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An Integrated Territory Planning
and Vehicle Routing Approach
for a Multi-Objective Residential
Waste Collection Problem

Sarah Hurkmans1 , M. Yousef Maknoon2 ,
Rudy R. Negenborn3 , and Bilge Atasoy3

Abstract
In this paper, we address a multi-objective residential waste collection problem with an integrated territory planning and vehi-
cle routing approach. Dividing the problem into territories enables drivers to carry out the same route every week so they
get familiar with it and residents put out their bins at the appropriate time. Another benefit is to reduce the computation
time for large problems, since the complex characteristics of the involved vehicle routing problem make it otherwise difficult
to solve. There are three characteristics that are important for good territory planning: minimum overlap, minimum travel
time, and balanced workload. The purpose of this paper is to investigate the influence these three objectives have on each
other, since they might be contradictory. Moreover, an Adaptive Large Neighborhood Search (ALNS) algorithm is developed
for this specific problem which uses a K-means algorithm to generate the initial solution for territories. The results with the
three objectives are shown to be useful for planners seeking to make informed decisions through the trade-off across differ-
ent solutions with the Pareto frontiers provided. Moreover, the ALNS algorithm is shown to find good quality solutions in a
reasonable computational time.

Waste collection is an important topic, since a growing
population produces more and more waste and which
has a negative impact on the environment (1, 2). Four
factors that influence the efficiency of waste management
are: the amount of waste generated; the number of waste
collectors; the amount of effort they put in; and the num-
ber of vehicles they run (3). The high cost of labor and
trucks mean that transportation and collection account
for the largest proportion of operational costs (1, 4, 5,
6). Optimizing route planning, therefore, offers scope for
the biggest improvement which is why the waste collec-
tion problems are usually considered as a specific form
of the vehicle routing problem (VRP). There are two
aspects that distinguish the waste collection issue from a
standard VRP. First, it has several pick-up points, waste
collection bins or containers, and one delivery point, a
disposal facility. Second, there is the possibility that
demand exceeds the capacity of the vehicle, if during the
route extra disposal visits are made (1). Decisions of
when to visit a disposal facility and, in the case of several
facilities, which one to visit add extra complexity to the
decision-making process (7). As VRP is known to be an

NP-hard problem (8, 9), our problem also belongs in this
category.

In VRP, it is important to represent real-life situations
to create solutions which planners and drivers are willing
to use, in addition to the aim of reducing costs. First, ter-
ritories should be both connected and as compact as pos-
sible (10). Compact territories result in smaller travel
distances and travel time. When territories are not com-
pact and are unconnected, there are a lot of crossovers
between routes. This is not beneficial in practice and
models should, therefore, consider minimizing the num-
ber of crossovers or overlaps (7). Operational planners
and drivers tend to find plans that look visually
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attractive (without overlap) easier to accept (11).
Furthermore, solutions with unbalanced workloads will
not be accepted by the end users. Considering more
balanced solutions brings several advantages such as
lower overtime hours, higher employee satisfaction with
lower turnover, better customer service, and more flex-
ible use of available capacity (12). It can also reduce the
fluctuation in daily service revenue (10).

The goal of this paper is to investigate how the three
objectives of minimizing travel time, minimizing overlap,
and balancing workload influence each other through an
integrated territory planning and vehicle routing prob-
lem. This makes a clear contribution to the literature for
three reasons. (1) There is no study that considers all
three objectives at the same time within routing optimiza-
tion. In most cases the overlap and workload balance are
evaluated as post-processing steps but are not considered
during the optimization of the routes as objective func-
tions. (2) Territory planning and vehicle routing are mod-
eled in an integrated way. (3) An ALNS algorithm is
developed for larger instances of the problem that involve
various additional components (e.g., clustering algo-
rithm) to fit it to this multi-objective waste collection
problem with territories.

Literature Review

The consideration of waste collection problems has are
two main focus points: developing algorithms to solve
the optimization problem; and capturing the reality as
much as possible using realistic data and constraints (2).
We first provide a review of territory planning that aims
to reduce the computation time and then we cover stud-
ies that consider overlap and workload balance.

Territory Planning

A way to deal with the complexity of the (waste collec-
tion) VRP is to split the total area of customers into terri-
tories. The smaller sub-problems are easier to solve and
resources can be used several times if the territories can
be serviced on different days. Territories can also be ben-
eficial for improving the customer service. Drivers visit-
ing the same set of customers regularly know the area
which leads to shorter service and travel times (13).
Besides, they are easier to operate than the whole system
together and, if something changes, only part of the glo-
bal planning needs to be adjusted (14). Kim et al. (7)
solve a commercial waste collection problem where terri-
tories fit the real-life procedure with a fixed schedule.
Most literature is based on a two-phase method, in which
the clustering and the routing phases are separated (8).
Nevertheless, the clustering solution influences the solu-
tion of the routing. A bad clustering assignment might

result in higher travel times (15) and therefore higher
operational cost and poor customer service (16). One of
the few examples of researchers not using a two-phase
approach is Litvinchev et al. (17) who solve the pick-up
and delivery problem with time windows using territory
planning with a mixed integer programming model.
Their goal is to minimize the longest zone route to create
more balanced territories. They mention problems with
computation time when the number of nodes or the num-
ber of zones get higher.

Heuristics can provide relatively good solutions for
large-scale problems without any optimality guarantee.
Among the waste generation papers, local search is the
most popular, followed by tabu search (6). Another often
used heuristic is the cluster-first-route-second approach.
According to Cordeau et al. (8), the first type of cluster-
first-route-second heuristic used in literature is the sweep
algorithm. Gillett and Miller (18) use this method to
solve a vehicle dispatch problem with limited capacity of
the vehicles and distance restrictions. Up until their
research, most methods could only solve problems with a
maximum of 100 nodes. Using territory planning with
the sweep algorithm, the problem is split into smaller
sub-problems and computation time is reduced. Other
examples are the sweep (8), K-means (7), and shifting
insertion (19) heuristics.

No Overlap

As mentioned earlier, one important objective in waste
collection VRP is route compactness (7), that is, no over-
lap, that leads to a route planning with fewer crossovers
between the routes. Some literature uses the term visual
attractiveness (20), which refers to compact routes on
which no crossovers take place between routes.
According to Tang and Miller-Hooks (21) this is not
vital for the implementation of a route plan, but highly
desirable and therefore often incorporated in the prob-
lem as soft constraints. Some research however argues
that solutions are not acceptable if overlap takes place
and thus fully eliminates overlap between clusters (10,
19).

The importance of fewer crossovers comes mostly
from a business point of view. Kim et al. (7), Tang and
Miller-Hooks (21), and Poot et al. (11) all state that
planners use the visual attractiveness of a solution to
determine if the solution is acceptable or not. Kim et al.
(7) even experienced rejections of solutions by planners
because of overlapping routes in solutions. The tendency
to accept route plans that look visually attractive is
because they seem logical to them, even though these
solutions might perform worse on other aspects, such as
travel time (11, 22). Solutions without overlapping routes
have clear boundaries and this helps planners to adjust
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general computer based solutions to specific business
needs (10). Adjustments can be made easily without dis-
rupting other routes in the planning (20, 23). This might
also be beneficial for real-life disruptions, such as conges-
tion, accidents, or malfunctioning vehicles in the opera-
tional phase of waste collection routing. It might seem
intuitive that minimizing route time or distance will also
lead to clusters in which nodes lie close to each other,
which results in less overlap between the clusters. To a
certain extent this will probably be the case, but several
papers, mention poor results with respect to overlap or
visual attractiveness if they are not taken into account
explicitly (7, 11, 24). Both Sahoo et al. (25) and Tang
and Miller-Hooks (21) showed that their algorithm
increased the visual attractiveness significantly, when it is
explicitly considered, while the increase in travel time
was still acceptable.

Workload Balance

From a business point of view, every vehicle serving a ter-
ritory should perform approximately the same amount of
work, for example, number of customers served or travel
distance/time. Unbalanced solutions will not be accepted
by drivers and route planners (7) as they result in irregu-
lar hours. In addition, there are several advantages to
workload balance that are not based on minimizing cost,
but can benefit the company (12). Examples are lower
overtime hours, higher employee satisfaction with lower
turnover, better customer service, more flexible use of
available capacity (12) and a reduction in the fluctuation
in daily service revenue (10).

There is no single straightforward way to measure
workload balance and most research focuses on balan-
cing the tour lengths, however balancing the number of
stops, service time, or demand might be more suited for
specific problems. Once the measure is selected, a balance
method needs to be defined to incorporate it in the objec-
tive function. According to Matl et al. (12) the chosen
balance method influences the VRP solution signifi-
cantly. For example, more complex measures result in a
higher number of trade-off solutions. Different balance
methods found for the route length are the standard
deviation of route length (17) and the difference between
the longest and the shortest route time (7). For the num-
ber of stops, the sum of deviations of the average number
of customers in each cluster is used by Cao and Glover
(10). Li et al. (19) minimize the standard deviation of the
number of nodes in a cluster if the demand of all custom-
ers is the same or does not matter, otherwise they mini-
mize the standard deviation of the total demands within
a cluster. Lum et al. (23) combine the number of nodes
and the travel distance to achieve a balanced route.

The literature also differs in the way the workload bal-
ance is evaluated. In most cases it is evaluated after the final

solution is created or it is evaluated at improvement steps
(7). Only in a few cases is the measure of the workload bal-
ance incorporated into the routing optimization (17).

Problem Description

In this research, multiple objectives are incorporated
within routing optimization to generate solutions that pro-
vide real-life applicability. One of them is the minimization
of overlaps between territories to obtain solutions that are
compact and visually attractive. The second is the work-
load balance to generate routes that lead to similar work-
load across drivers. Finally, a company always tries to
minimize cost and it is necessary to find optimal routes
through territories, which is incorporated as the third
objective through total travel time. The workload balance
is measured as the variance of the route travel times in
minutes. The overlap value is measured by the sum of the
distance between all nodes assigned to the same route.

Since the above-mentioned three objectives influence
each other and may be contradictory, there will not be
an optimal solution that provides the minimum possible
value for all of them at the same time. We, therefore,
work with the Pareto frontier which consists of so called
non-dominated solutions. According to Ombuki-Berman
et al. (26), a solution vector u= ½x1, x2, :::, xn� is said to
dominate another vector v= ½y1, y2, :::, yn� if and only if:

8i 2 ½1, :::n� : ui ł vi and 9i 2 ½1, :::, n� : ui\vi:

In this research, such a solution vector u would look like
½tu, ou,wu�, in which tu represents the travel time, ou the
overlap and wu the workload balance value. This results
in solutions in which one of the objectives might
decrease, while the others increase. For example, a per-
fectly balanced route might result in a lot of overlap or
higher travel times, to create a solution in which the
travel times of all routes are equal.

The vehicle fleet in this paper is considered to be
homogeneous, that is, all vehicles have the same maxi-
mum load capacity and maximum vehicle routing time.
If the vehicle reaches its load capacity, it has to visit a
disposal facility. Besides, the number of vehicles is not
known upfront. This means several vehicles have to be
chosen before the solution method starts. This is needed
to determine the number of territories. Vehicles have to
start and end at a depot and before a vehicle returns to
the depot, it has to visit a disposal facility to arrive empty
at the depot. Finally, all nodes should be visited by
exactly one vehicle and the demand should be served.

Mathematical Model

We formulate the residential waste collection VRP as a
Mixed Integer Quadratic Programming Problem over a
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network G =(V ,A), where V is the set of nodes and A is
the set of arcs. The set V includes the depot (0), the resi-
dential stops ( N ), and the disposal facilities ( F), that is,
V = f0g [ N [M . The travel time between node i and j

is given by tij. A demand di is associated with customer
i 2 N . Since a vehicle can visit a node only once, but in
reality a disposal facility could be visited multiple times
by the same vehicle, the nodes that represent disposal
facilities are duplicated. The number of duplicated dispo-

sal facility nodes is equal to total demand
vehicle capacity

l m
� 1. The set F

consists of the original disposal facility nodes and their
duplicates. The set of vehicles is represented by K. The
binary variable xijk tracks the route of vehicle k and is

equal to 1 if vehicle k travels from stop i to stop j and 0
otherwise. The assignment of a node i to a vehicle k is
represented by zik , which is equal to 1 if vehicle k serves
customer i and 0 otherwise. The variable Qik represents
the load of vehicle k at node i. To make sure there are
no sub-tours for any vehicle k, the variable uik is intro-
duced. Last, variable bijk is used to minimize the dis-

tance between every two nodes assigned to vehicle k. It
is equal to 1 if both node i and j are assigned to vehicle
k and 0 in all other cases. The vehicles have restrictions
related to capacity C and operation time O.

The objective function (4) minimizes one of the three
objectives, total travel time (1), overlap (2), and workload
balance (3):

X
k2K

X
i2V

X
j2V

tij � xijk ð1Þ

X
i2N

XN

j= i+ 1

X
k2K

tij � bijk ð2Þ

1

jKj
X
k2K

X
i2V

X
j2V

tijxijk �
1

jKj
X
k2K

X
i2V

X
j2V

tijxijk

 !2

ð3Þ

To enable the model to minimize one of the three
objectives and limit the other two with an upper bounds
of e1 and e2, constraints (5) and (6) are introduced. The
objective chosen to be minimized is denoted by
Objective a and the other two objectives that are
bounded, are given as Objective b and Objective c.

min Objective a ð4Þ

s:t: Objective b ł e1 ð5Þ

Objective c ł e2 ð6Þ

For minimizing the overlap, it is necessary that the
model can calculate the distance between nodes assigned
to the same vehicle. Constraints (7)–(9) together make
sure this is possible.

bijk ł zik 8k 2 K, i 2 N , j 2 fi+ 1, :::,Ng ð7Þ

bijk ł zjk 8k 2 K, i 2 N , j 2 fi+ 1, :::,Ng ð8Þ

zik + zjk = bijk + 1 8k 2 K, i 2 N , j 2 fi+ 1, :::,Ng ð9Þ

Constraints (10) and (11) are assignment constraints.
They ascertain whether a customer is visited exactly once
by one of the vehicles and all vehicles start from the
depot, respectively.X

k2K

zik = 1 8i 2 N ð10Þ

X
k2K

z0k = jKj ð11Þ

Flow conservation is taken care of by constraints
(12)–(14). Combined with constraint (11) it is assured
that the routes start and end at the depot for all vehicles.

X
j2V

xijk = zik 8i 2 f0g [ N , k 2 K ð12Þ

X
i2V

xijk = zjk 8j 2 f0g [ N , k 2 K ð13Þ

X
j2V

xijk =
X
j2V

xjik 8k 2 K, 8i 2 F ð14Þ

Constraint (15) prohibits the load of a vehicle to
exceed its capacity and when a vehicle visits a disposal
facility to empty its content Constraint (16) sets the load
back to zero. Constraints (17) and (18) keep track of the
load. If a vehicle drives from a resident to a disposal
facility, the disposal facility must be assigned to the vehi-
cle to keep track of the routes, so Constraint (19) takes
care of this. Constraint (20) ensures the maximum total
vehicle routing time is not exceeded.

Qik ł C 8k 2 K, i 2 N ð15Þ

Qik = 0 8k 2 K, i 2 f0g [ F ð16Þ

Qik + dj ł Qjk +(1� xijk) � C 8k 2 K, i 2 V , j 2 N ð17Þ

Qjk ł Qik + dj +(1� xijk) � C 8k 2 K, i 2 V , j 2 N ð18ÞX
i2N

xijk = zjk 8k 2 K, j 2 F ð19Þ

X
i2V

X
j2V

tij � xijk ł O 8k 2 K ð20Þ

Constraints (21) and (22) eliminate sub-tours.
Furthermore, a vehicle must be empty when it arrives at
the depot which is ensured by Constraint (23) by avoid-
ing a depot visit directly after a customer visit. In addi-
tion, it does not make sense to go to a disposal facility
without a load, so Constraint (24) makes sure routes do
not visit two disposal facilities consecutively and
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Constraint (25) makes sure vehicles do not go directly
from the depot to a disposal facility.

1 ł ui ł jV j+ 1 8i 2 N +F ð21Þ
ujk ø uik � (jV j+ 1) � (1� xijk)+ 1 8i, j 2 F +N ð22Þ

xi0k = 0 8k 2 K, i 2 N ð23Þ
xijk = 0 8k 2 K, i, j 2 F ð24Þ

x0jk = 0 8k 2 K, j 2 F ð25Þ

Finally, Constraints (26) and (27) define x, z, and b as
binary variables, Constraint (28) enforces non-negativity
for the load and Constraint (29) defines the variables for
sub-tour elimination.

xijk, zik 2 f0, 1g 8k 2 K, i, j 2 V ð26Þ

bijk 2 f0, 1g 8k 2 K, i 2 N , j 2 fi+ 1, :::,Ng ð27Þ

Qik ø 0 8k 2 K, i 2 V ð28Þ
uik 2 R 8i 2 N +F, k 2 K ð29Þ

Solution Algorithm

We develop an ALNS heuristic to deal with the solution
of the problem for large size instances. ALNS takes an
initial solution and adjusts it in every iteration by first
destroying part of the solution and then repairing it. For
the type of problems we have, this means first removing
some nodes from a territory and afterwards inserting
them in the remaining territories. To make sure solutions
are feasible, capacity constraints of the vehicle and maxi-
mum routing times are taken into account when re-
inserting the nodes. An overview of the full ALNS heur-
istic is displayed in Figure 1.

Finding an Initial Solution

A K-means algorithm is used for the initial solution
(Algorithm 1) to generate the territories. First, the num-
ber of clusters (NC) to be created is determined based on
the demand and the capacity:

NC =
total demand

vehicle capacity

� �
:

Then NC random customer nodes are chosen as seed
nodes for the clusters. The next step is to assign all other
nodes to the cluster of the seed node that is closest to
them. When all nodes are assigned, the new center of
gravity of the cluster is calculated. The node nearest to
the center of gravity is assigned the new cluster seed
node. Afterwards, for all nodes it is determined whether
the new cluster seed is still the nearest to them. If this
holds for all nodes, the algorithm stops. If not, it

reassigns all nodes to their nearest seed node and the
iterations start again. There are three situations in which
the algorithm stops: (i) when all nodes are assigned to
the cluster with the seed node closest to them; (ii) when
the algorithm keeps on iterating infinitely with repeating
solutions; and (iii) when 100 iterations is reached.

In the K-means algorithm, the capacity of the vehicles
and the maximum routing time is not considered yet. So
after creating these clusters, routes are created for each
cluster as given by Algorithm 2. If the routes created can-
not accommodate all the nodes to be visited, the algo-
rithm adds one extra vehicle to the problem and a new
solution is created with the K-means procedure.

Solution Pool and Acceptance Criteria

All non-dominated solutions are saved in a solution pool,
SP. A solution s is added to SP if it is accepted by the
algorithm based on the following criteria:

1. The solution s is the best solution that is found,
that is, si\ui8u 2 SP, i 2 ½1, 2, 3�;

2. The solution s is not dominated by any of the
solutions u 2 SP;

3. The solution s is dominated by at least one of the
solutions in SP, but is accepted based on the
acceptance probability of the simulated annealing
algorithm.

In the first case, the solution pool created so far is
deleted, as the new found solution dominates all. In the
second and third cases, the solution is added to the exist-
ing pool. The third case is included to avoid getting stuck
in a local optimum based on the simulated annealing
idea where a large temperature value T is selected ini-
tially and with every iteration the temperature is cooled
down by a cooling rate, with 0\coolingrate\1. The

Algorithm 1 K-means

1: NC  number of clusters to create
2: Choose seed nodes for NC clusters from all nodes
3: for all other nodes n do
4: closest _ seed _ n assign node n to closest seed node
5: end for
6: For all clusters calculate center of gravity
7: center _ node _ c closest node to center of gravity of

cluster c
8: while non of the three stopping criteria reached do
9: for all nodes n do

10: closest _ seed _ n reassign n to closest center _ node _ c
11: end for
12: calculate new center _ node _ c after reassigning nodes for

all clusters c
13: end while
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acceptance probability of a worse solution with value
vworse is given by:

P rd\ exp
vcurrent � vworse

T

� �� �
where vcurrent is the value of the last added solution and rd

is a random number between 0 and 1. As T decreases, the
acceptance probability decreases. Since we have three
individual objective function values, they have to be com-
bined to determine if a worse solution has to be accepted.

Removal Operators

For neighborhood search, the first step is to remove part
of the solution. The number of nodes removed and the
rule by which they are removed vary per iteration. If
nodes are removed from a route, the demand and length

of the route are changed accordingly. Since we consider
three objectives, there are different variations of the same
removal operator for every objective.

For random and worst removal, a number q is chosen
as the number of nodes to be removed. There are three
different ranges from which to choose the value q: small,
medium, and large. In the small case, the value of q can
vary between 1% and 30% of the total number of cus-
tomer nodes. This range is 31% to 70% for the medium
case and 71% to 100% for the large case.

Random Removal. The random removal operator can be of
three different types, namely removing nodes, a route, or a
cluster. When removing nodes, the algorithm chooses q

customer nodes from the total set of customer nodes at
random and removes these nodes from their routes. The
number that is chosen for q lies in one of the three ranges

Figure 1. ALNS procedure.
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mentioned above. With route removal, the algorithm picks
one of the routes at random and deletes all customer nodes
in that route. With cluster removal, a random number is
chosen, nc, between the number of routes and the number
of nodes, which represent the number of clusters. With
Kruskal’s minimum spanning tree algorithm (27), clusters
are created of nodes that lie closest to each other. Note
that these clusters are not considered to be territories, so
they could be assigned to different routes. The algorithm is
stopped when the customer nodes belong to nc groups.
One of these nc groups is randomly chosen and all nodes
belonging to this chosen cluster are removed.

Worst Node. The worst node removal chooses q nodes to
be removed, where q can lie in one of the three ranges
mentioned above. It uses the objective function to deter-
mine which customer nodes are the worst q nodes. Since,
the goal of this research is to find solutions that can be
minimized for all three objectives, the worst node is the
one that adds the most cost to the solution, in which the
cost means something different for every single objective.
Therefore, three different worst node removal heuristics
are created, one for each of the objectives.

Worst Route. The worst route is the route that increases
the cost the most (depending on the objective function)
all nodes in this route are removed.

Worst Cluster. For each cluster created by Kruskal’s algo-
rithm, the savings are calculated if it is removed and the
one with the highest savings according to one of the three
objectives is chosen to be actually removed.

Remove All Routes Worse Than Random Chosen Route with
Respect to Travel Time. This removal procedure is used for
improving the travel time. First, it randomly chooses a
route from the set of all routes. The length of the chosen
route is compared with all the other routes. The routes
that have a longer travel time than the chosen route will
be removed. If the chosen one is the longest then it is
removed (equivalent to the worst route removal operator
with respect to travel time).

Radius Based Removal. This removal operator focuses on
improving the overlap. First, a radius is randomly chosen
between 1 and 20 and a seed node is randomly chosen
from the set of customer nodes to create a circle, with the
seed node as its center. The algorithm searches for nodes
that lie within the circle, but do not belong to the same
route as the seed node. If it finds nodes that meet this cri-
terion, it removes them, otherwise it does not remove any
of the nodes.

Remove All Routes Worse Than Random Chosen Route with
Respect to Workload. To get a better solution for

Algorithm 2 initial solution

1: Clusters create clusters with K-means algorithm
2: for each cluster c in Clusters do
3: unassigned nodes all nodes belonging to c
4: start node node in c with longest travel time to depot
5: closest df  disposal facility closest to depot
6: r route consisting of depot! start node! closest df ! depot
7: Delete start node from unassigned nodes
8: while unassigned nodes not empty do
9: Find insertion cost for all nodes that do not violate capacity ßor max vehicle routing time

10: if at least one of the nodes n does NOT violate capacity then
11: insert node unassigned node furthest away from depot
12: insert insert node into place with minimum insertion cost
13: remove insert node from unassigned nodes
14: else
15: unassigned clusters cluster c+ 1 until last cluster in Clusters
16: lowest tt uc n lowest travel time assigning n to one of the clusters in unassigned clusters
17: closest df last node closest disposal facility to last node in route part that reached capacity
18: tt dist n travel time if vehicle continues route via closest df last node to n
19: if for all n lowest tt uc n \ tt dist n or adding node violates max vehicle routing time then
20: Assign all nodes to its closest cluster in unassigned clusters
21: else
22: insert node unassigned node with longest distance to another cluster
23: Add insert node to new part route after visiting closest df last node
24: end if
25: end if
26: end while
27: end for
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workload balance, this operator chooses a random route
and will delete all routes that differ more than p % in
length, where p can vary in the same three categories as
for the removal of the nodes, mentioned at the beginning
of the section. If there are no other routes as such, the
randomly chosen route will be removed.

Insertion Operators

The second step of neighborhood search is to insert the
elements that were removed into the solution. Just as
with the removal operators, different methods are used
and there are variations of each method considering the
three objectives. It is important to bear in mind that a
node cannot be inserted between a disposal facility and a
depot. Also, feasibility with respect to the capacity of a
vehicle and the maximum routing time needs to be
maintained.

Greedy Insertion. This operator iterates over a list of nodes
that have to be inserted. It picks the first node in the list
and finds the ‘‘best’’ place to insert the node in one of the
routes. Which place is the best, depends on the objective
considered. It does not consider other nodes when find-
ing the best insertion place for this node. If for at least
one of the nodes no feasible insertion place can be found,
either because of the maximum routing time or the
capacity of the vehicle, the solution is rejected.

Best Insertion. The best insert operator also looks for the
best insertion place, but in this case it considers all the
nodes at the same time. The algorithm first finds the best
insertion place for each node and chooses the overall best
value from the best values of all the nodes. It inserts this
node and the whole procedure is then repeated until there
are no nodes left to insert. If at least one of the nodes
cannot be inserted because of limited capacity or route
time, the whole solution is rejected.

Regret Insertion: Next Best. The regret insertion operator is
based on the idea that it is beneficial not just to consider
the best insertion place at the moment, but also the con-
sequences thereafter. If there is one node for which the
difference between its best and second best insertion
places is very high, it could be better to insert this node
first, because it might give issues with capacity con-
straints or unsatisfactory solutions later on. The regret
here is defined as the difference between the best and sec-
ond best route. In one iteration the regret of every node
is calculated and the node with the largest regret is cho-
sen to be inserted first. This procedure is repeated until
there are no nodes left to insert. If a node cannot be
inserted in one of the routes, it gets a very high penalty

for this route. If no insertion is possible at all for at least
one of the nodes, the solution is rejected.

Regret Insertion: Summed. The difference with the previous
operator is that the regret is defined as the sum of the dif-
ferences of all routes from the best route. The node with
the highest regret is chosen to be inserted first. If at least
one of the nodes cannot be inserted in any of the routes,
the solution is rejected.

Adaptive Weights

For each iteration a removal and an insertion operator
are chosen and the probability to choose one of them is
based on a weight wi. The probability pj to choose opera-

tor j with weight wj is determined by:
wjP

i
wi

. When the

algorithm starts, the weights are the same across the
operators. The algorithmic procedure is split into so
called segments and after each segment sg the weights are
adjusted and the probabilities are updated. We use the
definition by Ropke and Pisinger (28), so that one seg-
ment represents 100 iterations of the ALNS algorithm.

The adjustment of the weight is based on how well the
algorithm performs in finding solutions represented by a
score. At the beginning of each segment (100 iterations),
the scores for all the insertion and removal operators are
set to zero. With each new solution, the score is increased
by one of the following: s1 when the new solution is bet-
ter than all the solutions so far; s2 when it is better than
the current solution; s3 when it is worse than the current
but still accepted; and finally 0 when it is rejected. It is
not clear whether the removal or the insertion operator
leads to the new solution, so their scores are both
adjusted by the same value. Scores add up during the
iterations in a given segment sg for each operator i and
for the next segment sg + 1 it is updated as follows:

w
sg + 1
j =(1� r) w

sg
j + r p

sg
j

where r is a value between 0 and 1 and p
sg
j is defined as

p
sg
j =

score of operator j after sg

number of times operator j chosen in sg
:

The parameter r is used to control how much the change
in weight depends on how well the operator performed in
the last segment. If r is 1, the weight completely depends
on the performance in the last segment and otherwise the
weights do not change.

Results

To evaluate the impact of optimizing travel costs, over-
lap, and workload balance, several experiments are
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conducted. First, the exact approach is analyzed based
on Solomon’s instances and then ALNS is tested com-
pared with the exact approach and finally a real-life case
is presented. The Mixed Integer Quadratic Programming
Problem and ALNS were implemented in Python and
the exact solution obtained by Gurobi optimizer (version
8.1.1).

Solomon’s Instances – Exact Solution

Solomon’s instances R101 and C101 with 25 nodes are
used for the experiments. One depot and two disposal
facilities are considered. The vehicles have a maximum
capacity of 200 and a maximum vehicle routing time of
700min. Based on the combination of the demand and
vehicle capacity, we need at least two vehicles and we
also tested with three vehicles to see the impact on the
three objectives and the territory solutions. The O-D
matrix for Solomon’s instances are created based on the
Euclidean distance measure and a constant speed is
assumed to represent travel time.

For all the experiments, a time limit of two central
processing unit (CPU) hours is used. First, every objec-
tive was optimized without any bound on the other two
objectives to determine the ranges to be considered. The
minimum and maximum values found for these runs in
both the C101 and R101 cases with two or three vehicles
are displayed in Table 1. The bounds are then chosen in
between the maximum and minimum values for each
objective. Every run with varying bounds results in only
one solution. When combining all the results, the Pareto
frontier can be derived.

The results confirm that the optimal values for all three
objectives were not found at the same time in one of the
results, showing their contradictory nature. Furthermore,
tighter bounds on the other two objectives can still give
the minimum value for overlap or workload balance or at
least a value that is fairly close to the optimal value. For
the overlap this is displayed in Figure 2, where several
solutions exist with the optimal value, 1,919.30, and vary-
ing values for the workload. For the two higher values,
1,996.90 and 2,050.51, there is still no overlap, but the ter-
ritories in these solutions are less compact. This shows
that lower values for both workload balance and travel
time can be achieved if the user is willing to give up some
compactness. For the workload balance this can be seen
in Figure 3 and from the first two values in Figure 4. For
these solutions, a value of (approximately) zero is found,
with varying travel time and overlap values. In some
cases, the optimal solution was not found within 2 h,
which resulted in the points in Figure 4 that do not have a
workload balance value of zero.

For the travel time, the optimal value can only be
found when the bounds of the overlap and workload bal-
ance are extremely high as shown in Figure 5, where the

travel time increases with lowering at least one of the
two values. The reason behind this is that the same terri-
tories can be created with many different routes. These
different routes can still result in the optimal overlap
value, as long as the territories contain the points that
result in the lowest overlap value. The same holds for the

Table 1. Minimum and Maximum Values Found for Runs
Without Bounds

Objective Travel time Overlap Workload

C101 2 veh
Min value 173.36 1,833.98 0
Max value 640.56 2,701.76 1,875.19
C101 3 veh
Min value 200.51 542.94 0
Max value 673.44 1,514.36 2,948.12
R101 2 veh
Min value 349.99 3,821.28 0
Max value 897.34 4,476.91 1,470.59
R101 3 veh
Min value 370.96 1919.30 0
Max value 1,030.58 3,252.98 1,881.36

Figure 2. Minimize overlap (three different overlap values):
travel time versus workload balance.

Figure 3. Minimize workload balance (all values optimal): travel
time versus overlap.
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variance of routes, several different routes could still
result in the same variance of the route length. However,
only few routes with the exact same travel time can be
reached. If either the workload balance or the overlap
bound is tightened, exactly the same routes might not be
possible and therefore the total travel time would slightly
increase.

Overlap and workload balance seem the two least con-
tradictory variables. The optimal values for the two
objectives are found together in all four cases when the
overlap measure is minimized. Without any restriction
on travel time, it is possible to find routes that have
equally long travel times, given a fixed set of nodes. This
set of nodes can be the nodes that belong to the terri-
tories that give the optimal overlap value. Travel time
and overlap seem to be partially contradictory. The low-
est overlap value does result in higher travel time values.
Increasing the overlap value, allows lower travel time val-
ues, which is clearly displayed in Figures 3 and 5. At
some point the travel time value is high enough and the
solution also gives the optimal overlap value and increas-
ing the travel time more would not decrease the overlap
further. This can be seen in Figure 5, where the lowest
value of the overlap, 1,833.98, is already found at a travel

time of 187.61. This might be explained by the fact that
the territories creating the optimal overlap value, might
add extra travel time to the routes. Overall, if travel time
is more important than the overlap, the overlap value
can be kept higher and this does not necessarily impose a
problem for the overlap, as long as the number of nodes
within more than one convex hull is still zero. In these
situations the nodes within a territory may lie further
apart (less compact), but do not overlap.

Solomon’s Instances – ALNS

To see if ALNS is suited to finding the different solu-
tions on the Pareto frontier, it is compared with the exact
approach based on Solomon’s instances. The parameters
used for ALNS are mostly taken from Ropke and
Pisinger (28). The maximum number of iterations is
20,000 (stopping criteria) and the segment size is 100
iterations. The threshold value for the temperature T is
set as 0.05 (stopping criterion) and the cooling rate is
0.99975. s1, s2, and s3 are set as 33, 9, and 13, respec-
tively. For each of the experiments, ALNS is repeated
five times because of its random nature.

Overall, the ALNS algorithm seems to find similar
results as the exact approach. When focusing on one of
the objectives, it finds the minimum value provided by
the exact approach in at least one of the replications. In
most cases, it is even able to find lower travel time values
in combination with either overlap or workload balance.
However, combinations of both low overlap and low
workload balance values do not seem to be found by the
algorithm. The reason is that ALNS finds the best inser-
tion place per route in the added travel time by our
design. Thereafter, it determines the best insertion place
for the overlap and workload balance objective. So, even
when the algorithm tries to find better values for the
overlap or workload balance, it will still have a consider-
ably low travel time. From the exact solution analysis it
became clear that a solution with both low overlap and
workload balance value has a high travel time value. As
the largest travel times are not found, the combination
of low or even optimal overlap and workload balance
values are not found by the algorithm.

To illustrate this comparison to the exact solution
method better, the Pareto frontier of travel time against
workload balance is shown in Figure 6. The blue line rep-
resents the results of the exact solution method, in which
the travel time was optimized with varying upper bounds
for the overlap and workload balance values. Since the
optimal solution was not always found within the time
limit of 2 h, the best bound available is represented by
the green line. The orange line gives the solutions on the
Pareto frontier found by the ALNS algorithm. As can be
seen, ALNS follows the line of the exact solution and it

Figure 4. Minimize workload balance: workload balance versus
travel time and overlap.

Figure 5. Minimize travel time: travel time versus overlap and
workload balance.
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sometimes finds lower combined values for travel time
and workload balance than the values found by the exact
approach (within the time limit).

When we look at the computation time, ALNS is signif-
icantly faster than the exact solver which needs on average
56min to find just one solution. On the other hand, ALNS
performs 20,000 iterations in 2.4% of this time.

Real-Life Case Study

To evaluate the performance of ALNS for a real-life situ-
ation, a case study from the AMCS company1 was taken
and compared with the results from their actual planning
model. The case considered is part of the Stonegate
neighborhood in the area of Tampa and consists of 120

nodes as depicted in Figure 7. This was the largest case
of the cases provided by AMCS that the ALNS heuristic
was able to solve. Seven vehicles were used in this case
study. The travel times for this network are actual travel
times based on the available data rather than Euclidean
distances.

The values of the optimal solution for each of the
three objectives and the corresponding values of the other
two objectives created by the ALNS algorithm are dis-
played in Table 2. For the overlap objective, the value for
number of nodes in more than one convex hull is chosen
as the measure since this compares directly to the results
from AMCS. At the bottom row, the values for the solu-
tion created by the AMCS planning software are dis-
played. This AMCS solution is displayed in Figure 8
where Figure 8b is the zoomed-in version to better depict
the actual territories and routes. It is seen that there is no
overlap between territories in the AMCS solution, while
the total route time is 1,069min with a 152.24min of var-
iance (representing workload balance) across the seven
routes corresponding to seven vehicles.

From the results it is concluded that ALNS is able to
find low values for each of the three objectives, that are
better than the actual AMCS values, when they are opti-
mized individually. Nevertheless, it is hard to combine
these low values in one solution. For the overlap and
travel time values, a reasonable combination for both
values can be found, since the travel time value in the
optimal overlap solution is only three min higher than
the best travel time value. However, combining workload
balance with one of the two other objectives seems to be
difficult. According to the solution of the AMCS soft-
ware, it can be deduced that is not a problem to have a
somewhat higher travel time or workload balance to get
zero overlap. The travel time and variance values are
respectively 24min and 152.2min higher than the opti-
mal solutions found by the ALNS algorithm. However,
if an intermediate solution of ALNS for travel time and
workload balance is taken, this does not result in zero
overlap. For example, the solution with a workload bal-
ance value of 133.85 and a travel time of 1,089min, still
has 14 overlapping nodes. This suggests the ALNS algo-
rithm is open for further improvements.

Conclusions

This research develops an integrated territory planning
and vehicle routing approach for a real-life waste collection
problem. In order for a territory planning to be accepted
by planners and drivers, literature and the real-life experi-
ence of the AMCS company suggest that balancing the
workload and minimizing overlap are important factors.
However, these factors might run counter to another
important objective of travel cost minimization which is

Figure 6. Minimize travel time: travel time versus workload
balance – ALNS and exact solutions.

Figure 7. Map of Stonegate with 120 residential waste collection
points.
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represented by travel time in this paper. An analysis of
these three objectives has been performed and depicted
through Pareto frontiers. These results provide insights to
planners on the trade-off across these objectives. For
example, first creating territories to minimize the overlap
has a negative effect on travel time minimization and
workload balance. Similarly, decision makers can consider
these trade-offs to adjust the solution toward desired direc-
tions. For example, good values for both travel time versus
overlap and workload balance can be achieved if the user
is willing to give up some compactness.

An ALNS heuristic has been developed to solve larger
problems and validated with a real-life case study show-
ing its potential use by waste collection companies to
look at the different possible solutions when making deci-
sions. This is a more informed decision as the planner
knows what the trade-offs across the three objectives are.
The ALNS heuristic has to be developed further to solve
even larger cases and to find combinations of both low
workload balance and overlap values.

It is important to investigate the real-life importance
of the three objectives to conclude which of the solutions
on the Pareto frontier should be implemented.
Furthermore, it might be interesting to see if our conclu-
sions hold in a variant of the model presented that for
example incorporates multiple depots or uses a periodic
schedule, which are cases that could both happen in real-

life. Similarly, the impact of the density of the network
in waste collection points and the roads could be investi-
gated further to generalize the conclusions even more.
Moreover, the problem we consider here is a determinis-
tic and static problem. Future research toward dynamic
and stochastic waste collection problems is very interest-
ing with the increasing use of smart containers that pro-
vide real-time information on the waste levels.
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