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Visual Perception with Color 
for Architectural Aesthetics 

 
 
 
 
 
 
 
 
 

Abstract—Studies on computer-based visual perception and 
aesthetical judgment for architectural design are presented. In 
the model, both color and the geometric aspects of human vision 
are jointly taken into account, quantifying the perception of an 
individual object, as well as a scene consisting of several objects. 
This is accomplished by fuzzy neural tree processing. Based on 
the perception model, aesthetical color compositions are 
identified for a scene using multi-objective evolutionary 
algorithm. The methodology is described together with associated 
computer experiments verifying the theoretical considerations. 
Modeling of aesthetical judgment is a significant step for 
applications, where human-like visual perception and cognition 
are of concern. Examples of such applications are architectural 
design, product design, and urbanism. 

Keywords—visual perception; color difference; fuzzy neural tree; 
architectural design; genetic algorithm; Pareto front 

I. INTRODUCTION  

Visual perception is human’s main source of information. 
Therefore understanding and modeling human interaction with 
environment, inevitably involves this subject. Developing 
models of visual perception is relevant to the diverse fields 
where human interaction with environment is concerned, such 
as cybernetics, robotics, medicine, architecture, and industrial 
design, making the subject an important one. Perception has 
been extensively treated in the literature, for instance in phi-
losophy and psychology. Descriptions of the phenomenon in 
these fields are generally qualitative or statistical in nature. 
Despite their validity, descriptions of the basic nature of per-
ception are lacking in precision. The same issue also applies to 
other areas dealing with perception, such as psychophysics [1, 
2], and image processing [3-8], where the perception concept 
referred to is generally expressed not mathematically but lin-
guistically. For instance, in the psychophysics and cognition 
works, brain processing in human visual system is explained 
via neurobiological terms rather than mathematical ones. Yet, 
establishing a model of human perception implies that the 
phenomenon should be treated in computational form for min-
imal ambiguity. Although image processing studies are a mat-
ter of computation, and they traditionally do make reference to 
biological vision in order to justify or have inspiration in the 
development of machine vision algorithms, the algorithms 

resemble to human vision only in a restricted sense. Generally 
an image processing algorithm singles-out a component of 
perception process occurring in human visual system. Exam-
ples are the ample edge detection studies in the literature, e.g. 
[9, 10], and works on recovering three-dimensional object 
information from two-dimensional image data, e.g. [11, 12]. 
However, due to the specific nature of the image processing 
applications, there is no needons that the computations reflect 
some general characteristics of human vision that are due to 
the totality of interrelated brain processes. One of the most 
observable of such characteristics is the uncertainty of re-
membering visual information. 

When an observer pays visual attention to multiple objects 
existing in his visual scope, there is likelihood the observer 
does not notice the presence of some objects, i.e. he is unable 
remember them. The cause of the phenomenon is the com-
plexity of human visual system. Dealing with applications that 
need not closely resemble human activities, image processing 
works generally can afford to ignore such complexity induced 
properties. Hence, the works generally do not refer to human 
vision as the object of the modeling effort. The complexity is 
due to the multiple, interrelated, and merely partially under-
stood brain processes that are involved in perception. There-
fore probabilistic treatment of the phenomenon is most con-
venient, as the imprecisions in description of the concept are 
subject to absorption in a probabilistic model. In order to de-
lineate the probabilistic treatment in this work from existing 
probabilistic treatment in vision related research, one notes 
that in object detection studies perception is considered to be 
the engagement of pattern recognition. In this case Bayesian 
methods are appropriate [13]. However, for human perception 
modeling Bayesian approach turns out to be trivial [14]. This 
is because for human the probability of a retinal image given a 
certain scene is almost certain, which implies that the recogni-
tion of the scene given a retinal image is also almost certain. 
Therefore, as the subject matter of this work is human percep-
tion, notwithstanding the validity of the Bayesian approaches 
for computer vision, and the same approaches are of minor 
importance here. 

In this work two causes of the uncertainty in visual percep-
tion are considered. The first cause is that in a scene with mul-
tiple objects, visual attention is only partly devoted to each 
object, so that the amount of attention paid for an object has a 
likelihood of being insufficient for yielding the remembrance 

Michael S. Bittermann 
Department of Architecture 

Maltepe University 
Maltepe-Istanbul, Turkey 

michaelsbittermann@maltepe.edu.tr 
 

Özer Ciftcioglu, Senior Member, IEEE
Department of Architecture 

Delft University of Technology, The Netherlands  
Maltepe University, Maltepe - Istanbul, Turkey 

o.ciftcioglu@tudelft.nl   ozerciftcioglu@maltepe.edu.tr 

 

Proc. IEEE World Congress on Computational Intelligence - WCCI 2016, July 24-29, Vancouver, Canada



of the object. An object subtending a larger portion of our vis-
ual field implies a greater likelihood to be seen, and hence 
remembered. This common phenomenon has been treated in 
the literature [15]. The second cause underlies the following 
common experience. An object having very similar color with 
objects behind, next to, and in front of it may not stand-out 
enough from its surrounding to be noticed. Conversely, it is 
likewise common experience that a greater color difference 
between an object and its background implies a greater likeli-
hood we see and remember the object. Modeling of visual 
perception including both, the geometric and the color aspects, 
is missing in the literature. This work tackles this issue by 
fusing geometric and color perceptual information. The fusion 
is possible, since both perceptual properties are treated as like-
lihoods in this work, while they have alternative interpreta-
tions as fuzzy memberships. Therefore, the fusion is executed 
by means of a likelihood-based fuzzy computation, quantify-
ing the intensity of a perception in the form of likelihood. This 
is the first item addressed in this study. Based on the first one, 
the second item is pinpointing the role of the intensity of per-
ception in aesthetical judgment of the color composition of a 
scene. Based on these considerations, the reason why certain 
color compositions of a scene strike an unbiased observer as 
aesthetical is investigated. The organization of the paper is as 
follows. In section II, computation of the likelihood of visual 
perception is presented. Based on the perception computations, 
the multi-dimensional nature of color aesthetics is exposed in 
section III. The validity of the model is verified by means of 
computer experiments in section IV. This is followed by con-
clusions. 

II.  LIKELIHOOD OF VISUAL PERCEPTION 

One source of the uncertainty characterizing visual percep-
tion is due to the geometry of an object in view in relation to 
visual scope of observation. This has been treated in the litera-
ture [15], where visual attention is modeled as a uniform 
probability density (pdf) with respect to solid vision angle Ωୗ 
defining the visual scope. The pdf is given by 

( ) 1/ Sf     (1)

Based on visual attention, the perception of an object due to its 
geometry, i.e. its occupation of visual scope, is defined as the 
integral of the attention over the domain subtended by the ob-
ject. The domain is expressed by the solid angle Ω. The per-
ception is quantified by the likelihood ॷீ	 and obtained by 

0

1
,G S

S S

d
 

     
   

(2)

Next to geometry, the difference in color between an ob-
ject and the objects surrounding it is a second important condi-
tion to be fulfilled for perceiving an object. For computing 
color difference, first it is imperative to represent a color nu-
merically. This is the subject matter of colorimetry. In exten-
sive color matching experiments, the Commission Internatio-
nale de l'Eclairage (C.I.E.) established the means to represent 
by vectors of three numbers the set of colors a standard human 
observer is able to perceive [16, 17]. The underlying theory is 
due to Grassmann’s laws of trichromatic generalization [18]. 
These state (i) stimuli with same specifications look alike to 

an observer with normal colour vision under the same obser-
vation conditions, (ii) stimuli that look alike have the same 
specification, and (iii) the numbers comprising the specifica-
tion belong to continuous functions [19]. In such matching 
experiments a large group of observers is asked to produce a 
certain colour by adjusting separately the intensity of three 
monochromatic primary colours red, green and blue with 
known wavelengths. The observers should combine the three 
colours in such a way that the combination matches as close as 
possible to a given monochromatic test sample. The colours 
are typically presented in the two halves of a bipartite visual 
field. This way any influence of geometry in the colour match-
ing is taken care of. The three numbers resulting from the 
conversion of a light stimulus using C.I.E.’s standard observer 
model [20] are termed as tristimulus values. In their normal-
ized from they are referred to as chromaticity coordinates 
[21].  

Estimating the difference between two colors in the con-
text of perception modeling requires that the difference quanti-
ty obtained matches to the difference a standard human ob-
server would attribute to the color pair. This is conveniently 
accomplished when the color space, in which the pair is repre-
sented, is perceptually uniform. This property stipulates that 
the Euclidian distance between the chromaticity coordinates of 
two colors quantifies the color difference attributed by human 
for these colors. The first color spaces introduced by C.I.E., 
namely the 1931 C.I.E. RGB space and a transformed version 
of it named 1931 C.I.E. XYZ space, have both been shown to 
lack in perceptual uniformity [22]. To alleviate this drawback, 
C.I.E. introduced two approximately uniform spaces by two 
different transformations of the XYZ space, known respective-
ly as CIE 1976 L*u*v* and CIE 1976 L*a*b* spaces [20, 23]. In 
either space the ܮ∗ dimension expresses the lightness of a col-
or; ݑ∗, ∗ݒ  and ܽ∗, ܾ∗  are chromaticity coordinates, which in 
respective combination specify the saturation and hue of a 
color. Detailed definitions of these quantities can be found in 
[19]. It is emphasized that due to the approximate perceptual 
uniformity of both spaces, color differences in either space are 
obtained by the Euclidian distance among the chromaticity 
coordinates. Explicitly, the color difference ∆ܧ௔௕

∗  between two 
colors in ܮ∗ܽ∗ܾ∗ space is obtained by  

* * * 2 * * 2 * * 2
2 1 2 1 2 1( ) ( ) ( )abE L L a a b b        (3)

One notes that the uniformity in the distance computation 
for small color differences, i.e. ∆ܧ௔௕

∗ ൏ 10 has been further 
improved by the C.I.E. due to [24]. The difference ∆ܧଵ∗  be-
tween two colors that both have chromaticity coordinates 
ܽ∗ ് 0  ∧  ܾ∗ ് 0  , is generally larger compared to distance 
between their achromatic, i.e. grey, counterparts, denoted b 
ଶܧ∆

∗	, where ܽ∗ ൌ 0 ∧ ܾ∗ ൌ 0. Converting a chromatic color to 
its achromatic counterpart means that both chromaticity coor-
dinates a* and b* are set to zero, so that the color is devoid of 
chroma. Geometrically, an achromatic counterpart of a color is 
obtained by projecting the color parallel to the ܽ∗ܾ∗plane onto 
the ܮ∗ axis. Referring to (3), with the exception of the trivial 
case the two colors at hand are equal, since always 

* * 2 * * 2 * * 2 * *
2 1 2 1 2 1 2 1( ) ( ) ( )L L a a b b L L        (4)

therefore  
* *
1 2E E   (5)
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This explains why chromatic images are generally more mem-
orable compared to their achromatic counterparts. 

Investigating the role of color difference in perception, as 
an initial simple case we consider the situation of a single oc-
clusion, namely a single object in front of a background. The 
likelihood the object was perceived due to color is dependent 
on the difference between the object’s color and the color of 
the background measured in a perceptually uniform color 
space. It is to note that, although the relative color difference 
is a deterministic quantity, it is by all means to be an essential 
probabilistic measure of color perception, and therefore it is 
considered to be as likelihood. It conforms to all the condi-
tions to be a likelihood [25]. It is the likelihood an object is 
perceived due to color difference. We denote this likelihood 
by ॷ஼  and define it by 

* * 2 * * 2 * * 2*
2 1 2 1 2 1

* * * 2 * * 2 * * 2
_ max max min max min max min

( ) ( ) ( )

( ) ( ) ( )
ab

ab
C

L L a a b bE

E L L a a b b

    
 
     


 

(6)

where ∆ܧ௔௕_௠௔௫
∗ 	is the maximal color difference between two 

colors in the uniform space. In case an object has exactly the 
same color as the background, then the likelihood the object 
has been perceived due to color difference vanishes. Con-
versely, if an object has the maximally possible color differ-
ence in perceptually uniform color space, then the likelihood, 
the object has been perceived due to its color is maximal, 
namely unity. It is noted that in (6) ∆ܧ௔௕_௠௔௫

∗ ൌ 375.6 when the 
entire visible spectrum of colors is considered. Color repro-
ducing devices, such as computer monitors, however are not 
capable of displaying the entire visible spectrum, but merely a 
restricted portion of it. The portion is referred to as the de-
vice’s gamut. Therefore, in computer-based applications gen-
erally∆ܧ௔௕_௠௔௫

∗ ≪ 375.6 . We consider another scene, where 
there is a second object located behind our first one, and in 
front of the background. In case object nr. 2 is larger than ob-
ject nr. 1 and located in such a way that nr. 1 has no color dif-
ference vis-à-vis the background anymore, but only vis-à-vis 
object nr 2, then ॷ஼	of object nr. 1 is given as before by (6). 
The only difference is, this time ∆ܧ௔௕

∗ 	is computed between 
the colors of the first and second object.  

 
Fig. 1.  Rays simulating visual perception of the color differences along 
the perceived limitation of object nr. 1 vis-à-vis object nr. 2, as well as ob-
ject nr. 1 vis-à-vis the background. 

The situation becomes more involved and interesting when 
the second object is located in such a way that part of the first 
object’s perception is still vis-à-vis the background, as seen in 
figure 1. Such partial occlusion is the general case in everyday 
perception, and one notes that the two situations described just 
before are special cases of this general one. More explicitly, in 

general an object may be partly occluded by another object, or 
may itself partly occlude another object. In this case multiple 
color differences need consideration in order to compute the 
likelihood the object has been perceived due to color. Every 
color difference vis-à-vis every partly occluding and occluded 
object needs to be taken into account in this computation. We 
denote the number of such occlusions by ݊, and the likelihood 
of perception of an object due to color difference by ॷ஼	. The 
likelihoods of perception due to geometry ॷீ	given by (2) of 
every occlusion region belonging to the object of concern de-
termine the weights in the computation of ॷ஼	as given by 

*

*

_ max

* *

* *
1 1_ max _ max

1

[ ]i

ab

n n
ab i i

i n
i iab ab

j
j

G
C

G

E

E

E E
w

E E 







 
  
  



 (7)

In (7ሻ	∆ܧ௜
∗	denotes the color difference given by (3) between 

the ݅-th object and the object of concern; ॷீ௜ and ॷீ௝ are the 
likelihoods of perception given by (2) of the ݅-th, respectively 
݆-th, occlusion region. Comparing (6) and (7) one notes that 
(6) is a special case of (7), namely for ݊ ൌ 1. Considering the 
other extreme, when a certain partial occlusion is hardly no-
ticeable due to geometry, i.e. ॷீ௜ ≪ ∑ ॷீ௝

௡
௝ୀଵ  it is clear that 

the color difference belonging to this particular occlusion 
hardly influences the likelihood of perception due to color. To 
illustrate (7) we consider the perception of object nr. 1 in the 
figure. The significance of the color difference the object has 
with the background is comparable with the difference be-
tween object nr. 1 and object nr. 2. The two occlusion regions, 
the one between object nr. 1 and the background and the one 
between objects nr. 1 and nr. 2, occupy approximately the 
same solid angle. Hence, for object nr.1 ॷ஼ ≅ 0.5ሺ∆ܧଵ∗ ൅
ଶܧ∆

∗ሻ.	The situation appears to be quite different for object nr. 
2. The occlusion region between this object and the back-
ground, and the one between object nr. 2 and object nr. 1, ap-
parently involve quite different values for ॷீ. 

Due to the complexity of geometric constellations of ob-
jects in visual scope, analytical treatment of the situation is 
inconvenient. In particular computing the values of 	ॷீ	 in (7) 
is a problematic issue, since the solid angle of the occlusion 
region is ill defined. To handle the case we use a probabilistic 
ray tracing approach as follows. We are sending and tracing 
rays away from the point of observation in random directions 
within visual scope, as seen in the figure. One notes that due 
to (1) the probability density function (pdf) underlying the ray 
emission ought to be constant per differential solid vision an-
gle Ω. The set of rays is termed vision rays and denoted by ܴ. 
In the figure ܴ ൌ ሼݎଵ, . . ,  ଺ሽ. Each vision ray intersects eitherݎ
object nr.1, object nr. 2, or the background as the object near-
est to the observer along the ray. For the clarity of the expla-
nation, we consider computing ॷ஼	 for object nr. 1 as a generic 
example. For this we note two relevant subsets of 	ܴ. One set 
ܴଵ ⊂ ܴ contains the vision rays intersecting object 1, that we 
refer to as perception rays of object 1. ܴଵ ൌ ሼݎଵ,  ଷሽ. The otherݎ
set ܴ൓ଵ ⊂ ܴ contains all vision rays that do not intersect the 
object, i.e. ܴ൓ଵ ൌ ܴ െ ܴଵ ൌ ሼݎଶ, ,ସݎ ,ହݎ  ଺ሽ. For every elementݎ
of ܴଵ	we find that element of ܴ൓ଵ	so that the angle subtended 
by the two rays is minimal. For ݎଵ this element is ݎଶ, since the 
ଵଶߙ ൏ ߙ∀	ߙ ∈ ሼߙଵସ, ,ଵହߙ  ସ. Weݎ ଷ the element isݎ ଵ଺ሽ, and forߙ
term ݎଶ	and ݎସ as occlusion rays of object 1. They form the set 
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ܴ஼ ൌ ሼݎଶ,  in (7) as expressed	ସሽ that is used to approximate ॷ஼ݎ
by (8). 

* * 2 * * 2 * * 2
*

*
1 _ max

( ) ( ) ( )1 i
q p q p q p

ab

q ab
C

L L a a b b
E

i E

    
  

  (8)

In (8) i is the cardinality of ܴ஼ and equal to that of ܴଵ. In our 
example in figure 1, ܴ஼ ൌ 2. The variables ܮ௣∗ , ܽ௣∗ , ܾ௣∗  specify 
the color of the object of concern, i.e. object nr. 1 in this ex-
ample; the variables ܮ௤∗ , ܽ௤∗ , ܾ௤∗  specify the color of the object 
intersected by the ݍ-th element of ܴ஼ , i.e. the ݍ-th occlusion 
ray. As to object nr.1 in the figure, ॷ஼	is given by 

* * 2 * * 2 * * 2 * * 2 * * 2 * * 2
2 1 2 1 2 1 3 1 3 1 3 1

*
_max

( ) ( ) ( ) ( ) ( ) ( )1

2 ab
C

L L a a b b L L a a b b

E

          





 

where the indices 1 and 2 refer to objects 1 and 2 respectively, 
and index 3 refers to the background. The accuracy of the re-
sult depends on the number of rays that are used to simulate 
the vision, which is in the order of	10ସ, and it can be raised to 
an arbitrary value, limited exclusively by the available compu-
tation time. 

Fusion of the geometric and color  perception information 
is accomplished in this work using the likelihood-based neural 
tree method known as fuzzy neural tree (FNT) [26]. The ra-
tionale to use the approach is that the imprecision of the per-
ceptual information necessitates treatment by means of a soft 
computing methodology. The categorization into geometric 
and color aspects in perception is an act of human linguistic 
abstraction that it is best dealt with the methods of soft com-
puting. In a fuzzy neural tree, the output of ݅-th terminal node 
is denoted by ݔ௜ and it is introduced to a non-terminal node. 
The detailed views of node connections from terminal node ݅ 
to internal node ݆ and from an internal node ݅ to another inter-
nal node ݆ are shown in the publication [26]. A connection 
weight between two nodes is shown as ݓ௜௝  in both cases. In 
the neural network terminology ݓ௜௝  is the synaptic strength 
between the neurons. Both, terminal and non-terminal node 
outputs have interpretation as likelihood. Accordingly the 
weights denoted by ݓ௜௝  in [26] are shown as the likelihood 
parameter ߐ௜ , and the output ௝ܱ  of inner node ݆  in [26] are 
shown as ܮ௝ in the following equations and figures. We con-
sider a non-terminal node ݆ that has two inputs, which are the 
outputs of two previous nodes denoted by ଵܱ and ܱଶ. As the 
two inputs to a neuron are assumed to be independent of each 
other, the fuzzy memberships at the inputs can be thought to 
form a joint two-dimensional fuzzy membership. In this case 
௝ܮ  is computed by [26] 

   
   1 2

2 2
2 21 2

2 21 1

1 1 2 2

2 2j j
O O

j e e
 
  

  

     (9)

where ߪ௝  is a constant maximizing satisfaction of the con-
sistency condition of possibility theory. For the two-input case 
௝ߪ ൌ 0.299. The likelihood parameters ߠଵ and ߠଶ are selected 

commensurate to the amount of information each of them 
conveys via the respective connection. The selection is in ac-
cordance with Shannon’s information theorem. Further, the 
likelihood parameters must sum up to unity for defuzzification 
in the rule-chaining process from node to node. Due to these 
stipulations, the likelihood parameters in (9) are given by 

1 2
1 2

1 2 1 2

1 1
, ,

(1 ) (1 ) (1 ) (1 )

O O

O O O O
  
 

     
 

(10)

so that (9) becomes 
2 2

2 21 2
1 22 2

1 2 1 2

1 11 1
( 1) ( 1)

(1 ) (1 ) (1 ) (1 )2 2j j

O O
O O

O O O O

j e e 
    

      
         (11)

The output neuron of a fuzzy neural tree is termed as root 
node and denoted by ॹ. The inner nodes providing the input 
to the root node are instances of		ॷ௝ in (9). They are termed as 
penultimate nodes and denoted by	ॷ௞. The root node output is 
obtained via the weighted summation given by (12), which 
represents the final defuzzification of the information pro-
cessed in the neural tree. 

1 1

, 1k

n n

k k
k k

w w
 

    (12)

In (12) n denotes the number of scene objects. A bias regard-
ing the relative importance of the information coming from 
the penultimate nodes may be absent. Particularly, this is the 
condition for visual perception in the aesthetical context. In 
this case an important weight vector ሺݓଵᇱ, ଶݓ

ᇱ , … , ௡ᇱݓ ሻ is the one 
that is aligned to the feature vector	ሺॷଵ, ॷଶ,… , ॷ௡ሻ. It maxim-
izes the output of the defuzzification operation with the fuzzy 
logic principles, taking the information from each input into 
account commensurate with the information’s relative fuzzi-
ness. That is, the influence of a root node’s input on the node’s 
output is proportional to the likelihood associated with the 
input, namely ݓ௞

ᇱ ൌ ܿॷ௞		, ∀݇ ∈ ሼ1, 2,… , ݊ሽ where ܿ is a scale 
factor and a constant. The aligned defuzzification corroborates 
with common human vision experience. An object’s attributes 
influences the perception of the same attributes as property of 
the scene commensurate with the perception of the object. 
Fulfilling the conditions of defuzzification, ܿ is to be selected 
in such a way that the components of ࢝′ sum up to unity as 
stipulated in (12). In this case the root node output is given by 
[27] 

2

1 1

/
n n

k k
k k 

    (13)

Figure 2 shows the FNT modeling visual perception based 
on the above computations. 

        
    (b) 

Fig. 2.  Fuzzy neural tree modeling visual perception of a scene 

Each inner node is associated to one scene object, and it has 
two inputs that are the likelihoods given by (2) and (8). As the 
color difference and geometric inputs to visual perception neu-
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ron are assumed to be independent of each other, (9) applies. 
The output of an inner node expresses the likelihood a scene 
object is perceived. This quantity is denoted by ॷ௣  and ob-
tained by 

   
   

2 2
2 21 2

2 21 1
2 2

1 C 2 G

C G
j j

p θ θ e e
 
 
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 

    (14)

Due to (10) the likelihood parameters of the perception FNT 
are given by  
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Analog to (11), using (15) and (16) in (14) yields 
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quantifying the output of an inner tree node. It expresses the 
likelihood of perceiving one of the scene objects. The root 
node output of the perception FNT models the perception of 
the scene, which is the probability the scene has been seen. It 
is denoted by	ℙ. Analog to (13) ℙ	is obtained via aligned de-
fuzzification of the perceptual likelihoods of the objects. This 
is given by  

 2
1 1

/
n n

p p

 

  � k k

k k

 (18)

Due to (13), where we take the perception of each object into 
account commensurately with the relative fuzziness character-
izing each perception. The perception of chromatic properties 
of the objects and scene are detailed in [28]. 

An exemplary scene subject to perception computation is 
shown in figure 3.  

 
Fig. 3.  An exemplary scene subject to perception computation   

It consists of five building elements labeled accordingly in the 
figure, as well as a background. The intersections of the rays 
with the objects of the scene are shown as green dots in the 
figure, and they are referred to as perception points. Those 
among the perception points that represent perception of an 
occlusion region are shown by red dots and referred to as oc-
clusion perception points. The rendering of the same scene 
produced from the viewpoint ܲ shown in figure 3 is shown in 

figure 4a, where a random color composition has been as-
signed to the scene objects. The colors assigned to the objects 
and the likelihoods of perception for each of them (17) are 
given in table 1. Figure 4b shows the same scene as figure 4a, 
except the frontal wall’s color has been changed to white. 

  
 (a) (b) 

Fig. 4.  Two scenes subject to perceptions; scene nr. 1, where  ℙ ൌ 0.149 
(a); scene nr. 2, where ℙ ൌ 0.142  (b) 

For figure 4a the scene perception is ℙ ൌ 0.149, whereas for 
figure 4b ℙ ൌ 0.142 . 

TABLE I 
PERCEPTION OF THE SCENE SHOWN IN FIGURE 4A 

object ܮ∗ܽ∗ܾ∗ ॷீ ॷ஼ ॷ௉ 
frontal wall {0.48, 0.21, 0.21} .19 .23 .17
side wall {0.50, 0.30, 0.30} .09 .16 .12
ceiling {0.78, 0.60, 0.44} .18 .18 .15
floor {0.37, 0.40, 0.36} .27 .16 .17
column {1.0, 1.0, 1.0} .03 .28 .10

 

The differences as to ॷ௣ among the objects are seen from fig-
ure 5. Let us consider these differences in the light of the dif-
ference between the ℙ values of the two scenes. One notes 
that although the perception of several objects is severely di-
minished when the color of the frontal wall is changed to 
white, the scene perception is only slightly diminishing, name-
ly by 5%. This is due to the alignment of the defuzzification 
taking place at the root node given by (18). Reduction of the 
scene perception is attenuated, due to the commensurate em-
phasis of perceptual information stemming from objects that 
remain rather well perceived in the scene. Such an object is 
the ceiling in the case in figure 4. 

  
Fig. 5.  Differences in object perceptions for the scenes in figure 4a and 4b 

III. MULTI-OBJECTIVE NATURE OF COLOR AESTHETICS 

One of the important application areas of human visual 
perception involving color is architectural design. The colors 
of the architectural objects forming an environment, such as 
walls, columns, floor and ceiling, have a significant influence 
on the visual perception of the environment and thereby on an 
aesthetical judgment made about the environment. Aesthetical 
judgment is assessing the magnitude of pleasure caused direct-
ly by perception. The directness refers to the absence of rea-
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soning for estimating utility or other abstract qualities of the 
object. According to its strict definition, aesthetical judgment 
is devoid of individual or collective preferences [29, 30]. In 
the aesthetical context the two-folded influence of color on 
visual perception is to point-out. From one side, as shown 
above, the color composition of a scene determines how in-
tensely each object is perceived and thereby how intensely the 
scene as a whole is perceived. However, color is not merely 
involved in the event that one has seen an object and a scene. 
It also determines what one sees, i.e. what the nature of a sce-
ne is. The aesthetics of a man-made environment can be ap-
preciated directly from visual perception under the following 
conditions. The scene is to judge as aesthetical, when a certain 
degree of scene perception is present, while for this degree, 
color is involved as parsimoniously as possible. When we look 
at a landscape during foggy weather, then the perception of 
the scene is bound to have a low intensity. This is obviously 
fulfilling one’s perceptual expectation, due to the generally 
low color difference among weakly chromatic colors, so that it 
will not strike an observer as an extraordinary perception. 
Conversely, however, it is a rare and hence notable event, if 
low chroma coincides with rather high scene perception at the 
same time. The likelihood of such an event to occur acci-
dentally is very low, because each color of a scene object is a 
point in an extensive three-dimensional color space. Therefore, 
the combination of several objects implies a vast space of pos-
sible compositions, requiring significant conscious effort to 
resolve the conflict inherent to the objectives of high percep-
tion and chromaticity parsimony. Accordingly, scenes repre-
senting solutions to the scene perception-color parsimony-
problem are aesthetical ones.  

The color parsimony mentioned above is in the sense that 
the scene is perceived to minimally differ from its achromatic 
reference color that has the CIELAB coordinates ܮ∗ ൌ ∗௥ܮ  ; 
ܽ∗ ൌ 0, ܾ∗ ൌ 0.	 The minimal difference is considered in two 
senses. In one sense, the difference is with respect to the light-
ness dimension ܮ∗. In the other sense the difference concerns 
CIELAB chroma denoted by ܥ௔௕

∗  and obtained by [20] 
* 2 2
abC a b   (19)

As to the chromatic aspect of the parsimony, it concerns the 
extent by which a color is without chroma, i.e. ܥ௔௕

∗ ൌ 0. If this 
condition is fulfilled, then the color resembles the scene refer-
ence color in the chromatic sense. The likelihood of chroma 
absence is denoted by ॷ஼ೌ್∗  and given by 
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In case one would consider chroma for all visible colors, then 
௔௕_௠௔௫ܥ
∗ ൎ 181 . In the ensuing computer experiments in this 

work ܥ௔௕_௠௔௫
∗ ൌ ඥܽ௠௔௫

∗ ଶ ൅ ܽ௠௔௫
∗ ଶ ൌ 134 , which is due to the re-

stricted gamut formed by the colors that can be displayed on a 
standard computer monitor. 

Second, we consider the lightness aspect of the color par-
simony. The likelihood, the observer perceived an object’s 
lightness to be the same as the scene’s reference lightness, is 
denoted by ॷ௅∗ and given by 
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Based on the above considerations the fuzzy neural tree for 
color parsimony is shown in figure 6. Each inner node is asso-
ciated to one scene object, and it has two inputs that are the 
FNT terminal nodes given by (20) and (21). Analog to (10) the 
likelihood parameters of the color parsimony FNT are given 
by 
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(22)

 
Fig. 6.  Fuzzy neural tree modeling perception of a scene’s color parsimony 
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The output of an inner node of the FNT represents the likeli-
hood the associated scene object has the same achromatic 
character and lightness level as the reference color of the sce-
ne. We term this quantity as the likelihood of color parsimony 
and denote it by	ॷ஼೚∗௅ೝ∗ . Due to (11) it is obtained by  
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The root node output of the color parsimony FNT models the 
perception of the color parsimony of the scene. It is denoted 
by	ℙ஼೚∗௅ೝ∗  . Analog to (13), it is obtained via aligned defuzzifi-
cation of the color parsimony likelihoods associated by every 
object 
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In (25) the parameter n denotes the number of scene objects. 
In the equation the vector ࢝  is not aligned to the vector 
ቀॷ஼೚∗௅ೝ∗ _ଵ, 	ॷ஼೚∗௅ೝ∗ _ଶ, … , 	ॷ஼೚∗௅ೝ∗ ೙ቁ	consisting of the objects’ color parsimo-
ny likelihoods from (24). The alignment is to the vector 
൫	ॷ௣_ଵ, 	ॷ௣_ଶ, … , 	ॷ௣_௡	൯ consisting of the objects’ perception likeli-
hoods from (17). This is done so that an objects’ chromaticity 
influences the perception of a scene’s chromatic properties 
commensurate with the object’s likelihood of perception. 

Using the mathematical terms above, the verbal definition 
of an aesthetical judgment of a scene’s color composition is 
rendered more precisely as follows. It is measurement of the 
effectiveness in resolving the perceptual conflict between 
maximizing (18) and (25) at the same time. It is to emphasize 
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that both objectives are conflicting with each other, and this is 
the case independent of what kind of aesthetics is pursued in 
the design, i.e. independent of the achromatic reference color 
∗௥ܮ . The conflict can be seen as follows. Equation (20) yields 
greater values for  ॷ஼ೌ್∗  for smaller values of ܽ∗ and ܾ∗, con-
tributing to a greater value of 	ℙ஼೚∗௅ೝ∗  in (25) in this case. Low 
values of a* and b*, however, generally imply a low degree of 
color difference ∆ܧ௔௕

∗  in (3). This contributes to lower object 
perception ॷ௣	in (17) and hence lower scene perception ℙ in 
(18). An architectural scene is an aesthetical one, when it sat-
isfies the condition of Pareto optimality for the two conflicting 
objectives given by (18) and (26) that are both subject to max-
imization for ܮ௥∗ ∈ ሼܮ∗: 0 ൑ ∗ܮ ൑ 100ሽ. Given a certain scene, 
in the case there exists no other color composition that at the 
same time yields a greater scene perception AND greater color 
parsimony, then the scene is to be judged as an aesthetical one. 
If this condition is fulfilled for ܮ௥∗ ൎ 100,  then the scene 
should be further specified as beautiful; if it is fulfilled for 
∗௥ܮ ൎ 0, the scene should be labeled as sublime. 

IV. COMPUTER EXPERIMENTS  

Architectural design involves search for aesthetically pleas-
ing environments. As to color, this means identification of 
appropriate color composition fulfilling the sublimity or beauty 
conditions described above. One notes that due to combinato-
rial explosion the number of possible color compositions is 
enormous, even for a moderate number of objects in a scene. 
Therefore, identification of beautiful or sublime compositions 
by stochastic search is appropriate. In the following two com-
puter experiments are carried out for a scene with a fixed ge-
ometry; in one experiment beautiful compositions are sought 
and sublime compositions in the other one. For this a multi-
objective genetic algorithm is used, namely NSGA-II [31]. 
This is a popular multi-objective genetic algorithm. The popu-
larity is presumably due to its minimal number of algorithm 
parameters, which is achieved by a parameter less technique 
for determining the degree of non-dominance of a solution. 
The technique is based on structuring the population by pass-
ing multiple surfaces through the population in the objective 
function space, discretizing the degree of non-domination of 
the population members. Due to the particularity of the Pareto 
ranking scheme, conveniently also elitism and crowding dis-
tance computation remain without parameters. In the experi-
ments the algorithm parameters were selected as the following 
standard values: crossover probability 0.9, simulated binary 
crossover parameter ܿߟ ൌ 10, mutation probability 0.05, and 
polynomial mutation parameter ݉ߟ ൌ 30. In the experiments 
the color of the scene background is ܮ∗ ൌ 81.5, 	ܽ∗ ൌ െ2.5,
ܾ∗ ൌ െ24.0 and the colors of the scene objects are restricted by 
the standard RGB (sRGB) gamut [32]. The conversions of the 
sRGB color coordinates into CIE L*a*b* space are based on 
the CIE D65 illuminant [33] and 2° CIE Standard Observer 
[34]. Figures 7a and 7b show the resulting Pareto frontiers of 
aesthetically colored scenes in objective function space. The 
difference between the two figures is the value of the refer-
ence lightness used during the genetic search process; in fig-
ure 7a ݎܮ

∗ ൌ 100  and in figure 7b ݎܮ
∗ ൌ 0. That is, the solutions 

in figure 7a represent beautifully colored scenes, whereas the 
ones in 7b represent scenes having sublime color. Four solu-

tions among the Pareto-optimal ones are highlighted in each 
figure, and the corresponding renderings are shown in figures 
8 and 9 respectively. Metaphorically the character of the beau-
tiful color compositions ranges from gentle beauty in figure 8a 
to intense beauty in 8d. The character of the sublime ones 
ranges from uncanny obscurity in figure 9a to fierce discern-
ment in 9d. 

   
 (a) (b) 

Fig. 7.  Pareto front of aesthetical color compositions; beautiful composi-
tions, i.e. ܮ௥∗ ൌ 100 (a); sublime color compositions, i.e. ܮ௥∗ ൌ 0 (b) 

 
 (a) (b) 

 
 (c)   (d) 

Fig. 8.  The four beautiful color compositions highlighted in figure 7a 

 
 (a) (b) 

  
 (c)   (d) 

Fig. 9.  The four sublime color compositions highlighted in figure 7b 
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CONCLUSIONS 

Computer-based visual perception and aesthetical judg-
ment of a scene’s color composition are presented. Color aes-
thetics is identified to be the resolution of conflict that exists 
between two properties of a scene being perceived. The first 
property is that the scene should have some high likelihood of 
being perceived and hence remembered. The second property 
is the color character of the scene should be perceived to be 
similar to an achromatic reference color for perceived color 
parsimony. The parsimony should be as great as possible for a 
certain given intensity of scene perception. Scenes that fulfill 
both conditions in non-dominated manner are defined as aes-
thetical ones in this work. Beautiful and sublime color combi-
nations are identified as subsets of the aesthetical ones, name-
ly particular choice of achromatic reference colors. The defini-
tion of aesthetical designs as non-dominated solutions in a 
two-dimensional objective function space imply that theoreti-
cally there are infinitely many beautiful as well as sublime 
color compositions for a given scene geometry. Selection 
among them depends on designer’s preference with respect to 
color parsimony versus intensity of scene perception. Such 
preference further specifies the kind of aesthetics at hand. For 
instance in the case of beauty, when the emphasis is on color 
parsimony we can term the beauty as a gentle kind of beauty. 
Conversely when scene perception is of primary interest the 
beauty can be characterized as an intensive kind. This corrobo-
rates with the common understanding of architects, that gener-
ally there exist multiple, equivalently valid solutions within 
the same aesthetical category. Relevant computer experiments 
have been set up. The validity of the theoretical considerations 
is verified by general acceptance. By means of the computa-
tional color perception, scenes with beautiful as well as sub-
lime color aesthetics are established. Computational form of 
aesthetical judgment during a design process is a significant 
step. In this work color aesthetics is placed on a computational 
ground, reducing the imprecision in conventional aesthetical 
judgment. This is a contribution to the theoretical bases of 
disciplines that are dealing with aesthetics, such as architec-
tural design, product design, and urbanism. 
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