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Abstract

Given an unstructured mesh consisting of quadrilaterals and triangles (we allow both planar and non-planar meshes of
rbitrary topology), we present the construction of quadratic splines of mixed smoothness — C1 smooth away from the

unstructured regions of T and C0 smooth otherwise. The splines have several useful B-spline-like properties – partition of
unity, non-negativity, local support and linear independence – and allow for straightforward imposition of boundary conditions.
We propose a non-nested refinement process for the splines with multiple advantages — a simple computer implementation,
reduction in the footprint of C0 smoothness, boundary preservation, and excellent approximation behaviour in simulations.
Furthermore, the refinement process leaves the splines invariant on the mesh boundary. Numerical tests indicate that the spline
spaces demonstrate optimal approximation behaviour in the L2 and H1 norms under mesh refinement, and provide a viable
approach to simulations on watertight reconstructions of trimmed surfaces.
c⃝ 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Isogeometric analysis; Quadrilateral-triangle meshes; Analysis-suitable splines; Optimal approximation; Trimmed surfaces

1. Introduction

Isogeometric Analysis [1] generalizes classical finite element analysis [2] and, at the same time, intends to
eamlessly unify it with the field of Computer-Aided Design [3].1 Achieving this latter objective would encapsulate

the entire engineering design-through-analysis workflow in a uniform framework, yielding a significant boost to the
efficiency of the current approaches. Currently the designs output by CAD software are, in general, not suitable for
analysis and, consequently, a significant portion of the time in a design-through-analysis workflow is spent neither
on CAD nor on FEA but is dominated by generating analysis suitable meshes for FEA or IGA [4].

As such a focal problem in IGA is analysis-suitable spline representations of complex surface and volumetric
geometries. This is a multi-faceted problem. Firstly, to be able to create analysis-suitable spline geometries of
arbitrary topologies, it is necessary to be able to define analysis-suitable spline spaces on general unstructured
meshes. This means moving beyond structured quadrilateral and hexahedral meshes for surface and volumetric
geometries, respectively. Secondly, CAD extensively utilizes trimmed representations for modelling surfaces,
i.e., surfaces are defined via implicit Boolean operations (union, difference, intersection). We call them implicit

E-mail address: d.toshniwal@tudelft.nl.
1 Abbreviations: IGA for Isogeometric Analysis, FEA for Finite Element Analysis, and CAD for Computer-Aided Design.
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Fig. 1. The prevalent surface modelling paradigm in CAD is to define surfaces via implicit Boolean operations. For instance, the bracket
geometry in (a) is represented through Boolean operations on the black extruded surface and the red plane and cylinders in (b). We call
these Boolean operations implicit because they are not actually performed and change the underlying descriptions of neither of the three
surfaces in (b). They only delineate which portions of the black surface in (b) should be made visible in (a); the rest of the black surface
is present but is rendered invisible to a user.

Boolean operations because they are not actually performed to yield modified surfaces; rather, they are processed
for visual purposes only, that is, to determine which portions of the surfaces to hide and which ones to show.
Consequently, a surface object as the bracket in Fig. 1(a) may be being represented in CAD in an implicit manner
through Boolean operations on the three surfaces in Fig. 1(b) — a plane, a cylinder and an extruded surface.
This internal CAD representation of the geometry is not directly suitable for analysis. The interested reader is
directed to [5], an excellent review article on the second and the third aspects mentioned here. Finally, most of
the geometries built in CAD are boundary representations, i.e., they only work with surfaces that either define thin
objects (e.g., the midsurface of a car body) or surfaces that bound volumetric objects (e.g., the two-dimensional
boundary of a ship propeller). Consequently, if the objective is to perform analysis on volumetric objects, then a
volumetric parameterization needs to be inferred from their boundary representations — a non-trivial task.

In this article, our primary focus is on the first aspect of the problem, analysis-suitable splines on unstructured
meshes, and we present an application of our approach to the second problem, simulations on trimmed geometries.
We begin by presenting our contributions in Section 1.1. Next, we highlight some prior work in these areas in
Section 1.2 and then present a short outline of this paper in Section 1.3.

1.1. Our contributions

Given an unstructured mesh T consisting of quadrilaterals and triangles (we allow both planar and non-planar
eshes of arbitrary topology), we present the construction of quadratic mixed smoothness splines on T 2.

• The splines have several useful B-spline-like properties: partition of unity, non-negativity, local support
and linear independence. The spline degree-of-freedom structure is simple and allows for straightforward
imposition of boundary conditions. The splines are also C1 smooth away from the unstructured regions of
T and C0 smooth otherwise. All of these are made more precise in Proposition 3.1.

• We propose a convergent non-nested refinement process for the spline spaces that is, regardless, nested on the
boundaries. This has two benefits both of which improve upon [6]. The non-nestedness of the refinement allows

2 The terminology “blended” has been used in [6] to indicate that the splines have mixed smoothness. We opt for the explicit usage of
“mixed smoothness” or “mixed” since “blended” is also frequently used in other contexts, e.g., to refer to “blending” functions.
2
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Fig. 2. An example of an application to watertight and editable reconstructions of CAD models. Shown here is the (unofficial) CAD model
of a Bugatti Chiron hood that has been reconstructed using a quad-tri mesh and our splines. Figures (a) and (b) show different views of
the model, and (c) shows the underlying quad-tri Bézier mesh. The quad-tri mesh generated by Rhinoceros®contains 13.8K faces, and the
total number of quadratic spline degrees of freedom for this mesh are 14.2K ( 13.8K interior, 400 boundary). Also see Remark 1.1.

us to “shrink” the neighbourhoods of C0 smoothness in the mesh T and leads to a very simplified computer
implementation. At the same time, the refinement process leaves the spline invariant on the mesh boundary;
this is especially useful if the boundaries of a spline geometry are composed of special curves such as conic
sections. Numerical tests indicate that the spline spaces also demonstrate optimal approximation behaviour in
the L2 and H 1 norms for second-order problems under mesh refinement. Conceptually, this approach can be
seen as an amalgamation of the “design” and “analysis” philosophies from [7] – it offers the ease of working
with the design space while also being suitable for analysis; c.f. Remark 4.4.

• The above properties, combined with the relative ease of generating quadrilateral-triangle meshes for trimmed
surfaces, present the latter as one possible application of our splines; see Fig. 2 as an example. We demonstrate
such a workflow focused on trimmed surfaces in Section 5.

Finally, the ideas we present in two dimensions can be easily extended to three dimensions to create splines
on unstructured hexahedral-tetrahedral meshes. A forthcoming article [8] will utilize the purely quadrilateral and
hexahedral case for building globally C1 splines.

emark 1.1. In this article, we utilize automatically generated quadrilateral-triangle meshes, such as in Fig. 2(c).
uch meshes can be highly unstructured (e.g., too many extraordinary points, triangles), even unnecessarily so – for

nstance, it is clear that a “cleaner” mesh (e.g., fewer and feature-aligned elements, more structure) can be generated
or the geometry in Fig. 2(a). We nevertheless work with such meshes to show the flexibility of our method. In
ractice, if the option to generate cleaner meshes is available, it should be preferred.

.2. Related literature

The related literature can be roughly placed into four different categories. The first two concern the different
pproaches for building analysis-suitable splines on unstructured meshes – parametric smoothness and geometric
moothness – and the last two categories are related to the application we present — analysis on (watertight
econstructions of) trimmed surfaces. Note that this is an area of active research and we do not attempt to present
n exhaustive overview of it here. Instead we point the readers to the comprehensive literature reviews presented
n [9] for the first two categories and to [5] for the last two.

.2.1. IGA-suitable splines on unstructured meshes
To generate surfaces from unstructured meshes using parametric smoothness conditions, a popular approach

s that of subdivision [10]. Subdivision surfaces can work with triangular [11,12], quadrilateral [13,14] and
uadrilateral-triangle meshes [15,16] of arbitrary topologies. Subdivision surfaces utilize spline functions that
ontain an infinity of polynomial pieces in unstructured regions of a mesh. The use of these descriptions in analysis
resents several drawbacks such as expensive numerical quadrature and sub-optimal approximation behaviour.
ee [17–22] for examples of the use of subdivision surfaces in IGA.
3
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Remark 1.2. On the face of it, our approach has the most in common with Doo–Sabin subdivision [15] in the
ense that both generate with piecewise-quadratic splines on quadrilateral-triangle meshes. However, the approaches
re not directly comparable as ours is a finite construction while Doo–Sabin subdivision surfaces employ infinite
olynomial pieces in the unstructured regions of the mesh; the two approaches coincide on the structured regions
f the mesh. As highlighted in the summary of our contributions, our finite approach is also able to overcome the
rawbacks in analysis with subdivision schemes.

Parametric smoothness conditions can also be utilized to generate finite piecewise-polynomial splines and spline
eometries if singularities in the unstructured regions of the mesh are permitted. This idea has been utilized
n [23,24] to create the notion of smooth but degenerate Bézier patches or D-patches. This idea has been utilized
n [7,25,26] to create bi-cubic spline spaces for IGA that possess a host of favourable properties for both design
nd analysis. In particular, [7,26] build spline spaces that demonstrate optimal approximation behaviour under mesh
efinement in the analysis of fourth-order problems; see [27,28] for other examples of applications to high-order
DEs. For the special class of unstructured meshes that contain polar or collapsed-edge singularities, parametric
moothness was employed in [29] to create Ck smooth spline spaces, for all k ≥ 0, that possess favourable properties
or both freeform design and analysis. The case k = 1 has been explicitly laid out in the recent article [30] to build
ow-degree smooth ellipses and ellipsoids and in [31] for simulating incompressible flows on deforming surfaces.

Geometric smoothness between polynomial pieces can also be utilized to build smooth splines [32] and spline
eometries [33]. While this is a well-known concept in CAD [3, Chapter 8], it has recently begun to be studied
n the context of IGA also [34]. The case of C1 smooth splines of degree (p, p) on planar multi-patch domains
ave been studied in [35,36] for bilinear parameterizations. This has been extended to the case of the so-called
nalysis-suitable G1 parameterizations of planar domains in [37] and the spaces are shown to possess optimal
pproximation properties for L2 projection problems. The latter spaces have also been recently combined with the
rgyris triangular element for building C1 spline spaces on planar quadrilateral-triangle meshes [38]. Some recent

tudies have also begun to lay out the practical foundations for geometrically smooth spline spaces on planar meshes
ith higher order smoothness; e.g., [36].
Finally, construction of smooth splines on planar triangulations has also been a long standing area of re-

earch [39]. When working with structured triangulations, Box splines are perhaps the most attractive approach [40].
mposition of strong boundary conditions with Box splines is not straightforward but they can be utilized in the
ramework of immersed methods [41,42] to perform IGA. On more general planar triangulations, macro element
echniques can be utilized for building smooth spline spaces; see [43,44] for construction and application of
owell–Sabin splines as well as the recent developments presented in [45].

.2.2. Analysis on trimmed surfaces
The first class of methods here proposes to un-trim the trimmed geometries by reparameterizing them to create

ew watertight spline representations [46–50]. The reparameterizations can be done with splines on triangular
eshes [49], on quadrilateral meshes [46–48] or using mixed triangular and quadrilateral meshes [50,51]. In

articular, [46–48] all suggest a new design philosophy where, at each stage of design, a watertight spline geometry
s retained by continuous reparameterization after every Boolean operation. This is a philosophy where our spline
onstructions can be readily utilized with the added advantage that we do not require robust quadrilateral-layout
omputations [48,52,53]. Similarly, our construction can also be directly used with the untrimmed (so-called hybrid
oundary representations) geometries created by [50,51] that utilize both triangular and quadrilateral elements to
econstruct the geometries near trimming curves.

emark 1.3. A problem that may arise with trimming operations is the presence of gaps and overlaps that make
he generation of any kind of watertight mesh (triangular, quadrangular, etc.) difficult. This is a problem that affects
very method adversely and is addressed in the field of mesh repair. For instance, quad-layout computations cannot
e performed without a base watertight mesh [48,52,53]. We omit this problem from our discussions.

The second class of methods is where analysis is performed directly on trimmed representations without
eparameterization; e.g., see [54–58]. In these methods, an immersed approach to the analysis is taken for
ppropriately treating trimming curves that lie within the boundaries of parametric patches. Furthermore, for accurate
umerical quadrature, many such methods create a boundary conforming quadrilateral-triangle mesh on which
ntegration is performed; e.g., [56]. Consequently, such meshes can also be directly combined with our splines
or creating watertight and editable reconstructions of the trimmed geometries.
4
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Fig. 3. An example quad-tri mesh T is shown in (a). The boundary edges of T have been displayed using heavier lines than the interior
edges. The chosen corner vertices have been indicated by placing yellow squares on them, and the extraordinary vertices have been indicated
by placing red stars on them. We will use the same convention throughout this document. Note that the image in (a) is meant to be
interpreted only as a topological construct and not a visualization of the actual spline geometries. For instance, an example spline geometry
built from the mesh in (a) is shown in (b); also see Section 3.1 and Fig. 4 for further elaboration. The control points have been displayed
as filled blue disks, the control net has been displayed with thin lines that connect the control points, and the boundaries of the Bézier mesh
have been displayed with thick lines. Note that the Bézier elements in (b) are in one-to-one correspondence with the mesh elements in (a).

Remark 1.4. A related problem in working with trimmed surfaces is volumetric completion [51,52,59] – if the
trimmed surface defines the boundary of a volumetric object, then how can one generate the interior mesh and
spline representation of that object. We do not discuss the volumetric case in this document.

1.3. Outline

We begin in Section 2 by introducing the related notation for the specific type of unstructured meshes that we
focus on — quadrilateral-triangle meshes. Next, in Section 3 we present the construction of a set of quadratic
spline basis functions on the mesh; Proposition 3.1 collects their useful properties. Then, in Section 4 we discuss
the (non-nested) refinement of the quadratic splines; Proposition 4.2 characterizes our refinement rules. Finally, in
Section 5 we present some numerical tests focusing on the analysis-suitability of the splines, including test cases
that involve analysis on trimmed surfaces.

2. Unstructured polygonal meshes

We are interested in solving scalar and vector-valued PDEs on complex, 2-dimensional geometries of arbitrary
topology. For instance, planar geometries in R2 or surfaces in R3. While creating purely quadrilateral meshes
for such geometries is a difficult task and a focus of active research [48,52,53], general polygonal meshes are
significantly easier to create. Then, splines defined on polygonal meshes can help create such complex geometries,
and can thereafter be used for numerically solving PDEs on them.

We focus here on quadrilateral-triangle meshes, i.e., meshes composed of quadrilaterals and triangles. This is
not a restriction since more general polygons in a given mesh can be decomposed into triangles. Therefore, our
attention on only quadrilateral and triangles is not restrictive. In this section, we define some relevant notation for
such meshes; see Fig. 3 for reference.

Before we begin, we would like to point out that we consider T as a topological construct only — in general,
the quadrilaterals and triangles in T will not be assumed to occupy a common parametric domain. Similarly, the
meshes are not restricted to be planar or of trivial topology either. Representations as in Fig. 3(a) will only be for

the purpose of specifying the connectivity of the different quadrilaterals and triangles with each other. As such,

5
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spline geometries and spline functions on those geometries will be built by appropriately selecting the degrees of
freedom for splines on T . An example corresponding to the mesh in Fig. 3(a) is shown in Fig. 3(b).

A quadrilateral-triangle mesh, denoted T and abbreviated as quad-tri mesh, is simply a polygonal mesh such
that the polygons in it are quadrilaterals and triangles. We assume that T is without any hanging nodes and that
the interiors of all polygons are disjoint. Each quadrilateral or triangle in T will be called a face of T , or simply a
face. For k ≤ 2, the k-dimensional geometric components of the mesh will be collected in sets Tk . That is, vertices
n T0, edges in T1, and faces in T2.

We assume that T is such that each edge is shared by at most two faces of the mesh. If any edge is contained
n only one face then it is called a boundary edge, otherwise it is called an interior edge; boundary edges have
een displayed with slightly thicker lines in Fig. 3(a). Any vertices that lie on a boundary edge are called boundary
ertices, otherwise they are called interior vertices. The set of interior vertices and edges will be denoted by

◦

Tk for
= 0 and 1, respectively. Moreover, a subset T 0 ⊂ T0\

◦

T0 is allowed to be classified as corner vertices — this will
help create spline geometries with corners. For visual consistency, we will always denote the corner vertices of a
mesh by placing yellow squares on them as in Fig. 3(a). Note that the subset T 0 can be arbitrarily specified for a
given mesh; in particular, it can be chosen to be empty or it can contain all the boundary vertices. We also assume
that there are no ‘kissing vertices’ in the mesh. That is, for any two faces σ, σ ′ that share a common vertex γ , there
is a sequence of faces σ0, . . . , σℓ that all contain γ such that σ0 = σ , σi = σ ′, and σi ∩σi−1 ∈

◦

T1 for i = 1, . . . , ℓ.

Remark 2.1. We interpret the corner vertices, T 0, as user-specified features of the geometry — as mentioned
above, this will help create spline geometries with corners. This kind of a feature set can also be easily extended
to the interior of the mesh by classifying, for instance, some interior edges as creased edges.

Finally, the valence of a vertex, edge or face of T is defined to be the number of faces that contain it. In particular,

• the valence of any face is exactly 1 since each face contains itself;
• the valence of boundary and interior edges is 1 and 2, respectively, by the above definitions.

or φ ∈ Tk , k ≤ 2, we will denote the valence of φ with µφ . Vertices of T will be called extraordinary vertices if
hey belong to a triangular face, or if they are interior vertices with valences ̸= 4, or if they are non-corner boundary

vertices with valences > 2. For visual consistency, we will always denote the extraordinary vertices of a mesh by
lacing red stars on them as in Fig. 3(a). For instance, the top two extraordinary vertices in Fig. 3(a) are the corners
f a triangular face and have valence 4.

emark 2.2. In this manuscript, the label “unstructured” applies if the mesh contains a non-grid-like arrangement
f quadrilaterals or if the mesh contains any triangles.

. Quadratic mixed smoothness splines

Given a quad-tri mesh T , in this section we define quadratic, mixed smoothness spline basis functions on T ,
or simply mixed quadratic B-splines. They will be C1 smooth on almost all parts of the mesh and C0 smooth
elsewhere; this will be made precise shortly. However, in contrast to the approach in [6], the neighbourhoods with

0 smoothness will shrink with each refinement; see Section 4 for details. As pointed out in Section 1.1, this
significantly simplifies the data structures required in the implementation of these mixed quadratic B-splines.

We divide the definition of the mixed quadratic B-splines on T into two parts. First we specify the degree of
freedom structure and then we specify how the splines associated to each degree of freedom are defined on each
face of T .

3.1. Degrees of freedom

The degrees of freedom, or dofs in short, are divided into three categories; the spline construction will be specified
for each category separately.

• Face dofs: We associate one degree of freedom to each face of T , i.e., one degree of freedom for each member

of T2.

6
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Fig. 4. For the example mesh shown in Fig. 3(a), the above image shows the dof structure. All dofs have been displayed as unfilled blue
ircles. There is one dof assigned to each mesh face, each boundary edge and each corner vertex, and the connectivity of these dofs is
isplayed with dotted lines; see Section 3.1 for details. The depiction here is to be treated only as containing topological information; the
alues of the dofs can be chosen arbitrarily of the locations shown here. For instance, choosing the dofs as the filled blue disks in Fig. 3(b),
he surface shown there is obtained.

• Boundary edge dofs: We associate one degree of freedom to each boundary edge of T , i.e., one degree of
freedom for each member of T1\

◦

T1.
• Corner vertex dofs: We associate one degree of freedom to each corner vertex of T , i.e., one degree of freedom

for each member of T 0.

Thus, the total number of face, boundary edge and corner vertex dofs are |T2|, |T1|− |
◦

T1| and |T 0|, respectively.
The total number of dofs will be denoted as

n := |T2| + |T1| − |
◦

T1| + |T 0| . (1)

or visual consistency, in the topological description of the mesh (as in Fig. 3(a)), we will denote each dof by
lacing an unfilled blue circle on the associated face/boundary edge/corner vertex of T , and the connectivity of
he dofs will be denoted with thin dotted lines; see Fig. 4. When discussing the concrete values these dofs take
e.g., when showing specific spline geometries as in Fig. 3(b) or when discussing the computation of new dofs during
efinement in Section 4.2), the dofs will be denoted with filled blue disks, and their connectivity will be denoted
ith thin solid lines; see Fig. 3(b).

.2. Definitions of mixed quadratic B-splines

Let us now define the mixed quadratic B-splines on T , one for each dof. This will be done by specifying their
ocal polynomial descriptions in terms of Bernstein–Bézier polynomials on quadrilaterals and triangles via so-called
xtraction matrices. Extraction matrices specify how the face-local Bernstein–Bézier polynomials can be linearly
ombined to yield the face-local description of a spline basis function; these were introduced in [60,61] and have
een used, for instance, for defining splines on unstructured quadrilateral meshes in [6,7,29] and for multi-degree
plines in [62,63].

Following the categorization of the dofs in Section 3.1, we will also call the associated splines face, boundary
dge and corner vertex splines, respectively. Equivalently, we will say that a spline is associated to φ ∈ Tk ,
= 0, 1, 2, if it is associated to the dof attached to φ. Denote these spline functions as Bi , i = 1, . . . , n. The

ssociated spline space on T is then going to be defined as

B := span (Bi : i = 1, . . . , n) . (2)

he face-local descriptions of all splines will be specified by combining extraction matrices with quadratic and
i-quadratic Bernstein–Bézier polynomials defined on the triangular and quadrilateral faces of T , respectively. The
onvention is explained in Section 3.2.1, and the definitions are subsequently presented in Sections 3.2.2–3.2.4.
7
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Fig. 5. Here we take a submesh of the one from Fig. 3(a) to illustrate how the extraction coefficients of mixed quadratic B-splines will
be graphically denoted. Given a face σ ∈ T , a mixed quadratic B-spline associated to σ or to a boundary edge/corner vertex belonging
to σ will be defined graphically by specifying its Bernstein–Bézier coefficients on σ ; see figure (a). This description will be extended to
neighbouring faces of T with zero coefficients denoted here with a · in figure (b). See Section 3.2.1 for further elaboration.

.2.1. Extraction matrix convention
We will graphically denote the extraction matrix for each mixed quadratic B-spline. For all mixed quadratic

-splines, this will be done by specifying their Bernstein–Bézier coefficients on a single face of T ; the face-local
escription will be extended to the neighbours. We elaborate upon this convention here and use Fig. 5 for reference.
or visual consistency and to differentiate local Bernstein–Bézier coefficients from spline dofs, all local polynomial
oefficients will be displayed inside magenta coloured disks.

Consider a quadrilateral face σ□ ∈ T2 and let Bi be a spline associated either to σ□ or to a boundary edge/corner
ertex that belongs to σ□. Then, we will present the definition of Bi graphically as on the left in Fig. 5(a)
y specifying 9 coefficients. The shown coefficients are to be interpreted as defining the following local spline
escription,

Bi
⏐⏐
σ□

=

2∑
j,k=0

c jkb jk,□ , (3)

here b jk,□ is the jk-th bi-quadratic Bernstein–Bézier polynomial defined on σ□ by interpreting it as the unit square
= [0, 1]2 (the origin is placed at the corner with the coefficient c00) and local coordinates ξ := (u, v),

b jk,□(ξ ) :=

(
2
)(

2
)

(1 − u) j (1 − v)ku jvk . (4)

j k

8
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Similarly, consider now a triangular face σ△ ∈ T2 and let Bi be a spline associated either to σ△ or to a boundary
edge/corner vertex that belongs to σ△. Then, we will present the definition of Bi graphically as on the right in
Fig. 5(a) by specifying 6 coefficients. The shown coefficients are to be interpreted as defining the following local
spline description,

Bi
⏐⏐
σ△

=

∑
j,k,ℓ≥0

j+k+ℓ=2

c jkℓb jkℓ,△ , (5)

here b jkℓ,△ is the jkℓ-th quadratic Bernstein–Bézier polynomial defined on σ△ by interpreting it as the standard
triangle △ (the origin is placed at the corner with the coefficient c200) and with ξ := (u, v, w) as the barycentric
oordinates of a point inside it,

b jkℓ,△(ξ ) :=

(
2

j, k, ℓ

)
u jvkwℓ . (6)

Finally, the face-local descriptions specified as above on any face σ are extended to any neighbouring face σ ′

ith the help of zero coefficients; see Fig. 5(b). With this graphical convention in place, let us now define the three
ifferent types of splines in the following sections.

.2.2. Face splines
Consider a face σ ∈ T2 and let Bi be the mixed quadratic B-spline associated to its dof. Let the edges and

ertices of σ be numbered as shown at the top in Fig. 6(a). Then, the face-local coefficients for Bi are defined as
n Fig. 6(b). The figure uses a boundary flag for vertices and edges which is a characteristic function defined as
ollows for φ ∈ Tk , k = 0, 1,

χ∂,φ =

{
1 , φ ∈

◦

Tk ,

0 , otherwise .
(7)

.2.3. Boundary edge splines
Consider a face σ ∈ T2. Let the edges and vertices of σ be numbered as shown at the top in Fig. 6(a), and let τ1

e a boundary edge and Bi be the mixed quadratic B-spline associated to its dof. Then, the face-local coefficients
or Bi are defined as in Fig. 6(c). The figure uses a corner flag for vertices which is a characteristic function defined
s follows for γ ∈ T0,

χ∧,γ =

{
0 , γ ∈ T k ,

1 , otherwise .
(8)

3.2.4. Corner vertex splines
Consider a face σ ∈ T2. Let the edges and vertices of σ be numbered as shown at the top in Fig. 6(a). Let γ1 be

boundary vertex that has been chosen to be a corner vertex, and let Bi be the mixed quadratic B-spline associated
o its dof. Then, the face-local coefficients for Bi are defined as in Fig. 6(d).

.3. Spline functions

Given the above mixed quadratic B-spline definitions, we can create a spline function f by linearly combining
he mixed quadratic B-splines with coefficients fi ∈ R,

f :=

n∑
i=1

fi Bi . (9)

ollowing the piecewise definition of mixed quadratic B-splines, the above definition is also interpreted in a
iecewise manner. That is, for any σ ∈ T2 and local coordinates ξ as in Eqs. (4) and (6),

f
⏐⏐
σ

(ξ ) =

n∑
fi Bi

⏐⏐
σ

(ξ ) , (10)

i=1

9
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o
m
m

Fig. 6. This figure defines all mixed quadratic B-splines that may be associated to a face, boundary edge or a corner vertex. In (a), the local
mesh neighbourhood of a quadrilateral and triangular face of T are shown with vertices γi and edges τi . In (b), the face-local coefficients

f a mixed quadratic B-spline associated to σ are presented. In (c), assuming that τ1 is a boundary edge, the face-local coefficients of a
ixed quadratic B-spline associated to τ1 are presented. Finally, in (d), assuming that γ1 is a corner vertex, the face-local coefficients of a
ixed quadratic B-spline associated to γ1 are presented.
10
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P

where Bi
⏐⏐
σ

follow from Section 3.2.
These kinds of linear combinations can be used, for instance, to create a bivariate spline geometry. This can be

done by choosing appropriate control points xi ∈ Rd , i = 1, . . . , n, and defining

x :=

n∑
i=1

xi Bi . (11)

See again Fig. 3(b) for a spline geometry built in this manner. The locations of the filled blue disks in the plane
correspond to the values of the dofs chosen.

3.4. Properties

The definitions of spline functions outlined in Section 3.2 immediately imply properties that are useful in
numerical simulations. We collect the properties in the following result.

Proposition 3.1.

(a) Non-negativity: On any σ ∈ T2 and any i = 1, . . . , n, Bi
⏐⏐
σ

≥ 0.
(b) Partition of unity: On any σ ∈ T2,

∑n
i=1 Bi

⏐⏐
σ

≡ 1.
(c) Local support: If Bi is associated to a φ ∈ Tk , k = 0, 1, 2, then Bi

⏐⏐
σ

= 0 for any σ ∈ T2 such that σ ∩φ = ∅.
(d) Boundary Kronecker–Delta: All Bi associated to face dofs are identically zero on the boundary of T .
(e) Linear independence: If T contains at least one quadrilateral or at least one interior vertex of odd valence,

then {Bi : i = 1, . . . , n} form a basis for B.
(f) Smoothness: All Bi are at least C0 smooth globally. Moreover,

• let σ ∈ T2 not contain any extraordinary vertices and boundary edges/vertices, then all faces splines
supported on σ are C1 smooth across its edges;

• let τ1, τ2, τ3 and τ4 meet at an interior vertex γ , µγ = 4, with the edges labelled in a clockwise or
counter-clockwise manner around γ , then all splines restricted to the pair τ1, τ3 or τ2, τ4 are C1 smooth
at γ ;

• let τ ∈ T1\
◦

T1 not contain any corner vertices, then all boundary edge splines supported on τ are C1

smooth across the endpoints of τ .

roof. The properties follow immediately by construction; the reasoning is as below.

(a) Non-negativity is implied by the fact that all local polynomial coefficients in Figs. 6(b)–(d) are non-negative.
(b) Partition of unity can be shown by taking an arbitrary σ ∈ T2 and by examining its face-local coefficients

for all splines. We consider one of the cases here; the remaining cases are similarly proved.
With the local numbering for a quadrilateral face as in Fig. 6(a), consider the coefficient c00 on σ and let
γ1 ∈

◦

T0. Then, there are µγ1 faces that share γ1; when the mixed quadratic B-splines associated to all these
faces are restricted to σ , the value of c00 is equal to 1

µγ1
for each. The value of c00 is 0 for all other mixed

quadratic B-splines. Consequently, for the sum of all mixed quadratic B-splines restricted to σ , the value of
the coefficient c00 is 1. The same can be shown for the remaining coefficients.

(c) Local support follows by the extraction convention from Section 3.2.1; see Fig. 5(b).
(d) The boundary Kronecker-Delta property follows by definition of the extractions in Fig. 6(b)–(d). Indeed, all

face splines have zero Bernstein–Bézier coefficients on the boundary, leaving only the boundary-edge and
corner-vertex splines as supported on the boundary. In fact, the mixed quadratic B-splines restricted to the
boundary are simply univariate quadratic B-splines.

(e) Linear independence can be shown by showing that f =
∑n

i=1 fi Bi = 0 ⇒ fi = 0 for all i . We discuss
three cases: (I) boundary-edge and corner-vertex splines, (II) quadrilateral-face splines and (III) triangle-face
splines. We will use the fact that, since f = 0, all Bernstein–Bézier coefficients on all faces must also be
zero.
Case I: From Fig. 6(c), consider the Bernstein–Bézier coefficient in the middle of a boundary edge (i.e., c10

for a quadrilateral and c110 for a triangle). Then, the mixed quadratic B-spline associated to this edge is

11
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a
f
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p
τ

the only one that contributes to this Bernstein–Bézier coefficient. Therefore, all coefficients fi associated to
boundary-edge splines should be zero. Similarly, from Fig. 6(d), all coefficients fi associated to corner-vertex
splines should be zero.
Case II: With reference to Fig. 6(b), consider the coefficients c11 on a quadrilateral face σ . Since the only
mixed quadratic B-spline that contributes to c11 is the one associated to σ , we see that the appropriate
coefficient fi for that mixed quadratic B-spline must be zero. Thus, the coefficients fi for all mixed quadratic
B-splines associated to quadrilateral faces must be zero.
Case III: There are two sub-cases of interest here, both of which imply that there is at least one face such
that the associated face-spline coefficient is zero.

• Let T contain at least one quadrilateral face, then the coefficient of the associated face-spline must be
zero from Case II.

• Let T be a triangulation (i.e., none of its faces are quadrilateral) and let γ be an interior vertex of odd
valence µγ . Let σ1, . . . , σµγ be triangles containing γ and such that σi ∩σi−1 ∈

◦

T1, i = 1, . . . , µγ , with
σ0 understood to be σµγ . If ci

110 is the Bernstein–Bézier coefficient in the middle of the edge σi ∩ σi−1,
it is the average of the face-spline coefficients associated to σi and σi−1. Then, since µγ is odd and all
ci

110 are zero, the face-spline coefficients associated to σi , i = 1, . . . , µγ , must also be zero.

Following both of the above sub-cases, we can iteratively apply the following argument to show that the
coefficients for all face-splines must vanish.
Let σt be a triangular face that shares an edge with another (quadrilateral or triangular) face σ . Let the
Bernstein–Bézier coefficients on the common edge τ be c101, c011, c110. If the coefficient of the face spline
associated to σ is 0, then the coefficient of the face spline associated to σt must also be zero. This is because,
from Fig. 6(b), c011 is the average of these two coefficients.

(f) C0 smoothness of all Bi follows from the extraction convention from Section 3.2.1; see Fig. 5(b).

• Let σ ∈ T2 not contain any extraordinary vertices or boundary vertices/edges. Then, the 1-ring of faces
surrounding σ are all quadrilaterals and together they form a 3 × 3 grid of quadrilateral faces. Then, it
is readily verified that the definitions in Fig. 5(b) imply that the Bernstein–Bézier forms of the splines
satisfy C1 smoothness conditions across all edges of σ . In particular, the mixed quadratic B-spline
associated to σ is the standard C1 tensor product bi-quadratic B-spline supported on this 3 × 3 grid of
faces.

• Let τ1, τ2, τ3 and τ4 meet at an interior vertex γ , µγ = 4, with the edges labelled in a clockwise
or counter-clockwise manner around γ . Then, restricted to the pair τ1, τ3, the local Bernstein–
Bézier coefficients of any spline satisfy the univariate C1 smoothness conditions at γ . Note that this is
independent of whether γ is shared by only quadrilaterals or both quadrilaterals and triangles.

• Let τ ∈ T1\
◦

T1 not contain any corner vertices. Then, the definitions in Fig. 5(c) imply that, restricted to
the boundary, the Bernstein–Bézier forms of the splines satisfy C1 smoothness conditions across both
endpoints of τ . In particular, the mixed quadratic B-spline associated to τ is a standard univariate C1

quadratic B-spline when restricted to τ and its two neighbouring boundary edges. ■

. Mesh and spline refinement

Refinement of the mesh can help improve the resolving power of splines for the purpose of, for instance, obtaining
better approximation to the solution of a PDE. In this section, we outline how a given quad-tri mesh and spline

unctions defined on it are refined.

.1. Refining T and B

Recall from Section 2 that T is a topological construct only; thus we only need to specify how the connectivity
nd polygonal-composition of T are to be updated. In particular, we implement a refinement process for T that
roduces a purely quadrilateral mesh. This refinement process can be explained as follows: each n-sided polygon of
is split into n-quadrilaterals. More precisely, all quadrilaterals are split into 2 × 2 quadrilaterals and each triangle
12
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s

R

Fig. 7. The above figure shows how the mesh faces are split when performing refinement. Each quadrilateral and triangular face is split
into 4 and 3 new faces as shown in figures (a) and (b), respectively. Figure (c) shows how the mesh topology changes after refinement for
the mesh previously shown in Fig. 3(a). See Section 4.1 for details.

is split into 3 quadrilaterals; see Fig. 7. We will denote refined quantities with a “hat” — for instance, the refined
mesh will be denoted as T̂ .

During this process, as is clear from Fig. 7, |T1| + |T2| new mesh vertices are added; we assume that the old
mesh vertices retain their labels. It is also assumed that no hanging nodes are introduced in this process. Moreover,
since the old vertices retain their labels, the corner vertices of T̂ are chosen to be identical to the corner vertices
of T , i.e., T̂ 0 := T 0.

Then, the refined degree of freedom structure for T̂ is again created as per Section 3.1 for T̂ , and the
associated mixed quadratic B-splines B̂i , i = 1, . . . , n̂, and the refined spline space B̂ are created following
Sections 3.2.2–3.2.4. In particular,

n̂ = |T̂2| + |T̂1| − |

◦

T̂1| + |T̂ 0| ,

= |T̂2| + 2|T1| − 2|
◦

T1| + |T 0| ,
(12)

ince T and T̂ have the number of corner vertices, and the latter has twice as many boundary edges as the former.

emark 4.1. If the T contains no extraordinary vertices and no corner vertices, then B ⊂ B̂; this is not true in
general and can be seen by considering Proposition 3.1(f) with regard to T and T̂ . In brief, we opt for a non-nested
refinement process here, with the non-nestedness limited to (a) neighbourhoods of extraordinary vertices and (b)
faces that contain non-corner boundary vertices of valence > 2; these neighbourhoods shrink with each refinement
step. An upshot is that the data structures in the implementation of splines are significantly simplified compared to
other mixed smoothness constructions on unstructured meshes that use nested refinements [6,7].
13
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Fig. 8. The above depicts refinement of boundary edge dofs. Figure (a) shows the edge labels for the coarse (top) and fine (bottom) meshes.
Figure (b) shows how the coarse Bernstein–Bézier form of a spline f on τ (top) can be used to compute the boundary edge dofs for the

ew boundary edges (bottom).

.2. Refining spline functions

Let us now outline how a spline function f ∈ B is refined to create a spline function f̂ ∈ B̂. We will do this
graphically by outlining how the old dofs are combined to yield the new dofs. We start by addressing the updates
of corner vertex dofs, then boundary edge dofs, and finally the face dofs.

In the following, we denote the old dofs for f with fi (see Eq. (9)), and the new dofs with f̂i . Graphically, the
former will not be shown and, following our convention, the latter will be shown as filled blue circles.

4.2.1. Corner vertex dofs
As mentioned above, the number of corner vertices remains fixed during refinement and retain their labels;

see Fig. 7(c) for an example. The associated dofs map from f to f̂ via the identity map. That is, let fi be the
of associated to a corner vertex of T and let f̂ j be the dof associated to the same corner vertex but now as a
ember of T̂ . Then, we set

f̂ j := fi . (13)

4.2.2. Boundary edge dofs
Let τ ∈ T be a boundary edge belonging to σ ∈ T2 that is being split into two new boundary edges τ̂L , τ̂R ∈ T̂1;

see Fig. 8(a). Recall Eqs. (3) and (5) that define the local representation of mixed quadratic B-splines on a face σ that
contains τ . Then, the transpose of those operations map the mixed quadratic B-spline coefficients fi , i = 1, . . . , n, to
the local Bernstein–Bézier coefficients on σ and, therefore, on τ . Let the Bernstein–Bézier coefficients corresponding
to τ be as at the top of Fig. 8(b). Then, the dofs corresponding to τ̂L and τ̂R are computed as in the bottom of
Fig. 8(b).

4.2.3. Face dofs
Let us now describe the refinement of the remaining dofs — the face dofs. This will be done in two steps. In

Step 1, a prediction for the new face dofs is made. Next, in Step 2, a correction is applied to some of these face
dofs in the unstructured regions of the mesh.

Step 1. Let σ ∈ T2 be refined into (4 or 3) new faces of T̂2 as shown in Fig. 9. Then, as in the case of boundary
edge dof refinement, use the transpose of the operations in Eqs. (3) and (5) to map the mixed quadratic B-spline
coefficients fi , i = 1, . . . , n, to the local Bernstein–Bézier coefficients on σ . Let these coefficients be as displayed
at the right in Figs. 9(a) and (b) for quadrilateral and triangular faces, respectively. Then, the new face dofs are
computed by averaging a subset of these coefficients as shown.

Step 2. The above step yields the final values for almost all new face dofs, but we apply a correction to some
of the new face dofs. More precisely, let all faces sharing an extraordinary vertex of T be quadrilaterals, and let
this extraordinary vertex be the only extraordinary vertex those faces contain (i.e., no other vertex of those faces is
extraordinary). Then, the correction step is applied to the face dofs obtained by splitting these coarse quadrilaterals.
We consider first the case of interior vertices and then boundary vertices.

Let the labelling of the coarse faces and the new face dofs be as in Fig. 10(a) for an interior extraordinary
´
vertex. Moreover, let the Bernstein–Bezier coefficients for the spline f on the edge shared by σm and σ mod (m,µ)+1

14
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Fig. 9. The above shows Step 1 in the refinement of face dofs. The coarse quadrilateral and triangular elements on the left are split into
ew quadrilaterals labelled as in the middle. In the rightmost images, it is shown how the Bernstein–Bézier form of the coarse faces are
sed to compute the new face dofs via averaging; the weights for the quadrilateral element are 1

4 and for the triangular element are 1
3 .

be cm,00, cm,01, cm,02 for m = 1, . . . , µ. Then, the corrected face dofs f̂1,i , . . . , f̂µ,i are computed as⎡⎢⎢⎢⎢⎢⎢⎢⎣

f̂1,i

f̂2,i

...

f̂µ,i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

◦

Sµ

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
c1,00 c1,01 c1,02

c2,00 c2,01 c2,02

...

cµ,00 cµ,01 cµ,02

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣

1
4
1
2
1
4

⎤⎥⎦ −

⎡⎢⎢⎢⎢⎢⎣
f̂1,ℓ f̂2, j

f̂2,ℓ f̂3, j

...

f̂µ,ℓ f̂1, j

⎤⎥⎥⎥⎥⎥⎦
[

1
4
1
4

]
⎞⎟⎟⎟⎟⎟⎟⎠ +

◦

Qµ

⎡⎢⎢⎢⎢⎢⎢⎣
f̂1,i

f̂2,i

...

f̂µ,i

⎤⎥⎥⎥⎥⎥⎥⎦ , (14)

where
◦

Sµ and
◦

Q are circulant matrices. If µ is odd, they are defined to be

◦

Sµ =

⎡⎢⎢⎢⎢⎣
2 −2 2 · · · −2 2
2 2 −2 · · · 2 −2

. . .
. . .

. . .
. . .

. . .

−2 2 −2 · · · 2 2

⎤⎥⎥⎥⎥⎦ ,
◦

Qµ = 0 , (15)

nd if µ is even, they are defined to be

◦

Sµ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 −
4
µ

−

(
4 −

8
µ

) (
4 −

12
µ

)
· · · 0

0 4 −
4
µ

−

(
4 −

8
µ

)
· · ·

4
µ

. . .
. . .

. . .
. . .

−

(
4 −

8
µ

) (
4 −

12
µ

)
−

(
4 −

16
µ

)
· · · 4 −

4
µ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

◦

Qµ =
1
µ

⎡⎢⎢⎢⎢⎣
1 −1 · · · −1

−1 1 · · · 1
. . .

. . .
. . .

−1 1 · · · 1

⎤⎥⎥⎥⎥⎦ . (16)

Next, let the labelling of the coarse faces and the new face dofs be as in Fig. 10(a) for a boundary extraordinary
´
ertex or a corner vertex of valence > 1. Moreover, let the Bernstein–Bezier coefficients for the spline f on the
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w

a

edge shared by σm and σm+1 be cm,00, cm,01, cm,02 for m = 1, . . . , µ−1. Then, the corrected face dofs f̂1,i , . . . , f̂µ,i
are computed as⎡⎢⎢⎢⎢⎢⎢⎣

f̂1,i

f̂2,i

...

f̂µ,i

⎤⎥⎥⎥⎥⎥⎥⎦ = S∂
µ

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
c1,00 c1,01 c1,02

c2,00 c2,01 c2,02

...

cµ−1,00 cµ−1,01 cµ−1,02

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

1
4
1
2
1
4

⎤⎥⎥⎦ −

⎡⎢⎢⎢⎢⎢⎢⎣
f̂1,ℓ f̂2, j

f̂2,ℓ f̂3, j

...

f̂µ−1,ℓ f̂µ, j

⎤⎥⎥⎥⎥⎥⎥⎦
[

1
4
1
4

]
⎞⎟⎟⎟⎟⎟⎟⎠ + Q∂

µ

⎡⎢⎢⎢⎢⎢⎢⎣
f̂1,i

f̂2,i

...

f̂µ,i

⎤⎥⎥⎥⎥⎥⎥⎦ , (17)

here S∂
µ is defined to be

S∂
µ = Rµ + JµRµJµ−1 , (18)

nd Q∂
µ, Rµ and Jk are defined to be the following matrices of sizes µ×µ, µ×(µ−1) and k×k, k ≥ 1, respectively,

Q∂
µ =

1
µ

⎡⎢⎢⎢⎢⎣
1 −1 · · · (−1)µ−1

−1 1 · · · (−1)µ

. . .
. . .

. . .

(−1)µ−1 (−1)µ · · · (−1)2µ−2

⎤⎥⎥⎥⎥⎦ ,

Rµ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −
4
µ

−

(
4 −

8
µ

) (
4 −

12
µ

)
· · · (−1)µ 4

µ(
4 −

8
µ

)
−

(
4 −

12
µ

)
· · · (−1)µ+1 4

µ(
4 −

12
µ

)
· · · (−1)µ+2 4

µ

. . .
...

(−1)2µ−2 4
µ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Jk =

⎡⎢⎢⎢⎢⎣
1

. .
.

1
1

⎤⎥⎥⎥⎥⎦

4.3. Properties

In general, the splines f and f̂ will be different due to the non-nestedness of the spline spaces B ̸⊂ B̂.
Nevertheless, the refinement steps proposed in the previous section minimize the difference between f and f̂ in a
specific sense. This is made more precise in the following result.

Proposition 4.2. Let f̂ be obtained from f via the refinement process outlined in Section 4.2. Then the following
hold true.

(a) Preserves constants: The refinement process leaves constant splines invariant.
(b) Boundary preservation: Let τ be a boundary edge of T and fτ the local polynomial representation of f

restricted to τ . With reference to Fig. 8, let the origin of local coordinates on τ be at the left end. Then,

f̂ |̂τL = fτ |[0,0.5] , f̂ |̂τR = fτ |[0.5,1] .

(c) Structured quadrilateral preservation: Let σ be a quadrilateral that contains no extraordinary vertices and
no boundary vertices/edges, and fσ the local polynomial representation of f restricted to σ . With reference
to Fig. 9(a), let the local coordinates on σ be in [0, 1]2 with the origin at the bottom left corner. Then,

f̂ |σ̂i = fσ |[0,0.5]2 , f̂ |σ̂ j = fσ |[0.5,1]×[0,0.5] , f̂ |σ̂k = fσ |[0.5,1]2 , f̂ |σ̂l = fσ |[0,0.5]×[0.5,1] .

(d) Midpoint interpolation on unstructured edges: Consider the settings shown in Fig. 10(a) and (b). Denote
with fσm the local polynomial representation of f restricted to σm and let the local coordinates on all σm
and σ̂m,i be in [0, 1]2 with the origin at the extraordinary vertex. Then, for all m = 1, . . . , µ,

f̂ |σ̂m,i (0, 1) = fσm (0, 0.5) .
16
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Fig. 10. The above shows Step 2 in the refinement of face dofs. Let σ1, . . . , σµ ∈ T2 be quadrilaterals that share an extraordinary vertex
and, moreover, this is the only extraordinary vertex that each face contains; figure (a) shows the case for an interior extraordinary vertex and
figure (b) for a boundary extraordinary vertex. Then, let f̂m,i , f̂m, j , f̂m,k and f̂m,ℓ be the face dofs obtained by splitting σm , m = 1, . . . , µ;
the subscripts of i, j, k, ℓ are as in Fig. 9(a). Then, a correction is applied to the dofs f̂m,i , m = 1, . . . , µ, as per Eqs. (14), (15) and (16)
for figure (a), and Eqs. (17) and (18) for figure (b).

Proof. The reasoning for all four properties is as below.

(a) The refinement of corner vertex, boundary edge and face dofs outlined in Eq. (13), Figs. 8 and 9, respectively,
clearly satisfy the claim. Then the only cases that remain correspond to refinement correction in Eqs. (14)
and (17). We consider Eq. (17); the other case is similar. If all the coarse dofs are equal to 1, then all the
fine face dofs that appear on the right hand side of Eq. (17) are also equal to 1, and so are the cm,00, cm,01

and cm,02, m = 1, . . . , µ − 1. Moreover, we see that the mth row of S∂
µ, m = 1, . . . , µ, sums to 2 for even

m 2 for odd valences. Similarly, the mth row of Q∂ , m = 1, . . . , µ, sums to 0 for
µ and sums to 2 + (−1)
µ µ

17
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even µ and sums to (−1)m+1 1
µ

for odd valences. Consequently, we see that for both odd and even valences
the refinement correction leaves the face dofs invariant, i.e., the computation on the right of Eq. (17) yields
new face dofs that are again equal to 1. The claim follows.

(b) The refinement outlined in Fig. 8 corresponds to the refinement (by bisection) of univariate quadratic B-
splines. Then, boundary preservation follows from this fact, and from the boundary Kronecker–Delta property
and the proof of boundary-edge smoothness in Proposition 3.1.

(c) On structured quadrilaterals, the refinement in Fig. 9 corresponds to the refinement (by bisection) of tensor
product bi-quadratic B-splines. Then, this property also follows from the proof of face smoothness in
Proposition 3.1.

(d) Consider Fig. 10(a) and the notation used in Eq. (14). Then,

fσm (0, 0.5) =
cm,00 + 2cm,01 + cm,02

4
, f̂ |σ̂m,i (0, 1) =

f̂m,ℓ + f̂m+, j + f̂m,i + f̂m+,i

4
,

where m+ := mod (m, µ) + 1. If we equate these two expressions and fix all new face dofs except f̂m,i ,
m = 1, . . . , µ, we get a system of µ equations. For odd valences this system is full rank while for even
valences it is rank deficient by 1. Nevertheless, it can be verified that in both cases Eq. (14) provides an
explicit and symmetric form of the solution. The case in Fig. 10(b) follows similarly. Note that Q∂

µ does not
affect midpoint interpolation since it lies in the nullspace of the face dof averaging above. ■

Remark 4.3. As will be shown in Section 5, the refinement correction outlined above has a positive effect on
error convergence rates when performing isogeometric analysis. However, it needs to be emphasized that our
refinement correction should be viewed differently from others that aim to improve error convergence by introducing
refinements that intend to capture singularities in the exact solution [64] or refinements that intend to counter the
lack of local approximation power [7,26]. Both these classes of refinements aim to introduce local mesh sizes that
shrink faster than elsewhere. On the other hand, our mesh refinement is different as it only aims to reproduce an
aspect of regular, nested, uniform mesh refinements, i.e., mid-point interpolation; see Proposition 4.2(d).

Remark 4.4. Here, we have introduced local non-nestedness around extraordinary points to prioritize simplified
mplementation as well as imposition of maximal smoothness wherever possible; as is shown later in Section 5, the
esulting spaces also demonstrate optimal approximation in the L2 and H 1 norms for second-order PDEs. This can

be helpful in applications and offers an alternative viewpoint to earlier constructions [6,7,26] where a detailed
discussion of nested unstructured spline spaces was presented. Those constructions were presented for C2/C1

icubic splines and also demonstrated optimal approximation behaviour, albeit at the expense of more involved
mplementations and, after refinement, the need to impose non-maximal smoothness even in structured regions of
he mesh. In fact, our approach can be seen as motivated by the same considerations as the “design space” from [7]
e.g., ease of implementation, maximal smoothness imposition, standard control nets). Nevertheless, the resulting
efinement schemes are significantly different – the “design space” was formulated for cubic splines, had no notion
f refinement correction and was unsuitable for analysis due to poor approximation behaviour (specifically, linear
onvergence).

.4. Geometric consistency errors

The non-nestedness of the refinement implies that there will be localized changes to the geometry of interest in the
eighbourhoods of extraordinary points. Nevertheless, as sketched in the Appendix, a subdivision interpretation of
he refinement scheme shows convergence in the limit of refinement. However, in practice, this limit of refinement is
ever reached so a simple but interesting quantity to measure is the distance between its successive refinements. This
as previously done in [7] for a non-nested refinement scheme. A general quantification of this distance depends on

he particular choice of geometry. For instance, a planar surface built from a mesh with only interior extraordinary
oints will be geometrically identical at all refinement levels, only its parameterization will change. Taking as an
xample a non-planar surface from the Shape Obstacle Course [65], we investigate the maximum distance between
uccessively refined representations. The coarsest representation (containing 36 quadrilateral elements) and its two
uccessive refinements are shown in Fig. 11. The maximum distance between the geometries in figures (a) and (b)
s 1.1 × 10−2, and between the geometries in figures (b) and (c) is 5.4 × 10−3. These results are of the same order

f magnitude as the ones from [7].

18



D. Toshniwal Computer Methods in Applied Mechanics and Engineering 388 (2022) 114174

a

l

5

W
s
o

R
d
N
a
f
c

R
w
o
b
b
c
r
p

R
c
F
L

g

Fig. 11. Borrowing a surface from the Shape Obstacle Course [65], we show how the geometric changes due to the non-nested refinements
re localized around the extraordinary point. The reduction in the footprint of C0 smoothness with refinement is clearly visible in the above

figures. The maximum distance between the geometry at refinement level 0 and 1 is 1.1 × 10−2, and between the geometry at refinement
evel 1 and 2 is 5.4 × 10−3, comparable to the ones from [7].

. Numerical tests

In this section we present several numerical tests using the mixed quadratic B-splines presented in this document.
e begin in Section 5.1 by presenting numerical experiments to investigate the approximation properties of the

pline spaces. We do this by performing convergence tests on quadrilateral meshes that, at the coarsest level, contain
ne interior vertex that is an extraordinary vertex.

emark 5.1. As per Section 4, since all triangular faces of a coarse mesh are converted to quadrilateral faces
uring mesh refinement, they have no impact on the convergence behaviour that the spline spaces demonstrate.
evertheless, the last example in Section 5.1 presents results on a family of meshes that are pure triangulations at

ll refinement levels; see Fig. 14. In general we expect that the numerical results will be better for meshes with
ewer triangles. If controlling the number of triangles is in the hands of the user, pure quadrangulations should be
hosen.

emark 5.2. In the examples depicting reconstructed trimmed surfaces (Figs. 2, 13 and 16), the coarsest
atertight reconstruction is done by generating a quad-tri mesh T using Rhinoceros®, building the spline space
n T as per Section 3, and then solving for the spline control points by requiring interpolation of the face centres,
oundary-edge midpoints and corner vertices. An exception is the hole boundary of Fig. 13 where the corresponding
oundary control points are chosen to exactly represent a circle. In general, more sophisticated fitting algorithms
an be formulated and employed, but this is out of this manuscript’s scope. In particular, if the B-spline/NURBS
epresentations of the trimming curves are available, then they can be directly used to set the boundary control
oints.

Subsequently, we present the first example that employs a trimmed geometry created using the CAD software
hinoceros®— convergence tests for a Poisson problem for a plate with a hole. Next, in Section 5.2, we present a
lassical linear elasticity benchmark — an infinite plate under horizontal tension with a circular hole at its centre.
inally, we present a sample workflow for performing isogeometric analysis on trimmed surfaces by solving the
aplace–Beltrami eigenvalue problem for a bracket geometry in Section 5.3.

In the following tests, we first build a spline geometry Ω ⊂ Rd using Eq. (11). Representing the piecewise-defined
eometric map from T to Ω as F : T → Ω , the space of mixed B-splines on Ω is defined through a push-forward,

S =
{

f ∈ C0(Ω ) : f ◦ F ∈ B
}

. (19)

We will also use the following space with homogeneous boundary conditions,

S0 = { f ∈ S : f |∂Ω = 0} . (20)
19
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5.1. Convergence tests

We start by solving an H 1 projection problem to numerically study the approximation offered by mixed quadratic
splines under mesh refinement. The problem studied is: find fh ∈ S such that

−

∫
Ω

∇g · ∇ f dΩ =

∫
Ω

g∇
2 fexact , ∀g ∈ S0 ,∫

∂Ω

g f dΩ =

∫
∂Ω

g fexact , ∀g ∈
{
g ∈ S : g|∂Ω ̸= 0

}
.

(21)

he exact solution for all convergence tests is chosen to be

fexact(x, y) = sin
(
πx +

π

3

)
sin

(
πy +

π

5

)
. (22)

emark 5.3. Imposition of boundary conditions for the mixed quadratic splines is straightforward, given the
oundary Kronecker–Delta property from Proposition 3.1.

The first set of tests is carried out on quadrilateral meshes containing a single extraordinary vertex. The spline
eometries and the control points at the coarsest level are shown on the left in Fig. 12. The error convergence with
esh refinement is shown in the plots on the right, with the error norms plotted against the inverse of the square

oot of the number of dofs. We plot six different errors:

• ∥e∥max, ∥e∥0 and ∥e∥1: the L∞(Ω ), L2(Ω ) and H 1(Ω ) norms of the error with refinements performed as in
Section 4;

• ∥ē∥max, ∥ē∥0 and ∥ē∥1: the L∞(Ω ), L2(Ω ) and H 1(Ω ) norms of the error with refinements performed as in
Section 4 but without the refinement correction from Eq. (14).

s shown in the plots, the mixed quadratic splines demonstrate optimal convergence rates in the L2 and H 1

orms when the refinement is performed as in Section 4. On the other hand, without the refinement correction
rom Eq. (14), the convergence rates deteriorate rapidly with increasing valence of the extraordinary vertex. This
ame deterioration is also observed for the error measured in the L∞ norm and, except for the valence 3 geometry,
he refinement correction leads to improved but quadratic convergence rates for the error, i.e., suboptimal by one
rder.

emark 5.4. Following the numerical experiments, we conjecture that the spline spaces constructed here possess
ptimal approximation properties (i.e., optimal error estimates can be derived for them). Note that, since the
efinements are non-nested, it is in general unclear on how errors on successively refined meshes should be compared
uring numerical experiments. More generally, further research is needed into the formulation of appropriate
umerical experiments and metrics appropriate for investigating approximation with non-nested spaces. For instance,
t is expected that integral error metrics (L2 and H 1 norms) are less sensitive to changes in parameterization than
ocal error metrics (L∞ norm).

emark 5.5. Valence 3 extraordinary points are an isolated case where spline constructions seem to perform well,
ven if they demonstrate suboptimal error convergence for higher valences. This is true for several constructions
rom the literature and also seems to be the case for the no-refinement-correction case shown in the first row of
ig. 12.

In the second set of tests, we repeat the convergence tests but now for the watertight reconstruction of a trimmed
eometry. We start by creating a square plate with a hole in Rhinoceros® using trimming; the trimmed representation
f the geometry is shown in Fig. 13(a). Using the built-in meshing tool in Rhinoceros®, we immediately obtain the
uad-tri mesh shown in Fig. 13(b) and are able to reconstruct a so-called watertight and editable spline geometry
sing mixed quadratic splines; the latter is shown in Fig. 13(c). The error convergence plot is presented in Fig. 13(d)
nd optimal convergence rates are observed in both the L2(Ω ) and H 1(Ω ) norms.

A final set of convergence tests on Ω = [0, 1]2 is conducted. Here, we create two sequences of refined meshes
T k k
and T , k = 0, 1, . . . .

20
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Fig. 12. The above plots show the error convergence with mesh refinement when solving the problem in Eq. (21) on the different spline
geometries in the left column. Error e corresponds to when refinement is performed as in Section 4, and error e corresponds to when the
refinement correction in Eq. (14) is not implemented. The refinement correction is able to recover optimal convergence rates in the L2 and
H1 norms on all geometries. Error in the L∞ norm is more sensitive to parameterization changes (cf. Remark 5.4). Except for valence 3
(cf. Remark 5.5), refinement correction also leads to improved but suboptimal convergence in the L∞ norm.
21
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Fig. 13. The above shows the error convergence plot for a trimmed geometry and the problem in Eq. (21). Figure (a) shows the trimmed
geometry created in Rhinoceros® and (b) shows the quad-tri mesh created for it automatically by Rhinoceros®. Mixed quadratic splines on
the mesh in (b) are used to create a watertight and editable representation of the trimmed geometry, the former being shown in figure (c).
Figure (d) shows that optimal approximation behaviour is observed during mesh refinement. At the coarsest level, the quad-tri mesh contains
69 faces, and the total number of quadratic spline degrees of freedom for this mesh are 117 (69 interior, 48 boundary).

Fig. 14. The above compares the error convergence plots when an initially pure triangulation is refined as per the process in Section 4
(error denoted by e) versus when a sequence of refined pure triangulations is built (error denoted by e). The error converges sub-optimally
by 1 order on the sequence of triangulated meshes, but it converges optimally when the refinements are carried out as per Section 4.
22
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Fig. 15. The above shows the error convergence plot for the problem in Eq. (24). Figure (a) shows the mesh topology and spline geometry
hat model a quarter of a plate with a hole at the centre of it. Rational mixed quadratic splines on the mesh in the top figure in (a) can be
sed to create the geometry shown below with an exact representation of the boundary of the circular hole. Figure (b) shows that optimal
pproximation behaviour is observed during mesh refinement for both the L2 and H1 norms of the error. At the coarsest level, the quad-tri
esh contains 9 faces, and the total number of quadratic spline degrees of freedom for this mesh are 25 (9 interior, 16 boundary).

• The mesh family T k
is built by creating a uniform Type I triangulation [66] of Ω with 2k+3 triangles, and

then flipping the edge shared by the two triangles that contain the origin. This edge flipping ensures that there
is one interior vertex of T with an odd valence, which in turn implies the linear independence of the mixed
quadratic B-splines from Proposition 3.1.

• The mesh family T k is built by choosing T 0
= T 0

. Then, for k ≥ 1, T k is obtained by refining T k−1 as per
Section 4.

See Fig. 14(a) to see the topology and geometry of coarsest meshes T 0
= T 0

. The error convergence is shown in
Fig. 14(b). As can be seen, the convergence on mesh family T k

is suboptimal by 1 order in both L2 and H 1 norms,
hile the convergence on mesh family T k is optimal.

.2. Infinite plate with a circular hole

For the second set of numerical tests, we simulate the well-known linear elasticity benchmark where an infinite
late with a circular hole is subjected to tension at infinity assuming plane strain. Usually, symmetry conditions are
tilized to work with only a finite quarter of the plate; we can model this quarter plate with the quadrilateral-triangle
esh in Fig. 15(a). In particular, we can exactly represent the circular hole geometry at the centre of the plate by

hoosing weights and values of the boundary dofs such that the boundary is exactly circular; see, e.g., [67]. See [68]
or a detailed discussion of this problem.

With the displacements in a Cartesian basis denoted with u = (u1, u2) and ε and D defined as

ε(u) =

⎡⎢⎣ u1,1

u2,2

⎤⎥⎦ , D =

⎡⎢⎣λ + 2µ λ 0
λ λ + 2µ 0

⎤⎥⎦ ,
u1,2 + u2,1 0 0 µ

23
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t

T

Fig. 16. The figure in (a) shows an automatic workflow that is enabled by mixed quadratic splines: boolean operations on the right yield a
rimmed geometry for which a quad-tri mesh can be created in Rhinoceros®, and the latter mesh can be utilized to create a watertight and

editable representation of the trimmed geometry. Figure (b) shows some of the eigenmodes corresponding to the Laplace–Beltrami eigenvalue
problem in Eq. (26). Shown are modes 1, 2, 3 (top) and 9, 12, 14 (bottom). The quad-tri mesh generated by Rhinoceros®contains 414
faces, and the total number of quadratic spline degrees of freedom for this mesh are 540 (414 interior, 126 boundary).

the weak form of the problem we solve is: find u ∈ S2 such that∫
Ω

ε(w)T Dε(u) dΩ = 0 , ∀w ∈ S2
0 ,∫

Ω

w · u dΩ =

∫
Ω

w · uexact dΩ , ∀w ∈
{
g ∈ S : g|∂Ω ̸= 0

}2
. .

(23)

he exact solution to the infinite plate problem in polar coordinates is

u1,exact(r, θ) =
T R
9µ

[
(κ + 1)

r
R

cos(θ ) +
2R
r

((κ + 1) cos(θ ) + cos(3θ )) − 2
R3

r3 cos(3θ )
]

,

u2,exact(r, θ) =
T R

[
(κ − 3)

r
sin(θ ) +

2R
((−κ + 1) sin(θ ) + sin(3θ )) − 2

R3

3 sin(3θ )
]

.

(24)
9µ R r r
24
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Here, R is the radius of the circular hole, T is the horizontal tension applied at infinite and κ = 3 − 4ν for plane
strain. The problem parameters are chosen to be

ν = 0.3 , E = 106 , T = 106 , R = 1 , λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

. (25)

.3. Laplace–Beltrami eigenvalue problem on a trimmed bracket

As the last set of numerical approximation examples, we demonstrate a sample workflow for working with curved
rimmed geometries; see Fig. 16. We start by creating a bracket geometry by trimming an extruded surface with

cylinder and an oblique plane in the rightmost image in Fig. 16(a). The image to its left is the trimmed, non-
atertight and non-editable geometry. The image to its left shows the quad-tri mesh created by an in-built meshing

ool of Rhinoceros®, and finally the leftmost image shows the reconstructed, watertight and editable spline geometry
n this quad-tri mesh. Note that this is an entirely automated process that only requires that a watertight quad-tri
esh be generated by Rhinoceros®; cf. Remark 1.3. Once this is done, we are able to solve a Laplace–Beltrami

igenvalue problem [69] on the mixed quadratic spline geometry. This problem is defined as: find f ∈ S0 and λ ∈ R
uch that∫

Ω

∇Ωg · ∇Ω f dΩ =

∫
Ω

g f dΩ , ∀g ∈ S0 . (26)

elect eigenmodes for the problem are shown in Fig. 16(b).

. Conclusions

We have presented an analysis-suitable construction of quadratic splines on quadrilateral-triangle meshes. These
re at most biquadratic piecewise-polynomial splines and have mixed smoothness — C1 in structured regions
f the mesh and C0 elsewhere. The splines possess several B-spline-like properties as shown in Proposition 3.1
nd especially simplify boundary condition imposition. We have proposed a non-nested refinement scheme for
hese splines that considerably simplifies their implementation, shrinks the neighbourhoods of C0 smoothness with

esh refinement, preserves splines on domain boundaries, and demonstrates excellent approximation behaviour for
econd-order problems. Quadrilateral-triangle meshes can be constructed for trimmed surfaces with relative ease; this
akes watertight and editable reconstructions of and simulations on the latter a viable application of our approach.
e have presented first numerical examples to demonstrate this workflow.
The construction we have presented is simple and can be extended in several directions. We briefly mention

ome of them here and, where applicable, outline the ongoing and completed work. Firstly, even though the ideas
e present here are for bivariate splines, the extension to trivariate splines on hexahedral-tetrahedral meshes is

traightforward. The incorporation of local-refinement on top of the construction would increase the flexibility of
he method, and in the structured regions of the mesh this could be done using a hierarchical B-spline-type approach.
nother interesting direction is the extension of the approach to higher polynomial degrees. From an applications
oint of view, our splines can be particularly useful in metal forming simulations [70] with trimmed CAD surfaces
nd a Reissner–Mindlin shell model. This is a manufacturing process for creating objects by deforming initially
lanar sheet metal, and it often involves C0 creases in both the geometry and the solution. Thus simulations of
his process are where C1/C0 spline constructions on arbitrary topology meshes can be helpful. Here, another
nteresting but minor extension would be to incorporate creased edges as another user/simulation-specified feature;
ee Remark 2.1.
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Fig. A.17. The above figures (a) and (b) show the 4µ dofs that are in the immediate neighbourhood of a given extraordinary point at
efinement level r and r + 1, respectively, for some r ≥ 0. (The figure has only topological information; the neighbourhoods have been
rawn with the same sizes only to make the dof labels visible.) As shown in Eq. (A.1), the dofs in (b) are obtained from those in (a) by
linear mapping which can be deduced from Section 4.

ppendix. Convergence of the geometry in the limit of refinement

Our refinement scheme can also be interpreted as a subdivision scheme. This interpretation and the theory of
ubdivision surfaces [10] can be used to show that, in the limit, the refinements converge to a C1

0 surface, i.e., a
surface that is C1 everywhere except at extraordinary points where it is only C0. We sketch the argument here for
n interior extraordinary point.

For some refinement level r ≥ 0, consider the 4µ dofs in the immediate neighbourhood of an interior
xtraordinary point of valence µ as shown in Fig. A.17(a); the 4µ dofs in the immediate neighbourhood at refinement
evel r + 1 are shown in Fig. A.17(b). With the dofs labelled as in Fig. A.17, we can find a matrix A such that⎡⎢⎢⎢⎢⎣

f̂ i

f̂ j

f̂ k

f̂ ℓ

⎤⎥⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎣
f i

f j

f k

f ℓ

⎤⎥⎥⎥⎦ , (A.1)

here

f m =

⎡⎢⎢⎢⎢⎣
f1,m

f2,m

...

fµ,m

⎤⎥⎥⎥⎥⎦ , f̂ m =

⎡⎢⎢⎢⎢⎣
f̂1,m

f̂2,m

...

f̂µ,m

⎤⎥⎥⎥⎥⎦ , m ∈ {i, j, k, ℓ} . (A.2)

The matrix A can be deduced from Eq. (14) and its entries depend only on µ. In particular, the matrix has a structure
such that Eq. (A.1) can be broken down into two pieces,

f̂ i = A0 f i ,

⎡⎢⎣ f̂ j

f̂ k

f̂ ℓ

⎤⎥⎦ = A1

⎡⎢⎢⎢⎣
f i

f j

f k

⎤⎥⎥⎥⎦ . (A.3)
f ℓ

26



D. Toshniwal Computer Methods in Applied Mechanics and Engineering 388 (2022) 114174

a

Here, A1 contains (repeated) submatrices of the standard knot refinement matrix for bi-quadratic C1 B-splines [67]
and is stochastic (i.e.g, all rows sum to 1). The matrix A0 can be deduced from Eq. (14) and the explicit expressions
re provided below for odd µ,

A0 =

⎡⎢⎢⎢⎢⎢⎣
µ+1
2µ

1
2µ

1
2µ

· · ·
1

2µ
1

2µ

1
2µ

µ+1
2µ

1
2µ

· · ·
1

2µ
1

2µ

. . .
. . .

. . .
. . .

. . .

1
2µ

1
2µ

1
2µ

· · ·
1

2µ

µ+1
2µ

⎤⎥⎥⎥⎥⎥⎦ (A.4)

and even µ,

A0 =

⎡⎢⎢⎢⎢⎢⎣
2µ+1

4µ
5

4µ
1

4µ
· · ·

1
4µ

5
4µ

5
4µ

2µ+1
4µ

5
4µ

· · ·
5

4µ
1

4µ

. . .
. . .

. . .
. . .

. . .

5
4µ

1
4µ

5
4µ

· · ·
5

4µ

2µ+1
4µ

⎤⎥⎥⎥⎥⎥⎦ (A.5)

Note that A0 is also stochastic, and therefore so is A. Consequently, the dominant eigenvalue of A is equal to 1
and, furthermore, the above structure of A can be used to verify that its subdominant eigenvalue is equal to 0.5 for
all µ ≥ 3. Consequently, this refinement scheme is convergent [10].
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