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A B S T R A C T   

Forest fires preparedness strategies require the assessment of spatial and temporal variability of fire danger. 
While several tools have been developed to predict fire occurrence and behaviour from weather data, it is 
acknowledged that fire danger models may benefit from direct assessment of live fuel condition, as allowed by 
Earth Observation technologies. In this study, the performance of pre-fire observations of land surface temper
ature (LST) anomaly and of the Perpendicular Moisture Index (PMI) in predicting fire characteristics was eval
uated against the Canadian Forest Fire Weather Index (FWI) System, a fire danger model adopted in several areas 
worldwide. To this purpose, a database of forest fires recorded in Campania (13,595 km2), Italy, was combined 
with MODIS retrievals of LST anomaly and PMI, and with FWI maps from NASA’s Global Fire Weather Database. 
Fires were grouped in decile bins of LST anomaly, PMI and FWI System components, and probability distribution 
functions of burned area, fire duration and rate of spread were fitted in each bin. The dependence of probability 
model parameters on LST anomaly, PMI and FWI System components was assessed by means of trend analysis 
(coefficient of determination and p-value of the linear fit, Sen’s slope and Mann-Kendall test) and likelihood ratio 
test versus the corresponding unconditional probability model. Finally, the probability of an extreme event, 
conditional to ignition, was modelled as a function of LST anomaly and PMI. Results show that the probability 
distribution function of burned area has a strong dependence on both LST anomaly and PMI, that the probability 
distribution function of fire duration has a strong dependence on LST anomaly but not on PMI, and that the 
probability distribution function of rate of spread has a weak dependence on LST anomaly and a strong 
dependence on PMI. These results are in line with expectations from models of the combustion and flames 
propagation processes. Trend analyses and likelihood ratio tests showed that the FWI System components are 
good predictors of burned area and fire duration, but not of rate of spread. They also confirmed that, where LST 
anomaly and PMI are covariates of the considered fire characteristic, their performance is similar or better than 
the FWI System components. Finally, the probability of an extreme event in terms of burned area as a joint 
function of LST anomaly and PMI shows a wider dynamic range than the same probability modelled as a function 
of these remote sensing variables individually.   

1. Introduction 

Governments, local authorities, forestry corps and civil protection 
agencies are faced with the need to manage forest fires and to implement 
preparedness strategies aimed at safeguarding the security of citizens 
and at preserving the services of the biomes being affected (Carlson and 
Burgan, 2003; Fernández-Guisuraga et al., 2021; Mohamed Shaluf, 
2008; Oliveira et al., 2017). Preparedness encompasses all initiatives 
aimed at developing operational response in case of a fire (Gunes and 

Kovel, 2000; Minas et al., 2012; Mohamed Shaluf, 2008). It requires the 
assessment of spatial and temporal variability of fire risk, e.g. through 
maps of fuel type and amount, fire hazard and danger, vulnerability and 
value of natural resources and of anthropic assets (Mhawej et al., 2015; 
Miller and Ager, 2013; Oliveira et al., 2017; Thompson et al., 2015). 

Several fire danger rating systems have been developed worldwide to 
support decision making (Allgöwer et al., 2003; Sirca et al., 2018). These 
are typically based on the evaluation of biophysical and environmental 
variables that control fire occurrence and behaviour, and on the 
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provision of one or more time-dependent indices in the form of maps. 
Among them are the McArthur Forest Fire Danger Index (McArthur, 
1967; Noble et al., 1980), the National Fire Danger Rating System of the 
US (Deeming et al., 1977) and the Canadian Forest Fire Weather Index 
(FWI) System (Van Wagner, 1987). The latter has been effectively used 
to map fire danger in several areas worldwide, including Europe (de 
Groot and Flannigan, 2014; San-Miguel-Ayanz et al., 2012). 

A common trait of fire danger indices is their dependence on mete
orological input (Chuvieco, 2003). This is based on the fact that fire 
occurrence and behaviour are both controlled by live and dead fuel 
moisture content, which in turn are determined by the interaction of 
vegetation, litter and dead woody material in the topsoil with weather 
and topography (Andrews, 2007; Finney, 1998; Rothermel, 1991, 1972; 
Van Wagner, 1987; Yebra et al., 2013). Indeed, fire danger rating sys
tems model fuel moisture content from meteorological measurements 
and then use computed values to produce one or more indices that serve 
as predictors of fire occurrence and behaviour. However, the use of 
modelled rather than measured fuel moisture content results in a certain 
degree of approximation due to the simplifying assumptions this im
plies, especially with respect to live fuels (Ruffault et al., 2018; Schunk 
et al., 2017). In fact, the link between live fuel moisture content (LFMC) 
and weather forcing is dependent on structural and physiological char
acteristics of plants which are species specific (Jolly and Johnson, 2018; 
Pellizzaro et al., 2007b). Nevertheless, LFMC is essential in predicting 
fire behaviour (Jolly, 2007; Rossa and Fernandes, 2017). From a source 
data perspective, most fire danger rating services are based either on 
values from point weather measurements, e.g. automated weather sta
tions, and as such computed indices are only valid in a limited area 
around the point of data collection (Chowdhury and Hassan, 2015a; 
Schlobohm and Brain, 2002; Walding et al., 2018), or from coarse res
olution weather forecasts from meteorological services, leading to pro
duced maps being at a scale that might not be suitable for fire 
management purposes at local level (Martell, 2007; North et al., 2015; 
San-Miguel-Ayanz et al., 2012). 

Direct observation of LFMC has the potential to enable a better 
evaluation of fire occurrence and fire behaviour danger indices (Jolly, 
2007; Rossa and Fernandes, 2017; Ruffault et al., 2018; Ustin et al., 
2009). This outlines a clear opportunity for Earth Observation tech
nologies, as they provide repeated and frequent observations of land 
surface conditions (Allgöwer et al., 2003; Ma et al., 2019; Yebra et al., 
2013). Most approaches for the use of remote sensing data in fire danger 
mapping focussed on relating land surface temperature (LST), spectral 
indices of vegetation moisture content, radar backscatter or indirect 
measures of plant stress to danger indices and fire occurrence. Time 
series of the Normalised Difference Water Index (Gao, 1996) were found 
to be related to the seasonality of fire occurrence (Huesca et al., 2014, 
2009). The Normalised Difference Water Index was also used in 
conjunction with satellite estimates of LST to predict fire danger 
(Abdollahi et al., 2018). The Global Vegetation Moisture Index (Ceccato 
et al., 2002) was used in combination with LST and a few landscape 
factors to predict fire occurrence (Pan et al., 2016). Radar backscatter 
was related to vegetation moisture and fire danger (Abbott et al., 2007; 
Hunt et al., 2011; Leblon et al., 2002), although it is acknowledged that 
it is also affected by many other surface properties (Leblon et al., 2016). 

Several studies have shown that time series of optical vegetation 
spectral indices and of LST, as proxies of plant water stress, are related to 
fire occurrence (Bajocco et al., 2015; Burgan et al., 1998; Chowdhury 
and Hassan, 2015b; Chuvieco et al., 2004; Maselli et al., 2003; Slingsby 
et al., 2020; Yu et al., 2017). LST was also used to model energy budgets 
(Leblon, 2005; Nolan et al., 2016; Vidal et al., 1994) and to estimate heat 
energy of pre-ignition (Dasgupta et al., 2006) and predict fire occur
rence. Fire occurrence was also related to LST anomaly (Manzo-Delgado 
et al., 2004; Matin et al., 2017; Pan et al., 2016), although there is no 
shared definition of this parameter. 

Cited approaches for forest fire danger mapping from remote sensing 
measurements essentially focus on fire occurrence. However, fire danger 

models are meant not only to predict fire occurrence, but also to provide 
a measure of expected fire characteristics. In this sense, any attempt to 
respond to the identified need to improve fire danger models (Ruffault 
et al., 2018) would need an understanding of remote sensing potential in 
predicting fire characteristics either deterministically (Dasgupta et al., 
2007) or probabilistically (Flannigan et al., 2016). The latter would be 
more suited to fulfil the need of fire managers, as their interest is in the 
prediction of the probability of extreme events (Finney, 2005; Flannigan 
et al., 2016; Mazzetti et al., 2009; Podschwit et al., 2018; Syphard et al., 
2018). 

Supporting this approach, recent studies found that the probability 
distribution functions of burned area and fire duration are related to pre- 
fire satellite observations of LST anomalies (Maffei et al., 2018), and that 
probability distribution functions of burned area and rate of spread are 
related to pre-fire satellite observations of the Perpendicular Moisture 
Index (PMI) (Maffei and Menenti, 2019, 2014). These initial results 
potentially enable the prediction of the probability of an extreme event, 
conditional to ignition, as a function of remote sensing measurements. 
However, it was not documented whether LST anomaly is related to the 
probability distribution function of rate of spread, how LST anomaly and 
PMI compare to each other and against traditional fire danger tools such 
as the FWI System in predicting forest fire characteristics, whether LST 
anomaly and PMI can be considered independent and how they can be 
jointly used to improve the pre-fire prediction of the probability of 
extreme events. To consolidate initial results, further research was 
needed to:  

• Understand how LST anomaly and PMI compare in predicting 
burned area, fire duration and rate of spread of fire events and assess 
whether they are independent;  

• Quantitatively assess their performance against predictions arising 
from the FWI System;  

• Establish an approach for their joint use in the prediction of the 
probability of extreme events. 

To achieve these objectives, LST anomaly was compared against PMI 
trying to explain the biophysical nature of the predictive differences 
between these two remote sensing quantities. Their performance as 
predictors of burned area, fire duration and rate of spread was evaluated 
against the components of the FWI System by means of trend analysis 
and likelihood ratio tests. Finally, it was developed a model jointly using 
LST anomaly and PMI to predict those fire characteristics for which both 
are proved to be a strong covariate. 

2. Materials and methods 

2.1. Study area 

Campania, Italy (13,595 km2, Fig. 1), is an administrative region 
positioned in the middle of the Mediterranean. It is characterised by a 
high population density and is listed among the most fire affected re
gions in Europe (Modugno et al., 2016; San-Miguel-Ayanz et al., 2018). 
Climate shows distinctly hot and dry summers, while winter typically 
records the maximum rainfall (Fratianni and Acquaotta, 2017). The 
landscape is dominated by agricultural areas, while forests cover 38% of 
regional surface. 

2.2. Data 

2.2.1. MODIS land surface temperature and reflectance data 
Remote sensing datasets used in this research were the Aqua-MODIS 

Level 3 collection 6 land surface temperature (MYD11A1) and surface 
reflectance (MYD09A1) products. Level 3 products are standardised 
science-ready geophysical variables mapped on a fixed global grid 
(Masuoka et al., 1998). 

MYD11A1 contains daily gridded diurnal and nocturnal LST 
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estimates at a conventional resolution of 1 km, along with quality 
assurance (QA) metadata. A complete time series of MYD11A1 granules 
covering years 2003 till 2017 was used in this research, only retaining 
pixel data marked as good quality (Maffei et al., 2018; Van Nguyen et al., 
2015; Xu and Shen, 2013). 

MYD09A1 is a product containing 8-day composited reflectance at 
500 m resolution (Vermote et al., 1997). Tiles between June to 
September of years 2003–2011 were retrieved and, likewise LST, 
masked against QA to ensure only good quality reflectance estimates are 
retained (Maffei and Menenti, 2019; Vermote et al., 2015). 

2.2.2. Fire event data 
For this study, a database of fires recorded in Campania between 

2003 and 2011 was provided by the Forest Fire Information Unit of 
Carabinieri (Italian national gendarmerie). This law enforcement 
agency is in charge, among other responsibilities, of burned area in
ventorying. Available data is thus to be considered official. For each 
event it reports the coordinates of the centroid of burned area, fire start 
and end date and time, and final burned area. A distinct fire season can 
be noted in summer, as 82% of fires and 89% of burned area are 
recorded between June and September. 

A subset of 4949 events was extracted from the database, consisting 
of all fires occurred in natural areas from June to September 2003–2011. 
Burned area and fire duration were the only fire characteristic explicitly 
reported in the database. These allowed the calculation of rate of spread, 
hereby defined as the constant radial growth rate of an equivalent cir
cular fire resulting in the given burned area and duration. 

2.2.3. Fire Weather Index 
The FWI System is based on the processing of daily readings of 

temperature, relative humidity, wind speed, and precipitation for the 
production of six fire danger indicators (Van Wagner, 1987). The Fine 
Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the 
Drought Code (DC) model the moisture content of dead forest fuels. The 
Initial Spread Index (ISI) is calculated from FFMC and wind speed. ISI is 
generally related to burned area. The Build-Up Index (BUI) is computed 
from DMC and DC to represent fuel consumption. The FWI is a 
comprehensive indicator calculated by combining ISI and BUI to syn
thesise all the fire danger indicators of the FWI System. FWI is related to 
the energy output rate of a fire. Daily layers of the FWI System com
ponents used herein are those from NASA’s Global Fire Weather Data
base (Field et al., 2015; Molod et al., 2015), available at a resolution of 
0.25◦ × 0.25◦. 

2.3. Retrieval of land surface temperature anomaly 

In this study, LST anomaly was evaluated against a reference 
climatology constructed from the time series of daily diurnal Aqua- 
MODIS LST (Alfieri et al., 2013) through the harmonic analysis of 
time series (HANTS) algorithm (Menenti et al., 2016, 1993). Through 
the modelling of LST periodic behaviour, HANTS is robust with respect 
to missing observations and allows the removal of outliers in time series 
due to cloud cover or active fires. In a similar way, HANTS was applied 
to individual yearly series of daily LST data 2003–2011 to model annual 
variability (Xu and Shen, 2013). Daily LST anomaly was then evaluated 
as the LST value in the annual models minus the value in the climatology 
(Maffei et al., 2018). 

2.4. The Perpendicular Moisture Index (PMI) 

LFMC is the percentage mass of water in leaf tissues over dry leaf 
mass. This key variable in fire danger assessment directly controls 
flames propagation (Andrews, 2007; Carlson and Burgan, 2003; Chu
vieco et al., 2009; Finney, 1998; Hunt et al., 2013; Rothermel, 1991, 
1972; Van Wagner, 1977; Yebra et al., 2013). The remote sensing proxy 
for LFMC used in this study is the Perpendicular Moisture Index (PMI) 
(Maffei and Menenti, 2014), a spectral index specifically designed to 
maximise its sensitivity to LFMC variability. 

The PMI was developed from simulated vegetation spectral data 
(Feret et al., 2008; Jacquemoud et al., 2009) convolved to MODIS bands 
(Xiong et al., 2006) by noting that in the spectral reflectance subspace of 
MODIS bands 2 (0.86 µm) and 5 (1.24 µm) isolines of LFMC can be 
identified, and that these isolines are straight and parallel. By taking as a 
reference the line corresponding to LFMC = 0 i.e., completely dry 
vegetation, the PMI was calculated as the distance of measured reflec
tance from the reference line. This led to the formula: 

PMI = − 0.73 ×
(
R1.24μm − 0.94 × R0.86μm − 0.028

)

As defined, PMI is a measure of LFMC, and higher values of PMI 
correspond to higher moisture content. PMI maps of the study area were 
produced from the retrieved Aqua-MODIS 8-day composited surface 
reflectance. 

2.5. Conditional distributions of fire characteristics 

The dispersion of burned area, fire duration and rate of spread is 
extremely skewed. Prior to analyses, these variables were scaled and log- 
transformed, so to have positive values only. This study is essentially 
based on the evaluation of the parameters of the probability distribution 
functions of fire characteristics. From the given dataset it was found that 
log-transformed burned area, fire duration and rate of spread follow 
normal, generalised extreme value (GEV) and Weibull distributions 
respectively (Maffei and Menenti, 2019). 

Prior to further analyses, fires in the dataset were intersected with 
maps of LST anomaly, PMI and FWI System components in a GIS envi
ronment, so that each event was associated with the corresponding LST 
anomaly value recorded in the day previous to the event, the PMI value 
recorded in the previous 8-day compositing period, and the values of the 
FWI System components recorded on the day of the event (Maffei et al., 
2018; Maffei and Menenti, 2019). Observations of PMI, LST anomaly 
and FWI System components associated with fires were grouped in their 
respective ten decile bins. The parameters of the normal distribution of 
log-transformed burned area, of the GEV distribution of log-transformed 
fire duration and of the Weibull distribution of log-transformed rate of 
spread were assessed in each bin through the minimisation of the 
Anderson-Darling statistic (Anderson and Darling, 1954). The corre
sponding 95% confidence intervals were then evaluated by means of 
1000 bootstrap estimations. 

Trends in the values of the parameters of the probability 

Fig. 1. Study area is Campania, Italy (13,595 km2).  
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distributions with respect to LST anomaly, PMI and the FWI System 
components were assessed and compared by means of linear regressions 
(coefficient of determination and p-value), Sen’s slope magnitude (Sen, 
1968) and Mann-Kendall test (Kendall, 1975; Mann, 1945). A likelihood 
ratio test was adopted to evaluate the probability distribution functions 
conditional to LST anomaly, PMI and the FWI System components 
(alternative models) against the corresponding unconditional models 
fitting all data (null models). Significance was set at 0.05 for linear re
gressions, the Mann-Kendall test, and the likelihood ratio test. 

2.6. Probability of extreme events conditional to ignition 

An extreme event is hereby defined as a fire whose fire characteristic 
is larger than the 95th percentile of the values recoded in the database. 
The evaluation of the probability of extreme events conditional to 
ignition as a function of LST anomaly (alternatively PMI) builds on the 
conditional probability distribution functions identified in the previous 
section. The dependence of distribution parameters on LST anomaly 
(alternatively PMI) were modelled by means of linear regressions. 

A similar approach was adopted to model the probability of extreme 
events as a function of both LST anomaly and PMI. The bidimensional 
space spanned by LST anomaly and PMI was partitioned into 100 bins 
determined by the previously defined decile intervals. The parameters of 
the probability distribution functions were evaluated in each bidimen
sional bin through the minimisation of the Anderson-Darling statistic. 
Their dependence on LST anomaly and PMI was then modelled by means 
of a multiple linear regression. The performance of the derived linear 
models was then assessed by using the leave-one-out cross-validation 
(LOOCV). 

3. Results 

3.1. Comparing LST anomaly and PMI performance in predicting fire 
characteristics 

The scatterplot of LST anomaly and PMI values associated with fire 
events shows that these two remote sensing observations are substan
tially unrelated (Fig. 2). This is reflected in the dispersion of burned 
area, fire duration and rate of spread in decile bins of LST anomaly and 
PMI (Fig. 3). Burned area appears to be dispersed towards higher values 
with increasing LST anomaly and with decreasing PMI (lower LFMC). 
Dispersion of fire duration is towards higher values with increasing LST 
anomaly, whereas no trend is observed against PMI. Conversely, rate of 
spread appears to be dispersed towards lower values with increasing 
PMI (higher LFMC), while only a weak decreasing trend can be noted 
against LST anomaly. 

The analysis of the probability distribution functions of burned area, 
fire duration and rate of spread in decile bins of LST anomaly and PMI 

(conditional distributions) further demonstrated that these two satellite 
observables are differently related to fire characteristics. The mean of 
the normal distribution of log-transformed burned area varies with both 
LST anomaly (r2 = 0.81, p < 0.001) and PMI (r2 = 0.80, p < 0.001), 
showing comparable Sen’s slope magnitude (Fig. 4, Table 1). Standard 
deviation follows a significant trend only against LST anomaly (r2 =

0.52, p < 0.05), whereas a constant value fits most confidence intervals 
of this parameter in decile bins of PMI. The latter is confirmed by trend 
analysis, as Mann-Kendall test fails to reject the null hypothesis. 

Location, scale, and shape of the GEV distribution of log-transformed 
fire duration conditional to LST anomaly follow strong and significant 
increasing trends (r2 = 0.78, 0.79 and 0.87 respectively, p < 0.001) with 
increasing LST anomaly (Fig. 5, Table 2). The parameter of the GEV 
distribution of log-transformed fire duration conditional to PMI showing 
a trend is scale (r2 = 0.55, p < 0.05). However, a constant value of scale 
would fit most confidence intervals, and indeed Mann-Kendall test fails 
to reject the null hypothesis for all three GEV parameters conditional to 
PMI, confirming the absence of a trend with significance 0.05. 

Distribution of log-transformed rate of spread conditional to LST 
anomaly and PMI shows the opposite behaviour as compared to fire 
duration (Fig. 6, Table 3). The scale and shape parameters of the Weibull 
distribution conditional to LST anomaly only show a weak decreasing 
trend (r2 = 0.50 and 0.54 respectively), albeit significant (p < 0.05). 
Sen’s slope magnitude is low, yet the Mann-Kendall test allows the 
rejection of the null hypothesis, and the existence of a trend can be 
accepted with significance 0.05. Conversely, the scale and shape con
ditional to PMI show strong and significant decreasing trends (r2 = 0.97 
and 0.82 respectively, p < 0.001) with increasing PMI (corresponding to 
increasing LFMC) and high Sen’s slope magnitude. 

The probability distribution functions of the three log-transformed 
fire characteristics conditional to LST anomaly allow the rejection of 
the null (unconditional) model in the likelihood ratio test (Table 4), 
confirming that LST anomaly is a covariate of all three fire character
istics. Similarly, probability models of log-transformed burned area and 
log-transformed rate of spread conditional to PMI allow the rejection of 
the unconditional model, whereas the corresponding conditional model 
of log-transformed fire duration does not. Comparing these findings 
against trends outlined in Fig. 5 and in Table 2 leads to the conclusion 
that PMI is a covariate of burned area and rate of spread, but not of fire 
duration. 

3.2. Assessing the performance of LST anomaly and PMI against the FWI 
System components 

Trend analysis of the parameters of the probability distribution of 
log-transformed burned area, fire duration and rate of spread in decile 
bins of the FWI System components allows a comparison of the perfor
mance of pre-fire remote sensing retrievals of vegetation condition in 
predicting fire danger against a consolidated fire danger mapping tool 
based on meteorological data. The mean of the normal distribution of 
log-transformed burned area shows strong and significant (p < 0.001) 
trends against all FWI System components, with Sen’s slope magnitude 
values mostly comparable with those achieved by LST anomaly and PMI 
(Table 1). Conditional standard deviation is characterised by significant 
trends against FFMC, DMC and BUI, but only DMC’s Mann-Kendall test 
allows the rejection of the null hypothesis, i.e. confirms that the alter
native hypothesis of the existence of a trend can actually be accepted. 
These results are reflected in the likelihood ratio test (Table 4), as all 
alternative models conditional to FWI System components allow the 
rejection of the unconditional model. 

Similar results were found with the parameters of the GEV distri
bution of log-transformed fire duration (Table 2). Location, scale and 
shape show significant trends against all FWI System components with 
strength and Sen’s slope magnitude substantially comparable with those 
against LST anomaly. Further, all conditional models allow the rejection 
of the unconditional model (Table 4). Fig. 2. Scatterplot of PMI vs LST anomaly values associated with fire events.  
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The FWI System components do not appear to be good covariates of 
rate of spread. Scale of the Weibull distribution of log-transformed rate 
of spread shows significant (p < 0.01) trends only against DC and BUI, 
although with lower strength and Sen’s slope magnitude than PMI 
(Table 3). Shape shows significant (p < 0.05) trends against DMC, DC 
and BUI, but only DC’s Mann-Kendall test rejects the null hypothesis of 
the absence of a trend. For both parameters, this contrasts with the 
strength and Sen’s slope of the trends against PMI. While DC might still 
be considered a covariate of rate of spread, the corresponding condi
tional probability model does not allow the rejection of the uncondi
tional model (Table 4). 

3.3. Predicting the probability of extreme events 

As both LST anomaly and PMI are strong covariates of burned area 
and are not correlated, it was interesting to compare how the probability 
of extreme events conditional to ignition varies as a function of LST 
anomaly and PMI, both individually and jointly. The mean and the 
standard deviation of the normal distribution of log-transformed burned 
area were modelled as linear functions of LST anomaly according to 
regression lines identified in Fig. 4. Similarly, the mean of the normal 
distribution of log-transformed burned area was modelled as a linear 
function of PMI, while standard deviation was kept constant. According 

to the available fire data, the 95th percentile of burned area is 30.0 ha. 
Plots of the probability of fires larger than 30.0 ha show a marked in
crease with increasing LST anomaly and decreasing PMI (Fig. 7). 

A similar approach was used to evaluate the probability of large fires 
as a joint function of LST anomaly and PMI. The derived linear model 
fitting the mean of the normal distribution of log-transformed burned 
area in the 100 bins determined by the decile intervals of LST anomaly 
and PMI has r2 = 0.49 (p < 0.001), whereas the corresponding linear 
model of the standard deviation has r2 = 0.28 (p < 0.001). The leave- 
one-out cross-validation coefficient of determination is 0.45 and 0.23 
for the mean and the standard deviation respectively, showing relative 
robustness of their linear models as a function of LST anomaly and PMI. 

Using as a reference the 2.5%–97.5% percentile range of recorded 
LST anomaly and PMI values, probability of large fires conditional to 
ignition increased from 0.9% to 9.2% with LST anomaly ranging from 
− 2.1 to 4.3 K and increases from 1.8% to 7.4% with PMI decreasing from 
0.052 to − 0.032. When the probability of fires exceeding 30.0 ha is 
modelled as a function of both LST anomaly and PMI, modelled prob
abilities cover the wider range from 0.5% to 12.7% (Fig. 8). 

4. Discussion 

This study stemmed from previous investigations on multi-spectral 

Fig. 3. Boxplots of burned area, fire duration and rate of spread in decile bins of LST anomaly and PMI.  
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and thermal remote sensing of forest conditions for the prediction of 
some fire characteristics (Maffei et al., 2018; Maffei and Menenti, 2019). 
Its main objective was to compare LST anomaly and PMI capability to 
predict burned area, fire duration and rate of spread of actual fires such 
as those provided by the Forest Fire Information Unit of Carabinieri, 
assess their performance against the FWI System components, evaluate 
and understand the independence of these two remote sensing obser
vations of live fuel conditions and establish an approach for their joint 
use in the prediction of extreme events. The PMI was designed to be a 
measure of LFMC (Maffei and Menenti, 2014), and as such it is related to 
the condition of green vegetation. LST anomaly was initially conceived 
as a measure of vegetation response to water stress (Alfieri et al., 2013; 
Maffei et al., 2018), and for this reason it was interpreted with reference 
to a physiological condition (Buitrago Acevedo et al., 2017; Chowdhury 
and Hassan, 2015a; Dasgupta et al., 2006; Leblon, 2005; Manzo-Delgado 
et al., 2004; Matin et al., 2017; Nolan et al., 2016; Pan et al., 2016; 
Sobrino et al., 2016; Vidal et al., 1994). Indeed, when water stress at
tains certain levels it triggers plants transpiration regulation mecha
nism, and this results in a detectable increase of canopy temperature 
(Buitrago Acevedo et al., 2017; Hsiao, 1973; Jackson et al., 1981; Kalma 
et al., 2008; Karnieli et al., 2010; Liu et al., 2016; Nemani and Running, 
1989; Schulze et al., 1973; Zweifel et al., 2009) 

4.1. Considerations on spatial and temporal granularity of satellite data 

Satellite imagery used in this research was at two different resolu
tions. MODIS optical bands to retrieve the PMI are available at a reso
lution of 500 m whereas thermal bands, from which LST anomaly is 
derived, are available at 1000 m. While the operational production of 
maps of probability of extreme events as a bivariate function of LST 
anomaly and PMI might require some consideration on the most suitable 
approach to combine data at different resolutions, from the point of view 
of the analyses herein this is not relevant. Indeed, each fire was asso
ciated with the pre-fire environmental condition (LST anomaly, alter
natively PMI) of the cell in which it was located (1 and 0.25 km2 

respectively), independently of the resolution of the source dataset 
(Pyne et al., 1996). As it will be shortly discussed that these two vari
ables are independent, there is no effect of the differing resolution on the 
characterisation of the pre-fire environmental conditions of the specific 
cell containing the fire. 

The optical and thermal datasets were different also in terms of 
temporal structure. LST anomaly was derived from a daily climatology 
and an annual model of LST, both constructed by means of the HANTS 
algorithm (Alfieri et al., 2013; Menenti et al., 1993; Roerink et al., 2000; 
Verhoef, 1996). In this sense, the daily temporal granularity of LST 

Fig. 4. Mean and standard deviation of normal distribution of log-transformed burned area in decile bins of LST anomaly and PMI.  

Table 1 
Trend analysis of the parameters of the normal distribution of log-transformed burned area across decile bins of LST anomaly, PMI and of the FWI System components, 
reporting coefficient of determination and p-value of the linear fit, Sen’s slope, and Mann-Kendall test’s result. Significance level of Mann-Kendall test is 0.05.   

Mean Standard deviation  

r2 P Sen’s slope M− K test r2 p Sen’s slope M− K test 

LST anomaly  0.81 ***  0.033 Rejects  0.52 *  0.0124 Rejects 
PMI  0.80 ***  − 0.038 Rejects  0.10 ns  0.0048 Fails 
FFMC  0.82 ***  0.036 Rejects  0.43 *  0.0050 Fails 
DMC  0.89 ***  0.028 Rejects  0.78 ***  0.0093 Rejects 
DC  0.81 ***  0.017 Rejects  0.21 ns  0.0095 Fails 
ISI  0.92 ***  0.036 Rejects  0.21 ns  0.0043 Fails 
BUI  0.91 ***  0.025 Rejects  0.72 **  0.0075 Fails 
FWI  0.96 ***  0.034 Rejects  0.31 ns  0.0081 Fails  
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anomaly is inherent in the approach adopted to model it. On the other 
side, PMI was computed from the 8-day composited MODIS reflectance 
product. Composited products have the advantage of providing the best 
cloud free estimate of the pixel in a standardised grid while compen
sating for cloud cover and view angle. The coarser temporal granularity 
was not perceived as an obstacle as during the dry season LFMC only 
changes abruptly in correspondence of rainfalls (Ruffault et al., 2018) 
and the use of the prior compositing period in a predictive approach 

renders temporal sampling less critical. An alternative approach could 
have been to model PMI variability by means of the HANTS algorithm to 
gap-fill cloudy pixels and compensate for noise, while retaining a daily 
coverage, as reported in literature for LST and NDVI (Alfieri et al., 2013; 
Menenti et al., 2016, 1993; Verhoef, 1996). However, it is not known 
whether harmonic analysis is able to capture PMI variability with a 
reasonable number of harmonics with respect to the available number of 
observations (Zhou et al., 2015), and investigating this was beyond the 

Fig. 5. Location, scale and shape of the GEV distribution of log-transformed fire duration in decile bins of LST anomaly and PMI.  

Table 2 
Trend analysis of the parameters of the GEV distribution of log-transformed fire duration across decile bins of LST anomaly, PMI and of the FWI System components, 
reporting coefficient of determination and p-value of the linear fit, Sen’s slope, and Mann-Kendall test’s result. Significance level of Mann-Kendall test is 0.05.   

Location Scale Shape  

r2 p Sen’s slope M− K test r2 p Sen’s slope M− K test r2 p Sen’s slope M− K test 

LST an.  0.78 ***  0.015 Rejects  0.79 ***  0.0081 Rejects  0.87 ***  0.027 Rejects 
PMI  0.26 ns  0.006 Fails  0.55 *  0.0028 Fails  0.32 ns  0.006 Fails 
FFMC  0.76 **  0.013 Rejects  0.85 ***  0.0083 Rejects  0.70 **  0.012 Rejects 
DMC  0.90 ***  0.016 Rejects  0.83 ***  0.0051 Rejects  0.44 *  0.014 Fails 
DC  0.93 ***  0.014 Rejects  0.53 *  0.0047 Fails  0.63 **  0.020 Rejects 
ISI  0.83 ***  0.012 Rejects  0.68 **  0.0086 Rejects  0.41 *  0.012 Fails 
BUI  0.95 ***  0.016 Rejects  0.80 ***  0.0052 Rejects  0.57 *  0.012 Fails 
FWI  0.93 ***  0.012 Rejects  0.96 ***  0.0087 Rejects  0.64 **  0.012 Fails  
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objectives of this study. 
Analyses reported herein are based on pre-fire satellite observations 

of LST anomaly and of PMI. Indeed, each fire was associated to the LST 
anomaly data from the previous day and to the PMI map of the previous 
8-day compositing period. This ensures that results can be adopted in an 
operational scenario where current observations are used to predict fire 

characteristics in the following days. This is not inconsistent with the 
choice of associating fires with the same day value of the FWI System 
components. Indeed, FWI maps are available in advance as being pro
duced from forecasts of weather conditions (San-Miguel-Ayanz et al., 
2012). 

4.2. LST anomaly and PMI as predictors of fire characteristics 

LST anomaly appears to capture part of the variability in burned area 
and fire duration (Fig. 3), with increasing values leading to larger fires 
and longer durations. This is reflected in the parameters of the corre
sponding conditional probability distribution functions. Both mean and 
standard deviation of normal distribution of log-transformed burned 
area conditional to LST anomaly show significant (p < 0.001 and p <
0.05 respectively) increasing trends (Fig. 4) with a high Sen’s slope 
magnitude (Table 1). Similarly, location, scale and shape of the GEV 
distribution of log-transformed fire duration conditional to LST anomaly 
are characterised by strong (r2 = 0.78, 0.79 and 0.87) and significant (p 
< 0.001) trends with a high Sen’s slope (Table 2). These results are 
further confirmed by the likelihood ratio test, with the conditional 
(alternative) models allowing the rejection of the unconditional (null) 
models for both fire characteristics (Table 4). 

Fig. 6. Scale and shape of the Weibull distribution of log-transformed rate of spread in decile bins of LST anomaly and PMI.  

Table 3 
Trend analysis of the parameters of the Weibull distribution of log-transformed rate of spread across decile bins of LST anomaly, PMI and of the FWI System com
ponents, reporting coefficient of determination and p-value of the linear fit, Sen’s slope, and Mann-Kendall test’s result. Significance level of Mann-Kendall test is 0.05.   

Scale Shape  

r2 p Sen’s slope M− K test r2 p Sen’s slope M− K test 

LST anomaly  0.50 * − 0.0077 Rejects  0.54 * − 0.129 Rejects 
PMI  0.97 *** − 0.0254 Rejects  0.82 *** − 0.419 Rejects 
FFMC  0.18 ns − 0.0017 Fails  0.03 ns 0.032 Fails 
DMC  0.38 ns − 0.0064 Rejects  0.41 * − 0.137 Fails 
DC  0.66 ** − 0.0098 Rejects  0.57 * − 0.173 Rejects 
ISI  0.05 ns − 0.0009 Fails  0.01 ns 0.027 Fails 
BUI  0.65 ** − 0.0066 Rejects  0.52 * − 0.102 Fails 
FWI  0.30 ns − 0.0026 Fails  0.01 ns − 0.025 Fails  

Table 4 
Results of the likelihood ratio test. Null model is the one fitting all data. Alter
native model is the collection of ten models in decile bins of the candidate co
variate. Significance level is 0.05. In bold the alternative models showing the 
highest likelihood for each fire characteristic.   

Burned area Duration Rate of spread 

LST anomaly Rejects Rejects Rejects 
PMI Rejects Fails Rejects 
FFMC Rejects Rejects Fails 
DMC Rejects Rejects Fails 
DC Rejects Rejects Fails 
ISI Rejects Rejects Rejects 
BUI Rejects Rejects Rejects 
FWI Rejects Rejects Rejects  
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The dispersion of rate of spread in decile bins of the LST anomaly 
shows a weakly decreasing trend (Fig. 3). This is reflected in both scale 
and shape of the corresponding Weibull distribution. Both parameters 
exhibit a significant (p < 0.05) decreasing trend (Fig. 6), albeit less 
significant and with a much lower Sen’s slope magnitude as opposed to 
PMI (Table 3). The Mann-Kendall test confirms that the null hypothesis 
of absence of trend can be rejected, and the likelihood ratio test further 
confirms that the alternative model allows the rejection of the null 
model (Table 4). Nevertheless, the weakness of the trend and the rela
tively low Sen’s slope magnitude implies that LST anomaly might not be 
considered a strong covariate for rate of spread. 

Along the same line of reasoning, it can be noted that the dispersion 
of burned area and rate of spread varies across decile bins of PMI 
(Fig. 3). Increasing values of PMI, corresponding to increasing LFMC, 
lead to a dispersion of burned area and rate of spread towards lower 
values. This is further confirmed in the trends of the parameters of the 
corresponding probability distribution models. The mean of the normal 
distribution of log-transformed burned area has a strong (r2 = 0.80) and 
significant (p < 0.001) decreasing trend with PMI (Fig. 4) with high 
Sen’s slope magnitude (Table 1). As opposed to LST anomaly, standard 
deviation shows no trend, the Mann-Kendall test fails to reject the null 
hypothesis and a constant value would be appropriate to describe its 
variability. The likelihood ratio test confirms that this probability model 
conditional to PMI allows the rejection of the unconditional model. Both 
scale and shape of the Weibull distribution of log-transformed rate of 
spread show strong (r2 = 0.97 and 0.82) and significant (p < 0.001) 
trends against PMI (Fig. 6), both characterised by a high Sen’s slope 
magnitude (Table 3). The likelihood ratio test confirms the rejection of 
the corresponding null model (Table 4). 

PMI doesn’t appear to control fire duration. The dispersion of fire 
duration values doesn’t vary across decile bins of PMI (Fig. 3), and the 
only parameter of the GEV distribution of log-transformed fire duration 

that shows a significant (p < 0.05), yet weak trend is scale (Fig. 5). 
Nevertheless, the Mann-Kendall test fails to reject the null hypothesis, 
and the absence of a trend can’t be rejected (Table 2). Indeed, constant 
values would fit most confidence intervals across PMI bins (Fig. 5) and 
the likelihood ratio test confirms that the conditional model fails to 
reject the null model (Table 4). 

These results do not come unexpected. PMI was already demon
strated to be a good predictor of summer fires burned area and rate of 
spread in the region (Maffei and Menenti, 2019). Results based on LST 
anomaly were less obvious, as previous analyses focussed on burned 
area and fire duration only, and the evaluation was performed on events 
occurring all the year round (Maffei et al., 2018). That said, analyses 
herein confirm that LST anomaly is a predictor of burned area and fire 
duration of summer fires. It was also found that LST anomaly is not a 
strong covariate of rate of spread, albeit the existence of a relationship 
linking it to the corresponding probability distribution model cannot be 
ruled out. 

4.3. Comparing the predicting performance of LST anomaly and PMI 
against the FWI System components 

Trend analysis and likelihood ratio test were used to compare LST 
anomaly and PMI versus the FWI System components. This fire danger 
model was chosen as it proved to be adaptable to various biomes 
worldwide (de Groot and Flannigan, 2014; Dowdy et al., 2009; San- 
Miguel-Ayanz et al., 2012; Taylor and Alexander, 2006). LST anomaly 
and PMI perform as well as FWI in predicting burned area, with the 
mean of the normal distribution of log-transformed burned area showing 
strong and significant (p < 0.001) trends and comparable Sen’s slope 
magnitude (Table 1). While trends in the standard deviation are quite 
varying and not present in some covariates, all conditional models of 
log-transformed burned area allow the rejection of the null model 
(Table 4). Similar considerations lead to note that LST anomaly performs 
similarly to the FWI System components in predicting fire duration 
(Table 2). With respect to rate of spread, none of the FWI System com
ponents shows convincing trends of the conditional parameters of the 
Weibull distribution (Table 3). While an exception could be raised for 
DC, it must be noted that the corresponding conditional model fails to 
reject the unconditional (null) model (Table 4). It can thus be stated 
that, in the study area, multi-spectral remote sensing of LFMC (via the 
PMI) is a good predictor of rate of spread whereas the FWI System 
components are not. 

4.4. Interpreting results against combustion and propagation processes 

LST anomaly and PMI proved to be independent, as noted in Fig. 2 
and as a result of their different prediction capability with respect to fire 
duration and rate of spread. PMI is a spectral index exploiting the 
different effect of water content on the spectral properties of vegetation 

Fig. 7. Modelled probability of fires larger than 30.0 ha (95th percentile of the values recorded in the study area), conditional to ignition, as a function of LST 
anomaly and PMI. 

Fig. 8. Modelled probability of fires larger than 30.0 ha (95th percentile of the 
values recorded in the study area), conditional to ignition, as a function of both 
LST anomaly and PMI. Solid lines indicate probability values. 
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in the near infrared and in the shortwave infrared to provide a direct 
measure of LFMC (Maffei and Menenti, 2014). The clear relationship 
reported between PMI and the rate of spread has a direct physical 
interpretation, as LFMC controls flames propagation (Andrews et al., 
2013; Finney, 1998; Rothermel, 1991, 1972; Wilson, 1990). The fact 
that LST anomaly is not as good as a covariate of rate of spread suggests 
that the initial hypothesis of interpreting it as a measure of vegetation 
water stress, and indirectly of moisture content, is not able to explain 
results reported herein. 

LST anomaly is a measure of the deviation of the observed LST from 
its climatological value. While vegetation responds to water stress 
through a decrease in stomatal conductance which leads to an increase 
of its temperature, in Mediterranean environments characterised by 
prolonged dry summers this plant protection mechanism is actually 
triggered on a seasonal basis (Pellizzaro et al., 2007a, 2007b). This 
means that LST increase as a consequence of increased water stress 
might have already been accounted for into the LST climatology. LST 
anomaly may thus be unrelated to vegetation water stress condition and 
may be rather interpreted as a measure of excess enthalpy stored in 
fuels. This opens to a physically based interpretation of LST anomaly as a 
covariate of fire duration, a fire characteristic substantially unrelated to 
PMI. Several environment and anthropic factors have been found to 
affect fire duration (Costafreda-Aumedes et al., 2016; Fischer et al., 
2015; Gustafson et al., 2011; Lasslop and Kloster, 2017), but from a fire 
behaviour point of view, duration is rather a measure of the probability 
of extinction, which is the resultant of heat fluxes between the flaming 
zone, the surrounding fuels and the atmosphere (Finney et al., 2013). 
Higher heat content in the fuels imply that less endothermic enthalpy is 
needed to sustain fire spread, this resulting in a lower probability of 
extinction (Albini, 1986, 1985; Wilson, 1990, 1985). The interpretation 
of LST anomaly as a measure of excess enthalpy thus justifies its effect on 
fire duration. 

The weak decreasing trend observed between LST anomaly and rate 
of spread may be susceptible of a similar physical interpretation. Heat 
fluxes between burning material and the surrounding fuels are at the 
basis of flames propagation, and rate of spread is determined by the ratio 
between the heat flux received by the fuels from the heat source and the 
heat required to achieve ignition (Rothermel, 1972; Weber, 1991). 
While the latter is dependent on fuel moisture content, the former is 
determined by convective and radiative heat exchange (Albini, 1985; 
Baines, 1990). Convective heat exchange is dependent on temperature 
difference and on a heat exchange coefficient weakly dependent on the 
same temperature difference. A higher fuel temperature might thus lead 
to slower flames propagation. Clearly, LST anomaly values observed in 
this study can not be considered as a driver of the rate of spread as LFMC 
(as measured by PMI). Yet this interpretation may explain the observed 
weakly decreasing trends in rate of spread with increasing LST anomaly. 

4.5. Joint use of LST anomaly and PMI for the prediction of extreme 
events 

It was discussed that LST anomaly and PMI are good predictors of fire 
duration and rate of spread respectively, and this was justified through 
the outlined physical interpretation. Their independence was also noted. 
As these two remote sensing observations of fuel condition are both 
strong predictors of burned area, this opened an opportunity for their 
joint use for the evaluation of the probability of extreme events. Indeed, 
if we consider burned area as a resultant, among the other factors, of rate 
of spread and fire duration, it is reasonable to expect that the joint use of 
LST anomaly and PMI may lead to better predictions. The adopted 
approach was to model the parameters of the probability distribution of 
log-transformed burned area as a function of these two remote sensing 
observables. Findings discussed herein reasonably allowed the use of 
linear models. From these, the probability of extreme events, conditional 
to ignition could be evaluated as a function of LST anomaly and PMI. 
Extreme events were here defined as those exceeding the 95th percentile 

of all burned area values recorded in the study area, that is 30 ha. The 
probability of fires larger than 30.0 ha conditional to ignition shows a 
ten-fold increase from 0.9% to 9.2% when LST anomaly increases from 
− 2.1 to 4.3 K, and a four-fold increase from 1.8% to 7.4% when PMI 
decreases from 0.052 to − 0.032 (Fig. 7). Extending this line of 
reasoning, bivariate linear models were constructed for the mean and 
the standard deviation of the normal distribution of log-transformed 
burned area, leading to a model predicting the probability of extreme 
events, conditional to ignition, as a function of both LST anomaly and 
PMI. The joint model, when evaluated over the same range of LST 
anomaly and PMI values (-2.1 to 4.3 K and 0.052 to − 0.032 respec
tively), shows that the probability of fires larger than 30.0 ha condi
tional to ignition varies between 0.5% and 12.7% (Fig. 8), that is a 25- 
fold increase. The wider dynamic range attained confirms the stated 
hypothesis that the joint use of LST anomaly and PMI can lead to 
improved predictions. 

5. Conclusion 

Fire danger is defined as “the resultant, often expressed as an index, 
of both constant and variable factors affecting the inception, spread, and 
difficulty of control of fires and the damage they cause” (FAO, 1986). 
The concept of danger is semantically related to a human perception 
(Bachmann and Allgöwer, 2000). FAO definition, through the reference 
to difficulty of control, acknowledges fire behaviour and its resultants 
(such as burned area and fire duration) as components of fire danger 
(Allgöwer et al., 2003). Fire danger indices available to decision makers 
and fire managers reflect this and mainly focus on the prediction of fire 
occurrence – the inception and spread in FAO’s definition – and 
behaviour (Allgöwer et al., 2003; Sirca et al., 2018). 

This study sits on the fire behaviour side of fire danger, in this being a 
novelty as a remote sensing application, and contributes to the identified 
need to improve fire danger models (Jolly, 2007; Jolly and Johnson, 
2018; Nolan et al., 2018; Pellizzaro et al., 2007b; Rossa et al., 2016; 
Rossa and Fernandes, 2017; Ruffault et al., 2018; Schunk et al., 2017; 
Ustin et al., 2009) through an understanding of how pre-fire satellite 
observations of live fuel conditions are related to fire characteristics 
such as burned area, fire duration and rate of spread. More specifically it 
was shown that LST anomaly is a strong covariate of fire duration and 
weak covariate of rate of spread, whereas PMI is a strong covariate of 
rate of spread. Both remote sensing quantities are strong predictors of 
burned area. Complementarity with the well consolidated FWI System, 
especially in terms of the prediction of rate of spread, was also shown. 
These findings are relevant as they allow the prediction of the proba
bility of extreme events, conditional to ignition, as a function of pre-fire 
satellite observations of fuel condition. This has an immediate opera
tional application, whereas fire managers are interested in understand
ing whether emergency conditions are likely to arise, putting a pressure 
on response resources. 

While LST anomaly and PMI can be used individually to predict the 
fire characteristics that they control, this study tested the advantage of 
their synergistic use in the prediction of burned area. This approach was 
supported by the demonstrated independence of LST anomaly and PMI. 
The probability of large fires conditional to ignition as a function of both 
LST anomaly and PMI covers a broader range of values as compared to 
the same probability evaluated as a function of these two remote sensing 
quantities individually. The outlined approach is clearly open to further 
integration with traditional fire danger indices such as the FWI, but this 
was outside the scope of this study. 

A final consideration is on the wide availability of open access sat
ellite remote sensing datasets whose increased accessibility allows the 
creation of operational services. This study was performed on MODIS 
data in order to cover the range of dates of available fire records. 
Nevertheless, it may be repeated with any satellite remote sensing data 
acquired in the near, shortwave and thermal infrared domains. Among 
the others it is worth naming instruments such as VIIRS on board Suomi 
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NPP and NOAA-20, and SLSTR on board the Sentinel-3 series. All named 
systems provide daily global coverage, and their data is in the open 
access domain. 
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