
 
 

Delft University of Technology

A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms

van Rijn, V.J.; Rellermeyer, Jan S.

DOI
10.1145/3464298.3493404
Publication date
2021
Document Version
Final published version
Published in
Proceedings of the 22nd ACM/IFIP International Middleware Conference

Citation (APA)
van Rijn, V. J., & Rellermeyer, J. S. (2021). A Fresh Look at the Architecture and Performance of
Contemporary Isolation Platforms. In Proceedings of the 22nd ACM/IFIP International Middleware
Conference ACM DL. https://doi.org/10.1145/3464298.3493404

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3464298.3493404
https://doi.org/10.1145/3464298.3493404


A Fresh Look at the Architecture and Performance of
Contemporary Isolation Platforms
Vincent van Rijn

v.j.vanrijn@student.tudelft.nl
TU Delft

Netherlands

Jan S. Rellermeyer
J.S.Rellermeyer@tudelft.nl

TU Delft
Netherlands

Abstract
With the ever-increasing pervasiveness of the cloud com-
puting paradigm, strong isolation guarantees and low per-
formance overhead from isolation platforms are paramount.
An ideal isolation platform offers both: an impermeable iso-
lation boundary while imposing a negligible performance
overhead. In this paper, we examine various isolation plat-
forms (containers, secure containers, hypervisors, uniker-
nels), and conduct a wide array of experiments to measure
the performance overhead and degree of isolation offered by
the platforms. We find that container platforms have the best,
near-native, performance while the newly emerging secure
containers suffer from various overheads. The highest degree
of isolation is achieved by unikernels, closely followed by
traditional containers.

CCS Concepts: • Software and its engineering→ Soft-
ware performance; Software infrastructure; • Security
and privacy → Virtualization and security.

Keywords: Containers, Virtual Machines, Performance

ACM Reference Format:
Vincent van Rijn and Jan S. Rellermeyer. 2021. A Fresh Look at
the Architecture and Performance of Contemporary Isolation Plat-
forms. In 22nd International Middleware Conference (Middleware
’21), December 6–10, 2021, Vitual Event, Canada. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3464298.3493404

1 Introduction
The need for isolation on multi-tenant computing platforms
is as old as the first attempts at multiprogramming [12, 22].
While strong, hardware-assisted forms of isolation in the
form of hypervisors have initially dominated and fueled the
first wave of cloud computing [3, 28], container platforms
gained increased popularity based on the promise of a lower

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Middleware ’21, December 6–10, 2021, Vitual Event, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8534-3/21/12.
https://doi.org/10.1145/3464298.3493404

performance impact by achieving isolation within the oper-
ating system as opposed to full system virtualization, ulti-
mately allowing for higher density [36]. More recently, this
spectrum was complemented by isolation platforms which
call themselves secure containers and aim at combining the
productivity and ease of use of containers with the strong
sandboxing model that hypervisors provide.
The actual performance and security of the different op-

tions is often poorly understood by researchers and practi-
tioners alike. There is only a limited number of empirical
studies and the few that exist [11, 15, 30, 34, 40] suffer from
small sample sizes, mostly focus on comparing the perfor-
mance of traditional hypervisors and containers, and do not
include the more recently developed hybrid and specialized
platforms.

With this paper, we want to address this gap and develop
a broad and systematic understanding of the different archi-
tectures (Section 2), and how they influence the performance
(Section 3) and security/isolation properties (Section 4) of
the platforms.
Through extensive experimentation, we could confirm

that container platforms have the best, near-native, perfor-
mance. Hypervisors exhibit significant differences, but I/O
and CPU-bound tasks typically perform on-par with native
execution. Networking and memory subsystems always ex-
perience overhead. Secure containers particularly suffer from
performance penalties in the I/O subsystem, but promising
alternatives are being developed. Finally, unikernels perform
well, but their performance is hard to characterize due to the
various incompatibilities with workloads commonly used
for benchmarking. Start-up time is generally the lowest for
containers, whereas for the hypervisors it is highly depen-
dent on the machine model. Furthermore, we measured the
attack surface of the different platforms and surprisingly
found that the secure containers execute more system calls
against the host and therefore have a larger attack surface
according to the Horizontal Attack Profile (HAP) [5]. Their
security advantage can therefore only lie in the defense-in-
depth. Beyond these overarching conclusions, we discuss
28 detailed findings which can help practitioners to make
educated decisions on the best isolation platform for their
given problem.

1

https://doi.org/10.1145/3464298.3493404
https://doi.org/10.1145/3464298.3493404


Middleware ’21, December 6–10, 2021, Vitual Event, Canada Vincent van Rijn and Jan S. Rellermeyer

2 Isolation Platforms
We consider four categories of isolation platforms. Hyper-
visors represent the (nowadays) classic approach of using
hardware virtualization support for isolating different vir-
tual machines. Containers achieve isolation by re-using iso-
lation barriers like processes that were already present in
commodity operating systems, augmented with advanced
namespaces which were introduced explicitly for supporting
lightweight isolation. Secure containers combine some as-
pects of both worlds to achieve a stronger degree of isolation
while being compatible with container platforms. Uniker-
nels are aiming at providing a minimal shim for running
individual applications in isolation. The following sections
compare the different architectural design of commonly uses
platforms, especially the newly emerging efforts that have
gained increasing popularity in the cloud.

2.1 Hypervisors
Hypervisors make use of hardware virtualization instruc-
tions to create the image of a dedicated virtual machine for
each guest. Consequently, guests run a full system stack, in-
cluding a dedicated guest operating system. Instructions that
guests are not able to execute need to be emulated through
a hypercall into the hypervisor, which is a known source of
overhead [23]. Beyond this general pattern, hypervisors can
differ substantially in their architectures. In the recent years,
new hypervisors like Firecracker and Cloud Hypervisor have
emerged that are designed for a quick startup time in the
cloud.

2.1.1 QEMU and KVM. In QEMU [4], every VM gets a
process assigned that is dedicated to that VM and sched-
uled on the host OS like any other process. The host can-
not see which processes are running within a VM, unlike
with namespace-based isolation platforms such as contain-
ers. Memory for guests is provided through allocation by
the host process, and is then mapped to the guest’s address
space using mmap(). The allocation can be backed by either
RAM or file-backed memory. The guest sees this as its own
physical memory.

At its core, QEMU uses an event-driven architecture (Fig-
ure 1 shows the host and guest domain) and continuously
polls for new events and, if one is available, dispatches it
to the appropriate event handler [21]. In QEMU, this main
loop is implemented in main_loop_wait(), and handles the
following types of events:

• Waiting for registered file descriptors to become avail-
able. These file descriptors get registered by various re-
sources, such as the TAP network device, audio (ALSA),
and drivers employing virtio.

• Run expired timers.
• Requests for invoking a function in another thread
(such requests are called bottom-halves).

trap

Guest

KVM_EXIT ioctl()

Exit handlers

KVM API (/dev/kvm)
Host

Guest kernel
vCPU

vCPU

Network driver

Floppy driver

Main
loop

Wait for file descriptors
Run expired timers
Bottom-halves

Memory

vCPU IO

QEMU process

Guest user space

System calls
Disk driver

...

Figure 1. Architecture of the QEMU hypervisor, divided in
a guest and host section with KVM serving as an interface
between the two.

Hardware-assisted virtualization enables the native execu-
tion of guest code in a special guest CPU mode, orchestrated
by the KVM [28] Linux kernel module. QEMU, when KVM
support is enabled, creates and runs the KVM VM in guest
CPU mode. QEMU is thus only in the loop when the guest
traps out and thereby raises an event. QEMU interfaces with
KVM through the special /dev/kvm file, and the VM and vC-
PUs are created through specific ioctl() system calls. Exe-
cuting ioctl(KVM_RUN) (resulting in a VM_ENTRY) hands
over control to the guest, and keeps it running unless the
guest traps back to QEMU.

2.1.2 Firecracker. Firecracker [1] adopts an event-driven
architecture and uses KVM to create and run VMs, much like
QEMU. What sets Firecracker apart is its minimalist design,
especially compared to QEMU/KVM, that focuses on lower
overhead. In total, Firecracker supports only a handful of
emulated devices, namely a set of paravirtualized virtio
drivers (e.g. virtio-net and virtio-blk), a legacy i8042
serial and PS/2 mice and keyboard controller, and a pseudo
clock device that records time since booting.

Another technique Firecracker implements to reduce boot
time is making use of the Linux 64-bit boot protocol. This
allows for booting directly into 64-bit mode, skipping the
usual x86 mode-by-mode (from the 16-bit real mode to 64-
bit long mode) booting protocol. Furthermore, Firecracker
boots directly into an uncompressed Linux kernel, starting
at the 64-bit entry point. This is different from typical Linux
platforms, in which the kernel decompresses itself at startup.

2.1.3 Cloud Hypervisor. The main difference to the sys-
tems discussed so far is that Cloud Hypervisor [9] finds a
balance between aminimal design (Firecracker) and a feature-
complete full system emulation (QEMU), slightly leaning

2



A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms Middleware ’21, December 6–10, 2021, Vitual Event, Canada

towards the minimalism of Firecracker. As such, the archi-
tectural properties of Cloud Hypervisor are expressed here
in terms of how it deviates from the Firecracker design.
Cloud Hypervisor supports 16 different devices, in con-

trast to the 7 of Firecracker and 40+ of QEMU. The major-
ity of the devices in this device model are paravirtualized
virtio devices. In contrast to Firecracker, Cloud Hypervi-
sor supports vhost-user devices, hotplugging memory, and
vCPUs. Requests for hotplugging are performed via an API
that Cloud Hypervisor exposes. Memory is hotplugged by
first allocating it on the host (must be a multiple of 128 MiB)
and then mapping it from the hypervisor userspace process
to the virtualized memory of the guest. Hotplugging extra
CPUs is implemented by the host performing a CREATE_VCPU
ioctl() call, and then advertising the vCPU cores to the
running guest kernel using ACPI. The newly provisioned
vCPUs are not automatically used within the guest but have
to be brought online by manual interaction with the guest
Linux kernel sysfs interface.
While these features set Cloud Hypervisor apart from

Firecracker, it is still similar in its goal of providing a lean ex-
ecution environment that is optimized for a reduced startup
latency.

2.2 Container Platforms
Containers provide a dedicated system image while not em-
ploying a separate kernel. Instead, they rely on traditional
process isolation paired with namespaces as an effective and
low-overhead isolation mechanism.

2.2.1 Docker. Docker refers to an entire software suite
including a container lifecycle manager, packaging software,
and an interface for communicating with a repository of
online container images (Docker Hub). Broadly speaking,
Docker uses a client-server architecture. The CLI client is
what an end-user interacts with through familiar commands
(e.g. docker run). These commands are sent to the Docker
daemon dockerd which is responsible for building, running
and distributing the Docker containers [13].
One crucial component in the Docker system is its run-

time which handles the creation of the isolated containers.
The default Docker container runtime is runc. This runtime,
given a layered file system and related container metadata,
creates a new isolated container. runc uses functionality ex-
posed by the Linux host kernel to enforce isolation between
a container and the host operating system. The kernel is thus
shared between the host operating system and the container,
and no new kernel is booted. The two main kernel features
that are core to runc’s isolation are namespaces for reducing
visibility of kernel resources from a container and cgroups
to constrain the available system resources to a container.

2.2.2 LXC. Linux containers (LXC) approach the imple-
mentation of containers in a way similar to runc, using
namespaces and cgroups as the main isolation mechanisms.

trap

VM

Hypervisor 

Minimal guest kernel

vCPU

vCPU

Network driver

Disk driver

Container

Container image

Rootfs (Clear Linux) Kata-agent

Kata-runtime

ttRPC

Containerd-shim-kata-v2

OCI command
(e.g. Docker run)

9P 

Hostvsock

Namespace

Proc Proc ProcProc ...

Docker daemon (dockerd)

Figure 2. Architecture of the Kata containers secure con-
tainer platform. The guest section consists of a namespaced
container running within a hypervisor-based VM, in which
the workload is run.

In fact, up until a year after the release, Docker used LXC
as library (liblxc) to set up its containers (but now uses its
own separate re-implementation libcontainer). The char-
acteristic that sets LXC apart from Docker is its ability to
create an environment as close as possible to a standard Linux
installation, while still avoiding the need for a separate ker-
nel. Concretely, this means that LXC containers implement
a fully-fledged init system like systemd, whereas Docker
uses a simplified system. LXC also makes use of the feature-
complete ZFS file system, instead of a layered file system like
Docker (Docker does have a ZFS storage driver, but its use
is discouraged 1). It is worth mentioning that LXC already
provides the user with a way to run non-root unprivileged
containers, making use of the newer cgroups v2. Docker, at
the time of writing, only offers running containers using
root privileges.

2.3 Secure Containers
While traditional containers solely rely on software-based
isolation, secure containers are hybrids in the sense that they
use hardware-based isolation for critical components.

2.3.1 Kata containers. Kata containers [35] combine a
hypervisor as the core isolation mechanismwith namespaces
to achieve the usability of a container platform. As Figure 2
illustrates, the entry point of the Kata containers architecture
1https://docs.docker.com/storage/storagedriver/zfs-driver/

3

https://docs.docker.com/storage/storagedriver/zfs-driver/


Middleware ’21, December 6–10, 2021, Vitual Event, Canada Vincent van Rijn and Jan S. Rellermeyer

is kata-runtime, which the user interacts with through the
Docker daemon.

The kata-runtime component is responsible for starting
the hypervisor, which requires a kernel and a root file sys-
tem to start. Shipping with the kata-runtime, there is a
Linux kernel that “is highly optimized for kernel boot time
and minimal memory footprint” [27]. This optimization in
practice boils down to disabling nearly all kernel features
for the guest kernel using kconfig. The runtime passes a
‘mini OS’ as its root file system. This mini OS is customiz-
able while building from source, but by default it is based
on Clear Linux [8]. It uses systemd to start the kata-agent
immediately.
The kata-agent is a process for managing containers

and processes running within a hypervisor. This agent com-
municates with kata-runtime using a ttRPC server (a re-
implementation of gRPC specifically for low-memory envi-
ronments [39]) that is exposed on the host by the hypervisor
through a vsock file. A confined (namespaced and cgrouped)
context is created by the kata-agent within the hypervisor.
The root file system of this newly created confined context
is that of the original Docker image, passed as a shared
mount point from the host through the hypervisor. Other
settings, such as which command should be run at start, are
passed to the kata-runtime through the Docker image. This
is set up within the new container context, and the work-
load is run. Whenever a docker exec statement is issued
to kata-runtime, and a Kata container is set up already, it
simply forwards this command to the kata-agent running
inside the hypervisor, which delegates it to the confined
context to create a new process with this new command.

2.3.2 Google’s gVisor. gVisor [20] takes a different ap-
proach in which no hypervisor is used. Instead, system calls
in gVisor are intercepted and redirected through use of a
‘platform’. Concretely this platform leverages either ptrace
or KVM. The ptrace system call interception implementation
employs PTRACE_SYSEMU to stop and intercept the execu-
tion of system calls into the host kernel. With KVM as the
platform, the main gVisor process is run as a KVM VM. In
general, the KVM mode ought to be faster because ptrace
has a relatively high context-switch penalty while KVM can
make use of hardware assisted virtualization features like
fast address space switching [19].

Figure 3 illustrates the general architecture of gVisor. Re-
gardless of which platform is used, system calls get inter-
cepted and consequently bounced back to a particular pro-
cess in user-space. This process is called the Sentry. The
Sentry is a kernel in user-space, implementing not just sys-
tem calls but also features like signal delivery, memory man-
agement and the threading model. To reduce the attack sur-
face, the system calls in the Sentry process are implemented
using a small subset of system calls to the host kernel. This is
enforced through seccomp filters. The Sentry process itself

User space

Kernel space

Host Linux kernel
KVM

Container

Proc Proc ProcSentry

Syscall

Namespace

Netstack

Gofer
9P

Reduced 
syscalls

...

I/O
syscalls

Figure 3. Architecture of the gVisor secure container plat-
form. System calls from a gVisor container get redirected
to the Sentry component (using KVM). I/O system calls are
handled by the Gofer component.

runs as an unprivileged process and limits its view of the
system through namespaces.
The underlying idea in gVisor is that there is defense in

depth. Not only does the Sentry process re-implement sys-
tem calls to reduce the attack surface, it also runs within
its own namespace. Even if the Sentry process were to be
compromised, the attacker would have to break out of the
namespaces. The seccomp filters applied to the Sentry also
include all I/O related system calls. This means that the
Sentry cannot dispatch any I/O related system calls to the
host kernel but instead needs to dispatch them to another
gVisor component called Gofer. The Sentry and Gofer pro-
cess communicate via the 9P protocol originally developed
for the Plan9 operating system [33], similar to how the file
system is shared between the hypervisor guest and host in
Kata containers.

2.4 Unikernels
The fundamental idea of single-address space operating sys-
tems with a minimal set of APIs goes back to the original
work on the Exokernel [14]. Recently, the idea has gained
traction again in the form of library operating systems for
virtualization where the virtual machines operate on top of
libraries which interface with the host system as opposed to
a full independent OS kernel [6, 31]. While a comprehensive
comparison is beyond the scope of this paper, we include
OSv in our study since it is a supported isolation option by
Firecracker.

2.4.1 OSv. OSv [29] is a unikernel that uses existing com-
pilers and a custom kernel to call into. A schematic overview
of the architecture of OSv is given in Figure 4. The OSv ker-
nel includes a dynamic ELF linker that can run standard code
compiled for Linux. This linker maps the executable and its

4



A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms Middleware ’21, December 6–10, 2021, Vitual Event, Canada

trap

Guest

Hypervisor 

vCPU

vCPU

Network driver

Disk driver

Host

OSv 
kernel
library

ApplicationEL
F

Li
nk

er

Custom application

Base OSv image

build.py

Fuse

Figure 4. Architecture of the OSv unikernel. The unikernel
image is built by fusing the application and a base OS, and is
run using a hypervisor. The custom ELF linker enables the
circumvention of mode switches.

dependencies to memory. Whenever application code calls
functions from the Linux ABI through the standard C library,
the linker dynamically resolves it to the corresponding func-
tion implemented by the custom OSv kernel. This means
that system calls, called through the wrappers implemented
in glibc, are treated as regular function calls, and do not
lead to a user-to-kernel mode switch. Both the application
and kernel (i.e. OS library) run in the privileged ring 0.
Running a unikernel image on OSv is done through ex-

isting hypervisors. OSv images consist of a base image that
is fused together with cross-compiled source code that calls
into this base image. The OSv base image exposes an inter-
face that follows the Linux ABI convention. This setupmakes
it so that as long as executables are compiled as a relocat-
able shared object (.so in Linux) as well as in the form of a
position-independent (‘PIE’) binary, recompilation and thus
application source code is not required, and existing code
can transparently call into the OSv kernel. One limitation
remains, as is typical for unikernels: there is no support for
multiple processes within one guest, and as such, system calls
like fork() and exec() are not available. This effectively
limits potential applications to multi-threaded architectures
and prohibits the use of multi-process applications.

3 Performance Study
It is commonly assumed that containers provide a more light-
weight alternative for isolation than traditional hypervisors.
Beyond this, however, little is known how much impact the
different ways of virtualization have on critical components
like compute, memory, network, storage, or the initial startup
latency. We therefore conducted a broad set of experiments
on different popular systems to develop a more systematic
understanding of their performance properties. Furthermore,
we evaluated the performance of several real-world work-
loads to get a more comprehensive picture. All experiments
were conducted on a dual-socket AMD EPYC2 7542 CPU

Figure 5. ffmpeg video re-encoding CPU bound benchmark,
re-encoding a 1080p 30Mb video from H.264 to H.265. Time
in ms, per platform.

setup with 64 threads each, 256 GiB of RAM, a dedicated fast
NVMe SSD as storage, and running Ubuntu Linux Server
20.04 LTS. The full benchmark setup is available on GitHub2.
All runs were, unless noted otherwise, repeated at least 10
times, the graphs show the average over the runs and the
error bars show the standard deviation.

3.1 Compute
For CPU performance, we are focusing on workloads that
are primarily compute-bound. The particular benchmarks
we have chosen are a video encoding task and a simple prime
verification algorithm benchmark. The video encoding task
entails loading a 30MB video file3 into memory, and then
encoding that video file from H.264 to the H.265 video codec.
For this benchmark wemake use of the ffmpeg [16] program.
The task is executed on guests that have access to 16 CPU
cores, and the job itself is executed using 16 threads.
By making use of the different presets that ffmpeg ex-

poses, we have an instrument to control the speed at which
the media is encoded at. In this experiment, we have used
the ‘slower’ preset which trades CPU cycles for a higher
compression ratio. The difference in performance between
platforms in this benchmark can thus be attested to actual
differences in CPU performance, not I/O (which we found
to be the cause of significant variations between platforms
in initial runs of this benchmark).
As Figure 5 shows, most of the runs end up at around

65000 milliseconds, while some differences between plat-
forms can be observed. A surprising outlier is OSv, taking
up significantly more time to re-encode the video file. Since
ffmpeg uses a multi-threaded architecture, we suspected the
difference in thread scheduling between OSv and the other
platforms to be the main source of overhead. Moreover, we
suspect that execution of complex SIMD instructions in the
more experimental platforms induce overhead as well. In
order to corroborate this hypothesis, we carried out second
(single-threaded) microbenchmark. This benchmark is part
of the Sysbench [37] CPU benchmark, and verifies whether a

2https://github.com/rellermeyer/container_benchmarks.git
3Downloadable from the Blender project website at https://peach.blender.
org/download/

5

https://github.com/rellermeyer/container_benchmarks.git
https://peach.blender.org/download/
https://peach.blender.org/download/


Middleware ’21, December 6–10, 2021, Vitual Event, Canada Vincent van Rijn and Jan S. Rellermeyer

Figure 6.Memory latency tinymem benchmark showing the
average time for accessing a random element within buffers
of increasing sizes (2n from 𝑛 = 16 through 𝑛 = 26). The
larger the buffer, the higher the latency, due to an increasing
proportion of TLB cache misses.

number is prime. In this experiment, every isolation platform,
including OSv, performed nearly equivalently, asserting that
the CPU overhead is not inherent to any of the isolation
platforms.
Finding 1: We confirm that for CPU-bound workloads that
exercises a basic subset of all available CPU instructions
there is no performance overhead. However, with more com-
plex CPU-bound tasks, such as re-encoding a video using
ffmpeg, differences in performance overhead become ap-
parent. In particular the platforms that implement custom
thread schedulers (e.g., OSv) appear to experience a severe
performance penalty.

3.2 Memory
For the memory subsystem, we evaluate both throughput
and access latency. To that end, we employ the Tinymem-
bench [38] and STREAM [32] memory benchmarks.
Tinymembench is a relatively simple benchmark which

reports both the maximum bandwidth achieved through se-
quential memory accesses as well as the latency of random
memory accesses in increasingly larger buffers. Figure 6
shows the average time for accessing a random element
within buffers of increasing sizes. We can see that the larger
the buffer is, the higher the latency. This is due to the increas-
ing proportion of accesses that miss the TLB cache and need
to be dispatched to L1/L2 cache, and for even larger buffers to
SDRAM. The numbers displayed here indicate the extra time
that was needed on top of the L1 cache access latency. The
latencies of access to HugePages are omitted because both
Kata containers do not support them, and more importantly,
the relative results of the various platform compared to one
another are almost equal to those of regular sized pages
shown above. In absolute values, we recorded significant
speedups in access latencies to HugePages. In general, the
larger the buffer, the more it benefits from HugePages. The
average access latency shrunk equally across all platforms
that support HugePages by nearly 30% in the larger buffers.

Figure 7.Memory throughput tinymem benchmark. Results
show the number of sequential bytes copied per second using
both regular as well as SSE2 instructions.

The results sketch an outcome that is mostly consistent
between all the platforms, with the exception of the hyper-
visors. In particular Firecracker both has a higher average
latency as well as standard deviation for accesses in larger
buffers. The average access latency for Cloud Hypervisor is
larger as well, but not to the same extent as Firecracker. These
two platforms, Firecracker and Cloud Hypervisor, make use
of the vm-memory Rust crate dependency, which provides a
hypervisor-agnostic interface to physical memory for the
virtualized guest. This dependency is responsible for funda-
mental memory operations such as allocation and (virtual to
physical) guest memory address translation, and is therefore
likely to be the cause of the higher access latencies observed
for these two platforms..
We use two benchmarks to measure memory through-

put. The first benchmark, in Figure 7, shows how many
bytes can be copied per second using both regular as well as
SSE2 instructions. This benchmark is part of the Tinymem-
bench benchmark. The second experiment uses the popular
STREAM benchmark, a simple synthetic benchmark for mea-
suring sustained memory bandwidth by performing simple
operations on vectors [32]. The STREAM benchmark con-
sists of 4 different vector operations, but we only present
the COPY operation results here as the operations yielded
similar relative performance. The COPY benchmark executes
code of the form a[i]:=b[i], transferring 16 bytes per it-
eration, and executes no floating point operations. Both of
these benchmarks have a sequential access pattern, meaning
that performance is minimized by memory bandwidth rather
than latency (as hardware typically prefetches the data that
will be requested later on).

In Figure 7 and Figure 8 we see the results of these bench-
marks. The throughput performance is reminiscent of the
latency plot. All platforms generally perform close to equal,
with the hypervisors underperforming. Although paravirtu-
alization and hardware-assisted virtualization have substan-
tially reduced the overhead of hypervisors, the additional
layer of hypervisor indirection seems to cause overhead.
However, there is one remarkable result that contradicts
this finding. Kata containers uses a hypervisor, yet is is not
victim to the reduced memory latency and throughput. We

6



A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms Middleware ’21, December 6–10, 2021, Vitual Event, Canada

Figure 8.Memory copy throughput STREAM benchmark,
sequentially transferring 16 bytes per iteration, total alloca-
tion size of 2.2GiB. Throughput shown is the average of the
maximum of 10 runs.

thus conclude that the overhead is not inherent to the use of
hypervisors. Concretely, Kata containers avoids this virtual-
ization penalty by techniques such as the QEMU NVDIMM
feature, which provides a memory-mapped virtual device
that directly maps between the VM and host, bypassing
the intermediary virtualized layer. Another technique that
can provide improved memory performance for virtualized
guests is Kernel Samepage Merging (KSM) [2]. KSM enables
the sharing of memory between multiple processes (like
VMs), which increases density, and therefore the reuse of hot
pages (for a higher cache hit ratio). Although direct access
techniques such as the NVDIMM feature and KSM poten-
tially lead to performance gains, it also weakens the isolation
boundary between tenants of the same host (as shown in
e.g. [25], in which the authors present a vulnerability intro-
duced by KSM).
In summary we can observe that most of the isolation

platforms do not impose significant overhead on the use of
the memory subsystem, of which we have quantified both
access latency as well as throughput.
Finding 2: All containers, including secure containers, per-
form on-par with native for CPU-bound tasks.
Finding 3: Although most hypervisor-based platforms ex-
hibit some form of slowdown in both latency and throughput,
the Kata container platform is not significantly impaired, de-
spite its use of the QEMU hypervisor. Furthermore, the OSv
platform running under QEMU also does not show any slow-
down. As such, we can conclude that the usage of a hypervi-
sor does not unconditionally lead to memory performance
overhead.
Finding 4: The memory performance outlier is Firecracker,
scoring substantially lower than the other platforms. Cloud
Hypervisor shows a similar (althoughweaker) effect onmem-
ory access latency but not for throughput, while the opposite
holds for QEMU. This suggests a trade-off between latency
and throughput for general hypervisor-based platforms.
Finding 5: OSv’s memory performance is strongly affected
by its hypervisor. OSv running under the Firecracker hyper-
visor underperforms in comparison to OSv running under
QEMU, which yields results close to native.

3.3 I/O
For benchmarking the I/O subsystem we use the Flexible
I/O tester (fio) benchmarking tool [17], version 3.25. Specif-
ically, we use fio to benchmark the block I/O performance
of the different isolation platforms. By benchmarking on the
block level, rather than on the file system level, we solely
capture the overhead imposed by the actual virtualization
mechanisms, rather than a combination of overhead imposed
by both the file system and block layer.
Fio measures the average read and write throughput by

pre-allocating a file two times the size of the amount of mem-
ory available to the platform, using fallocate(), and then
uses this file to write to and read from in blocks of 128kb
using the libaio I/O engine. For these benchmarks, we start
the platform that is being tested, and then attach a separate
storage medium through the user interface exposed by that
platform. For Docker this could be as simple as passing a bind
mount through the --volume flag, whereas for LXC this en-
tails creating a new ZFS storage pool on the separate storage
medium and recreating the LXC container within this new
pool. For hypervisors, the target storage medium is attached
as an additional drive and mounted within the guest. The
amount of data read/written for each I/O test is equal across
the different platforms, in order to keep the chance of anoma-
lous seek times imposed by a larger test file to a minimum.
Since Firecracker does not support attaching extra storage
devices, it is excluded for this benchmark. For OSv there is no
working implementation of the libaio engine, and picking
other I/O engines leads to either an unfair comparison or an
underutilization of the actual I/O throughput.
In Figure 9 we see the results of this 128kb write/read

throughput benchmark. Generally speaking, the read perfor-
mance of Docker, LXC and QEMU/KVM is equal to that of a
native platform without virtualization. The write speeds of
these platforms come close to that of native as well, although
overhead comes in the form of a higher standard deviation.
The other hypervisor, Cloud Hypervisor, performs signifi-
cantly worse, with lower throughput in both read and write
performance as well as standard deviation. This however
is not inherent to the use of hypervisors, as QEMU demon-
strates. The secure containers gVisor and Kata containers
suffer severely from the extra layers of indirection, in the
best case reaching only half of the speeds achieved using
other isolation platforms.
We found the I/O benchmarks to be the most difficult to

run, due to caching problems with the chosen isolation plat-
form. It is particularly difficult with hypervisors where both
the guest and host have a separate buffer cache. I/O Bench-
marking tools like Fio support writing directly to storage,
effectively bypassing the buffer cache (using the direct=1
option). With some isolation platforms, however, there are
two separate kernel instances running (the host and guest
kernel), both utilizing their own buffer cache. Despite Fio

7



Middleware ’21, December 6–10, 2021, Vitual Event, Canada Vincent van Rijn and Jan S. Rellermeyer

Figure 9. Fio I/O throughput benchmark for all platforms,
excluding OSv and Firecracker.Writes and reads are in blocks
of 128kb using the libaio I/O engine.

Figure 10. Fio randread latency benchmark for 4kb sized
blocks (libaio).

being instructed to write directly to storage and skip the
buffer cache, this only circumvents the guest kernel cache.
The root file system of the guest is presented as a block de-
vice to the guest by creating a loop device on the host, and
flags like direct are not propagated properly. As a result,
I/O requests executed within the guest can still be cached
inside the host buffer cache. This can lead to incorrect bench-
mark outcomes, in which hypervisors outperform the native
I/O speeds by a large margin. An effective way to remedy
this issue is explicitly dropping the buffer cache on the host
manually before each benchmark run.

Most of the platforms roughly achieve the same through-
put, leaving gVisor, Kata containers and Cloud Hypervisor
behind. When considering the random read latency for the
platforms, of which the results are indicated in Figure 10, the
relative performance of the platforms is mostly consistent.
Reads are in blocks of 4kb. The hypervisors incur a latency
issue that is inherent to the extra virtualization layer. QEMU
experiences overhead similar to what is shown in prior re-
search. The newer Cloud Hypervisor platform performs re-
markably well in this latency benchmark, but considering its
poor throughput performance, it cannot be concluded that
it overall performs better than the QEMU I/O subsystem.
Among the secure containers, Kata containers perform ex-
ceptionally poorly. Although the gVisor platform is excluded
in this particular benchmark as all its reads got cached even
when both host and guest page caches were dropped, it is
reasonable to assume that its performance would be sim-
ilarly lackluster due to the reliance on the 9P file system.

Although this file system is a mature piece of software by
most standards, active development ceased in 2012. With
the increasing interest in containers in industry, the need
for a better and more performant shared file system became
clear. This led to the creation of virtio-fs 4, a file system
implemented in FUSE using virtio as the transport layer.
Since hosts and guests of isolation platforms are not physi-
cally separated by a network, an assumption that traditional
networked file systems are built upon (such as the 9P file
system), no longer hold. The virtio-fs file system can take
advantage of these new conditions, and can gain a significant
performance speedup relative to existing networking file sys-
tems. We have carried out additional experiments, and found
that Kata containers with virtio-fs significantly outper-
forms 9P, and is on-par with the performance of the QEMU
platform in this section.
In conclusion, we have seen that quantifying I/O perfor-

mance for the various isolation platform proved to be difficult
due to the various layers at which caching happens.
Finding 6: The I/O performance of most systems is close
to native except for the secure containers gVisor and Kata
containers, and for the hypervisor Cloud Hypervisor.
Finding 7: For Kata containers, virtio-fs is a promising
alternative that significantly outperforms the older 9P proto-
col.
Finding 8: gVisor performance, in its current form, is se-
verely hampered by the use of both the 9P protocol and
separate Gofer architectural component.
Finding 9: Cloud Hypervisor should get better as it matures,
but for now remains the outlier. For this platform, there
should not be an architectural bottleneck, as QEMU performs
close to native.

3.4 Network
For measuring the network bandwidth we have used the
iperf3 benchmark [24], in which the host acts as client to the
server that is run inside the virtualized guest. For measuring
the native benchmark performance, the host machine acts
as a server while the client requests are sent from a device
that is directly connected to its NIC. The iperf3 benchmark
aims to reach the maximum achievable throughput over an
IP network. In this context that implies that any score below
native indicates overhead from the platform used.
From the results (Figure 11) we can conclude, unlike in

the memory benchmark, there is always a price to be paid
for virtualization (or isolation). The host achieves a mean
throughput of 37.28 Gbit/s whereas the second highest, OSv,
achieves amean throughput of 36.36 Gbit/s. The performance
advantage of OSv, which runs under QEMU, and a plain
QEMU guest is a very significant 25.7% (in the figure, QEMU
vs. OSv). The network performance throughput as exhibited
here does not necessarily reflect a superior architecture of

4https://virtio-fs.gitlab.io/

8

https://virtio-fs.gitlab.io/


A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms Middleware ’21, December 6–10, 2021, Vitual Event, Canada

Figure 11. iperf3 network throughput benchmark, maxi-
mum throughput achieved over 5 runs.

OSv, however, as the results of the benchmark using the
Firecracker hypervisor to run an OSv guest only results in a
less significant 6.53% increase (in the figure, Firecracker vs.
OSv-FC).
The mechanism used to isolate the host from the guest

network, either namespacing or virtualization, seems to have
a significant impact on the network performance. Docker
and LXC use a network bridge approach and incur a 9.84%
and 9.19% performance penalty, respectively. The hypervi-
sors use a TAP device and virtio-net setup, and incur a
more severe performance penalty in the order of 25%. The
less mature platforms, particularly Cloud-Hypervisor suffer
from severe inefficiencies in its implementation, considering
the high-level architectural setup of QEMU and Cloud Hy-
pervisor are equal. Kata container employs both bridges and
a QEMU (TAP device + virtio-net) setup. This means that
the performance of Kata containers should be equal to the
performance of this weakest link, which in this case is the
QEMU part of the architecture, and indeed it is. Finally, gVi-
sor is an extreme outlier. gVisor implements its own network
stack. Implementing a network stack from the ground up,
however, is not a trivial task, and as a consequence, gVisor
does not yet implement all RFCs related to networking, of
which many also promise increasing network throughput.
Although at this time it is expected that eventually all rel-
evant RFCs will be implemented in Netstack, for now, its
performance is not competitive.
Finding 10: The average latency as measured with the Net-
perf benchmark yields similar results, with the containers
using bridges (Docker, Kata containers and LXC) performing
very well, followed by the hypervisors.
Finding 11: OSv does not outperform every other platform
but has slightly lower latencies than the hypervisors.
Finding 12: gVisor is once again a notable negative outlier,
with a 90th percentile response time 3 to 4 times that of its
competitors.

3.5 Startup Time
The startup time is an important concern for environments
in which regions of isolation need to be spawned and de-
spawned quickly, e.g., in serverless computing. In our exper-
iment, we measure the total end-to-end process time, from
process creation to termination. The process terminates itself

Figure 12. Netperf network latency benchmark (90th per-
centile) over 5 runs.

Figure 13. Time taken to boot container runtimes (CDF),
300 startups per platform. OCI times are obtained by directly
invoking the underlying container runtime, circumventing
the Docker daemon overhead.

through a patched init() system (for e.g. the hypervisors
and LXC) or an ‘exit’ entry point in the containers. OSv
startup time is measured by invoking it without a program
to run, resulting in an immediate shutdown after it completes
its boot sequence. The results in this section are based on
measuring the time for booting an isolation platform 300
consecutive times. Although one might assume that includ-
ing process termination in the total measurement time may
not be ideal, the alternative would be to use measurement
methods which can not be applied to every single platform.
Moreover, in practice, the overhead for process termination
was minimal (1–2%), as found out through experimentation.

Figure 13 shows the startup times for the examined (se-
cure) containers. Docker is very fast to boot, taking around
100 ms, followed by gVisor at around 190 ms. Much later, at
600 ms and 800 ms, we see the Kata container and LXC plat-
forms, respectively. The comparably slow startup time for
Kata containers can be explained by the relatively complex
booting sequence it has to perform, as it has to both set up
namespaces as well as set up (and boot) a hypervisor. LXC,
however, is an unexpected outlier. Its high booting time can
be attributed to the systemd init system it by default uses,
which takes up significantly more time than Docker’s tini.
Finally, by comparing the OCI and non OCI versions of our
containers, we see that creation of containers through the
Docker daemon causes a slowdown of around 250 millisec-
onds in startup time.

9



Middleware ’21, December 6–10, 2021, Vitual Event, Canada Vincent van Rijn and Jan S. Rellermeyer

Figure 14. Time taken to boot hypervisors (CDF), replication
of work in [1], 300 startups per platform.

Figure 15. Time taken to boot OSv under supported hyper-
visors (CDF), 300 startups per platform.

Figure 14 shows the startup time for the different hyper-
visors booting with the same kernel and root file system. As
mentioned before, the init system is patched to immedi-
ately quit as soon as it starts. The fastest hypervisor, shown
at left side of the Figure, is Cloud Hypervisor, significantly
outperforming the other hypervisors, followed by QEMU
(both plain QEMU and the QEMU minimal qboot.bin BIOS
firmware). The slowest hypervisor is QEMU with the µVM de-
vice model, as inspired by Firecracker. In theory this should
lead to faster startup times (with fewer devices to manage,
and no BIOS at startup), but in practice for this version of
QEMU it only leads to increased startup time.
At around 350 milliseconds the Firecracker hypervisor

appears. This is an interesting result, since in [1] the authors
conclude that the FC-pre platform has the fastest startup time
of all the hypervisors. We consider this conclusion skewed,
as not the actual end-to-end (process creation to termination)
time is measured, as it is for other platforms, but instead the
time taken to write to a special device during boot time by
using a patched kernel is measured. We do not consider this
a fair comparison, as it does not take into account what
happens before the kernel is launched, as well as anything
that happens after the kernel prints this timestamp. The
true time needed to start Firecracker, in our experiments, is
significantly higher than its hypervisor competitors Cloud
Hypervisor and QEMU.

The results in Figure 15 indicate the OSv boot times using
different hypervisors. We used two main methods two mea-
sure this startup time: end-to-end (as in our measurements
above) and stopping the measurement when a specific line
of text is printed to stdout. As we can see, those two vari-
ants of each platform setup are almost superimposed on top
of one another, further strengthening the credibility of our

Figure 16. Memcached YCSB benchmark over 5 runs.

way of measuring end-to-end. An interesting observation
from these results is that the results are almost opposite of
the prior hypervisor results (in Figure 14): Firecracker is the
fastest, QEMU µVM ranks second, and at last place we see
regular QEMU.

In conclusion, we find that most platforms are able to boot
and exit within 200 milliseconds. We make the following
observations:
Finding 13: Containers are fast to boot, with the exception
of Kata containers and LXC, which typically take over 600
ms.
Finding 14: Firecracker, despite its focus on serving the
serverless computing paradigm, boots the slowest out of the
three hypervisors. Cloud Hypervisor is the fastest. Boot time
depends heavily on the used machine model, as QEMU with
the µVM machine model is (unexpectedly) the slowest out of
all.
Finding 15: Unikernels (OSv) are faster to boot than regular
Linux-based images, generally as fast as containers. Booting
OSv images using different hypervisors has a significant
effect on boot-time.
Finding 16:Measuring boot-times end-to-end (from process
creation to termination) using time is as accurate as other
ways (e.g. by checking stdout using grep). Overhead for this
measurement technique is negligibly (1-2%) small across the
various platforms.

3.6 Memcached
Memcached is a high-performance key-value store [18], of-
ten used as an additional caching layer in between e.g. a web
server and a database. It stores small chunks of arbitrary data
in memory and never materializes any of its content to disk.
We benchmark the performance of Memcached on each plat-
form using the YCSB (Yahoo! Cloud serving benchmark) [10],
a popular framework for benchmarking different key-value
and cloud data stores. Specifically, we use the ‘workload a’
preset of YCSB, a mix of 50/50 reads and writes, behavior
exhibited by e.g. a session store recording recent actions.
Benchmarking using YCSB and Memcached stresses the

memory and networking subsystems. As a reminder, the
hypervisors underperformed in the memory and network
microbenchmarks (the less mature the hypervisor the worse),
and gVisor in particular did not fare well in the network mi-
crobenchmark. We see these prior results reflected in the

10



A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms Middleware ’21, December 6–10, 2021, Vitual Event, Canada

Figure 17. MySQL Sysbench oltp_read_write benchmark
with increasing threads, over 3 runs.

Memcached benchmark in the benchmark results in Fig-
ure 16.
Finding 17: The newer hypervisors perform worse, and
overall the regular containers (in particular LXC) perform
very well.
Finding 18: The result of Kata containers is surprising, since
the microbenchmarks of network and memory for Kata con-
tainers would not suggest a score significantly lower than
most of the other platforms.
Finding 19: The gVisor Memcached score, although poor,
can be attributed to its network performance.

3.7 MySQL
MySQL is a well-known relational database. In combination
with the Sysbench [37] benchmarking tool (version 1.0.20),
we stress the isolation platforms running MySQL version
5.6.45 using the oltp_read_write benchmark. This bench-
mark stresses the memory, file system and networking sub-
systems. It initially stores 1 million records into 3 tables, and
then consecutively executes a SELECT, UPDATE, DELETE and
INSERT SQL query. We call the combination of one of each
of these queries a transaction. We perform this benchmark
for every platform with an increasing number of threads,
starting at 10 up until 160 threads.
The results of this benchmark are shown in Figure 17.

There are numerous interesting observations to be made
from these results:
Finding 20: For nearly all platforms, the number of trans-
actions per second peaks at around 50 threads, after which
thread contention appears to impair overall performance.
The native platform peaks at around 110 threads instead, yet
does not deliver a significant performance increase over the
isolation platforms.
Finding 21: There are roughly 3 groups in which the plat-
forms can be divided. OSv (and OSv-FC, superimposed on
top of OSv) and gVisor severely underperform. It is likely
their custom thread allocators are to blame for this impaired
performance, as these are the only two platforms that do
not reuse existing mature thread implementations. The lack
of any effect when varying the number of threads is also

indicative of this. Moreover, as for gVisor, the high network
latency undoubtedly worsens performance.
Finding 22: The second group consisting of gVisor and Fire-
cracker yield performance around half of that of most other
platforms. With complex real-world benchmarks like these,
it remains difficult to say exactly precisely what causes this
lower performance. For Firecracker, high memory latencies
as demonstrated in the Memory benchmarks could be the
root cause (as a subset of records is kept in memory during
the benchmark). As for Kata containers, the relatively high
I/O latency could be the culprit.
Finding 23: The third group, consisting of the remaining
platforms, all perform alike. Due to the wide error bands
(which did not narrow even when carrying out additional
runs), there is no stable ranking of performance in this group.

4 Security and Isolation
Another critical property of any isolation platform is the
degree of isolation it offers. We approximate this degree by
measuring the horizontal attack profile (HAP), a term orig-
inally coined by IBM’s James Bottomley [5]. The HAP is a
quantitative metric that attempts to measure how wide the
interface from the guest to the host is. Broadly speaking, the
HAP is obtained by the amount of code executed multiplied
by the bug density of the domain that is measured in. Con-
cretely, this entails quantifying the number of host Linux
kernel functions invoked while running different workloads
in the guest. Multiplication of bug density is not needed as
everything is measured within the same domain (i.e. the
Linux kernel).
We extend the HAP metric by not only measuring how

many functions are hit, but also taking into account which
functions are hit. Functions get a score assigned based on
their likelihood of exploitation, as obtained from the EPSS
model [26]. This enables us to look at which functions are hit
and then determine their exploitability, weighing functions
that are more likely to be exploited heavier than those that
have a lower likelihood of exploitability.
To determine this extended HAP score for each platform,

we trace which (and the amount of) host kernel function
invocations. The tracing is performed using ftrace with
the trace-cmd front-end. The workloads run during trac-
ing are the CPU, memory and I/O benchmarks from the
Sysbench benchmarking suite [37], the iperf3 networking
benchmark [24], and simply starting the platform and shut-
ting it down after 1 minute. The results are shown in Fig-
ure 18.

There following important observations can be made:
Finding 24: Firecracker, the isolation platforms that adver-
tises itself as running lightweight VMs and having a minimal
device model, calls into the host kernel most often of all
platforms. A wider interface between the host and guest is
indicative of potentially weaker security. While the defense

11



Middleware ’21, December 6–10, 2021, Vitual Event, Canada Vincent van Rijn and Jan S. Rellermeyer

Figure 18. Results of the extended HAP metric

in depth is likely superior, Firecracker’s minimalist approach
still exposes a much wider interface to the host than the
more heavy-weight general-purpose QEMU hypervisor.
Finding 25: Cloud Hypervisor invokes very few function
calls in the host kernel, which is surprising given the results
of the other two hypervisors. As both the techniques as
well as the architecture of Cloud Hypervisor are similar to
Firecracker, this could be attributed to the work-in-progress
status of the project, not fully supporting all functionality
that the other hypervisors do.
Finding 26: The secure containers, gVisor and Kata con-
tainer, have relatively high numbers, especially compared
to the regular containers. For Kata containers this is to
be expected, given that it starts its own hypervisor (albeit
with a stripped down Linux kernel). The number of func-
tions for gVisor is higher than expected; apparently the re-
implementation of a kernel in user-space does not necessarily
lead to fewer calls to the host kernel.
Finding 27: OSv, in particular given the fact that it uses a
hypervisor, executes host kernel functions sparingly. OSv
in this sense fulfills its promise of only exposing a narrow
interface to the host, and more importantly, from this we
can conclude that a wide HAP is not inherent to the use of a
hypervisor.
Finding 28: The HAP metric fails to capture the defense-in-
depth isolation platforms provide. For example, while Kata
containers have a large HAP, they also introduce defense-
in-depth, by using both namespaces as well as a hardware-
assisted isolationmechanisms. Moreover, the potential attack
surface between tenants of an isolation platform is also not
accounted for. The HAP measures the (horizontal) width
of the attack profile, but is unable to capture these vertical,
defense-in-depth, aspects of the isolation platforms.

5 Discussion and Conclusions
Virtualization is the underlying technology that powers
cloud infrastructure aswe know it today. The increase in both
mainstream adoption and variety of offerings underline the
importance of several key properties of virtualization plat-
forms. In particular, we consider the performance overhead
and the degree of isolation offered of utmost importance.
Prior research [7, 15] typically delved deep into either of

these two properties, and are generally limited to a small set
of examined platforms. This paper attempts to bridge this
gap. It addresses both the performance and security aspects
of various isolation platforms. We carried out an extensive
collection of experiments, quantifying both the performance
and security offered by the isolation platforms. These ex-
periments include typical micro-benchmarks and real-world
benchmarks, as well as a novel way to quantitativelymeasure
the degree of isolation.

From our results, we can draw the following conclusions:
Conclusion 1: Container platforms, such as Docker and
LXC, typically showcase near-native performance. Out of
all the isolation platforms, containers perform the best, and
typically also have a low start-up time.
Conclusion 2: Hypervisors always impose overhead in
their networking and memory subsystems. Other subsys-
tems, such as I/O and CPU do not necessarily exhibit this
overhead, although it depends on the particular hypervi-
sor that is used. Generally speaking, the more mature the
hypervisor, the lower the overhead.
Conclusion 3: Secure containers show the weakest per-
formance of all isolation platforms. The networking and
memory subsystems perform near-native (as with hypervi-
sors), but in particular I/O performance suffers. The primary
reason for this is the use of network file systems, although
improvements with the likes of virtio-fs are promising.
Conclusion 4: The OSv unikernel generally performs well,
although its performance is hard to quantify due to insta-
bilities and incompatibilities with the chosen benchmarks.
Start-up times are comparable to containers.
Conclusion 5: Firecracker is not the fastest to boot in our
experiments, unlike what is presented in [1].
Conclusion 6: The tagline of the Kata containers project
"Speed of containers, security of VMs" generally does not
hold in our experiments. Performance of various subsystems,
with in particular I/O, is weak in comparison to hypervi-
sors while the security under the HAP is not superior to
conventional containers.
Conclusion 7: Pursuing the development of solutions and
protocols that are specifically made for isolation platforms
has proven to be fruitful. For example, using virtio-fs can
bring performance gains for all isolation platforms.
Conclusion 8: Considering the degree of isolation offered
by the various platforms, we found the OSv unikernel to
exercise the least amount of code in the host kernel, closely
followed by containers.
Conclusion 9: General purpose OSs running under hyper-
visors and particularly secure containers generally invoke
the most host kernel functions. The latter is a particularly
interesting observation, as the secure containers according
to the HAPmetric are deemed to be insecure; the catch being
that these platforms primarily offer defense in depth.

12



A Fresh Look at the Architecture and Performance of Contemporary Isolation Platforms Middleware ’21, December 6–10, 2021, Vitual Event, Canada

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th 𝑈𝑆𝐸𝑁𝐼𝑋 Symposium on Networked Systems Design and Imple-
mentation (𝑁𝑆𝐷𝐼 20). 419–434.

[2] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing
memory density by using KSM. In Proceedings of the linux symposium.
Citeseer, 19–28.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. ACM SIGOPS operating systems review 37,
5 (2003), 164–177.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator..
In USENIX annual technical conference, FREENIX Track, Vol. 41. Califor-
nia, USA, 46.

[5] James Bottomley. 2018. Exploring New Frontiers in Container Tech-
nology. Linux Plumbers Conference (2018).

[6] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad,
and Kyrre Begnum. 2015. IncludeOS: A minimal, resource efficient
unikernel for cloud services. In 2015 IEEE 7th international conference
on cloud computing technology and science (cloudcom). IEEE, 250–257.

[7] Tyler Caraza-Harter and Michael M Swift. 2020. Blending containers
and virtual machines: a study of firecracker and gVisor. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. 101–113.

[8] Clear Linux 2021. The Clear Linux Project. https://clearlinux.org/.
[Online; accessed 30-May-2021].

[9] Cloud Hypervisor 2021. The Cloud Hypervisor Project. https://github.
com/cloud-hypervisor. [Online; accessed 30-May-2021].

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[11] Todd Deshane, Zachary Shepherd, Jeanna Matthews, Muli Ben-Yehuda,
Amit Shah, and Balaji Rao. 2008. Quantitative comparison of Xen and
KVM. Xen Summit, Boston, MA, USA (2008), 1–2.

[12] Edsger W Dijkstra. 1968. The structure of the “THE”-
multiprogramming system. Commun. ACM 11, 5 (1968), 341–346.

[13] Docker 2020. Docker overview – Docker architecture. https://docs.
docker.com/get-started/overview/. [Online; accessed 30-November-
2020].

[14] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. 1995.
Exokernel: An operating system architecture for application-level
resource management. ACM SIGOPS Operating Systems Review 29, 5
(1995), 251–266.

[15] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015.
An updated performance comparison of virtual machines and linux
containers. In 2015 IEEE international symposium on performance anal-
ysis of systems and software (ISPASS). IEEE, 171–172.

[16] ffmpeg 2020. ffmpeg - A complete, cross-platform solution to record,
convert and stream audio and video. https://ffmpeg.org/. [Online;
accessed 2-December-2020].

[17] fio 2021. Flexible I/O tester - fio. https://git.kernel.dk/?p=fio.git;a=
summary. [Online; accessed 12-January-2021].

[18] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux
journal 124 (2004).

[19] gvisor 2020. gVisor platform documentation. https://gvisor.dev/docs/
architecture_guide/platforms/. [Online; accessed 7-December-2020].

[20] gVisor 2021. The gVisor Project. https://github.com/google/gvisor.
[Online; accessed 30-May-2021].

[21] Stefan Hajnoczi. 2011. QEMU/KVM Architecure. http://blog.vmsplice.
net/2011/03/qemu-internals-overall-architecture-and.html. [Online;
accessed 4-December-2020].

[22] Per Brinch Hansen. 1970. The nucleus of a multiprogramming system.
Commun. ACM 13, 4 (1970), 238–241.

[23] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel
Kounev. 2011. Evaluating and Modeling Virtualization Performance
Overhead for Cloud Environments. CLOSER 11 (2011), 563–573.

[24] iperf 2020. iperf3 networking benchmark tool homepage. https://iperf.
fr/. [Online; accessed 24-December-2020].

[25] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. 2014. Wait a minute! A fast, Cross-VM attack on AES. In Inter-
national Workshop on Recent Advances in Intrusion Detection. Springer,
299–319.

[26] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Michael Roytman,
and Idris Adjerid. 2019. Exploit Prediction Scoring System (EPSS).
BlackHat USA ’19 (2019).

[27] Kata Containers 2021. Kata Containers Architecture - GitHub
repository. https://github.com/kata-containers/documentation/blob/
master/design/architecture.md. [Online; accessed 15-February-2021].

[28] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. kvm: the Linux virtual machine monitor. In Proceedings of the
Linux symposium, Vol. 1. Dttawa, Dntorio, Canada, 225–230.

[29] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. 2014. OSv—optimizing the operating system
for virtual machines. In 2014 USENIX Annual Technical Conference
USENIXATC 14). 61–72.

[30] Zhanibek Kozhirbayev and Richard O Sinnott. 2017. A performance
comparison of container-based technologies for the cloud. Future
Generation Computer Systems 68 (2017), 175–182.

[31] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library operating systems for
the cloud. ACM SIGARCH Computer Architecture News 41, 1 (2013),
461–472.

[32] John D McCalpin. 1995. Stream benchmark.
www.cs.virginia.edu/stream/ref.html 22 (1995).

[33] Dave Presotto, Rob Pike, Ken Thompson, and Howard Trickey. 1991.
Plan 9, a distributed system. Proc. of the Spring (1991), 43–50.

[34] Moritz Raho, Alexander Spyridakis, Michele Paolino, and Daniel Raho.
2015. KVM, Xen and Docker: A performance analysis for ARM based
NFV and cloud computing. In 2015 IEEE 3rd Workshop on Advances in
Information, Electronic and Electrical Engineering (AIEEE). IEEE, 1–8.

[35] Alessandro Randazzo and Ilenia Tinnirello. 2019. Kata containers: An
emerging architecture for enabling mec services in fast and secure way.
In 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS). IEEE, 209–214.

[36] Jan S. Rellermeyer, Maher Amer, Richard Smutzer, and Karthick Raja-
mani. 2018. Container Density Improvements with Dynamic Memory
Extension Using NAND Flash. In Proceedings of the 9th Asia-Pacific
Workshop on Systems (Jeju Island, Republic of Korea) (APSys ’18).
https://doi.org/10.1145/3265723.3265740

[37] sysbench 2020. Sysbench Github repository. https://github.com/
akopytov/sysbench. [Online; accessed 24-December-2020].

[38] Tinymembench 2020. Tinymembench Github repository. https:
//github.com/ssvb/tinymembench. [Online; accessed 2-December-
2020].

[39] ttrpc 2020. ttRPC: GRPC for low-memory environments - Github
repository. https://github.com/containerd/ttrpc. [Online; accessed
23-December-2020].

[40] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto,
Timoteo Lange, and Cesar AF De Rose. 2013. Performance evaluation
of container-based virtualization for high performance computing en-
vironments. In 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. IEEE, 233–240.

13

https://clearlinux.org/
https://github.com/cloud-hypervisor
https://github.com/cloud-hypervisor
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://ffmpeg.org/
https://git.kernel.dk/?p=fio.git;a=summary
https://git.kernel.dk/?p=fio.git;a=summary
https://gvisor.dev/docs/architecture_guide/platforms/
https://gvisor.dev/docs/architecture_guide/platforms/
https://github.com/google/gvisor
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
https://iperf.fr/
https://iperf.fr/
https://github.com/kata-containers/documentation/blob/master/design/architecture.md
https://github.com/kata-containers/documentation/blob/master/design/architecture.md
https://doi.org/10.1145/3265723.3265740
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://github.com/ssvb/tinymembench
https://github.com/ssvb/tinymembench
https://github.com/containerd/ttrpc

	Abstract
	1 Introduction
	2 Isolation Platforms
	2.1 Hypervisors
	2.2 Container Platforms
	2.3 Secure Containers
	2.4 Unikernels

	3 Performance Study
	3.1 Compute
	3.2 Memory
	3.3 I/O
	3.4 Network
	3.5 Startup Time
	3.6 Memcached
	3.7 MySQL

	4 Security and Isolation
	5 Discussion and Conclusions
	References

