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Abstract: Modelling and simulation aim to reproduce the structure and imitate the behavior of real-life 

systems. For complex dynamic systems, System Dynamics (SD) and Agent-based (AB) modelling are two 

widely used modelling paradigms that prior to the early 2010’s have traditionally been viewed as mutually 

exclusive alternatives. This literature review seeks to update the work of Scholl (2001) and Macal, (2010) by 

providing an overview of attempts to integrate SD and AB over the last ten years. First, the building blocks of 

both paradigms are presented. Second, their capabilities are contrasted, in order to explore how their integration 

can yield insights that cannot be generated with one methodology alone. Then, an overview is provided of 

recent work comparing the outcomes of both paradigms and specifying opportunities for integration. Finally, 

a critical reflection is presented. The literature review concludes that while paradigm emulation has contributed 

to expanding the applications of SD, it is the dynamic combination of the two approaches that has become the 

most promising research line. Integrating SD and AB, and even tools and methods from other disciplines, 

makes it possible to avoid their individual pitfalls and, hence, to exploit the full potential of their 

complementary characteristics, so as to provide a more complete representation of complex dynamic systems. 

 

Word count: 4974 

Keywords: System Dynamic· Agent-Based Modelling · Hybrid Models · Complex Dynamic Systems · 

multi-paradigm approach · Literature Review 

 

1 Introduction 
Modelling and simulation of complex social systems aim at increasing the understanding of the system 

and testing policies with the objective to support decision-making and at times policy implementation 

(Meadows and Robinson, 2002). The advantage of computational models are their capability to embrace 

complex real-life systems characterized by dynamic nonlinear relationships. Another substantial benefit 

is that what-if scenarios can be tested, but intervention in reality is not required.  

Agent-based (AB) modelling and System Dynamics (SD) are two widely used methodologies in 

modelling complex dynamic system. While System Dynamics has a long tradition since it was founded 

in the late 1950s by Forrester (1958), AB is as yet in its infancy - implying that its complete potential 

has not yet been utilized (Bonabeau, 2002). Both approaches have been applied to many socio-economic 

problem domains including health care (Demarest, 2011; Figueredo, Aickelin, & Siebers, 2011; 

Figueredo, Siebers, Aickelin, Whitbrook, & Garibaldi, 2015; Kirandeep, Eldabi, & Young, 2013; 

Mellor, Smith, Learmonth, Netshandama, & Dillingham, 2012), supply chains (Angerhofer & 

Angelides, 2000; Georgiadis, Vlachos, & Iakovou, 2005; Gjerdrum, Shah, & Papageorgiou, 2001; Tako 

& Robinson, 2012; Xue, Li, Shen, & Wang, 2005) and technology adoption (Chen, 2011; Fisher, 
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Norvell, Sonka, & Nelson, 2000; Moser & Barrett, 2006; Schwarz & Ernst, 2009; C Swinerd & 

McNaught, 2014; Zhang & Nuttall, 2007).  

 

More than a decade ago, Scholl (2001) made a call for joint research between SD and ABM by 

comparing and contrasting both approaches, and more recent works have enriched those comparisons 

(Lättilä et al., 2010; Macal, 2010). However, during the last decade, and particularly during the last five 

years, an explosive growth in computational capacity has enabled the emergence of more, and more 

diverse, joint research in the field of modelling and simulation (Pruyt, 2015). 

This article seeks to update the work of Scholl (2001) and Macal (2010) by providing an overview 

of attempts to integrate SD and AB over the last ten years, with an emphasis on hybrid SD-AB models 

published over the last five years. The research strategy comprised a systematic literature review. 

Combinations of the following key words were used: agent-based modeling, combining, differential 

equations models, system dynamics, and hybrid models. The objective was to compile literature related 

to the ongoing discussions on the complementary potential of integrating SD and ABM, and to provide 

an overview of recent case studies. The research question was formulated as: 

 

What are the potential benefits of integrating System Dynamics and Agent-based 

and what is the state-of-the-art in its application? 

 

The reviewed literature was retrieved from several research databases, including ACM Digital Library, 

Elsevier, Springer-link, EBSCO Host, and IEEEXplore. The works by Scholl (2001), Lättilä et al. 

(2010), Macal (2010), Schieritz and Grobler (2003) and Behdani (2012) were used as a guide in 

structuring the research process.  

 The remainder of this paper is ordered as follows: Section 2 gives a short overview about the SD 

and AB paradigms, including theories behind the paradigms and building blocks and characteristics of 

the resulting models. Section 3 contrasts the capabilities of SD and AB, in order to explore how their 

integration can yield insights that cannot be generated with only one methodology alone. This section 

draws from a review of recent studies that combine both paradigms. Section 4 presents how both 

methods have been integrated during the last decade, and explores expected developments in this field. 

Lastly, Section 5 concludes by answering the research question and delineating opportunities for future 

research. 

2 Single Paradigms: System Dynamics and Agent-based 
Prior to the 2010s, the SD and AB paradigms developed as separate schools of modeling and simulation 

(Pruyt, 2015), in spite of both paradigms being used for the analysis of complex dynamic systems 

(Phelan, 1999). This Section presents an overview of the fundamental theories behind each paradigm 

and of the building blocks and characteristics of their corresponding models. 

2.1 System Dynamics (SD) Models 

More than 50 years ago, Forrester (1958) founded SD around two notions from systems theory (Phelan, 

1999): first, aggregated-level variables affect each other through feedback loops; second, system’s 

structure drives system’s behavior. These notions challenge the predominant rather simplistic cause-

and-effect thinking of traditional science, decoded into independent and dependent variables. Instead, 

systems theory explains the behavior of complex dynamic systems endogenously: it identifies feedback 

effects that are often hidden because they are delayed at large time scales. Consequently, systems 

dynamics modelling targets the underlying causes of problems instead of only treating their symptoms 

(Forrester, 1958; Sterman, 2000). 
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In practice, the building blocks in specifying an SD model are stocks, flows and auxiliary 

variables (Forrester, 1958; Sterman, 2000). Stocks represent the accumulation of material and 

information, caused by the action of inflows and outflows. While stocks are mathematically described 

by integral equations, flows are described by differential equations (Macal, 2010; Parunak et al., 1998) 

. The solution of these sets of equations describes the aggregated state of the system. This state changes 

continuously over time and depends on the previous state of the system. These sets of equations are 

solved through numerical integration at discrete time steps (Forrester, 1958; Meadows, 2009; Sterman, 

2000). 

2.2 Agent-based (AB) Models 

The theory of complex adaptive systems (CAS) states that systems do not have central control and do 

not have a fixed structure. Based on this theory, the AB paradigm models the structure of a system as 

the result of decentralized decisions of individual entities or agents over time (Macal, 2010; Macal and 

North, 2006). Therefore, instead of assuming a given system structure, agents’ decisions shape and 

change the state and structure of the system. In turn, agents react to the dynamic changes in the system, 

which can potentially alter their decision rules. 

It follows that the main building blocks of AB are autonomous agents, their decision rules and 

actions, and the environment in which they interact (Bonabeau, 2002; Epstein and Axtell, 1996; Phelan, 

1999). Although agents’ decision rules usually govern agents’ behavior to achieve individual benefits 

(Macal and North, 2006), collective intelligence may also emerge when agents coordinate their 

decisions to achieve common goals (Phelan, 1999). Therefore, analyzing solely the internal mechanism 

of agents does not explain the macro level observations (Epstein, 2006). Moreover, agents’ decision 

making is typically based on limited observed knowledge (their view on the world) rather than on 

complete knowledge of the entire state of the system (Jennings et al., 1998). 

3 Potential benefits of integrating System Dynamics and Agent-based 
The contrasts between SD and AB, including scope, the focus on system behavior or on emergent 

behavior, aggregation level and the current capacity to study heterogeneity and spatial variability, make 

the application of each paradigm more suited to different situations (Macal, 2010; Scholl, 2001; Teose 

et al., 2011; Wakeland et al., 2004). Nevertheless, knowledge about the differences between SD and 

AB does not necessarily result in an appropriate choice of paradigm: one paradigm alone cannot always 

provide enough insights to analyze the complex system of interest (Lättilä et al., 2010; Macal, 2010; 

Rahmandad, 2004; Scholl, 2001; Shafiei et al., 2013a). 

In this Section, five characteristics in which SD and AB differ fundamentally are explained first. 

Second, the potential benefits of combining both paradigms are clarified. 

3.1 Contrasting SD and AB - five fundamental differences  

The applicability, strengths and weak points of SD and AB paradigms have been compared by designing 

independent models of the same system and contrasting their outcomes. Recent contributions include, 

but are not limited to Figueredo and Aickelin (2011), Macal, (2010), Milling and Schieritz (2003), 

Parunak et al. (1998), Rahmandad and Sterman (2008), Schryver et al. (2015). For this article, a number 

of such comparisons were reviewed and five fundamental characteristics in which SD and AB differ 

were identified. These aspects include the paradigms’ capacity to model continuous aggregated and 

discrete disaggregated system states; physical space, topographies, and network structures; stochastic 

& deterministic phenomena; learning and adaption; and ease of model building and interpretation. The 

paragraphs below elaborate on each of these aspects. 
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3.1.1 System states: continuous aggregated vs. discrete disaggregated  

SD and AB paradigms differ in  the level of aggregation and their handling of time. On the one hand, 

SD excels at representing continuous aggregated systems. This paradigm can account for a wide range 

of feedback effects, at the cost of reducing real world diversity to aggregated average values by 

assuming homogeneity and perfect mixing within stocks and flows (Parunak et al., 1998; Rahmandad 

and Sterman, 2008; Sterman, 2000). However, While SD excels at modeling continuous processes, it 

has difficulties in coping with discrete events (Parunak et al., 1998). Therefore, AB is more appropriate 

to model discontinuous system properties (Bonabeau, 2002). 

In contrast to SD, the AB paradigm inherently includes heterogeneity between agents. To account 

for the  diversity of agents in the real world, agents act according to properties and decision rules that 

can be derived from distribution functions (Bonabeau, 2002; Epstein, 2006; Macal, 2010). By 

accounting for the diversity within and between agents, AB is suitable to study problems where the 

distribution of resources, costs or benefits is the focus of interest (Bonabeau, 2002; Osgood, 2007). 

 Empirical research has emphasized a tension between the level of analysis and the scope of the 

system under study when using SD or AB alone (Alam Napitupulu, 2014; Cherif and Davidsson, 2010; 

Figueredo et al., 2015; Silva et al., 2011; Thompson and Reimann, 2010). While SD can study large 

systems by handling highly aggregated data, AB typically studies heterogeneous systems with relatively 

limited scope.  

In practice, choosing a paradigm to describe a system at an appropriate level of analysis is not 

straight forward. In reality, this aspect is observer dependent: the same system can be described with 

both discrete and continuous representations. Rahmandad & Sterman (2008) demonstrate that the 

outcomes of equivalent SD and AB models are alike under many conditions. Other authors have come 

to the same conclusion by comparing single SD and AB models in the fields  of health sciences (Ahmed 

et al., 2013; Figueredo et al., 2015; Figueredo and Aickelin, 2011b), economy (Alam Napitupulu, 2014), 

transportation (Silva et al., 2011), software development (Cherif and Davidsson, 2010), land use (Haase 

and Schwarz, 2009) and education (Thompson and Reimann, 2010). 

3.1.2 Stochastic & deterministic phenomena 

SD and AB can both model deterministic systems: systems which do not contain randomness and thus 

yield the same result from a given initial state (Brock, 1986). However, in AB models, decision rules, 

actions and properties are normally derived from distribution functions, and are therefore probabilistic 

(Bonabeau, 2002).  

Due to its stochastic character, the AB paradigm can naturally account for outlier values that 

would not be shown in an aggregated system representation. Outlier values represent random events, 

such as Black Swans, that are unlikely but can alter the system radically. Therefore, when assumptions 

of homogeneity and perfect mixing can be made for a particular study, SD and AB can produce 

outcomes that are not statistically different (Ahmed et al., 2013; Rahmandad and Sterman, 2008). 

However, when heterogeneous clustered agent networks are central for answering the problem, AB is 

usually a more appropriate paradigm to study the problem (Rahmandad and Sterman, 2008).  

However, there is a trade-off between the stochasticity of an AB model and its computational 

requirement (Osgood, 2007; Rahmandad and Sterman, 2008). A conflict in goals arises between the 

richness of feedback structure captured endogenously, the number of agents and their complexity of 

interaction, and the exhaustiveness of the sensitivity analysis (Rahmandad & Sterman, 2008). As a 

result, AB can be discarded as the preferred method in modeling and simulation studies due to its high 

computational resource demands  (Ahmed, Greensmith, & Aickelin, 2013; Figueredo & Aickelin, 2011; 

Figueredo et al., 2011; Figueredo et al., 2015; Silva, Coelho, Novaes, & Lima Jr, 2011). 
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3.1.3 Physical space, topographies, & network structures 

Inherently, SD was not designed to cope with spatial diffusion and propagation processes, but to model 

the aggregate properties of such systems and so provide strategic insight into their behaviour. When the 

number of entities is small and when the entities are highly dispersed or clustered, this can be 

problematic (Rahmandad & Sterman, 2008). Emerging paradigms, such as spatial system dynamics 

(SSD), are trying to overcome this limitation (Ahmad and Simonovic, 2004; Neuwirth and Peck, 2013). 

SSD is based on coupling SD with geographic information systems (GIS) to provide feedback effects 

across physical space (Ahmad and Simonovic, 2004).  

In contrast, AB has the capability to distinguish physical space, topographies, and other network 

structures (Bonabeau, 2002; Parunak et al., 1998; Rahmandad & Sterman, 2008). The former allows 

the explicit study of the dynamics across landscapes or networks (Osgood, 2007). Hence, AB models 

have proven attractive for classes of modelling problems where topographies (particularly irregular and 

clustered) are crucial with respect to understanding the problem and the assessment of policies. 

Furthermore, the characteristics of mobile agents in a network, able to alter system structure, can be 

utilized to account generally for evolving systems in which relations disintegrate and are created 

dynamically over time (Scholl, 2001). This property and the possibility to construct goal-oriented agents 

makes AB models ideally suited to model many social systems and implement concepts from social 

and behavioral science such as bounded rationality (Edmonds, 1999; Manson, 2006; March and Simon, 

1958). 

3.1.4 Learning & adaption processes 

Experience based learning effects and adaptation processes such as the “eroding quality standards” 

archetype are frequently modelled in SD.. Nevertheless, explicit individual learning and adoption 

processes are a focus within AB models (Bonabeau, 2002). For this, machine learning algorithms are 

used to design agents that have the ability to modify their own decision rules (Parunak et al., 1998; 

Phelan, 1999; Scholl, 2001; Stone and Veloso, 2000). 

3.1.5 Ease of model building and interpretation 

As the previous examples demonstrate, AB model have numerous virtues in specific contexts. However, 

these virtues often come at the cost of more time consuming modeling simulation and interpretation 

processes (Osgood, 2007). Indeed, the interpretation of AB model outputs at aggregate level is still in 

its infancy. Whereas the formulation of an SD model makes use of system level observables to identify 

the feedback loops that govern the system’s behavior (Rahmandad & Sterman, 2008), the construction 

of an AB model requires not only knowledge of the system at an aggregated level, but also in-depth 

insights on decision processes of agents and their behavior (Macal, 2010; Macal & North, 2006). 

Moreover, AB models require knowledge on the disaggregated distributions of agent properties for 

parametrization (Macal, 2010; Macal & North, 2006). 

 Next, as described in the paragraphs devoted to stochastic and deterministic phenomena, AB 

models have considerably longer simulation times than their SD counterparts. 

 Additionally, the interpretation of simulation results is typically easier for SD models than for 

AB models, because the underlying dynamics of these models are transparent and the toolbox for 

analyzing and understanding simulation results is already well developed. This availability of methods 

facilitates the rapid development of small models to explore the driving dynamics of current ‘hot’ issues 

(Pruyt, 2013; Pruyt et al., 2009). 

Finally, SDs popularity has been facilitated by the availability of several drag-and-drop software 

tools for constructing and analyzing models, including Vensim® (www.vensim.com), Stella® 

(www.stella.com) and PowerSim® (www.powersim.com) (Borshchev and Filippov, 2004). Until 

recently, one of the obstacles for wider adoption of AB had been the limited availability of easy to use 

http://www.vensim.com/
http://www.stella.com/
http://www.powersim.com/
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tools that do not require programming skills (Parunak et al., 1998; Wilensky, 1999). However, the 

emergence of software such as AnyLogic® (“Multimethod Simulation Software and Solutions,” n.d.) 

and NOVA® (Salter, 2013) may facilitate faster adoption. 

3.2 Potential benefits of combining SD and AB 

Despite fundamental differences, both modelling approaches are effective in describing and simulating 

complex dynamic systems. AB has received increasing attention because it holds promise of significant 

benefits compared with  other modeling paradigms, including SD (Bonabeau, 2002; Epstein, 2006; 

Jennings et al., 1998; Macal and North, 2006). Nevertheless, there is no simple dividing line indicating 

when which modelling approach will  provide superior results. Instead, the choice of paradigm depends 

on the problem and the purpose of the modelling exercise and should take into account  the paradigms’ 

capabilities, limitations and tradeoffs (Figueredo and Aickelin, 2011b; Parunak et al., 1998).  

By combining SD and AB, some components can be modelled discretely and in a disaggregated 

fashion when this is needed, while other components can be modelled continuously and in an aggregated 

fashion, based on the different system characteristics and the specific model purpose (Osgood, 2007). 

In this way, a hybrid SD-AB model facilitates the definition of appropriate levels of aggregation for 

each component of the system. Furthermore, for many modelling problems, a combination of SD and 

AB can reduce computation times, provide the strategic overview characteristic of SD, while still 

capturing relevant elements of the individual heterogeneity and stochasticity of entities and processes.  

Another potential advantage of combining SD and AB is that this can be seen as a way to enhance 

the capability of SD models to cope with spatially explicit problems. The resulting models permit 

arranging agents in a spatial or network structure, while integrating important properties of SD, such as 

continuity and non-linear multi-loop feedback. This approach can be refined when the individuals are 

mobile and consequently the spatial dimension becomes dynamic. Besides this, it is possible to use 

multiple SD sub-models to create different properties across a spatial grid. As a result, individuals 

interact with a different SD sub-models depending on their position (Vincenot et al., 2011). Agents can 

plausibly even interact with more than one SD sub-model at a time. 

4 Recent efforts to integrate SD and AB 
While no unified definition exists for hybrid SD-AB models, countless architectures are possible for 

coupling or matching SD and AB. This section discusses first, how AB features have been incorporated 

through emulation into the field of SD. Then, it presents three classifications of possible architectures 

for hybrid SD-AB models. Finally, it summarizes recent efforts and breakthroughs in the design of 

hybrid SD-AB models, and sketches the state-of-the-art of SD and AB integration. The focus lies on 

work conducted within the last decade and particularly in the last five years. 

4.1 Emulation of AB features within the SD field 

In the field of SD, some authors have made attempts to emulate the capabilities of AB without changing 

the overall SD paradigm. Pasaoglu et al. (2016), Powell and Coyle (2005) and Wu, Kefan, Hua, Shi, 

and Olson (2010), for instance, integrated an AB perspective in the construction of an SD model. Teose 

et al. (2011) embedded SD notions into AB models using Gillespie’s τ-leap algorithm, an equation that 

connects the paradigms by interpreting rates of flow into movement of agents.  

While paradigm emulation has contributed to expanding the applications of SD during the last 

few years, it is the appropriate combination of  the two approaches that has become the most promising 

research line (C Swinerd & McNaught, 2014). Integrating SD and AB makes it possible to avoid their 

individual pitfalls and, hence, to exploit the full potential of their complementary characteristics, so as 
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to provide a more complete representation of complex dynamic systems (Scholl, 2001; Stemate et al., 

2007). 

4.2 Hybrid SD-AB architectures 

Swinerd and McNaught (2012), Kirandeep et al. (2013) and Vincenot et al. (2011) proposed different 

architectures for hybrid SD-AB models.  

Based on Shanthikumar and Sargent (1983), Swinerd and McNaught (2012) presented three 

classes that vary depending on how the model’s modules, either SD or AB single paradigm meta-

models, interact to produce the model’s outcome. In the first class, the sequential class, the outcome of 

each module forms the input for the next module; the outcome of the final module represents the 

model’s outcome. The second class, the interfaced class, includes non-sequential combinations of 

modules that do not influence each other but combine their independent outcomes to produce the model 

outcome. Lastly, in the integrated class, modules and even model outcomes provide feedback to one 

another.  

The second classification, developed by Kirandeep et al. (2013), presents two classes that are 

analogous to the aforementioned sequential and integrated ones.  

 Vincenot et al. (2011), in turn, identified four reference cases or typical SD-AB structures. Case 

1 refers to AB agents interacting within their environment, an SD module. Emergent properties from 

the AB module can dynamically parameterize the SD module. Case 2 refers to AB agents containing 

SD modules that determine their dynamic decision rules and spatial structures. In Case 3, individuals 

interact with an environment made of more than one SD module. Unlike Case 1, Case 3 is spatially 

explicit and the SD module with which an agent interacts depends on the agent’s position and the SD 

module’s area of influence. Finally, Case 4 refers to SD-ABM model swapping. This case reduces 

computation time by allowing only modules of the same paradigm to run at any given time. During  the 

run, threshold values or events cause the change from modules of one paradigm to modules from the 

other one. 

However, the architectures of Swinerd and McNaught (2012), Kirandeep et al.’s (2013), and 

Vincenot et al. (2011) are non-exhaustive in nature. While Chris Swinerd and McNaught (2012)’s 

interfaced class implies that modules in a hybrid model do not necessarily have to be connected during 

the simulation, all the reference cases by Vincenot, Giannino, Rietkerk, Moriya, and Mazzoleni (2010) 

consider interaction between the modules during the simulation. In practice, the architecture of hybrid 

SD-AB models is usually based on the specific needs of the problem under study. Examples are 

provided in the following sub-section. 

4.3 Recent hybrid SD-AB models and modeling environments 

Hybrid SD-AB models have proven useful in studying diffusion processes of technological innovation. 

In their independent studies, Swinerd and McNaught (2014) and Shafiei et al. (2013) embedded 

individual agents in an SD environment. In Swinerd and McNaught’s model, an SD module is 

embedded in each agent to dynamically parameterize its properties. Similarly, Swinerd and McNaught 

(2015) simulated the international diffusion of consumer technology by modeling nations as agents, 

with internal decision processes consisting of SD models, and global diffusion processes with an 

equation-based rate model. 

Hybrid SD-AB models have also been developed in other fields. Jo et al. (2015) designed a 

dynamic alternative to cost benefit analysis for infrastructure projects. This work integrates AB and SD 

modules by enabling dynamic feedback from the SD states to the AB environment, and from the AB 

environment to the SD rates of change. Tran (2016) developed a multi-paradigm framework to analyze 

techno-behavioral dynamics in networks, and to assess the impact of technology on society. This 

framework integrates the notions of system dynamics to explore the most aggregated and macro layers 
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of the system, and notions from agent-based to study network structures and individual behavior. Lewe 

et al. (2014) studied intercity transportation by integrating SD and AB modules to represent macro-

level, and micro-level variables, respectively. Kolominsky-Rabas et al. (2015) developed the 

framework ProHTA, a hybrid SD-AB tool the aim of which is to the assessment of innovative health 

technologies prior to their launch.  

Other examples explicitly include discrete event simulation models, in addition to the SD and 

AB components. For instance, a study of the elements of a hybrid simulation model for blood supply 

chains (Onggo, 2015); a feasibility assessment of hybrid approaches in the context of complex 

healthcare operation management (Viana, 2014); an analysis of real workforce choices (Flynn et al., 

2014); a hybrid approach to integrate safety behaviour into construction planning, by Goh and Askar 

Ali (n.d., in press) and the study of reusability in hybrid simulation by Djanatliev et al. (2014), to 

mention but a few. 

The availability of modelling environments that can handle multiple paradigms, including SD, AB 

and discrete events has also increased. For instance, Salter (2013) reports on NOVA®, a modeling and 

simulation platform that supports the integration of both paradigms. Moreover, this work envisions the 

integration of Geographic Information Systems (GIS) within the platform. Other platforms include 

Anylogic® (“Multimethod Simulation Software and Solutions,” n.d.), which supports modeling and 

simulation with SD, AB, discrete events and incorporates certain GIS features, as well as NetLogo 

(Wilensky, 1999), a free and open source modeling environment with similar capabilities. 

4.4 Exploring the next generation of hybrid paradigms 

 

As explained in the previous Sections, integrating the SD and AB paradigms is a promising approach 

to overcome the limitations of each single paradigm. However, the integration of SD and AB is only a 

piece in a bigger puzzle (Pruyt, 2015). Recent innovations suggest that, in the future, mainstream 

research frameworks and methods to model complex dynamic systems will reach beyond the boundaries 

of SD, AB, and even beyond the reach of hybrid SD-AB paradigms.  

Currently, the adoption and diffusion of methods and techniques from other disciplines, such as 

data analytics and machine learning, are turning modeling and simulation into an interdisciplinary field 

(Pruyt, 2015). This process of blending tools and methods across disciplines, which has just started, is 

enabling the emergence of a new generation of computational models with radically expanded 

capabilities that promise to deliver significant breakthroughs.  

For several reasons, the development of this new generation of computational models is likely to 

occur using high-level programming language, such as Python, R Project and Java, instead of 

commercial and closed source modeling environments (Pérez, Granger, & Hunter, 2011). First, many 

scientific disciplines use these languages for scientific computing and quantitative data analysis. The 

open source environment fosters transparency and reproducibility of research, while these languages 

facilitate the balance between full flexibility of general-purpose programming languages and ease of 

use. In addition  their object-orientation supports the implementation of multi-model approaches.  

Examples of the methodological innovations that will lead to the new generation of models 

include Exploratory Model Analysis (EMA) (Kwakkel and Pruyt, 2015, 2013) and data analytics using 

tools such as PySD (Houghton, and Siegel, 2015). 

5 Conclusion 
This literature review seeks to update the work of Scholl (2001) and Macal (2010) by providing an 

overview of attempts to integrate SD and AB over the preceding decade, with a particular focus on the 

last five years. The review described the building blocks of both paradigms and contrasted their 
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capabilities to explore how their integration can yield insights that cannot be generated with one 

methodology alone. Five fundamental characteristics in which SD and AB differ were identified. These 

characteristics are the paradigms’ capacity to model continuous aggregated and discrete disaggregated 

system states; physical space, topographies, and network structures; stochastic & deterministic 

phenomena; learning and adaption; and ease of model building and interpretation.  

This article also provided an overview of recent work on the integration of SD and AB paradigms, 

and the development of multi-paradigm and multidisciplinary modeling and simulation frameworks. 

However, he unique contribution of this paper is the conclusion that while paradigm emulation has 

contributed to expanding the applications of SD, the dynamic combination of the two approaches is the 

most promising research line. Integrating SD and AB, as well as tools and methods from other 

disciplines, makes it possible to avoid their individual pitfalls and, hence, to exploit the full potential of 

their complementary characteristics, to provide more complete representations of complex dynamic 

systems.  

Ultimately, the widespread adoption of hybrid SD-AB models will depend on the development 

of tools that are able to effectively integrate different modelling paradigms. Therefore, an area of 

research that should be encouraged is the development and refinement of free and open source hybrid 

modelling tools that they are easy to use and in which models can be documented. 

Furthermore, this review concludes that although SD and AB are only a piece in the bigger puzzle 

of innovative modeling and simulation environments, their integration into hybrid models plays an 

important role in these exciting times. Breakthroughs in the integration of SD and AB can yield insights 

in how to build and use smarter modeling tools to support decision-making. 
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