figure 6.12c shows the modelled surface multiples that were com-
puted simply by using the re-injected total data instead of using the wavelet as a
source-side wavefield. Note that the predicted wavefields can be (adaptively) sub-
tracted from the total data in order to obtain more accurate primaries and surface
multiples.

6.5 Discussion

Before concluding this chapter, some observations from the with field data examples
will be discussed.

The examples in Section 6.2 show an expected behaviour of surface multiples. It
was shown that multiples allow to get an image with extended illumination compared
to primaries in case of imperfect acquisition design. However, it is also observable
that the primaries provide better S/N ratio, due to their stronger amplitudes, and
for deeper parts of the subsurface their illumination is as good as surface multiples,
or even better.

Another issue that was encountered in the 2D examples is the geometrical spread-
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ing that is not properly modeled in the 2D version of FWM when applied to field
data. Ignoring this effect in the forward modelling leads to amplitude errors in the
estimated reflectivity. As the amplitude decays with distance from the source, the
deeper the reflector the more underestimated it’s amplitude will be. This situation
becomes more complex in case of imaging of surface multiples combined with imag-
ing of primaries (total wavefield imaging). In this case the estimated reflectivity will
be a compromise between two unbalanced wavefields, which will lead to a relatively
large residual and bad convergence of the algorithm. An approach to overcome this
issue is proposed in Appendix B. Of coarse, full 3D FWM applied to 3D data will
not have this problems.

6.6 Conclusions

In this chapter the FWM algorithm and its applications has been applied to field
data. First, for imaging surface multiples it was shown that their contribution mostly
lie in the area around the water bottom. Next, the application on sparse 3D OBN
data showed the great advantage of using surface multiples. The effect of correct
handling of internal multiples has been demonstrated on a dataset with a deep water
scenario.

In the shallow water cases it was found out that geometrical spreading can affect
proper estimation of the reflectivities when applying 2D FWM to field data. There-
fore, either the data has to be corrected (3D to 2D conversion) or a more accurate
way would be to modify 2D propagation operator such that amplitude attenuation
due to the 3D geometrical spreading will be corrected (see Appendix B).

In addition, applications of FWM like source wavefield estimation (based on imag-
ing of surface multiples) and data prediction has been sufficiently demonstrated on
field data as well.
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7
Conclusions and Recommendations

This thesis describes the methodology and applications of full wavefield migration
(FWM).

7.1 Conclusions

As a main conclusion, it was demonstrated that the proposed FWM algorithm prop-
erly handles complex scattering effects and allows them to contribute to the imaging
process without creating so-called multiples crosstalk. Actually, FWM can be con-
sidered as a least-squares migration process that is based on a more correct physical
model compared to current approaches.

The involved closed-loop (inversion) concept is based on two major steps: imaging
and modelling. The modelling – full wavefield modelling (FWMod) – allows to
predict all reflection events with a non-linear physical model for which, given the
migration velocity model, the subsurface reflectivities are the only parameters. It is
based on the Bremmer series and involves an iterative computation of the downgoing
and upgoing wavefields. These wavefields include all the complexities (multiple coda
and transmission effects) that constructively contribute (in terms of illumination) to
the imaging when such wavefields are used in the imaging process.

As any imaging algorithm, FWM requires a migration velocity model that should
be decently accurate. It follows the same requirements as any other least-squares
migration algorithm, which is flatness of the resulting common image gathers in
angle domain.

107
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The data to be imaged (receiver-side wavefield) should contain either the total set
of reflection events or separated primaries (and their internal multiples) or separated
surface multiples (and their internal multiples). Depending on this choice of the
input data a corresponding source-side wavefield should be used such that after
applying the forward model, it will only match events that are present at the receiver-
side. For imaging the primaries the correct source wavelet is required. It is important
to use the source with correct amplitudes in order to estimate the reflectivity in a
’true-amplitude’ sense, which in turn is extremely critical for generating the non-
linear events (internal multiples). In chapter 5 it was discussed that the source
estimation can be achieved using FWMod in adjoint mode.

An appealing feature of FWM is that it can correctly address the multiples even
using the data with asymmetric source/receiver sampling. The latter can be the case
for a coarse shooting, ocean bottom node and some 3D geometries. In Chapter 5 it
was shown that FWM can also be used as a data reconstruction method, where a
modeled wavefield can be inserted in the missing traces of the measured data.

Furthermore, in Chapter 5 it was discussed that FWM can serve not only for
estimating the proper image, but it can also provide the wavefields at every grid-
point, which means that FWMod can be used not only for data reconstruction,
as mentioned before, but also for deblending simultaneous shot records as well as
primaries/surface multiples prediction. The last option can be a good alternative for
standard multiple elimination techniques in case of coarse receiver sampling (VSP,
OBN surveys).

Thus, it can be concluded that FWM is a viable approach in which multiples play
a crucial role in the imaging of the subsurface, especially in those cases where the
acquisition is sparse. Because seismic acquisition will never be dense in all spatial
directions, methodologies like FWM are essential for properly handling all complex
scattering effects, such that ’noise’ is transformed into usable signal.

7.2 Recommendations for further research

This section considers some aspects of the method that still require some more
research. The reader is also invited to read the appendices.

7.2.1 Using the estimated wavefields

The FWM approach can be considered not only from the reflectivity estimation
point of view. We need to realize that the method estimates wavefields in the
subsurface first by estimating the reflectivities. Given the estimated wavefields many
applications become available. In this thesis some of the applications were shown in
Chapter 5 (i.e. data reconstruction, prediction of surface multiples, primaries and
unblended shot records). More applications can be developed given the wavefields
provided by FWM.
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7.2.2 More accurate and complete FWMod

Because the forward model of the method is based on the (generalized) Bremmer se-
ries approach, the propagation has a preferred direction (usually up and down) and,
therefore, has a limitation in terms of the involved propagation angles. In Chap-
ter 4 we proposed to use a pragmatic approach of using not only downgoing/upgoing
wavefields but also adding to them separate leftgoing/rightgoing wavefields, where
the preferred direction is horizontal. Two pairs of these wavefields can intercom-
municate with each other using the common scattering term. However, the more
correct approach is discussed in Wapenaar and Grimbergen (1996) and Grimbergen
et al. (1998), where it is mentioned that, within the generalized Bremmer series
theory, lateral variations of the medium are taken into account in the propagation
operator.

In the discussion of Chapter 4 we also realized that it is possible to capture
vertical structures by imaging the additive transmission coefficients δT. Note that
actually the sum of propagation operator W and additive transmission δT operator
probably can result into the operator discussed in Wapenaar and Grimbergen (1996).
This proposal, together with proper incorporating of diving waves (discussed in
Chapter4), requires more research.

7.2.3 Geometrical spreading in 2D FWM

Another major issue mentioned in Chapter 6 is related to geometrical spreading that
is not properly handled when applying 2D FWM to a 2D line of 3D field data. It
was observed that the more shallow the sea bottom, the more difficulties this effect
creates. For deep water data the geometrical spreading effect can be neglected and a
single correction, like scaling the data with

√
t, is sufficient. However, datasets with

a water bottom of 200m depth or shallower this issue was significantly present. For
such datasets a brute-force approach for dealing with it is to apply gain correction
to the data by guessing the most optimal damping parameter. Another approach is
to take into account the geometrical spreading in 2D propagation, as discussed in
Appendix B.

7.2.4 Complex-valued angle-dependent reflectivity

Angle-dependent reflectivity allows to model reflected events more correctly in terms
of AVO variations. However, real-valued angle-dependent reflection coefficient may
be not sufficient as reflection beyond critical angles also implies a phase-change. In
Appendix A it is also shown how complex-valued angle-dependent reflectivity can
be parameterized. However more research need to be done to find optimal strategies
for bringing this in the FWM process (see also Appendix A).
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7.2.5 Extension to 3D

The FWM approach in 3D becomes very expensive. Especially in the case of angle-
dependent reflectivity parameterisation. More careful performance optimization
should be carried out in order to achieve field data results with reasonable calcula-
tion times. Pre calculating wavefields and storing them on disk can be an example.
Additionally, it would be beneficial to save wavefields only at the specific grid-points
where corresponding reflectivity value is higher than a certain threshold, which can
optimize memory usage and still allows keeping the wavefields in memory that are
used for the modelling of the multiple scattering. Appendix C shows some compu-
tation aspects for the three-dimensional case.

Using surface multiples in 3D becomes even more important because they can
drastically reduce the number of shot-records. This was also show in the OBN
example in Chapter 6.

7.2.6 Transmission effects

FWM includes also the transmission effects. However, as described in more detail in
Appendix A1 and A2, the FWM process needs a dense enough sampling in the depth
domain in order to properly represent reflection properties. On the other hand, for
arriving at physically correct transmission effects, reflection information should be
concentrated as much as possible. Therefore, more research is required in including
e.g. sparsity constants for reflectivity, especially for correct inclusion of transmission
effects.

7.2.7 Elastic case and other effects

Generally if some phenomena is missing in the forward model and its effect is clearly
present in the data, its misexplanation by the forward model will leak in one or
another parameter (same as crosstalk for multiples, which was extensively discussed
in this thesis).

Therefore, in the ’acoustic’ implementation of FWM all converted waves will be
imaged as noise, such that its presence in the model space will explain the data
as much as possible. To include them properly, the current FWM model needs to
be extended to include converted waves as well. Some indications are described by
Berkhout (2014a). Derivation of the forward model and obtaining the gradients for
this extension is subject to future research, although it is clear that the PS, and SS
coefficient of the reflectivity from below should be easily accessible which is not yet
trivial for the transmission operators and reflectivities from below.

Other effects, such as anisotropy and attenuation can be included by modifying
the propagation operator. In this sense, the forward model of FWM is very flexible
and allows to include such ’modules’ of complexities quite easily, for instance, only
in the areas of interest without implementing those boundaries conditions elsewhere
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in the model. Note that this is not easily accomplished in other modeling methods,
such as finite difference or finite elements methods.
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A
Practical observations

This section contains some practical observations that were made during the re-
search. In this appendix we would like to address convergence issues, model space
parameters, parameterisation itself and the staring model issue.

A.1 Model sampling

This section shows the effect of the model space sampling. The motivation is that
for a closed-loop algorithm it is important that the model space is sampled such that
the original surface data can be reconstructed. For this test FWM was performed
on the input data shown in Figure 1.4 with three different sampling intervals across
the depth direction. Note that the input data was modeled with a depth sampling
of 5m.

Figure A.1 shows the energy (normalized to one) of the residuals versus iteration
number for three different depth samplings: 10, 5 and 2.5 meters. As can be observed
the best data matching (between observed and the modeled data) happens in the
case of a depth sampling of 5 meters (green curve). Poorer results were obtained
when the image depth sampling was 10 meters (blue curve), which can be explained
by a lack of parameters, which resulted in under-sampling (depth aliasing) of the
model space. However, using more samples does not provide a better result – as is
visible in the red convergence plot, which represents the case of a 2.5 m sampling.
This case can be explained in a way that too many model samples were ’competing’
to explain the same sample in the data domain, which slows down the convergence.
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Figure A.1: Convergence plot for three different depth sampling cases: 10m (blue), 5m
(green) and 2.5m (red).

A.2 Transmission effects

Due to the band-limited frequency range of the measured data, the reflectivity (im-
age) can only be estimated in a band-limited way. In this section we would like
to demonstrate that such band limitation of the reflectivity can affect the forward
modeling.

Every grid-point of the subsurface can generate the scattering with a ’strength’
proportional to the reflectivity value at this point. Therefore, in case a single re-
flector is imaged with side-lobes, spurious internal multiples can be generated by
this reflector (as it covers a few samples along the depth axis). Side-lobes can also
affect the transmission effects, as transmission will happen not only at the peak of
the reflector (as it should be), but also at the side lobes that can have a polarity
opposite to the main peak, thus biasing the total transmission effect. The effect of
band-limitation for the reflectivity creates smaller problems than for the transmis-
sion, because reflectivity estimation is driven by the criteria of matching the modeled
data with the observed data. However, there is no direct criterion for the effect of
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Figure A.2: FWM image obtained without (a) and with (b) sparsity constraint.

transmitted data.
Biased transmission effects mean that the secondary sources have incorrect ampli-

tudes. Therefore, the amplitude of the deeper reflectors are consequently affected.
This is similar to the situation when the data is imaged by using the source wavelet
with an incorrect amplitude: reflectors that mainly generate internal multiples are
estimated with wrong amplitudes and, thereby, it will lead to inefficient crosstalk
suppression.

The aforementioned effect means that obtaining a high-resolution image without
strong side-lobes is important for obtaining accurate results for transmission effects
and internal multiple prediction. Therefore, the imaging of data that is as broadband
as possible is preferred. If not accessible, an alternative is to imply a constraint
by adding an additional penalty function that promotes sparsity for the estimated
reflectivity (i.e., a L1 or Cauchy constraint). Another solution can be applying data
deconvolution (frequency spectrum equalizing) as preprocessing, which can result in
the data to be more ’spiky’.

Figure A.2 shows two reflectivity images obtained with and without a sparsity
constraint. The sparsity constraint was applied only to the area of the salt body in
order to make its reflectivity sharper.

Figure A.3 shows the effect of the reflectivity sharpness on the transmission ef-
fect. In Figure A.3 it demonstrated that in/ case of using constrained reflectivity
of Figure A.2b, both transmitted and reflected parts of the wavefield are modeled
accurately and the result is very close to the reference finite-difference modelling
result shown in Figure A.3a. However, when a band-limited image is used (Fig-
ure A.2a) it is visible that, although the reflected component is modeled adequately,
the transmitted part of the wavefield is about two times weaker than the result of
finite-difference modelling (see Figure A.3c).

The aforementioned example demonstrates that for correct modeling of transmis-
sion effects it is very important to estimate reflector reflectivity as sharp as possible.
When the frequency content of the data does not allow us to estimate such reflector
it is possible to apply the Cauchy constraint in the inversion process. However this
constraint can also distort the amplitude ratio of weak reflectors (Schouten, 2012).
Therefore, it is possible to consider FWM not only to estimate the reflectivities but
also the wavefields. Hence one can perform FWM with a sparsity constraint in order



118 A. Practical observations

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

De
pt

h 
[m

]

50 40 30 20 10 0 10 20 30 40 50(a)

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

De
pt

h 
[m

]

50 40 30 20 10 0 10 20 30 40 50(b)

0 500 1000 1500 2000 2500 3000
Lateral location [m]

0

200

400

600

800

1000

De
pt

h 
[m

]

50 40 30 20 10 0 10 20 30 40 50(c)

Figure A.3: Snapshots of: (a) data modeled by finite-difference (reference), (b) one FW-
Mod roundtrip using a sparse reflectivity image and (c) one FWMod roundtrip using the
reflectivity obtained without additional constraints.
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Figure A.4: a) Standard FWM image and b) FWM image obtained in a two-step approach
where firstly wavefields are obtained by estimated sparse reflectivity image and then given
the wavefields the image is re-estimated.

to obtain wavefields with properly modelled transmission effects. Next, given the
modeled wavefields, a closed-loop inversion can be performed where the wavefields
are fixed since they are physically correct and only reflectivities are updated. Fig-
ure A.4 shows a comparison of the standard FWM image with image obtained via
the described two-step. In this case the Cauchy constraint, as described in Chapter
3, was used for the sparseness penalty.

A.3 Starting model

Angle-dependent parameterisation means that every grid-point is represented by a
vector containing reflection coefficients versus angle. This allows to explain the data
with a large freedom in the model-space. Scenarios are possible when the crosstalk
from the multiples is still present but the data is already explained, meaning that the
current residual does not contain any valuable information for a further reflectivity
update.

To avoid such undesired null-space solutions is to start angle-dependent FWM
from a proper starting reflectivity model. A logical proposal is a starting image
obtained from angle-independent FWM (structural imaging represented by only one
reflectivity scalar per grid-point) where the input data was a subset with reduced
offsets, such that AVO effects in the sub-selected data are not strong.

The structural image can be translated to the angle-dependent version simply
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Figure A.5: a) FWM image from small-offset data and b) averaged angle-dependent reflec-
tivity.

by copying the image at all angles (ray parameters). Thus, it can be interpreted
as a constant function versus angle or a spike-function in terms of the spatial lo-
cal offset (similar to using a diagonal reflectivity matrix in the angle-independent
parameterization).

The following numerical example demonstrates the usage of the starting model.
Figure A.5a shows the image obtained by angle-independent FWM for data with
offsets limited up to 300 meters. Such short range allowed to perfectly explain the
data using the simplest parameterisation and suppresses the crosstalk from internal
multiples. Figure A.5b demonstrates the FWM image as obtained in the angle-
dependent mode (this is a sum of all angles, representing average), using the starting
model shown in Figure A.5a but using all offsets available (up to 3000 meters).
The stacked image obtained by angle-dependent FWM is slightly improved over the
structural one: note the difference of the top salt expressed by the mitigated side
lobe and a reduction of cross-talk in the deeper part.

Figure A.6a shows the image gather (lateral location slice at x=1500m) of FWM in
the angle-dependent mode obtained without any starting model. Figure A.6b shows
the result of the angle-dependent mode but when the angle-independent starting
model was used. It is visible that some (non-flat) crosstalk events are better sup-
pressed. Note that the imprint of the starting model is clearly visible. It is also
visible that the area between the dashed curves is the area covered by the reflection
and, therefore, is sensitive to updates of the angle-dependent approach.

Both estimated parameters explain the data sufficiently good when used in the
forward model. This indicates that the angle-dependent version of the method is
overcomplete and the final result depends on the starting model.
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Figure A.6: Image gather at the location x=1500m after 10 iterations starting from scratch
(a) and starting from angle-independent image (b).

A.4 Complex-valued angle-dependent reflectivity es-
timation

In this section we focus on the special case of angle-dependent FWM. As described in
Chapter 3, estimation of angle-dependent reflection coefficients is performed via cal-
culation of the so-called AVP function that represents the zero-time selection of the
Radon-transformed reflectivity gradient. In the described case the estimated AVP
function is real-valued, which means that post-critical effects will not be modeled
accurately.

The real-valued AVP function is computed as follows:

∆A(zn) = 2Re(
∑
ω

LH{[∆P(zn)]
−[P+(zn)]

H}}). (A.1)

In order to make AVP function complex-valued we extend the imaging condition
as follows:

∆Ar(zn) = 2Re(
∑

ω LH{[∆P(zn)]
−[P+(zn)]

H}})
∆Ai(zn) = 2Re(

∑
ω LH{[−i∆P(zn)]

−[P+(zn)]
H}}), (A.2)

such that ∆A = ∆Ar + i∆Ai. In this way we allow the reflected wavefield to
have a phase different from the incident one as is required for correct description of
post-critical reflection.

In the next numerical example (shown in Figure A.7) we consider the observed
data for a simple model of one horizontal reflector at 100 meters with a velocity
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Figure A.7: a) Observed data from a horizontal velocity contrast reflector at a depth of 100
meters; b) Modeled data by angle-dependent FWMod using a complex-valued AVP function;
c) Modeled data by angle-dependent FWMod using a real-valued AVP function.

change from 1500 m/s to 1800 m/s. We compare it with the data modeled by
complex-valued reflectivity (Figure A.7b) and with the data modeled by an estimated
real-valued reflectivity (Figure A.7c). We allowed to estimate the reflectivity only at
the depth level of the actual reflector in order to avoid parameter leakage. It is visible
that FWM based on complex-valued reflectivity does a more accurate job than the
FWM version based on the real-valued reflectivity. Note that the head wave is more
accurately modeled as well as phase rotation of the event in the complex-valued
case.
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B
Theoretical observations

This appendix considers the main components of FWM (propagation and scattering
operators) from the perspective of the acoustic wave equation. The possibility of
including 3D geometrical spreading effects in 2D propagation operator using a so-
called 2.5D wave equation is demonstrated in the second half of this appendix.

B.1 Link with one-way wave equation

Let’s consider the acoustic 2D wave equation in a homogeneous medium specified
by velocity c:

(∂xx + ∂zz +
ω2

c2
)U(x, z, ω) = 0. (B.1)

In the wavenumber-frequency domain this equation takes the following form:

(∂zz − k2x + k2)Ũ(kx, z, ω) = 0, (B.2)

where k = ωc−1. Equation B.2 can be factorized as follows:

(∂z − ikz)(∂z + ikz)Ũ(kx, z, ω) = 0, (B.3)

where kz =
√
k2 − k2x. Equation B.2 can be decoupled into two one-way wave

equations:
(∂z − ikz)Ũ(kx, z, ω) = 0

(∂z + ikz)Ũ(kx, z, ω) = 0,
(B.4)
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which, respectively, have two following solutions:

Ũ(kx, z, ω) = Ũ0(kx, ω)e
−ikzz

Ũ(kx, z, ω) = Ũ0(kx, ω)e
ikzz.

(B.5)

Therefore, if the wavefield is known at some depth level z = 0 it can be extrapolated
to z = ∆z as:

P̃ (kx,∆z, ω) = P̃ (kx, 0, ω)e
∓ikz∆z. (B.6)

In more details, in case of ∆z > 0 the first solution (written in Equation B.5) is
responsible for forward-in-time and downward-in-space wavefield extrapolation and
in case of ∆z < 0 it extrapolates the wavefield backward-in-time and upward-in-
space. In its turn, in case of ∆z > 0 the second solution in Equation B.5 performs
forward-in-time upward-in-space and in case of ∆z < 0 it extrapolates the wavefield
backward-in-time and downward-in-space.

In order to perform one-way wavefield extrapolation one need to multiply the
wavefield P̃ (kx, 0, ω) by the phase-shift operator e±ikz∆z. As it can also be seen
from Equation B.6 it produces phase-shift extrapolation but it does not affect am-
plitudes, except on the evanescent part (k2z < 0) when kz becomes complex and,
hence, the whole exponent argument becomes real-valued, which leads to amplitude
decay.

It is clear that an imaging algorithm based on wavefield extrapolation described by
Equations B.5 will be quite naive in case of dealing with complex inhomogeneous me-
dia. At least two problems arise: no horizontal variations of the propagation velocity
c(x) and no scattering effects due to inhomogeneities are taken into account.

To overcome the first problem, propagation operator W can approximately include
lateral variations by changing the convolution operator according to the local veloc-
ity values (Thorbecke et al., 2004). However, this procedure assumes that lateral
velocity variations are mild.

The more accurate, but on the another hand more computationally demanding
solution, is to consider discretized Helmholz operator H2 (being based on the left-
hand side of the Equation B.1), which can be written as follows:

H2 =


k21 0 0 . . . 0
0 k22 0 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . k2n

+
1

∆x2


−2 1 0 . . . 0
1 −2 1 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −2

 . (B.7)

In analogy to Equations B.2 and B.4 the wave equation can be written as:

H2u = H1H1u = 0, (B.8)

where u is a discretized wavefield vector and H1 is a square-root operator of H2.
In Grimbergen et al. (1998) it was shown that propagation operator W1 can be
constructed, roughly speaking, as follows:
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W1 = e−iH1∆z. (B.9)

Operator computed by Equation B.9 can properly include lateral velocity variations.
This operator, also mentioned as � in (Wapenaar and Grimbergen, 1996), is not only
in charge for wavefield extrapolation in an arbitrary inhomogeneous medium, but
it also generates the scattering due to the horizontal variations. However, such
operators still assume that the velocity model is vertically homogeneous between
the neighboring depth levels.

With regards to the vertical inhomogeneities, the one-way wave equation also ne-
glects it. In Zhang et al. (2003) it was discussed that one-way wave equation does not
yield correct amplitudes as the two-way wave equation. In that paper the authors
introduced a special real-valued term (proportional to the vertical derivative of the
propagation velocity ∂zc) that can be added to the argument of the exponent from
Equation B.4 such that the amplitude of the propagated wavefields will be compen-
sated. However, besides the amplitudes, this approach does not take into account
scattering effects - internal multiples and transmission. Wapenaar and Grimbergen
(1996) discuss that vertical scattering can be incorporated as a generalized Bremmer
series (Corones, 1975). In FWMod, being based on Bremmer series approach, such
vertical variations are compensated differently – via vertical scattering term (men-
tioned as � in Wapenaar and Grimbergen (1996) or denoted as δS⃗ in this thesis),
which involves reflection and transmission of the wavefields modeled in a one-way
manner. It is interesting to mention that reflectivity is also proportional to the ver-
tical variations of propagation velocity. But on top of that δS⃗ includes also vertical
variations of densities.

Returning back to the horizontal inhomogeneities, usually such variation are not
known in advance (as they are detected mainly at the imaging step and usually not
so detailed migration velocity models are provided). Therefore, during the inversion
process it is convenient to consider pure propagation operators, whereas horizontal
scattering can be included via a separate orthogonal propagation process or in the
estimated additive transmission operators δT, as was shown in Chapter 4.

B.2 Including geometrical spreading

Whereas 3D FWM automatically considers geometrical spreading effects, the 2D
version of the algorithm is based on two-dimensional wavefield extrapolation. There-
fore, when a 2D subset of field data is imaged, FWM will calculate underestimated
reflection coefficients as the amplitude of the modeled wavefields do not represent
the observed geometrical spreading, hence the incident wavefield will be stronger
than it should be. In this subsection we try to modify the propagation operator
such that it will take this effect into account.

We consider the so-called 2.5D (two-way) wave equation derived by Liner (1991):
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(∂xx + ∂zz +
ω2

c2
+ iω

c

r
+

1

r2
)U(x, z, ω) = 0. (B.10)

This equation is similar to Equation B.1 but it contains two additional terms that
mimic the three-dimensional Green’s function for the two-dimensional case. The last
two terms can be introduced in the numerical implementation as a diagonal matrix
containing diag( ik(x)r(x) + 1

r2(x) ), where r(x) =
√
(x− xs)2 − zr is a distance from the

source located at the surface at xs to the subsurface grid-point with coordinates
(x, zr). Note that the 2.5D one-way propagation operator can be specified only for
one shot (because it contains r(x) that is different from one shot record to another),
which does not allow to ’sink’ all shot records using one W operator. For modelling
the downgoing wavefield from one source, we consider the new H2 operator as a
matrix (including additional terms) as discussed previously (see Equation B.9). The
new H2 handling 2.5D propagation effects looks as follows:

H2 =


k21 +

iωc1
r1

+ 1
r21

0 0 . . . 0

0 k22 +
iωc1
r1

+ 1
r21

0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . k2n + iωc1

r1
+ 1

r21

+
1

∆x∆z
D2,

(B.11)
where D2 is a spatial second derivative matrix (same as in Equation B.7).

In this manner it is possible to compute 2.5D one-way recursive propagation oper-
ators. Note, that at some depth the terms containing r(x) will vanish and therefore
after some point it is convenient to consider the conventional propagation operator
again.

The aforementioned is demonstrated on the following example. The three layer
velocity model – with velocities 1500 m/s for the first layer, 2000 m/s for the second
one and 3000 m/s for the last one (see Figure B.1a) – is used for propagation of
the source wavelet injected at the surface at the lateral location of x = 1500m. The
snapshot of the recursively propagated wavefield based on the conventional 2D W
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Figure B.1: (a) Velocity model, (b) snapshot of the 2D propagated wavefield and (c) snapshot
of the 2.5D propagated wavefield.
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Figure B.2: FK-spectra of 2D propagated wavefield (a) and 2.5D propagated wavefield (b).

operators is shown in Figure B.1b. The result for using the described 2.5D operator
is shown in Figure B.1c and it is visible that amplitudes of this wavefield are more
attenuated.

Moreover, Figure B.2 compares the FK spectra of these two wavefields at different
depth levels. It is visible that the spectrum of the 2D modeled wavefield, neglecting
some numerical artifacts, is close to 1 at each depth level, as expected (Figure B.2a),
whereas two-and-half-dimensional wavefield (Figure B.2b) has an angle-dependency
of the spectra, which complies with the spectra of the wavefield propagated in 3D
media when selected along one spatial coordinate.
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C
3D implementation

In this appendix an extension of the presented FWM methodology to the third
spatial dimension is studied. In general, the method as described in Chapters 2 and
3 remains the same, as all matrix equations can be interpreted in a full 3D sense,
as was already mentioned in Chapter 2. However, the extra dimension forces to
reconsider the implementation due to the high computational costs.

It is visible in Figure C.1 that the 3D FWM approach is based on the same flow
as the 2D version. The FWMod algorithm (pseudo code) is shown in Algorithm 1.
Although the algorithm looks identical to the already introduced 2D version, pit-
falls are hidden in the first and in the third step of the algorithm: estimating the
angle-dependent reflection coefficients and the wavefield propagation. Besides that
the requirement of storing the up- and downgoing wavefields in 3D can already be
challenging for one physical experiment. Therefore, keeping all the shots in RAM
might not be suitable and parallelization and/or disk storage should be taken into
consideration. Hence, each shot in 3D most probably has to be processed sepa-
rately. The whole algorithm can be easily parallelized (parallel blocks are displayed
in Figure C.1) as wavefields can be computed independently for each frequency and
shot experiment, while the only shared variable that should be computed from all
wavefields is the reflectivity. Therefore, the gradient computation and reflectivity
updating blocks serve as a barrier in the computational flow. For every iteration
of FWM parallel segments should be synchronized at least twice: when computing
the gradient, as it requires contribution from the complete data, as well as when
updating the reflectivity.
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Algorithm 1 FWMod roundtrip
for each shot k do

for each frequency ω do
go down (+) and then up (-)
for each depth level zn do

1. calculate the scattering:
δS⃗(zn)← δT±(zn)P⃗

±
k (zn) + R∓(zn)P⃗

∓
k (zn)

2. include the scattering:
Q⃗±(zn)← P⃗±

k (zn) + δS⃗k(zn)
3. propagate and save the wavefield:
P⃗±
k (zn±1)←WQ⃗±

k (zn)
end for

end for
end for

DelphiFWM for surface-related multiples

9

FWMod  
(non-linear)

Surface 
multiples

Velocityincl. coda
and transmission

(no wavelet is required!)

Re-injected  
data

Imaging

Reflectivity

Gradient

Simulated data 
at every grid 

point

Residual

parallel 
sync 

Figure C.1: The FWM closed-loop process and its possibility to compute it in parallel.
Almost all blocks can be computed independently in parallel, but have to be synchronized for
computing the gradient and updating the reflectivity, because the last two procedures require
to gather the contributions from all shots and all frequency slices.
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C.1 Propagation operators in 3D

Lateral inhomogeneities in two dimensions were easily handled by considering W
as a laterally varying spatial convolution operator kernel that depends on the local
velocity. In the three-dimensional case, using the same approach, it becomes a 2D
convolution operator. Note that for 3D wavefield propagation it might be more
attractive to use the approach called ’phase-shift plus interpolation’ (PSPI)(Gazdag
and Sguazzero, 1984) that is based on several extrapolations within few homogeneous
layers defined by a few reference velocities, followed by interpolation of those results
according to the actual local velocity. For each reference velocity the extrapolation
is efficiently calculated via the double wavenumber domain. The number of reference
velocities can vary at each level, depending on the velocity complexity of the depth
slice.

C.2 Reflectivity operator

It was already discussed in Chapter 3 that reflection at each depth level can be
described in two modes: angle-dependent and angle-independent. The most simple
way is to consider the reflectivity that is parameterized by one scalar coefficient
per grid-point. In this way the reflectivity operator also serves as point-by-point
multiplication of the wavefield with the corresponding reflectivity scalar value at the
specific location. Computation of such scalar is described in the simple Algorithm 2.
This means that the reflectivity matrix for the 3D case still remains a diagonal
matrix.

For more accurate, angle-dependent modeling, the procedure also becomes a two-
dimensional convolution process. In order to calculate such 2D convolution kernel, a
2D angle gather should be computed in the first place. Computation of such gathers
is done by applying the so-called 2D extended imaging condition (i.e. imaging condi-
tion with spatial lags hx and hy with respect to two opposite wavefields). This step
is introduced as step one in the Algorithm 3 and is also illustrated in Figure C.2.
For every lateral location, indicated by the blue point in Figure C.2, the downgoing
wavefield at this location P+

k (x, y, zn, ω) is cross-correlated with the back-propagated
residual but slightly shifted in space by a 2D spatial lag ∆P (x − hx, y − hy, zn, ω).
In this way the spatial lag brings the angle information: zero-lag captures the infor-
mation from (close to) normal incidence, while larger lags capture information from
the larger angles.

After that, a 2D Radon transform is applied to each ∆R(x, y, ω) matrix that maps
the spatial lags (hx, hy) to ray-parameters (px, py) and stacks them over all frequen-
cies. This results in the 3D angle gathers A(px, py, x, y, zm) or A(x, y, zm).

The R operator describes the 2D convolution using the kernel that can be con-
structed from the just described 3D angle gathers A. It can be done by applying
the inverse 2D Radon transform for each frequency slice of interest. In this way,
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Figure C.2: Schematic illustration of the extended imaging condition in 3D.

the process is very similar to the procedure developed in 2D. Such procedure is
also described in Algorithm 4. For example, the reflected upgoing wavefield can be
described as:

P−
k (x, y, zn, ω) =

∑
hx

∑
hy

R(hx, hy, x, y, zn, ω)P
+
k (x+ hx, y + hy, zn, ω), (C.1)

which in vector form can be written as:

P⃗−
k (zn) = R(zn)P⃗

+
k (zn). (C.2)

Such computations become very expensive. When the angle-independent approach
is used, the estimation of the reflectivity can be done by only one imaging condition.
In the 2D angle-dependent mode, the number of imaging conditions is given by nhx

imaging conditions per grid point and the following Radon transform it increases
to nhxnhy imaging conditions followed by 2D Radon transforms for each frequency.
In addition, it applies to nxny locations per depth level. Such expensive estimation
of angle gathers for 3D data might be a bottle-neck for the algorithm and further
optimization of the scheme (such as investigating the symmetry of the convolution
operator) is recommended.

Algorithm 2 Angle-independent imaging
for each x location do

for each y location do
1. apply imaging condition:
∆R(x, y, zn)

+← [∆Pk(x, y, zn, ω)][P
+
k (x, y, zn, ω)]

∗

end for
end for

C.3 Numerical example

The following example demonstrates the application of FWM in 3D. First, the
angle-independent case is considered. Density and velocity models are shown in Fig-
ure C.3a,b respectively. The data was generated using 3D finite-difference modelling
without surface multiples. The image at the first iteration is shown in Figure C.3c.
The PWM image (Figure C.3d) shows the improved image in terms of resolution and
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Algorithm 3 Angle-dependent imaging
for each x location do

for each y location do
1. apply extended imaging condition:
for each hx spatial lag do

for each hy spatial lag do
∆R(hx, hy, x, y, zn, ω)

+← [∆Pk(x− hx, y − hy, zn, ω)][Pk
+(x, y, zn, ω)]

∗

end for
end for
2. apply 2d Radon transform and sum over the frequencies:
∆A(x, y, zn)

+← [Lhx [Lhy∆R(x, y, zn, ω)]
T ]T

end for
end for

Algorithm 4 Angle-dependent reflectivity operator
for each x location do

for each y location do
1. apply extended imaging condition:
for each hx spatial lag do

for each hy spatial lag do
R(x, y, ω)← [L∗

hx
[L∗

hy
A(x, y, ω)]T ]T

end for
end for

end for
end for

extended lateral coverage, however, it still contains the internal multiple crosstalk
that can be removed by the FWM approach (Figure C.3e). It is also demonstrated
in the horizontal slices shown at the top of each cube in Figures C.3b,c,d that the
crosstalk is suppressed in all lateral locations (both cross-line and in-line).

The next example demonstrates the angle-dependent parameterisation in 3D. Fig-
ure C.4a contains the input data that was imaged (used as a receiver-side dataset).
As a subsurface model, one horizontal reflector at z = 250m with a density and a
velocity contrast was used.

Figure C.4b shows the modeled data using structural imaging only. Note, that
some of the AVO effects are included in the data, that can be explained by the fact
that only one shot has been imaged. The modeled data in the angle-dependent mode
(shown in Figure C.4c) contains accurate AVO effects due to the angle-dependent
parameterisation.

Note that when angle-dependent imaging is applied the reflectivity becomes a
five-dimensional array: 2 illumination angles (ray-parameters) at every grid-point
defined by three spatial coordinates.
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(a) (b)

(c) (d)

(e)

Figure C.3: Angle-independent FWM in 3D. a) Density model; b) Velocity model; c) Image
at the first iteration; d) The PWM image after 20 iterations; e) The FWM image after 20
iterations.
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(a) (b) (c)

Figure C.4: Angle-dependent FWM in 3D. a) Input data; b) Angle-independent modelling;
c) Angle-dependent modelling.

Figure C.5 shows this five-dimensional array in different perspectives. Figure C.5a
shows the AVP plot across the one of the lateral directions versus ray parameter
across that direction. Note that orthogonal directions will display a similar plot,
because of the symmetry of the model. Figures C.5b,c show which ray parameters
(angles) illuminate the points (x=500m, y=500m, z=250m) and (x=300m, y=400m,
z=250m) respectively. Note that such parameterization also makes it possible to
study which points will illuminate the given ray parameters at the given depth
z=250m (see Figure C.5d,e for two angles of illumination). Note that because this
reflectivity operator was calculated from one shot record, it is very sparsely filled.
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Figure C.5: Angle-dependent FWM in 3D. a) AVP function along x location (y is fixed)
b) AVP function at a given grid point (x=500m, y=500m, z=250), c) AVP function at a
given grid point (x=300m, y=400m, z=250)d) Illumination map for normal incidence ray,
e) Illumination map for the non-vertical ray.
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Summary

Seismic imaging aims at revealing the structural information of the subsurface using
the reflected wavefields captured by sensors usually located at the surface. Wave
propagation is a complex phenomenon and the measured data contain a set of back-
scattered events including not only primary reflections, but also surface-related and
interbed multiples. Additionally, transmission effects also play an important role
in the wave propagation. However, most of the current imaging algorithms, being
based on single scattering assumptions, can handle only primary reflections and
all other effects are treated as noise that produces false structures (crosstalk) in
the resulting image. To avoid this, data used by conventional imaging algorithms
is usually preprocessed in a such way that primaries are separated from the rest
of the arrivals. However, imaging only the first category of events excludes the
available information contained by multiple scattering. Furthermore, as a perfect
multiple removal process is a challenge, residual crosstalk is often visible in the final
image.

The main topic of this thesis is to develop an imaging algorithm that can correctly
handle such complex scattering effects. The main motivation is aimed at extracting
complete information from the reflection data by using the multiples and, thereby,
avoiding their elimination as a preprocessing step. The problem is solved by con-
sidering the imaging process as an inverse problem, where the measured data forms
the data space and the unknown reflectivities constitute the model space.

Solving of the inverse problem requires forward modeling and computing the gra-
dient. The former is based on the modelling approach where amplitudes of the
modeled data are driven exclusively by the reflectivity model (to be estimated),
whereas travel times are dependent only on the provided migration velocity model.
Moreover, because the forward model is based on a recursive scheme (the Brem-
mer series) it is also possible to efficiently simulate data with any combination of
multiple scattering. Therefore, by minimising the misfit between the observed and
the modeled data the crosstalk from multiples in the estimated reflectivity model
is suppressed, because the process of fitting the data is not based anymore on the
single scattering assumption. An important component in the inversion process is
extracting a model update for the reflectivities from the data misfit. It is also im-
portant to mention that complex wavefields are involved in the ’imaging condition’
step, which clearly shows the contribution of the complex scattering.

Therefore, the final inversion-based imaging process is called Full Wavefield Mi-
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gration (FWM) and it is especially suited for situations where primaries provide
a limited illumination of the subsurface, which can be compensated by the mul-
tiples. Furthermore, extensions of the method have been proposed as well, like
primary/multiple separation, source field estimation, deblending and missing data
reconstruction. The virtues of FWM are successfully demonstrated on several nu-
merical and field data examples.



Samenvatting

Seismische beeldvorming is gericht op het onthullen van structurele informatie van
de ondergrond, door middel van gereflecteerde golfvelden, gemeten door sensoren
die meestal aan het oppervlak zijn geplaatst. De propagatie van golven in de on-
dergrond is een complex fenomeen, en de gemeten data bevat verschillende soorten
reflecties: primaire of enkelvoudige reflecties, maar ook oppervlak gerelateerde re-
flecties en meervoudige reflecties ontstaan binnen lagen onder het oppervlak. Daar-
naast spelen ook transmissie effecten een belangrijke rol in de propagatie van gol-
ven. Desondanks zijn de meeste huidige algoritmen voor beeldvorming gebaseerd
op de aanname van enkelvoudige verstrooiing, en kunnen alleen primaire reflecties
worden verwerkt. Alle andere effecten worden behandeld als ruis, wat onechte struc-
turen (‘cross-talk’) oplevert. Om dit te voorkomen wordt de gemeten data voor het
toepassen van conventionele beeldvorming meestal zo voorbewerkt dat primaire re-
flecties zijn gescheiden van de rest. Maar bij het afbeelden van alleen de primaire
reflecties wordt beschikbare informatie die verborgen zit in de meervoudige reflecties
niet gebruikt. Bovendien, omdat een perfecte eliminatie van meervoudige reflecties
een uitdaging is, zijn er vaak residuen zichtbaar in het uiteindelijke afbeeldingsre-
sultaat.

  Het hoofdonderwerp van dit proefschrift is om een beeldvorming algoritme te
ontwikkelen dat correct deze complexe verstrooiingen aankan. De belangrijkste mo-
tivatie ligt in het gebruik van alle informatie van de data door ook meervoudige
reflecties te gebruiken in beeldvorming, in plaats van deze te elimineren via een
apart proces. Door het beeldvorming proces als een inverse probleem te beschouwen
wordt dit probleem opgelost. De data die wordt gemeten vormt het datadomein en de
onbekende reflectiviteit van de ondergrond vormt het modeldomein. Om het inverse
probleem op te lossen moet er voorwaarts gemodelleerd worden en ook moet een
gradient worden berekend. In het gebruikte voorwaarste model worden amplitudes
van de gemodelleerde data bepaald door het geschatte model voor reflectiviteit en
propagatietijden worden bepaald door het gegeven migratie snelheidsmodel. Omdat
het voorwaartse model is gebaseerd op een recursieve reeks (de zogenaamde Brem-
mer reeks) is het ook mogelijk om data efficiënt te simuleren met elke combinatie
van meervoudige verstrooiing. Door het minimaliseren van het verschil tussen de
gemeten en gemodelleerde data wordt de cross-talk van meervoudige reflecties in
het geschatte reflectiviteitsmodel onderdrukt. Een belangrijk onderdeel in het in-
versieproces is het berekenen van een update voor het reflectiviteit model uitgaande
van het verschil tussen de gemeten en gemodelleerde data. Het is ook belangrijk om
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te noemen dat complexe golfvelden worden gebruikt in de stap van ‘de imaging con-
ditie’, dat duidelijk de bijdrage van meervoudige verstrooiing demonstreert.

  Daarom wordt het uiteindelijke beeldvormingsproces, gebaseerd op inversie, ‘Full
Wavefield Migration’ (FWM) genoemd, en het is vooral geschikt voor situaties waar
primaire reflecties een beperkte belichting van de ondergrond bieden, welke gecom-
penseerd kan worden door de meervoudige reflecties. Daarnaast worden er uitbrei-
dingen van de methode voorgesteld, zoals het scheiden van primaire/meervoudige
scheiding reflecties, het schatten van het directe veld van de bron, het zognaamde
‘deblenden’ en het reconstrueren van ontbrekende data. De gunstige eigenschap-
pen van FWM zijn in de thesis gedemonstreerd op verschillende numerieke en echte
datavoorbeelden.
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