
 
 

Delft University of Technology

Hybrid optimization of low-thrust many-revolution trajectories with coasting arcs and
longitude targeting for propellant minimization

Jimenez-Lluva, David; Root, Bart

DOI
10.1016/j.actaastro.2020.06.015
Publication date
2020
Document Version
Final published version
Published in
Acta Astronautica

Citation (APA)
Jimenez-Lluva, D., & Root, B. (2020). Hybrid optimization of low-thrust many-revolution trajectories with
coasting arcs and longitude targeting for propellant minimization. Acta Astronautica, 177, 232-245.
https://doi.org/10.1016/j.actaastro.2020.06.015

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.actaastro.2020.06.015
https://doi.org/10.1016/j.actaastro.2020.06.015


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Contents lists available at ScienceDirect 

Acta Astronautica 

journal homepage: www.elsevier.com/locate/actaastro 

Hybrid optimization of low-thrust many-revolution trajectories with 
coasting arcs and longitude targeting for propellant minimization 
David Jimenez-Lluva∗, Bart Root 
Department of Astrodynamics and Space Missions, Delft University of Technology, Kluyverweg 1, 2629, HS Delft, the Netherlands  

A R T I C L E  I N F O   

Keywords: 
Optimization 
Low-thrust 
Time-minimization 
Propellant-minimization 
Coasting arcs 
Longitude-targeting 

A B S T R A C T   

Despite the ongoing advancements in low-thrust propulsion technology and the rise of all-electric satellite 
platforms, low-thrust spacecraft trajectory optimization remains a complex field of research. Shape-based ap
proximations are predominant in interplanetary applications, but they are generally unsuitable for many-re
volution trajectories, common in terrestrial applications. Indirect optimization methods allow for global opti
mization of many-revolution trajectories, but their mathematical complexity generally requires significant 
simplifications of the dynamical model, and they must be re-derived for any modification to the system dynamics 
or constraints. Conversely, direct optimization methods exhibit larger convergence radii and are flexible for 
application in different problems yet suffer from impractical computational times due to large design vectors. 

This paper presents a methodology for the optimization of low-thrust many-revolution trajectories, employing 
a hybrid combination of indirect and direct optimization methods. Similar hybrid approaches have been shown 
to be highly reliable for minimum-time trajectories. This methodology preserves similar performance while 
additionally enabling minimum-propellant optimization, through a mechanism that allows for coasting (non- 
thrusting) arcs, as well as targeting of the final geodetic-longitude. To reduce the propagation load of the 
methodology, we combine an orbital averaging scheme with a differential evolution algorithm, leading to a 
global optimization process with a practical computational effort. The analytical nature of the methodology 
reduces the number of optimization variables and its computational counterpart provides unmatchable flex
ibility for a configurable force and perturbation model as well as operational constraints fulfilment. 

The approach is applied to an unperturbed and a J2-perturbed GTO-GEO transfer, revealing a 0.03% and a 
0.4% error, for time- and propellant-minimization respectively, relative to the reference optimal trajectories. 
This proves that the method can match the performance of former hybrid approaches while additionally al
lowing for engine on/off switching. Moreover, the inclusion of the J2 perturbation shows that, in contrast to 
indirect methods, it can accommodate modifications to the system dynamics without the need to re-derive the 
optimal control laws. Furthermore, a superior convergence radius of the optimization problem is demonstrated 
for the hybrid method, with respect to a reference indirect method, through the simultaneous optimization for 
minimum-propellant expenditure and final geodetic-longitude targeting. This research constitutes a significant 
advancement for space mission design and satellite operations, because it simultaneously harnesses the ad
vantages of indirect and direct methods with broader flexibility than the popular indirect approaches and en
hanced functionality than the former hybrid methods published in literature.   

1. Introduction 

With the development of electric propulsion technology over the 
recent decades, the field of low-thrust trajectory optimization has re
gained a lot of interest. In interplanetary applications, the use of shape- 
based approximation methods is predominant [1,2]. Nonetheless, these 

generally perform worse in many-revolution trajectories [1,2], such as 
terrestrial orbital transfers, which is the focus of this study. In addition 
to shape-based approaches, there have been many other strategies de
veloped to yield optimal and near optimal trajectories. These can 
generally be classified into direct methods [3,4] or indirect methods 
[5,6]. 
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Indirect approaches require the analytical derivation of the Two- 
Point-Boundary-Value-Problem (TPBVP) through the optimality con
ditions of the Optimal Control Problem (OCP). This process employs a 
Hamiltonian equation that is set up from the objective function of the 
optimization and the known Equations of Motion (EOM). The optimal 
control laws can be found through the first and second derivatives of 
the Hamiltonian with respect to all control parameters, whereas the 
EOM of the optimal system co-states – also known as system adjoints – 
follow from the derivatives with respect to the state variables [7]. The 
main advantage of indirect methods is that they allow for reaching the 
global optimum due to the analytical formulation of the TPBVP. Ad
ditionally, this analytical derivation also results in significantly fewer 
optimization parameters than direct methods, leading to lower com
putational times [5,6]. Conversely, the underlying mathematical com
plexity limits the convergence radius of the optimization problem, such 
that even if a highly experienced user succeeds in analytically deriving 
the TPBVP of a very complex optimization problem, the resulting for
mulation might not converge to a feasible solution [8]. Consequently, 
orbital perturbations are partially neglected in indirect formulations, 
which limits the solution accuracy. Furthermore, the entire analytical 
formulation must be re-derived for any adjustment to the problem. This 
constitutes an important limitation for its practical applicability, e.g. in 
mission concept generation, because even a minor adjustment such as 
the inclusion of the J2 perturbation requires a complete re-derivation of 
the TPBVP, which is a significantly labour-intensive task and requires a 
thorough experience of this field. 

On the other hand, direct – or computational – approaches tran
scribe the OCP to a parameter optimization problem, employing non- 
linear programming to iteratively solve for the control parameters that 
minimize an objective function while satisfying the equations of motion 
and boundary conditions. The main advantage of direct methods is the 
versatility of their computational nature, which allows for modifying 
the force model, constraints, and optimization objectives without the 
need to modify the formulation. Additionally, they often exhibit larger 
convergence radii than indirect methods, meaning that the resulting 
formulation is more likely to converge to a feasible solution than an 
indirect method for complex optimization problems [8]. This makes 
them an appealing asset for many-revolution low-thrust trajectories 
under sophisticated combinations of perturbing forces, operational 
constraints, or optimization objectives. However, due to the lack of the 
analytical optimal control derivation, direct methods often converge to 
local optima and, additionally, they yield exceptionally large design 
vectors (i.e. thousands of optimization variables) which lead to im
practical computational times for complex problems. Therefore, direct 
methods are ideal for few-revolution trajectories, such as interplanetary 
transfer trajectories, rather than many-revolution trajectories [9]. 

Hybrid methodologies aim to harness the benefits of both direct and 
indirect approaches while avoiding their drawbacks. A benchmark [10] 
of the former hybrid formulations [11,12] demonstrated a 0.03% error 
with respect to the analytical global optimum computed with a re
ference indirect method [5] for a minimum-time GTO-GEO trajectory. 
The critical shortcoming of the former hybrid approaches published in 
literature is that they all assume a constant thrust throughout the tra
jectory, which results in ill-conditioning of propellant-minimization, as 
the results are severely similar to the minimum-time trajectories and 
too far from the analytical minimum-propellant solutions of indirect 
methods [11,12]. This constitutes a critical limitation because pro
pellant minimization is of paramount importance for most applications, 
both in LEO and GEO. Although minimal transfer times are desirable in 
most cases, the ideal solution is generally a trade-off between mini
mizing the time-of-flight and the propellant expenditure. Additionally, 
the former hybrid approaches did not allow for targeting of the final 
geodetic-longitude, which is an essential ability for many applications, 
such as rendezvous missions or the positioning of GEO tele
communication satellites. 

The primary objective of this research is to develop a methodology 

that allows for coasting (non-thrusting) arcs and thus demonstrate that 
the hybrid approach can match the solution accuracy of indirect 
methods for propellant-minimization, and to demonstrate that the op
timal control laws do not need to be rederived for changes in the system 
dynamics. Furthermore, the secondary objective is to demonstrate its 
superior convergence performance to the indirect approach by opti
mizing for propellant-minimization while simultaneously targeting a 
desired geodetic longitude, which is not feasible for the reference in
direct method [5], thus unlocking the full potential of the hybrid 
method. 

2. Material and methods 

This section describes the dynamical model employed and the un
derlying assumptions, followed by the description of the alternative 
propagation schemes implemented and the details on the optimization 
algorithm. 

2.1. Dynamical model 

The trajectory initial boundary conditions vector œ is expressed 
using the Keplerian orbital elements shown in Eq. (2.1), whereas the 
terminal conditions vector æ employs the geodetic longitude instead 
of the true anomaly : 

=œ a i[ ,e , , , , ]T
0 0 0 0 0 0 (2.1)  

= a iæ [ ,e , , , , ] ,f f f f f f
T (2.2) 

where the index 0 indicates the conditions at =t t0 and the index f
denotes the conditions at =t tf ; tf is hereafter used to denote the final 
time. The state vector x used in the propagation employs the set of 
modified equinoctial elements [13,14] to avoid the singularity of Ke
plerian elements, as well as the spacecraft mass m, see Eq. (2.3). The 
definition of the equinoctial elements with respect to the Keplerian 
elements can be found in Appendix A. 

=x p f g h k L m[ , , , , , , ]T (2.3)  

The total disturbing acceleration vector acting on the spacecraft is 
shown in Eq. (2.4) and includes the thrust acceleration vector aT and 
the perturbing acceleration, aJ2, caused by the oblateness of the Earth, 
or the J2-effect. All other orbital perturbations are neglected as they 
were not employed in the reference indirect optimization study hereby 
used for validation [5]. 

= +a a ad T J2 (2.4)  

These individual accelerations experienced by the spacecraft are 
expressed in the RSW radial local orbit frame illustrated in Fig. 1. This 
frame is expressed mathematically in Eq. (2.5), where the vectors r
and v constitute the Cartesian coordinates in the Earth centred fixed 
frame. 

= = × ×
×

×
×

Q q q q r
r

r v r
r v r

r v
r v

[ ˆ ˆ ˆ ] ( )
RSW r s w (2.5)  

The J2 acceleration vector expressed in the RSW frame using equi
noctial elements is provided in Appendix A. The thrust acceleration 
vector aT is defined in Eq. (2.6) in terms of the three control parameters 
to be optimized: the thrust yaw steering angle , the thrust pitch 
steering angle , and the thrust magnitude T : 

=a T
m

[sin cos ,cos cos ,sin ]T
T

(2.6)  

Using the equinoctial formulation and the ad vector in the QRSW
frame, the system dynamics are provided by Gauss' form of the 
Lagrange planetary equations, which are shown in Eq. (2.7) in matrix 
form. 
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= +Adx
dt

a bd (2.7)  

The definition of the system dynamics matrix A x( ) and the offset 
vector b are provided in Appendix A. 

2.2. Propagation techniques 

The two implemented alternative propagation schemes are: 
Continuous Integration (CI) and Orbital Averaging (OA). CI entails the 
classical propagation approach, where the state of the orbit is propa
gated from =t t0 to =t tf using np propagation steps per revolution. 
Conversely, OA aims to reduce the propagation effort through an 
averaged set of state derivatives to propagate over noa steps in the order 
of days. 

CI yields high-accuracy for all orbital elements, whereas OA sacri
fices the accuracy of the rapidly changing element, i.e. true longitude, 
for computational speed. OA can be employed without a significant loss 
of accuracy for the other elements thanks to their smooth and gradual 
evolution in low-thrust trajectories. The error of the minimum-time 
LEO-GEO low-thrust transfer computed using OA steps of 5 days was 
shown to be 0.001% relative to the analytical solution [10]. Conversely, 
CI is the computationally more expensive alternative but allows for 
targeting the final geodetic longitude in the optimization, which is 
critical for GEO positioning or rendezvous applications. 

The implemented logic for both schemes is very similar, as shown in  
Fig. 2. The inputs employed in the propagation are the initial orbit state 
x0 and the design vector y containing the optimization variables: the 

system co-states required for the optimal control law computation, and 
the transfer time needed for the stopping criteria. Further details about 
the design vector can be found in subsection 3.2. Upon each propaga
tion step, the propagator evaluates whether any constraint is violated 
because some design-parameter combinations may lead to hyperbolic 
orbits, re-entry trajectories, or solutions that do not satisfy the opera
tional constraints. 

For both propagators, the chosen integration scheme is a fixed-step 
Runge Kutta 4 (RK4), yielding acceptable accuracy. Both OA and CI 
employ a state propagatation with np steps per orbital revolution, using 
an equi-distant grid in true longitude instead of time to enhance the 
propagation accuracy near perigee. Since the system dynamics are ex
pressed with respect to time, the true longitude propagation step 

=L n2 / p must be converted to instantaneous time-steps at every 
epoch, = =t L dL dt n dL dt( / ) (2 / )( / )p , using the computed value of 
dL dt/ from Eq. (2.7). The difference is that CI iterates this process for 
every revolution of the trajectory until t reaches tf , whereas OA 
averages the np computed state derivatives in the first revolution and 
uses dx dt( / )avg to propagate through each of the noa steps. At the start of 
each OA propagation step, dx dt( / )avg is recalculated to account for the 
secular variations of the orbital elements. As shown in Eqs. (2.8) and 
(2.9), the averaged derivative is approximated through a trapezoidal 
scheme: 

=
+dx

dt P
dx
dt

dt1

avg t

t Torb

0

0

(2.8)  

+

=

= = +dx
dt P

t t
1

2
,

avg i

n
dx
dt t t

dx
dt t t

0

1p
i i 1

(2.9) 

where P is the instantaneous orbital period. Because the varying step- 
size is a function of the equidistant true longitude step-grid, the accu
racy of the rapidly-changing element, L, is lost in the process. Since the 
short-period variations of the slowly-changing elements are generally 
not of interest, OA is a great asset for most low-thrust optimizations. 
Nonetheless, CI may be used in special cases requiring the targeting of 
the final geodetic longitude. 

2.3. Differential evolution algorithm 

For the optimization algorithm, the Differential Evolution (DE) al
gorithm [15] was selected due to its simplicity, yet any other algorithm 
from the metaheuristic family is deemed suitable due to their ability to 
converge to the global optima. This choice is ideal for this study, despite 
the characteristically long optimization times of DE algorithms, because 
the computational time of the optimization is not a primary require
ment to demonstrate the potential of the hybrid method. 

Fig. 1. Illustration of the RSW local orbit frame.  

Fig. 2. Work-flow logic of the propagation scheme.  

D. Jimenez-Lluva and B. Root   Acta Astronautica 177 (2020) 232–245

234



The DE optimizer employed is an implementation of the original DE 
algorithm [15], written in Fortran90 and freely available in Ref. [16]. It 
is the simplest variation among DE algorithms and its stopping criteria 
rely solely on a bounded number of iterations. The maximum number of 
iterations is set to 1000 and the DE optimizer parameters are set exactly 
as in the indirect optimization study hereby used for validation [5]: the 
cross-over rate and the mutation scale factor are set to 0.8 and 0.6 re
spectively, and the population size is taken to be ten times the number 
of optimization variables (i.e. 110 and 130 for the time- and propellant- 
minimization problems respectively, see subsection 3.2). Lastly, all DE 
optimizations provided in this paper are evaluated using an Intel Core 
i5-4590 CPU with 3300 MHz and 8.00 GB RAM. 

3. Theory 

The hybrid methodology employs the necessary first-order optim
ality conditions of the Optimal Control Problem (OCP) without fully 
deriving the Two-Point-Boundary-Value-Problem (TPBVP). Instead of 
deriving the optimal equations of the system co-states to complete 
TPBVP like indirect methods, it linearizes the EOM for the system co- 
states and solves the OCP in a direct approach. This method is more 
efficient than direct approaches because its derivation of the necessary 
optimality conditions leads to significantly fewer optimization variables 
and thus practical computational times. Additionally, it is superior to 
indirect methods because it retains the flexibility of direct approaches. 
This allows the user to modify the problem - i.e. adjust the force model, 
operational constraints, or optimization objectives - with minor effort 
because there is no need to analytically re-derive the TPBVP like in 
indirect methods. 

Theoretically, a hybrid formulation should be less accurate than an 
indirect derivation, because the linearized co-state EOM may not satisfy 
their analytically optimal EOM. However, previous studies on low- 
thrust Earth-based transfers using the hybrid formulation with such 
simplified co-state dynamics [11,12] showed high accuracy for 
minimum-time trajectories, with a demonstrated 0.03% error relative 
to the reference GTO-GEO optimal trajectory. 

3.1. Optimal control problem 

An OCP entails a system with a state vector and control input de
fined by x t( ) and u t( ), respectively, and whose system dynamics are 
described by the set of ordinary differential equations in Eq. (3.2): 

=u t t t T t( ) [ ( ), ( ), ( )]T (3.1)  

=d
dt

x t f x t u t t( ) ( ( ), ( ), ), (3.2) 

where the thrust magnitude and steering angles can be a function of 
time. 

The standard form of the objective function of an OCP is shown in 
Eq. (3.3), the function used in this methodology is described in depth in  
subsection 3.3. According to Pontryagin's Minimum Principle [7], the 
optimal conditions leading to the global minimum are those that 
minimize the Hamiltonian equation, shown in standard form in Eq.  
(3.4). 

L= +F x t t x t u t t dt( ( ), ) ( ( ), ( ), )f f
t

tf

0 (3.3)  

H L= + dx
dt

,
T

(3.4) 

where and L are known as the Mayer and Lagrange functions. The 
system co-states vector , also referred to as the system adjoints vector, 
indicates the relative priority of the variations of the state parameters 
over time. The co-state vector for the problem at hand and the resulting 
Hamiltonian are shown in Eqs. (3.5) and (3.6): 

= [ , , , , , ]p f g h k m
T (3.5)  

H = + + + + +dp
dt

df
dt

dg
dt

dh
dt

dk
dt

dm
dtp f g h k m (3.6)  

The Karush-Kuhn-Tucher first-order necessary condition for optim
ality states that the first derivative of the Hamiltonian with respect to 
the control variables – , , and T– must be null at a singular point [7], 
see Eq. (3.7). Additionally, the Legendre-Clebsch condition, states that 
the second derivative must be positive for a minimum solution [7], see 
Eq. (3.8). 

H =
u

0 (3.7)  

H >
u

0
2

2 (3.8)  

The application of Eqs. (3.7) and (3.8) lead to the optimal control 
laws =u T[ , , ]T , derived in Appendix B, which are only a function 

of the system state and co-states =u t f x t( ) , , , see Eqs. B7-B.8, 

B.19-B.20, and B.22-B.23. These can be substituted in Eq. (2.7), 

yielding =dx t dt f x t t t( )/ ( ), ( ), . 

Albeit necessary, the conditions in Eqs. (3.7) and (3.8) are not suf
ficient for optimality [7] and one must derive the following condition 
for every system co-state in the TPBVP: 

H=d
dt x (3.9)  

In indirect approaches, it is the derivation of Eq. (3.9) which leads 

to the EOM of the optimal co-states [5,6], =d t dt f x t t( )/ , ( ),0 , 

and only their initial values 0 remain to be optimized, such as the case 
of the reference indirect approach [5]. However, the derivation of Eq.  
(3.9) is circumvented in the hybrid methodology through a lineariza
tion of the system co-states, because applying this condition would 
significantly limit the applicability of the methodology, see subsection 
3.2. 

3.2. Linearization of the Co-State equations of motion 

A change to the dynamic model x t( ) does not affect the optimality 
conditions in Eqs. (3.7) and (3.8), because these entail only the partial 
derivation of the Hamiltonian with respect to the controls u t( ). How
ever, it does affect the partial derivation of H with respect to x t( )(Eq.  
(3.9)) and this is a limitation of indirect methods because any adjust
ment to the state EOM requires rederiving this condition. For example, 
the reference indirect approach [5] disregards all orbital perturbations 
in the dynamic model, and the inclusion of the J2 perturbation requires 
a complete re-derivation of the optimal co-state EOM (Eq. (3.9)). 

The hybrid methodology circumvents the need to derive the ana
lytical co-state EOM (Eq. (3.9)) by employing a linearized set of co-state 
EOM, which enables the application to a wide range of problems with 
different dynamical models. This is achieved by dividing the trajectory 
into segments, optimizing the co-state values at the boundaries of each 
segment, and using linear interpolation in-between. 

Although a greater number of segments should better approximate 
the optimal co-state EOM in theory, it is observed that using more than 
one segment yields only small accuracy enhancements that are not 
worth the increased computational load. Hence, the methodology 
hereby presented corresponds to a co-state linearization using only the 
boundary values of the co-states, at =t t0 and =t tf : 

= += =t t t
t t

( ) ( ) ( ) ,j j t t
f

j t t
0

0 f0 (3.10) 
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where = …j 1,2, ,6 corresponds to indices of the components of the co- 
states vector . The resulting design vector, i.e. the variables to be op
timized, is shown in Eq. (3.11) and includes the 12 boundary values of 
the 6 co-state parameters, as well as the transfer time expressed in days: 

=y t , ,f
T

f
T T

0
(3.11)  

The transfer time it is needed to perform the propagation to =t tf , 
where the objective function is to be evaluated. Nonetheless, it should 
be clarified that the formulation remains a free-time problem and tf
may still be minimized through the optimization objective function. 

These 13 design parameters reduce to 11 for time-minimization 
purposes, because the minimum-time formulation employs continuous 
thrust, meaning that the control parameters reduce to 

=u t t t( ) [ ( ), ( )]T . Since the mass state parameter does not depend on 
the control variables, the mass co-state can be omitted in the 
Hamiltonian, see Eq. (3.6). This adjustment is very easy to implement 
because the massless Hamiltonian leads to the same optimal control 
laws as derived in Appendix B. This linearization of the system co-states 
avoids the problem dependency that arises from Eq. (3.9) and allows for 
a flexible and generic optimization method, because the optimal control 
laws that follow from the conditions in Eqs. (3.7) and (3.8) remain 
applicable despite adjustments to the problem. 

3.3. Optimization objective function 

The objective function employed (Eq. (3.12)) combines a multi- 
objective strategy with respect to time- and propellant-minimization, as 
well as targeting of the desired final orbit: 

= + +
=

F W t W
m
m

W1 ( ) ,t f m
f

j
j j

0 { 1}

6
2

(3.12) 

where Wt and Wm are the optimization weights corresponding to the 
transfer time and mass expenditure, and m0 and mf represent the initial 
and final satellite mass. j represents the scaled terminal orbit error for 
each of the = …j 1,2, ,6 Keplerian elements in æ , and Wj is the corre
sponding optimization weight. Although equinoctial elements are em
ployed in the propagation, the objective function uses Keplerian ele
ments such that the user can more intuitively tailor the desired target 
orbit. The scaling procedure implemented to compute j is defined in 
Eqs. (3.13)-(3.16): 

=e (æ ) (æ )j j t j f (3.13)  

=c
e e

1
( ) ( )j

j UB j LB (3.14)  

=r e c1 ( )j j UB j (3.15)  

= +e c r ,j j j j (3.16) 

where c and r are auxiliary variables and eUB and eLB are the upper and 
lower bounds of the scaled final orbit error. 

This scaling procedure is implemented to ensure that the optimizer 
will focus in minimizing the transfer time or the propellant expenditure 
only after the final orbit error satisfies the desired user-specified tol
erances. The scaled final orbit errors j attain a value if it is ej is within 
the specified tolerances, < <e e eLB UB, and a value (1, ) otherwise. 

Thus, the contribution of ( )j 2 in Eq. (3.12) becomes less important if 
e (0,1]j , causing the optimization to focus on minimizing the first two 
terms in Eq. (3.12); yet it becomes increasing relevant for e (1, )j , 
and the optimizer therefore prioritizes the accurate targeting of the 
final orbit. 

Additionally, this scaling procedure enhances automation and re
duces the user fine-tuning effort in all applications. This is because the 
values of the scaled errors in all vary in similar orders of magnitude, 
such that the weights Wj in Eq. (3.12) to be unity in nominal operations. 

4. Results 

The potential of the improved hybrid methodology is demonstrated 
through the optimization of a GTO-GEO trajectory for three different 
cases:  

1. Time-minimization,  
2. Propellant-minimization,  
3. Propellant-minimization with simultaneous final geodetic longitude 

targeting. 

This trajectory is chosen to enable the comparison with the re
ference analytical global optima [5] computed through an indirect 
method. The initial GTO, target GEO, and maximum allowed deviation 
employed in all cases are shown in Table 1. The term GTO(7°) is used 
hereafter used to indicate the orbital inclination, which may differ from 
other GTO. 

The lower bounds eLB of the final orbit errors are set to zero, i.e. an 
ideal transfer, and the upper bounds eUB are set to the tolerances shown 
in Table 1. The satellite platform parameters used are: =m 2000.00 kg, 

=T 350.0 mN, and =I 2000.0sp s. 

4.1. Minimum-time GTO(7°)-GEO trajectory 

The following optimization case was covered as benchmark [10] on 
former hybrid methodologies [11,12], which employed a constant 
thrust assumption. The results are revisited here to facilitate the com
parison with the minimum-propellant optimization, and are extended 
to evaluate the OA propagation, which was not employed in the 
benchmark [10]. 

The transfer is optimized with CI propagation for the unperturbed 
and J2-perturbed scenarios, and the computed optimal thrust profile is 
then propagated with OA. This transfer targets only the first three 
Keplerian elements due to the singularities in and in GEO; i.e. 

= = =W W W 1.0a e i and = =W W 0.0. Furthermore, the transfer time 
weight is set to =W 0.1t , the satellite's final angular position is a free 
variable, , and propellant-minimization is disregarded, =W 0m . 

Fig. 3 illustrates the 3D projections of the computed optimal J2- 
perturbed trajectory, using a colour scale to indicate the evolution over 
time. The secular drift of the perigee is caused by the J2 effect, and the 
colour overlap that occurs near apogee due to non-zero inclinations 
indicates that the apogee altitude is increased to enhance the inclina
tion correction and decreased afterwards. 

Table 2 shows the computed time of flight and propellant ex
penditure of the optimal trajectories for the unperturbed and J2-per
turbed transfers [10], relative to the analytical global optima computed 
with the reference indirect method [5]. It is worth mentioning that 

Table 1 
Values of the initial GTO(7°), target GEO, and error tolerances used in all optimization cases.           

a[km] e[deg] i[deg] [deg] [deg] [deg] [deg]  

Initial GTO(7°) 24505.9 0.725 7.0 0.1E-12 0.1E-12 0.1E-12 n.a. 
Target GEO 42165.0 0.1E-12 0.1E-12 n.a. n.a. n.a. n.a. (28.5°E for case 3) 
Maximum allowed final orbit error 100.00 0.01 0.1 1.0 1.00 n.a. 1.00 
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whereas the hybrid method readily allows for adding the J2 effect in the 
optimization, the reference indirect approach must be analytically re- 
derived for such adjustments. Hence, the reference analytical optimal 
solutions correspond to two different analytical derivations based on 
the reference indirect method [5]. 

The computed optimal trajectories show a significant resemblance 
with the reference analytical global optima with a percentage error of 
0.03% for both cases. The inclusion of the J2 effect increases the transfer 
time by 2 h and the computational effort by about 5%, with a total op
timization time of 118 and 124 min respectively for the two cases. 

Table 3 shows that the deviation of the final achieved orbits from 
the desired GEO is very low despite the relatively broad tolerances 
employed in eUB. Additionally, the unperturbed optimal thrust profile 
was propagated with OA, yielding an error relative to CI of 0.00 kg for 

mf , which is to be expected because the mass flux varies linearly with 
time; and an error of 35.66 km, 0.012, and 0.008 deg for af , ef , and if
respectively, which satisfies the tolerances from Table 1. 

4.2. Minimum-propellant GTO(7°)-GEO trajectory 

The following case demonstrates the potential of the hybrid meth
odology for propellant-minimization. The trajectory is optimized using 
OA to reduce the computational time, neglecting the J2 and all other 
perturbations as in the reference study [5]. The transfer time is fixed at 
certain values – =t 150f , 175, 200, 225, 250and 300 days – to enhance 
the convergence rate of the Differential Evolution (DE) optimizer. Be
cause the stopping criteria of the simple DE algorithm employed relies 
solely on a bounded number of iterations, three DE executions are 
evaluated for each case to ensure convergence to global optima. 

The 2D projections on the equatorial plane of the propellant-optimal 
150-, 200-, and 250-day trajectories are shown in Fig. 4, together with 
the unperturbed 137-day time-optimal trajectory from the previous 
case. The coasting regions, depicted in grey, exhibit an expected pat
tern, with the engine switched off near perigee as the initial apogee 
radius is already close to the target value. 

Fig. 5 portrays the computed optimal solutions, which closely ap
proximate a reference analytical Pareto front [5]. This diagram shows 
the optimal mp–tf combinations that are very useful for decision-making 
in mission design. The high accuracy of the computed optima demon
strates that the linearization of the co-state EOM does not significantly 
influence the resulting trajectories, even for the complex case of pro
pellant-minimization. Thus, the hybrid method does not jeopardize the 
solution accuracy compared to the analytical global optima of the re
ference indirect method [5]. The random nature of the DE optimizer is 
also visible in Fig. 5, as some executions yield a mass expenditure ex
ceeding 220 kg that is not visible in the graph. This signifies the need of 
executing multiple repetitions and reveals room for improvement in the 

Fig. 3. Illustration of the computed optimal minimum-time GTO(7°)-GEO J2-perturbed trajectory in top, 3D, frontal, and lateral views [10].  

Table 2 
Results for the unperturbed and J2-perturbed GTO(7°)-GEO min-tf optimization 
[10].      

tf [days] mp[kg]  

Calculated, unperturbed 137.45 211.91 
Reference, unperturbed [5] 137.41 211.86 
Calculated, J2-perturbed 137.71 212.32 
Reference, J2-perturbed 137.75 212.39 

Table 3 
Final achieved orbit for the optimal computed unperturbed and J2-perturbed 
minimum-time transfers.        

af [km] ef [−] if [deg] mf [kg]  

Unperturbed 42164.65 5.53E-4 7.41E-5 1787.68 
J2-perturbed 42164.68 5.28E-4 2.59E-4 1788.09 
Target GEO 42165.0 0.1E-12 0.1E-12 n.a. 
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DE algorithm used. 
Table 4 presents the OA optimization results for the optimal 250- 

day optimal trajectory, as well as the CI simulation of the optimized 
parameters. As expected from the time-minimization case, the OA-CI 
error satisfies the tolerances from Table 1. It also reveals a 1 kg error in 

the propellant consumption, caused by the averaging of the coasting 
arcs, which is deemed acceptable yet indicates room for improvement 
in the averaging implementation. Unlike the time-optimal solutions, the 
final achieved orbit of the CI simulation deviates from the target GEO, 
with a percentage error up to 0.4% ( =e 153a km, =e 0.002e and =ei
0.003deg). The mean computational time per DE execution was 30, 43, 
and 62 min for the 150-, 200-, 250-day trajectories respectively, which 
is considerably faster than the previous 118 min optimization thanks to 
OA propagation. 

4.3. Minimum-propellant GTO(7°)-GEO trajectory with longitude-targeting 

This case demonstrates the superior convergence radius of the hy
brid method relative to the reference indirect approach [5]. The GTO 
(7°)-GEO transfer is optimized for propellant-minimization while tar
geting the final geodetic longitude of 28.5°E. The transfer trajectory is 
propagated using CI with the transfer-time fixed at certain values 
( =t 150f , 175, 200, 250 and 300 days) to reduce the computational load. 
The J2 perturbation is incorporated for a more realistic longitude tar
geting, and three DE repetitions are executed for each case. 

Fig. 6 provides the computed optimal solutions as well as Pareto front 
the reference indirect study [5], which remains the closest reference data 
even though it does not incorporate the J2 effect nor does it allow for 
longitude targeting. Unlike in the previous case, the computed optimal 

Figs. 4. 2D equatorial projections of the computed optimal minimum-propellant GTO(7°)-GEO unperturbed trajectory and coasting arcs (depicted in grey) for 
transfer times of 137 (minimum-time), 150, 200, and 250 days. 

Fig. 5. Optimal mp–tf computed solutions for the GTO(7°)-GEO unperturbed 
trajectory, compared to the reference analytical global optima [5]. 

Table 4 
Results for the 250-day minimum-propellant GTO(7°)-GEO optimization.        

af [km] ef [−] if [deg] mf [kg]  

OA optimization result 41986.91 1.26E-2 4.08E-2 1843.15 
CI propagation 42011.98 2.29E-3 3.45E-2 1842.19 
OA-CI error 25.07 1.03E-2 6.27E-3 0.96 
Target GEO 42165.0 0.1E-12 0.1E-12 n.a. 
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solutions deviate slightly from the expected shape of a Pareto front and 
some of the sub-optimal solutions exceed the mp range of the figure. 

An example of the final achieved orbit is shown in Table 5 for the 
250-day transfer. It is observed that the deviation from the target orbit 
is larger than the previous cases and remains in the order of magnitude 
of the desired tolerances from Table 1. 

Fig. 7 provides the illustrations of the 2D equatorial projections of the 
150-, 175-, and 200-day propellant-optimal trajectories, together with 
the time-optimal J2-perturbed 137-day trajectory from case 1. As ex
pected, the coasting regions exhibit patterns concentrated near apogee 
and, unlike the previous case, they exhibit a non-symmetrical shape. This 
irregularity of the coasting regions is probably caused by the J2 effect 
because the grey regions in Fig. 7 warped in the same direction as the 
clockwise drift of the apogee in the minimum-time transfer. 

5. Discussion 

The accurate results for time-minimization with and without the J2 

perturbation show that the optimal control laws of the hybrid method 
remain applicable despite modifications to the dynamical model. This is 
a major advantage over indirect methods because it guarantees the 
ability to modify the problem without jeopardizing its accuracy and, 
more importantly, without the need to analytically re-derive the two- 
point-boundary-value-problem. This makes the hybrid method a great 
asset for applications that aim to evaluate different combinations of 
dynamical models and constraint-sets in alternative mission designs. 

The error with respect to the reference globally-optimal GTO-GEO 
trajectories [5] was, on average, 0.03% for the minimum-time solutions 
and 0.4% for the propellant-optimal GTO-GEO trajectories. This 

impressive evidence shows that, despite its simplified co-state dynamics, 
the hybrid method can reach the accuracy of the analytical global optima 
from the reference indirect method. The linearization of the system co- 
states, using only their boundary values, does not jeopardize the precise 
global optimization. Furthermore, it makes the hybrid method superior 
to direct approaches because it yields few optimization variables (11 or 
13 for time- and propellant-minimization respectively) and thereby 
practical computational times. Nonetheless, this demonstration for the 
GTO-GEO transfer does not immediately imply that the method will yield 
such impressive performance in other complex problems. Therefore, 
more trajectories should be analysed in future research. 

Although the results for the simultaneous propellant-minimization and 
final geodetic longitude targeting are less robust and indicate room for 
improvement, the fact that the hybrid methodology yields feasible trajec
tories is evidence of a superior convergence radius than indirect approaches. 
This is because the reference indirect approach [5], which was analytically 
re-derived by a third party to include the J2 effect and allow for longitude 
targeting does not converge to a feasible GTO-GEO trajectory for the desired 
orbital position at 28.5°E [17]. This is not surprising because indirect 
methods are known to suffer from unstable convergence for complex pro
blems [8]. Thus, the hybrid method is an appealing choice for studies that 
simultaneously evaluate complex combinations of orbital perturbations, 
trajectory constraints, and optimization objectives. 

The large difference in propellant expenditure between the optimal 
J2-perturbed longitude-targeting solutions and the unperturbed free- 
longitude trajectories (Fig. 6) indicates a lack of robustness in the op
timization algorithm. Albeit ideal for the demonstration purpose of this 
study, the implemented DE algorithm is the simplest DE variant and its 
stopping criteria appear to lead to premature convergence, which im
pairs the performance for simultaneous complex optimization objec
tives. This is indicated by the irregular curve of the Pareto front and the 
dispersion of the sub-optimal results in Fig. 6, which may be further 
deteriorated by unideal tuning of the DE parameters. It is thus re
commended to employ a more sophisticated variant of the DE algo
rithm, with advanced stopping criteria for an enhanced convergence 
performance and lower computational times. An example of this is the 
DE algorithm available in ESA's Parallel Global Multiobjective Opti
mizer (PaGMO), which is additionally self-adaptive and avoids the fine- 
tuning effort. The authors acknowledge that the computational times 
presented in this demonstration are slower than current state of the art 
[18] software yet believe that upgrading the hardware, the optimiza
tion algorithm and optimizing the source code will yield a considerable 
margin for improvement in future research. 

The thrust switching function hereby implemented constitutes a 
significant advancement with respect to the former hybrid optimization 
methods [11,12], which assumed constant thrust. The results show that 
this mechanism can successfully model non-thrusting arcs throughout 
the trajectory, thus allowing for accurate minimum-propellant optimi
zation. This mechanism is very efficient because it requires only two 
additional optimization variables to model the engine on-off switching, 
while reaching the accuracy of analytical global optima. 

The implemented OA propagation scheme is deemed to be a great 
asset for optimization of non-rendezvous transfers because it yielded a 
significant enhancement in the computational speed without jeo
pardizing the accuracy. Additionally, there is yet room for improve
ment, as indicated by the 0.96 kg OA-CI discrepancy (see Table 4) in the 
propellant expenditure, which varies linearly in time and should thus 
exhibit no averaging error. The use of the RK4 scheme was an ideal 
choice for the demonstration in this study due to its simplicity; how
ever, it should be upgraded to a variable-step propagator in future re
search to reduce the propagation time. 

The scaling procedure within the objective function proved to be ef
fective in lessening the required user fine-tuning, allowing the weights of 
the final orbit error to be set to unity. Additionally, the user-specified al
lowed error successfully ensure that the optimizer does not invest un
necessary resources in further refining the solution beyond the tolerances, 

Fig. 6. Optimal mp–tf computed solutions for the GTO(7°)-GEO(28.5°E) J2- 
perturbed trajectory, compared to the reference analytical global optima for the 
unperturbed free-longitude trajectory [5]. 

Table 5 
Results for the 250-day J2-perturbed minimum-propellant GTO(7°)-GEO 
(28.5°E) optimization.         

af [km] ef [−] if [deg] mf [kg] f [deg]  

CI result 42190.94 3.392E-4 1.404E-1 1819.73 28.48 
Target GEO 42165.0 0.1E-12 0.1E-12 n.a. 28.50 
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while enabling both a faster generation of near-optimal trajectories as well 
as high-accuracy solutions at longer computational times. 

Lastly, it is worth drawing the attention to the practical suitability of 
the resulting optimizer. For example, the output thrust profile, an ex
ample of which is shown in Fig. 8 for the computed time-optimal tra
jectories, can be easily calculated from the propagation using the opti
mized parameters and can be directly harnessed for further operations, 
e.g. attitude control or power generation analyses. Furthermore, since 
the methodology is versatile for application in different problems, the 
hybrid optimizer can be easily integrated with other mission analysis 
tools to expand the simulation capabilities. For example, this could be 
harnessed to define further operational constraints during the propaga
tion, e.g. maximum slew rates or attitude restrictions, or to allow for a 
configurable dynamical model, e.g. incorporate further orbital pertur
bations or eclipses. Similarly, the objective function can be easily tailored 
to optimize further variables computed with other utilities, such as the 
radiation fluence experienced throughout the transfer, the collision 
probability with other objects, or an indicator of the ground stations’ 
visibility during orbit-raising. For these purposes, the presented hybrid 
method constitutes a great asset, superior to indirect approaches because 
it enables modifying to the dynamical model, constraints, or optimiza
tion objectives without the need to re-derive the optimal control laws. 

6. Conclusions 

This paper presents an accurate and flexible hybrid optimization 
method for low-thrust many-revolution trajectories, combining the 
benefits of both direct and indirect approaches while avoiding their 
drawbacks. Compared to former hybrid approaches, this methodology 

bridges the last shortcomings of former hybrid approaches for pro
pellant-minimization, through a mechanism that allows for coasting 
(non-thrusting) arcs throughout the transfer. Additionally, an orbital 
averaging propagation scheme is implemented besides the classical 
continuous integration; with the former alternative allowing for a sig
nificant acceleration of the optimization process without jeopardizing 
its accuracy for non-rendezvous applications, whereas the latter retains 
the ability to target the final geodetic longitude. Furthermore, the ob
jective function of the optimization is combined with a customizable 
error tolerance that provides the flexibility to perform accurate opti
mization as well as a faster generation of near-optimal trajectories. 
Despite the linearized EOM for the system co-states, the results for both 
an unperturbed and a J2-perturbed GTO-GEO transfer exhibit a 0.03% 
error compared to the optimal solution of the reference indirect ap
proach, and the minimum-propellant results yield a 0.4% error. 

The resulting approach is demonstrated to be superior to direct 
methodologies because its analytical nature significantly reduces the 
design space and thus allows for practical computational times (30 min 
with orbital averaging and 118 min with continuous integration). 
Additionally, its computational nature makes it superior to purely in
direct methods because 1) it provides an enhanced convergence radius, 
as shown by the simultaneous propellant-minimization and longitude- 
targeting of the GTO-GEO transfer, and 2) its optimal control laws are 
unaffected by modifications to the dynamical model, as shown by the 
inclusion of the J2 acceleration. Nonetheless, more orbital perturbations 
must be incorporated – e.g. eclipses, third body forces, solar radiation 
pressure, and atmospheric drag – and more transfer cases must be 
evaluated in order to fully validate the hybrid method. 

It should be emphasized that the goal of this paper is to demonstrate 

Figs. 7. 2D equatorial projections of the computed optimal minimum-propellant GTO(7°)-GEO(28.5°E) J2-perturbed trajectory and coasting arcs (depicted in grey) 
for transfer times of 137 (minimum-time), 150, 175, and 200 days. 
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the potential benefits of the hybrid approach rather than creating an 
operational tool. For the latter, there remains room for improvement in 
several areas, namely the need for a more sophisticated DE evolution, a 
variable-step integrator, hardware upgrades and optimization of the 
source code, all of which will provide a considerable margin in the re
quired computational time. The upgrade of the optimization algorithm is 
deemed the next priority, because although the basic DE algorithm 
hereby employed was appropriate for this demonstration, its perfor
mance lacks the robustness that is necessary for an operational tool. 

The implications of this research constitute a major advancement 
for terrestrial space missions design and satellite operations. The 
method is demonstrated to be a great resource for a wide range of 
applications, e.g. mission concept design, because: 1) its simplified co- 
state EOM enable its usage by users without profound experience in this 
field, and 2) its flexible formulation is applicable to a wide range of 
different problems without the need to analytically re-derive the op
timal control problem. Furthermore, its enhanced convergence radius 
has the potential to allow for incorporating full perturbation models, 
complex combinations of operational constraints, and simultaneous 
optimization objectives. This can be a resourceful asset for example in 
small satellite missions using solar sailing or electric propulsion, be
cause the accurate modelling of orbital perturbations is of paramount 
importance; as well as orbit-raising, station-keeping, and de-orbiting of 

full-electric scientific or telecom platforms, where the complex satellite 
systems may impose important trajectory constraints. 
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Appendix A. Equations of Motion 

The modified equinoctial elements are defined as follows [13,14]: 

=p a e(1 )2 (A.1)  
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= +g e sin( ) (A.3)  

=h itan
2
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=k itan
2
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= + +L , (A.6) 

which can be converted to Keplerian coordinates: 
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The dynamics matrix A x( ) and the vector b describing the Gauss' form of the Lagrange planetary equations are defined in Eqs. A.13-A.14: 

=

+ +

+ +
A x

L w L f h L k L L

w L g h L k L

h L k L

( )

0 0

sin [( 1)cos ] [ sin cos ] cos

[( 1)sin ] [ sin cos ]

0 0

0 0

0 0 [ sin cos ]

p
µ

p
w

p
µ

p
µ w

p
µ

g
w

p
µ

p
µ w

p
µ

f
w

p
µ

w L
w

p
µ

w L
w

p
µ w

2

1
1

1
1

cos
2

sin
2

1

1

1 1

1 1

2
1

2
1

1 (A.13)  

=b µp w
p

T
g I

00000 ,

sp

T

1
2

0 (A.14) 

where =g 9.806650 ms−1 is the gravitational acceleration of Earth at sea level, and w1 and w2 are auxiliary variables: 

= + +w f L g L1 cos sin1 (A.15)  

= + +w h k12
2 2 (A.16)  

The RSW J2 acceleration vector is given by Ref. [19]: 
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where = ×µ 3.9860044 105 km3s−2 is the Earth gravitational parameter, =R 6378.136E km is the equatorial radius of Earth and = ×J 1.082626 102
3

is the second order Earth oblateness constant. Moreover, 1, 2, and 3 are auxiliary variables: 

= h L k Lsin( ) cos( )1 (A.20)  
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= +h L k Lcos( ) sin( )2 (A.21)  

= + +h k(1 )3
2 2 2 (A.22)  

Appendix B. Optimal Control Law Derivation 

The optimal control law follows from the necessary conditions in Eqs. (3.7) and (3.8). First, Eq. (3.7) is applied to Eq. (3.6) with respect to angle 
to derive the optimal yaw steering control law t( ). After some manipulation, one obtains: 
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where the following auxiliary variables are used for simplicity: 
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where the terms p µ/ and cos may be removed for simplicity. The expressions for sin and cos can be derived from Eq. B.1 using trigonometric 
identities, and their correct sign for a minimum follow from Eq. (3.8): 
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Similarly, the necessary condition in Eq. (3.7) can be applied to Eq. (3.6) with respect to the control angle to obtain the optimal pitch steering 
control law t( ): 
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which employs the following auxiliary variables: 
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Again, the expressions for sin and cos can be derived from Eq. B.9 using trigonometric identities, followed by substituting the previous 
equations for sin * and cos * and applying the minimum condition in Eq. (3.8): 
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The previous control laws in Eqs. B.7-B.8, and B.19-B.20 can be substituted without further simplification in Eqs. A.13-A.14, which feature only 
sine and cosine terms. 

Lastly, the necessary condition in Eq. (3.7) is applied to Eq. (3.6) with respect to the thrust magnitude T : 
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This time, however, the condition yields a bang-bang problem instead of a single expression for the optimal thrust magnitude because the 
Hamiltonian varies linearly with control parameter T [7]: 

= <T t T S t( ) if ( ) 0max t (B.22)  

= >T t S t( ) 0 if ( ) 0,t (B.23) 

where the switching function St is defined as H=S T/t 3 . It should be clarified that a third condition may exist, Eq. B.27, yielding a singular control 
problem: 

< < = =T T S dS
dt

0 if 0 and 0max t
t

(B.24)  

However, the necessary conditions for such singular arc are deemed unfeasible due to the numeric nature of the methodology and this potential 
third condition is neglected. 

Appendix C 

Nomenclature  

æ trajectory terminal boundary conditions vector 
a semi-major axis 
aT thrust acceleration vector 
aJ2 acceleration vector caused by the J2 perturbation 
A dynamics matrix of the trajectory state dynamics 
b offset vector of the trajectory state dynamics 
e eccentricity 
ej final orbit error of the jth element in æ
f second equinoctial element 
g third equinoctial element 
h fourth equinoctial element 
H Hamiltonian equation 
i inclination 
Isp specific impulse 
k fifth equinoctial element 
L true longitude 
L Lagrange term in the optimization cost function 
m spacecraft total mass 
mp required propellant mass 
noa number of orbital averaging propagation arcs 
np number of propagation steps per orbital revolution 
p semi-latus rectum 
P instantaneous orbital period of the trajectory 
q̂ unit vector of the Q frame 
QRSW matrix defining the RSW frame 
œ trajectory initial boundary conditions vector 
r satellite position vector 
t time 
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T magnitude of the thrust vector 
u control variables vector 
v satellite velocity vector 
x propagated trajectory state vector 
Wt cost function weight for the time-of-flight 
Wm cost function weight for the mass expenditure 
Wj cost function weight for the jth element in æ

yaw steering angle 
pitch steering angle 
true anomaly 
system co-state, or adjoint, vector 
–geodetic longitude 

j scaled final orbit error of the jth element in æ
Mayer term in the optimization cost function 
argument of perigee 
right ascension of the ascending node 

∗ optimal value(s) of a variable or vector 
T transpose of a vector 
0 initial value at the start of the propagation 
avg averaged value(s) of a variable or vector 
d total disturbance 
f final value at the end of the propagation 
j placeholder for the = …j 1,2, ,6elements in vectors and æ
LB lower bound(s) of a variable or vector 
UB upper bound(s) of a variable or vector 
r direction of the Earth-satellite vector 
s direction normal to the Earth-satellite vector 
w direction of the angular momentum vector  
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