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ABSTRACT

In this paper we investigate the data on 178 launched CubeSats and conduct a nonparametric and parametric analysis,
where the dead-on-arrival (DOA) cases as well as the subsystem contribution to failure are specifically addressed.
Using Maximum Likelihood Estimation, a Single Weibull and a 2-Weibull mixture parametric model are fitted to the
non-parametric data. Furthermore, by combining developers’ beliefs on several reliability aspects from a survey
conducted in late 2014 with data from past missions, we make a first attempt to correlate space engineering “best
guesses” and intuition to actual data. Finally, the probabilistic CubeSat reliability estimation tool is introduced as a
method to reduce the infant mortality of CubeSats: CubeSat developers should be able to estimate their required
functional testing time on subsystem and system level at an early project stage, while targeting a desired reliability

goal on their CubeSat.

INTRODUCTION

Since the beginning of the space age, satellite design
philosophy was dominated by highly reliable
components and conservative designs built for durability
under extreme environmental conditions of space,
featuring redundancies and extensive qualification and
performance testing at part, subsystem and integrated
system levels. The dawn of the CubeSats changed this
philosophy in favor of utilizing state-of the art,
commercial-off-the shelf products, potentially yielding,
if successful, an increased performance per mass figure
of merit for those small vessels. CubeSats seemed to
promise universities and companies to be faster, better
and cheaper than larger traditional missions — once more
in history. But at what price? In this paper, we try to
assess the on-orbit failure rate and time-dependent root
causes of past CubeSat missions up to a launch date of
30/06/2014. In total, 178 individual CubeSats were
assessed, merging publicly available data, data from
other databases and data from a survey conducted in late
2014 into the CubeSat Failure Database (CFD). The
failure data was analyzed using non-parametric Kaplan-
Meier estimation, both on system and subsystem levels.
By quantifying the relative contribution of each
subsystem to the failure and by fitting a parametric model
to the data, we derive data-driven answers to demanding
questions of CubeSat development, such as: What is the
average reliability of past CubeSat missions over time? Is

any specific subsystem a major contributor to reduced
reliability of CubeSats? Does this change over time?
Specifically, the Dead on Arrival cases are addressed in
the parametric model, being a large contributing factor to
the overall failure rate in past CubeSat missions.
Furthermore, by combining developers’ beliefs on
several reliability aspects from the survey with data from
past missions, we make a first attempt to correlate space
engineering “best guesses” and intuition to actual data.
Our analysis techniques, based on empirical data, provide
the means to assess the realistic mission design lifetime,
necessary testing, and create input for reliability growth
plans during testing. The ‘flood’ of recent CubeSats has
both commercialized and liberated the satellite market to
some extent, and many universities contributed to and
benefited from this revolution in its first phase. However,
to now evolve CubeSats into reliable and accepted
platforms for scientific payloads and commercial
applications, more work is needed regarding system
reliability and testing, without losing the spirit and
opportunity of CubeSat missions to use novel, state-of-
the-art technologies, by fine tuning the paradigm shift in
satellite design and manufacturing with adequate testing.

THE CUBESAT FAILURE DATABASE (CFD)

Although several studies analyzed the on-orbit failure
rate of satellites in different mass classes [1,2] there is no
dedicated analysis known to the authors specifically
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Table 1:

The CubeSat failure database (CFD)

Satellite Name Class | Sub-type | Launch | Time of Failure Cause Censored Time (no failure occurred)
CubeSat 1 uni 1U 30.06.2003 22.09.2003 XYZ -
CubeSat 2 uni 2U 30.06.2003 30.09.2013
CubeSat 178 uni 3U 30.06.2014 31.12.2014

addressing the CubeSat failure rate over time. Excellent
research carried out by Swartwout [3,4] shows the causes
and the success and failure rates of past CubeSat
missions, the time dependence of both parameters
remains unknown. To fill this gap, the CubeSat Failure
Database (CFD) (Table 1) was built in late 2014. It is
comprised of 178 individual CubeSats up to a launch date
of 30/06/2014 and was created with the aim to collect
time of failure and root cause data of all CubeSats
launched so far. For this purpose, information was
collected from publicly available sources [5-10] as well
as from work from Klofas [11,12] and publications on the
individual spacecraft. Furthermore, information was
gathered within a survey, which was sent out in late 2014
to 987 individuals affiliated with CubeSat programs
worldwide. Finally, through personal communication
during conferences or via E-Mail, unpublished
information was also added to the database. The first
version of the database was completed by the end of
2015, containing the class, the sub-type, the launch date,
the time of failure and the root cause of 70 failures within
178 missions, not including launch failures. Furthermore,
in the case of initial successful on-orbit arrival, the
censored time of the CubeSats (i.e. when they are retired

or the observation window ends) can be accessed. Since
the publicly available information on satellites of the
Flock Constellation of Planet Labs [13] was scarce, those
satellites were also not included in the database. Ongoing
work is carried out to further expand the database to
satellites launched since the end of 2014, and to also
include class Il anomalies (major non-repairable failure
that affects operation of a satellite or its subsystems on a
permanent basis [14]) in the future.

NONPARAMETRIC AND PARAMETRIC RELIA-
BILITY OF CUBESATS

Nonparametric Reliability Assessment

As shown in other work [15,2] the Kaplan-Meier
estimator [16] for reliability R(t) is best suited for
nonparametric analysis and samples with the type of
censoring occurring in our database. The Kaplan-Meier
estimator for reliability R(t) (equation 1) for censored
data used in this study is adapted from [15]:

1 i (1)
all i such thatt . <t i
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Figure 1: CubeSat reliability with 95% confidence interval — first year in orbit
Langer 2 30™ Annual AIAA/USU

Conference on Small Satellites



Reliability
o
~

0.5

0.4 1 1 | | 1

Nonparametric estimation
-~ 95% confidence interval

0 60 120 180 240 300

360 420 480 540 600 660 730

Time after sucessful orbit insertion [days]

Figure 2: CubeSat reliability with 95% confidence interval — 2 years in orbit

with t;) as the time to i failure, and n; the number of
operational units right before ts. More details on the
background of nonparametric analysis for satellite
reliability data can be found in [15]. Figure 1 shows
the results of the nonparametric reliability estimation
with 95% confidence intervals for 1 year in orbit. The
overall reliability of CubeSats is strongly dominated by
so-called dead-on-arrival (DOA) cases, where the
satellite was ejected from its deployer and subsequently
never achieved a detectable functional state. Due to these
DOA cases after a successful deployment, the overall
reliability thus drops instantly to a value between 87.09%
and 75.62% (95% confidence interval). With a reliability
value between 73.24% and 58.94% (95% confidence
interval) after 100 days in orbit, infant mortality is the
dominant effect. Although the data indicates that
CubeSats in low earth orbit (LEO) are not as susceptible
to wear out as geostationary satellites, the effect might
will emerge with longer lifetimes and higher reliably in
early phases. The 2-year reliability estimation (Figure 2)
ranges from 65.49% on the upper end of the confidence
interval to 48.49% on the lower one after two years in
orbit. Due to scarcity of on-orbit failure data late in the
mission, prognostics must be treated very carefully. In
Figure 4, the nonparametric reliability estimation with
95% confidence intervals for 2 years in orbit are depicted.

Parametric Reliability Assessment

Since parametric models can be used in a broader range
of applications, it was decided to create a parametric
function resembling the nonparametric reliability
estimation. The Weibull distribution was chosen for this
purpose, as it has been used before in other reliability
studies on larger satellites [1,2,15,17]. To determine the
parameters of the Weibull function, the Maximum
Likelihood Estimation (MLE) Method is used. While the
traditional Single Weibull function and the 2-Weibull
mixture function were sufficient for the analysis of larger
satellites [17], the reliability of CubeSats, with their large
fraction of DOASs, cannot be parametrized in a proper
way by those function types. To address the DOA cases,
the Percent Non-Zero (PNZ) calculation [18] was chosen,
as it can handle out-of-the-box failures. Within the PNZ
method, the traditional Weibull function is multiplied by
the ratio of non-zero failure items, called PNZ (equation
2):

B
R(t) = PNZ eXp[— G) ] fort>0 2

Using MLE, the parameters of the Weibull function can
be estimated as B = 0.4797, PNZ = 0.8146 and
0 = 4661.7975.
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Figure 3: Box plots of the residuals between the
Weibull fits and the nonparametric estimation over
1 year.

For the 2-Weibull mixture function, the PNZ value was
multiplied by the Weibull function with the shape
parameter B < 1, since this element captures the infant
mortality failures in the overall reliability model.

'Bl '82
- |+ =17 for >0
R(t) = PNZ alexp 91 +a2 exp 92 or t>

Hence, the parameters of the 2-Weibull mixture function
are: B1 = 0.9017, PNZ = 0.8146, 6, = 57.9715,
a1=0.2115, B, = 1.0710 and 6, = 4837.3947.

Figure shows a box plot of the residuals between the 2
different Weibull PNZ fits and the nonparametric model
during the first year, while Figure depicts the resulting
parametric best fit, the PNZ 2-Weibull mixture function.
In conclusion, the data out of the CFD and the subsequent
nonparametric and parametric modelling yielded in a
PNZ enhanced 2-Weibull mixture general reliability
function for CubeSats. Using parametric data from other
research [1,2] the parametric CubeSat model is shown in
Figure 14 with respect to other spacecraft classes.

RELIABILITY OF SUBSYSTEMS

After assessing the overall system reliability of CubeSats,
the nonparametric and parametric reliability of the
involved subsystems was studied using data from the
CFD. Therefore, the following 6 subsystems (plus an
“unknown” category for failures, where no specific
subsystem was identified as a root cause) were defined:

Electrical Power System (EPS)

On-Board Computer (OBC)

Communication System, incl. antennas (COM)

Attitude Determination and Control System

(ADCS)

Payload (PL)

e Structure & Deployables (other than antennas)
(STR)

e Unknown

0.95 |
09}
0.85 I,
0.8

075 &

Reliability
e
3

0.65

0.6

0.55 -

0.5+

Nonparametric estimation
- 85% confidence interval
—— MLE - 2 Weibull Mixture (with PNZ)

0.4 | 1 | | | | | |
0 40 80 120 160 200 240 280 320

360 400 440 480 520 560 600 640 680 720

Time after sucessful orbit insertion [days]

Figure 4: MLE 2-Weibull mixture parametric fit.
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The contributions of each subsystem to the satellite
failures are depicted in Figure 5. Looking at data from
larger satellites [19], the “unknown” category clearly
strikes as they major source of error in early stages for
CubeSats. While communication could not be established
for many of the DOA satellites, interviews with CubeSat
developers indicate that approximately half of the DOA
cases are caused by the “unknown” category, while the
developer has some indication of like causes of DOA for
the remainder. The second largest contributor in the early

t=0days

STR
/ 0BC
20%

t =30 days

phases and the largest one in later stages is the EPS, with
more than 40% of all failures caused after 30 days (Figure
5). After 90 days, the communication subsystem accounts
for nearly 30% of the failures. ADCS, PL and STR are
contributing altogether less than 10% to the failure of the
satellite. The three main subsystems causing CubeSat
failures (OBC, EPS and COM) and the ‘“unknown”
category are modelled using nonparametric Kaplan-
Meier estimation and parametric Single Weibull PNZ fits
as shown in Figure 6 and Figure 7.

t=90 days

PL

9
STR/DE
4%

Unknown
14%

a

EPS
44%

Figure 5: Subsystem contributions to CubeSat failure after ejection (incl. DOA), 30 days and 90 days

Unknown Reason
T T T

Reliability

Nonparametric estimation

e 95 confidence interval

—— MLE - Single Weibull (with PNZ)

075 T T Y O S S S S S T

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Time after sucessful orbit insertion [days]

EPS
T T T

Nonparametric estimation
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Figure 6: Nonparametric and Parametric Modelling of the “unknown” section and the EPS subsystem
for a CubeSat failure during the first year in orbit.
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Figure 7: Nonparametric and Parametric Modelling of the OBC and the EPS subsystem for a CubeSat
failure during the first year in orbit.

DEVELOPERS’ BELIEFS

In addition to statistical data gathered for the CubeSat
Failure Database, the survey conducted at the end of 2014
was also used to gain information on the developers’
beliefs on the general reliability and specific reasons for
failure of their respective CubeSats. Of the surveys sent
out to 987 individuals, 113 were returned fully
completed.

Firstly, the likelihood of failure for a university-built
CubeSat within the first 6 months was estimated on
average to be slightly below 50%. A normal distribution
was used to fit the expert elicitation data. Figure 8 shows
the experts’ judgement and the fitted normal distribution,
with fitted parameters being p =48.98 and o = 19.29. For
the first use, the normal distribution seemed a sufficient
fit — nevertheless future work will be needed to estimate
if there is a better fit on the experts’ judgement. A second
question was dealing with the expected likelihood of
failure of the planned own CubeSat, if the expert was a
team member of the to-be-launched CubeSat. A normal
distribution was also used as a fit to the elicitation data.
Out of n = 88 participants answering that part of the
questionnaire, the normal distribution was fitted with
M =16.53 and o =21.27. Figure shows the expert
elicitation and the fitted normal distribution, while Figure
depicts both, the judgement on the own CubeSat (blue) as
well as the experts’ opinion on a general, university built
CubeSat (red). The difference between the means of both
normal fits is more than 23%, meaning that the estimation
for the likelihood of failure of the own mission is rather
optimistic or the judgement of other missions is very
conservative. In conclusion, the data out of the CFD and
the subsequent nonparametric and  parametric

modelling yielded in a PNZ enhanced 2-Weibull mixture
general reliability function for CubeSats.

Figure 8: Developers’ beliefs on the likelihood of
failure for a university built CubeSat within the first
6 months. Fitted normal distribution. (n = 113)

o

n = BE) o

Figure 9: Developers’ beliefs on the likelihood of
failure for their own mission in its projected lifetime.
(n=88)
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Figure 10: Developers’ beliefs on the likelihood of
failure for their own mission (blue) and on a general
university-built CubeSat in its projected lifetime.
(n=86)

Expert Opinions — Suspected Failed Subsystem

To gather developer’s beliefs on failure susceptibility of
different subsystems, a “betting game” was carried out
within the survey. All participants were asked to judge
whether a specific subsystem could have been the reason
for a critical failure on a generic university-built CubeSat,
within an assumed mission time of 6 months. Figure 15
to Figure 20 (Appendix) depict the analysis of the survey
data gathered from the experts, where normal
distributions were used again for fitting.

Expert Opinions — Suspected Reason of Failure

Without knowing any further details, the experts also had
to subjectively assess what reason might have caused the
assumed critical failure of the satellite. Results are shown
in Figure 21 to Figure 26 (Appendix), compiled from the
survey answers of the reporting experts.

THE WAY FORWARD

Many of the CubeSats launched and built today are lost
during their first phase of operations. The large
percentage of DOAs and early failures is not acceptable
if CubeSats should evolve into reliable and accepted
platforms for scientific payloads and commercial
applications. To stay attractive, CubeSats have to be
launched and built fast, using appropriately selected
COTS electronics and, due to budgetary and time
constraints, reducing, appropriately selected, many of the
standardized test procedures the space agencies are using
for their high-reliability, expensive and large spacecraft.
The solution to improve overall reliability cannot be, in
our opinion, to try solve everything with processes
already used in the traditional space industry (like space-
grade components or lot testing). As Swartwout pointed
out, many of the early failures are due to poor system-
level functional testing, i.e. the spacecraft was not
operated (or not long enough operated) in a flight-
equivalent state before launch [3]. Thus, many of the

early failures could be resolved by a certain time of
functional testing, rather than adding more and more
complicated traditional acceptance and qualification
tests.

Our survey also tried to gather information if the
participants used failure or risk analysis on their satellite.
As depicted in Figure 11, 73% of the participants
considered themselves not as a beginner or as without
knowledge in risk and failure analysis.

knowledge level of failure & risk
analysis on satellites (n = 114)

No Knowledge
6%

Advanced

24%

Intermediate
39%

Figure 11: Survey results on knowledge level on
risk & failure analysis on satellites

Nevertheless, 34% of the group didn’t use any method to
quantify risk or reliability in the mission (Figure 12). For
those who didn’t use such methods, lack of time and lack
of knowledge are the two biggest reasons not to
implement them.

applied Failure or Risk Analysis?
(n= 114)

Figure 12: Survey results on the implementation of
risk or failure analysis within their CubeSat
program
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With the statistical data in the first chapter and the
developers’ belief in the second one, it is the goal of the
authors to create an easy-to-use reliability estimation
model for CubeSats. Inspired by work from Cho [20,21]
and Babuscia [22], a probabilistic CubeSat reliability
estimation tool (Figure 13) is currently being built , using
Bayesian methods [23-25], to provide meaningful data
for all developers on the reliability and necessary
functional testing time of their CubeSats.

CubeSat Reliability Toal
Preiminary Relabilty ] Brior Knowledge P Passrer Knowssdgs
Estmation whoctsodepeacibalet | — CubeSal Sysiem Relbikty Estmation
‘ Estinatian of Testing T

‘Subaysiem srd Sysiem Tes! data

Figure 13: The Probabilistic CubeSat Reliability
Estimation Tool

With the probabilistic tool, CubeSat developers should be
able to estimate their required functional testing time on
subsystem and system level beforehand, while targeting
a desired reliability goal on their CubeSat with a certain
percentage. Thus, CubeSat developers should be able to
estimate the necessary time for full functional testing on
the system in an early phase of the project, potentially
reducing the DOA and infant mortality rate of CubeSats
in the future.

The probabilistic CubeSat reliability estimation tool will
be tested for the first time during subsystem functional
tests of the MOVE-I11 [26] satellite in late 2016.

CONLCUSION

Despite their high rate of early failures, CubeSats
changed the way how satellites are being built and how
commercial and scientific missions can be carried out in
the last decade. Their performance per mass figure of
merit and fast delivery enables business models
unthinkable of before their dawn. To further enhance
their potential range of applications, the high rate of
infant mortality has to be reduced in the near future. By
combining statistical data from past missions and
developer’s beliefs with specific test data of system and
subsystems via a Bayesian framework, we hope to
decrease the rate of early failures.
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APPENDIX Al - PARAMETRIC CUBESAT RELIABILITY MODEL WITH RESPECT TO OTHER
PARAMETRIC MODELS AND SPACECRAFT CLASSES.

Reliability
o
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Time after sucessful orbit insertion [days]
Figure 14: Parametric CubeSat reliability model (blue) with respect to other spacecraft classes.
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APPENDIX A2 - DEVELOPERS’ BELIEFS ON
FAILED SUBSYSTEMS

chance for being the critically failed subsystem [%]

Figure 15: Developers’ beliefs on the likelihood of the
on-board computer being the critically failed
subsystem within the first 6 months of operation.
(n=114)
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Figure 16: Developers’ beliefs on the likelihood of the
communication subsystem being the critically failed
subsystem within the first 6 months of operation.
(n=114)
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Figure 17: Developers’ beliefs on the likelihood of the
power subsystem being the critically failed subsystem
within the first 6 months of operation. (n = 114)
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Figure 18: Developers’ beliefs on the likelihood of the
attitude determination & control subsystem being the
critically failed subsystem within the first 6 months of
operation. (n = 114)
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Figure 19: Developers’ beliefs on the likelihood of the
structure & mechanical subsystem being the critically
failed subsystem within the first 6 months of
operation. (n = 114)
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Figure 20: Developers’ beliefs on the likelihood of the
Payload being the critically failed subsystem within
the first 6 months of operation. (n = 114)
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APPENDIX A2 - DEVELOPERS’ BELIEFS ON
REASONS FOR CRITICAL FAILURE

Fault in elactronics {other than radiation or degradation
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Figure 21: Developers’ beliefs on the chance that a
fault in the electronics (other than radiation or
degradation) is the reason for the critical failure
within the first 6 months of operation (n = 114)
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Figure 22: Developers’ beliefs on the chance that a
software design error is the reason for the critical
failure within the first 6 months of operation (n = 114)
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Figure 23: Developers’ beliefs on the chance that high
energy radiation effects are the reason for the critical
failure within the first 6 months of operation (n = 114)
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Figure 24: Developers’ Beliefs on the chance that
degradation of components are the reason for the
critical failure within the first 6 months of operation
(n=114)
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Figure 25: Developers’ beliefs on the chance that
thermal balance is the reason for the critical failure
within the first 6 months of operation (n = 114)
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Figure 26: Developers’ beliefs on the chance that loss
of structural integrity is the reason for the critical
failure within the first 6 months of operation (n = 114)
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