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SUMMARY

Phylogenetic networks are a type of graph with vertices and edges, used to elucidate
the evolutionary history of species. The fundamental goal of phylogenetic research is to
infer the true phylogeny of species from raw data such as DNA sequences and morpho-
logical data. Most network inference methods require one to solve an NP-hard problem;
furthermore, there is generally no guarantee of a unique network. One way of resolving
this is to restrict our scope to networks within a certain class and to ask the following
question.

What input data guarantees a unique network within this class?

Such a question brings us to the idea of encodings. A network class is encoded by a
certain building block, such as displayed trees, splits, or induced inter-taxa distance ma-
trices, if the building block distinguishes one network in the class from another. More
precisely, no two networks in the same class may have the same set of building blocks.
Often, encoding results give inspiration for polynomial-time algorithms for inferring
networks within certain classes. Assuming to have data that corresponds to a network in
that class, one may plausibly construct it as the unique network that is consistent with
such information. We investigate encodings of different network classes in Chapters 3, 6
and 7.

The other half of the thesis, Chapters 4 and 5, introduces and investigates the class
of orchard networks. Network classes are often computationally motivated to tackle an
existing NP-hard problem, they are defined by their topological features, and they are
usually accompanied by their biological relevance. Here, we give a recursive definition of
orchards that make it an algorithmically interesting class, give a characterization based
on edge coverings, and show that orchard networks are precisely those where every retic-
ulate event is a horizontal transfer.

In addition to these results, we give a comprehensive analysis of how the recursive
definition of orchards can be used to show when one network is contained in another.
Biologically, stretches of DNA may evolve in a way that does not use the whole phylo-
genetic network of the species; being able to show that one network is contained in the
other gives us a way to check if a gene tree or gene network is consistent with the species
network. Algorithmically, we provide the first linear time algorithm for solving the NET-
WORK CONTAINMENT problem for tree-child networks, which is a prominent subclass of
orchard networks.

ix





SAMENVATTING

Fylogenetische netwerken zijn een type grafen met knopen en lijnen, die worden ge-
bruikt om de evolutionaire geschiedenis van soorten te beschrijven. Het fundamentele
doel van fylogenetisch onderzoek is om de ware fylogenie van soorten af te leiden uit
ruwe data zoals DNA-sequenties en morfologische gegevens. Voor de meeste netwerk-
inferentiemethoden is het nodig om een NP-moeilijk probleem op te lossen; bovendien
is er in het algemeen geen garantie op een uniek netwerk. Een manier om dit op te lossen
is om ons domein te beperken tot netwerken binnen een bepaalde klasse en de volgende
vraag te stellen.

Welk type data garandeert een uniek netwerk binnen deze klasse?

Een dergelijke vraag brengt ons bij het idee van coderingen. Een netwerkklasse wordt
gecodeerd door een bepaalde bouwsteen, zoals weergegeven bomen, splitsingen of geïn-
duceerde afstandsmatrices tussen taxa, als de bouwstenen het ene netwerk in de klasse
onderscheiden van het andere. Nauwkeuriger gezegd, geen twee netwerken in dezelfde
klasse mogen dezelfde verzameling bouwstenen hebben. Vaak geven coderingsresulta-
ten inspiratie voor polynomiale tijd algoritmen voor het genereren van netwerken bin-
nen bepaalde klassen. Gegeven data die overeenkomen met een netwerk in een zekere
klasse, kan men dit netwerk construeren als het unieke netwerk dat consistent is met die
data. We bespreken coderingen van verschillende netwerkklassen in Hoofdstukken 3, 6,
en 7.

De andere helft van het proefschrift, Hoofdstukken 4 en 5, introduceert en onder-
zoekt de klasse van orchard networks. Netwerkklassen zijn vaak computationeel gemo-
tiveerd om een bestaand NP-moeilijk probleem aan te pakken, ze worden gedefinieerd
door hun topologische kenmerken en hebben vaak een zekere biologische relevantie.
Hier geven een recursieve definitie van orchard networks die het een algoritmisch in-
teressante klasse maken, geven we een karakterisering op basis van edge coverings en
laten we zien dat orchard networks precies de netwerken zijn die beschreven kunnen
worden als een boom met horizontale overdracht.

Bovendien analyseren we hoe de recursieve definitie van orchard networks kan wor-
den gebruikt om te beslissen of een netwerk zich in een ander netwerk bevindt. Biolo-
gisch gezien kunnen stukken DNA evolueren op een manier die niet het hele fylogene-
tische netwerk van de soort gebruikt; het kunnen aantonen dat het ene netwerk in het
andere zit geeft ons een manier om te controleren of een genenboom of genennetwerk
consistent is met het soortennetwerk. Algoritmisch bieden we het eerste lineaire tijd al-
goritme voor het oplossen van het NETWORK CONTAINMENT-probleem voor tree-child
networks, een prominente subklasse van orchard networks.

xi
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2 1. INTRODUCTION

1.1. PHYLOGENETICS

P HYLOGENETICS is the study of the evolutionary history of species, and lies at the cross
section of mathematics, biology, and computer science. The main goal of phyloge-

netic research is to infer the true phylogeny of species at hand from raw data such as DNA
sequences and morphological data. Understanding the evolutionary history of species
is a foundational undertaking within the field of biology. Studying how lineages have
originated is not only vital in the classification of living things, but also important in in-
terpreting immunological patterns and examining developments of harmful organisms.
This can, for example, lead to fast and effective ways to deal with pathogen outbreaks
by inferring the most likely source of transmission. Most recently, techniques from phy-
logenetics were employed in the COVID-19 outbreak to detect multiple variants of the
virus and the evolutionary histories therein [1].

Traditionally, trees (graphs without undirected cycles) were (and still are) used to elu-
cidate the evolutionary picture, and serve instrumental in depicting speciation events
with vertical descent. Unfortunately, other evolutionary mechanisms can throw a wrench
in the works. Reticulate events such as hybridization and horizontal gene transfer can
give rise to signals that cannot be represented on a single tree [2, 3]. Such events, as it
turns out, are widespread and important evolutionary drivers [4–8]. A tangible example
is the evolutionary history of wheat. Triticum aestivum, most commonly known as the
common wheat used to make bread, is a byproduct of at least three hybridization events
from other wheat species (see Figure 1.1) [9]. Hybridization events also occur within the
evolutionary history of animals. Figure 1.2 shows a phylogeny of common lizards [10].

1.2. PHYLOGENETIC NETWORKS

P HYLOGENETIC networks are a generalization of trees that allow for the representation
of not only vertical descent, but also reticulate events. While trees have dominated

the evolutionary scene, phylogenetic networks have gained increasing attention in re-
cent years [2, 3].

Given a set of extant taxa X , a (non-binary directed phylogenetic) network on X is a
directed acyclic graph with

• a single root of indegree-0 and outdegree-1;

• tree vertices of indegree-1 and outdegree at least 2;

• reticulations of indegree at least 2 and outdegree-1;

• leaves of indegree-1 and outdegree-0 that are labelled bijectively by elements of X .
The leaf set will sometimes be denoted as L(N ) or as X .

Note that we do not allow parallel edges in phylogenetic networks1. We will allow for

1A quick note on parallel edges. Often in literature, they are seen as redundant and are excluded from most
phylogenetic networks. Indeed, it is easy to see for example, that a network N with parallel edges does not
provide any more information than one obtained by deleting all but one parallel edges from N , in terms of the
trees that they may display. Further, Occam’s Razor dictates that the most simple explanation should be taken.
However, there are many cases for employing parallel edges; one is to represent intra-specific hybridization.
For more reasons to allow for parallel edges within networks, see, for example, [11].
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3

Figure 1.1: A directed phylogenetic network of
wheat from [9]. The common wheat is indi-
cated by the species at the very bottom, labelled
AABBDD. The numbers indicate, in million year
units, the approximate dates for divergence and
the hybridization events.

Figure 1.2: A directed phylogenetic network of
common lizards from [10] containing three retic-
ulation events. Each taxa is labelled by an egg
or a lizard icon, which denotes the oviparous
(egg-laying) or the viviparous (birth-giving) na-
ture of the species. The network was used to illus-
trate the possible reversal of viviparity to oviparity
within common lizards (Black and green clades
are oviparous. The light blue clade contains
viviparous species; we see the reversal within the
purple clade, which contains oviparous species).

parallel edges in some of our graphs in Chapter 5.

The root is seen as the most recent common ancestor of the taxa set X ; edges are
directed, indicating the direction in which genetic material has passed. Tree vertices
and reticulations represent speciation and hybridization events, though they are some-
times seen as ancestral species. The leaves, which are bijectively labelled by X , represent
extant taxa. Edges directed into reticulations are called reticulation edges, and each non-
reticulation edge is called a tree edge. A (non-binary directed phylogenetic) tree on X is
a network on X with no reticulations.

Vertices of degree greater than 3 represent ambiguity in the order of how evolution-
ary events have unfolded. This occurs as a result of having insufficient data to accurately
conclude which lineages bifurcated first (soft polytomies), but it could indicate a diver-
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a b c d a b c d a b c d

t t1
t2

r r1 r2

N N
′

N
′′

Figure 1.3: A non-binary network N , a semi-binary network N ′, and a binary network N ′′ on the taxa
set {a,b,c,d}. The network N ′ is obtained from N by refining the vertex t into t1 and t2. The network N ′′
is obtained from N ′ by refining the vertex r into r into r1 and r2. The network N contains a cherry (a,b) and
a reticulated cherry (c,d). The network N ′ contains N ; the network N ′′ contains both N and N ′. Cherries,
reticulated cherries, and containment will be defined in Chapter 2.

gence of three or more lineages from a single lineage (hard polytomies). Most polytomies
are soft, meaning that true phylogenies often contain dichotomous speciation events. It
is possible also for more than two species to converge at the same time, which is called
multispecies hybridization [12].

Such ambiguities are often used to classify networks. The following lists three classi-
fications of networks in the order of most resolved / least ambiguous to most ambiguous.
We say that a vertex in a network is binary if it is of degree at most 3. A tree vertex that
is binary is called a bifurcation; a tree vertex that is not binary, i.e., one of degree greater
than 3, is called a multifurcation. We say that a network is binary if all vertices are binary;
it is semi-binary if all tree vertices are binary. We shall use the term non-binary, to mean
‘not necessarily binary’. Therefore, all binary networks are semi-binary, and all networks
are non-binary (see Figure 1.3).

Edges of phylogenetic networks either have directions or they do not. The direction
represents the passage of genetic material and / or the passage of time. Directed net-
works are also referred to as ‘evolutionary networks’ or ‘rooted networks’, and aim to rep-
resent the explicit evolutionary history of the species [13]. On the other hand, undirected
networks are often referred to as ‘data-display networks’ or ‘unrooted networks’. As the
pseudonym suggests, undirected networks are primarily used to exhibit the relatedness
of the species as can be inferred from the data, although the direction in which genetic
materials have passed is unknown. That said, unrooted networks are also used as evo-
lutionary networks, just with the edge directions removed. In this thesis, the unrooted
networks we consider in Chapter 7 are evolutionary networks. The main difference here
is that an undirected network does not necessarily dictate the ancestor-descendant re-
lationship, but rather the clades, clusters, and the splits that can be inferred from the
input data. Figures 1.1 and 1.2 are two examples of directed phylogenetic networks. See
Figure 1.4 for an example of a directed and an undirected network.

In addition to directed and undirected networks, researchers have looked into what
are called semi-directed networks, in which only the reticulation edges are directed [14].
This gives information on all reticulations of the network, and they are often used in
model-based methods, such as in pseudo-likelihood models [14], multispecies network
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Figure 1.4: A directed (left) and an undirected (right) phylogenetic network on the leaf set {a,b,c,d}. In the
directed network, the edges are directed downwards from the single root of indegree-0 to the leaves. The
undirected network on the right was obtained by ‘unrooting’ the directed network, by removing the root vertex,
suppressing degree-2 vertices, and removing directions from the edges.

coalescents [15], and Markov models [16]. We do not consider semi-directed networks
in this thesis, and therefore we do not elaborate further on this topic.

1.2.1. EARLY USES OF PHYLOGENETIC NETWORKS
The field of phylogenetics has a rather young history. Charles Darwin is generally at-
tributed the title ‘the founding father of evolution’ and rightfully so. He outlined the
theory of natural selection in his book On the Origin of Species and was one of the first
to use phylogenetic trees to depict (as a ‘simile’, in his words) the evolutionary relation-
ship between different species (see Figure 1.5). There is however, evidence of phyloge-
netic networks being used long before Darwin was even born. A genealogical network of
dogs was published in volume 8 of Histoire Naturelle in 1755 by Georges-Louis Leclerc,
Comte de Buffon [17] (see Figure 1.6). The figure represents a geographical chart out-
lining how dog races have evolved differently under varying circumstances. We refer the
interested reader to the following blog post on The Genealogical World of Phylogenetic
Networks [18].

1.2.2. FROM SEQUENCE ALIGNMENTS TO PHYLOGENETIC NETWORKS
There are many ways of inferring or constructing a phylogenetic network from input
data. For an overview on network building methods, see for example [2, 20]. Input data
generally arrives in the form of a multiple sequence alignment, based on DNA sequences
or morphological data.

A method based on parsimony searches for a network that minimizes the total num-
ber of mutations and / or the total number of reticulate events, which provides an expla-
nation for the given input. The problem is known to be NP-hard even when the search
space is restricted to phylogenetic trees [21]. A method based on maximum likelihood is
based on computing the likelihood of a certain network given the input sequence align-
ment. This uses some model of DNA evolution, such as Jukes-Cantor [22], Kimura two
parameter [23], or Kimura three parameter [24], which makes it possible to calculate the
probabilities based on different transition rates. Inferring networks via maximum like-
lihood is also known to be NP-hard; in fact, even finding optimal branch lengths for a
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Figure 1.5: Darwin’s famous sketch of a phylogenetic tree [19].

Figure 1.6: The first phylogenetic network (as far as we know) on the evolutionary history of dogs by Buffon [17,
18]
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given tree that would maximize the likelihood is already NP-hard [25].

Other methods first convert the sequence alignment into a more digestible format.
Two such formats include subnetworks and distance matrices. Inference methods us-
ing subnetworks are sometimes called supernetwork methods, and they seek a network
with the least number of hybridization events that display the given subnetworks. Here,
we say that a network displays another network if the latter can be obtained from the
former by deleting reticulation edges and suppressing indegree-1 outdegree-1 vertices.
The method again suffers from the issue of NP-hardness, even when the input consists
of two trees [26] or a set of triplets and we look for a level-1 network (networks where
the cycles are node-disjoint) [27]. On the other hand, distance matrices on the taxa can
be obtained from alignments by simply taking the Hamming distance, or applying some
model of DNA evolution along it [2]. A network that induces the same matrix (where ev-
ery element is induced as a path or a shortest path of the network, or the average path
length) is inferred, possibly with the fewest number of reticulations. Distance-based
methods are noteworthy due to the polynomial running time of some of them [28, 29],
which is attractive in relation to their NP-hard counter-part inference methods men-
tioned above. That said, they are less reliable when compared to other methods. There-
fore, they are often used to obtain a first estimate network, after which methods such
as Bayesian inference can be used to infer a more likely or a more parsimonious net-
work [30]. Within a Bayesian framework, in particular through a Markov Chain Monte
Carlo Metropolis-Hastings algorithm, for a given prior distribution, a specified phylo-
genetic network space is traversed via rearrangement moves to obtain a network with a
higher likelihood for the given input [2, 31].

1.3. CONTRIBUTION OF THE THESIS

W E first go over preliminary definitions and results in Chapter 2. The body of the
thesis, Chapters 3 – 7 include results that either have been accepted in journals for

publication, or those that are currently under peer review and are available on arXiv.
Chapters 3, 4, 5, and 6 contain results on directed networks; Chapter 7 contains re-
sults on undirected networks. The thesis chapters complement one another on mul-
tiple themes. Chapters 3, 6, and 7 all explore results pertaining to encodings, which are
unique characterizations of certain phylogenetic networks by certain building blocks.
Encodings are particularly helpful when trying to infer a network; given perfect data, one
can guarantee that a unique output solution that fits the data will be found. Chapters 4
and 5 both investigate characterizations of network classes. Phylogenetic networks have
been categorized into many topological classes for both biological and computational
incentives (for an overview of a few network classes, see Chapter 2). In Chapter 4, we
introduce the class of orchard networks via means of a recursive characterization. This
characterization also gives an encoding of orchard networks, as every orchard network
is encoded by the smallest sequence that reduces them. In Chapter 5, we take inspira-
tion from this recursive characterization to create a non-recursive characterization for
orchard networks, and show that a similar characterization can be used for the class of
tree-based networks. In the same chapter, we provide a third biologically meaningful
characterization of orchards, by means of network vertex time labelling.
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1.3.1. NETWORK CLASSES

As stated above, networks are categorized into different topological classes. Here, we give
rough definitions for the network classes that appear in this thesis; formal definitions
will be given in Chapter 2. The level of a network refers to the minimum number of
reticulation edges that need to be removed from every biconnected component to obtain
a tree [32]. A network of level-k is then called a level-k network. A network is tree-child
if every non-leaf vertex has a child that is a leaf or a tree vertex. A network is orchard if it
can be reduced to a network on a single leaf by applying a sequence of so-called cherry
reductions.

1.3.2. ENCODINGS

A building block of a network is any information that can be obtained from a phyloge-
netic network, such as the set of displayed subnetworks or the induced distance matrix.
Encodings refer to building blocks that uniquely characterize a network. We say that a
class of networks C is encoded by a certain building block S, if for any network N ∈ C

and for any network N ′ ∈ C \ {N }, we have that S(N ) 6= S(N ′). This is sometimes called
a weak encoding [33]. This is in contrast to another definition of encodings, where the
second network does not need to be contained in the class C of networks. Note that this
latter definition of encodings is stronger than the former definition of encodings. We
shall call this a strong encoding. Most results that we reference and present in this thesis
are weak encoding results. We reference one result in Chapter 6 that uses the notion of
a strong encoding. There, we shall make this distinction clear. Elsewhere in the thesis,
unless otherwise stated, we will use the term encoding to mean a weak encoding.

To see the bigger picture, we investigate encoding results to create algorithms to in-
fer unique networks from plausible input sets. The input sets in this case would be the
building blocks. By proving that a particular class of networks is encoded by some build-
ing block, we can guarantee a unique solution given that we have perfect data of a net-
work in the given class.

To understand where encoding results fit in the grand scheme of phylogenetics, we
must first understand the difference between constructing and reconstructing a phylo-
genetic network. One notion is motivated by the other. When constructing a network,
one is often concerned with obtaining a network that agrees with the given input, whilst
optimising certain criteria. Problems in this category are generally NP-hard, and exact
solutions, as well as solutions obtained from heuristics are generally non-unique. A few
of these inference method categories were mentioned in Section 1.2.2. Such uncertainty
invites follow-up questions. What restrictions can we impose to make the problem easy?
How does changing the input data affect this decision making? When can we expect a
unique solution?

These questions are the primary motivators for investigating network reconstruction.
When reconstructing a network, we start with the network, find the building blocks of the
network (e.g., subnetworks, distance matrices) that we are interested in, and try to recon-
struct the network from the building block. The aim is to show reconstructibility, that for
a given set C of networks, if two networks in C have the same building blocks, then the
networks must be isomorphic, thereby providing a unique solution when the space is
limited to C . The terms reconstructibility and encodings will be used interchangeably,
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Species 1 2 3 4 5 . . .

a A C T T G . . .

b A - T A G . . .

c T G - A G . . .

d A C A T C . . .

. . .

a j k b c d

e f g

. . .
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j

f g h ie k l m n
a b c d · · ·

a 0 3 4 5

b 3 0 3 6

c 4 3 0 5

d 5 6 5 0

· · ·

Figure 1.7: Visualization of the steps involved in a building block approach. The raw data is first converted
to a building block (in this case either sets of triplets or a distance matrix), which is then used to construct a
network that displays it.

through the thesis.
Therefore, the main difference in constructing and reconstructing a network comes

down to the starting point (see Figure 1.7). The input for constructing a network is the
raw data; the input for reconstructing a network is the network itself. When forging re-
construction proofs, we may theoretically assume to know what the network is. In prac-
tice, this is unfortunately not the case. Luckily, most reconstruction proofs may give in-
tuitions for how a heuristic may be created. In presence of perfect data, where the data
encodes some network, these methods will yield that network.

Results concerning reconstructibility are often shown in a constructive manner. Given
the set of building blocks, it is often customary to identify key features of networks that
would display such building blocks. The corresponding pendant structures are removed
from the building blocks, and the proof recurses on the updated building blocks. Be-
cause of this constructive nature, inferring an algorithm follows quite naturally. This
may be the most important aspect of reconstructibility results. The problem of finding
a network that is consistent with the given input becomes ‘easier’ if we may assume that
the output network is a member of a particular network class. Indeed, the assumption
allows us to leverage our understanding of the network class. Another neat feature is that
these algorithms often run in polynomial-time.

Another reason to consider encodings is to define a distance metric for the class.
Let C be a class of networks that are encoded by some type of building block S, where
the set of building blocks for a network N ∈ C is denoted by S(N ). Define a distance
metric between two networks N , N ′ in C by taking the size of the symmetric difference
between the two building blocks |S(N )4S(N ′)|. Since no two distinct networks have the
same building blocks, and because of the triangle inequality, it is easy to check that this
yields a distance metric within the class.

We now describe three building blocks we consider in this thesis. The subnetworks
(Chapter 3), the ancestral profiles (Chapter 6), and the distance matrices (Chapter 7).
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SUBNETWORKS (CHAPTER 3)
Roughly speaking, a subnetwork of a network is obtained by deleting vertices and / or
edges, and suppressing degree-2 vertices. In a subnetwork approach, we take as input a
set S of networks, and seek to find a network N such that every network in S is a sub-
network of N . In a subnetwork reconstruction approach, we seek to show that networks
in a particular class are encoded by their set of subnetworks.

We shall first visit some of the existing literature on construction methods that use
subnetworks. Consider the case where our subnetworks are trees, all on the same set of
taxa. Finding a network that displays all input trees is easy. In fact, there are notions of
‘universal’ tree-based and ‘universal’ tree-child networks that display all (2n −3)!! possi-
ble (binary) directed trees on n leaves [34, 35]. That being said, finding a network with
minimal hybridization number that displays a given set of trees, is NP-hard even for two
input trees [36]. This problem is called the HYBRIDIZATION NUMBER problem, and is
perhaps the most studied problem in combinatorial phylogenetics. Techniques includ-
ing, but not limited to, agreement forests and cherry-picking sequences (the latter of
which will be relevant in Chapter 4) have been developed to tackle the problem thus
far [35, 37, 38]. With certain restrictions, however, solutions can be obtained rather effi-
ciently. Huynh et al. proposed the first polynomial-time algortihm for combining a set
of trees into a level-1 network with the fewest reticulations as possible [39].

Inferring so-called consensus trees / networks have also gained attention for sets of
input trees. Such methods compare the induced clusters and splits2 of the input trees,
and seeks one that agrees with all or most input trees. For an overview, see [2]. Con-
sensus trees / networks can be constructed in polynomial-time [40, 41], though in some
instances, they will lead to outputs consisting of highly unresolved vertices.

Others have also considered trees on fewer leaves as building blocks. The classical
BUILD algorithm by Aho et al. returns a tree that displays a set of given input triplets
(trees on three leaves), should one exist, in polynomial-time [42]. In case a tree solution
does not exist, others have created algorithms for outputting level-1 [43, 44], level-2 [45],
and level-k networks [46] from triplet inputs.

Trinet inputs, which are networks on three leaves, have also been considered [47, 48].
The main reason for considering three leaved subnetworks is for simplicity and for scala-
bility. The number of different possible networks on three leaves (given a few restrictions
on, for example, the number of reticulations) is still at a manageable size. Constructing
triplets or trinets from DNA data is not an obvious process, but in principle they are
manageable since the size of the networks is highly limited. A few supernetwork meth-
ods with trinet inputs such as Lev1athan [44] and TriLoNet [47] also provide algorithms
for obtaining a set of triplets and trinets, from sequence alignments.

The motivation for studying encoding results, as explained before, arises from the
desire for a unique solution to be found, together with an algorithm to find one. In the
language of supernetwork approaches, this means that if a set of subnetworks did not en-
code a particular network, there could be more than one network that displays the same
set of subnetworks. When considering trees as subnetworks, Pardi and Scornavacca

2For directed trees, the clusters refer to the subset of leaves that can be reached from a certain internal vertex
of the tree; for undirected trees, the splits are a partition of the leaf-set mirrored in the two components of the
tree obtained by deleting an edge of the tree.
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somewhat resolved this distinguishability issue by considering ‘canonical forms’ of net-
works with branch lengths; however the problem still persists in general [49]. This is,
of course, one of the main reasons behind proving reconstructibility results on subnet-
works.

In related literature regarding reconstructibility results, a certain class of networks
called regular networks are encoded by their set of displayed trees [50]. It is also known
from Gambette et al. [51] that level-1 networks with girth (shortest cycle in underlying
graph) at least 5 are reconstructible from their triplets. It has been shown that tree-child
networks are encoded by trinets [52] but not by trees. In the same paper, it was shown
that level-2 networks are also encoded by their induced trinets [52]. Recently, it was
shown that level-3 networks are encoded by their quarnets, but not by their trinets [33].
It was also shown that orchard networks are encoded by their trinets [53].

Results from Chapter 3 In Chapter 3, we consider maximum lower-level subnetworks
(MLLSs), which are subnetworks obtained by deleting a single reticulation edge from
highest level biconnected component. These subnetworks have not been studied before;
they are interesting to study as they provide the first step for constructing a complex
network from simpler networks. Indeed, in principle, the presented method gives a way
to reconstruct level-k networks from a set of level-k −1 networks.

We shall show that binary level-k tree-child networks, where k ≥ 2, are encoded by
their MLLSs. Following this, we also provide a polynomial-time algorithm for recon-
structing a tree-child network from its full set of MLLSs.

The results of this chapter has been published in [54].

ANCESTRAL PROFILES / µ-REPRESENTATIONS (CHAPTER 6)

Unlike trees, networks allow for vertices to have more than one path to the same leaf.
Given an n-leaf directed network, assign a vector of length n to each vertex where the i th
element of the vector is the number of distinct paths to the i th leaf. We call the multiset
of vectors of all vertices in the network the µ-representation of the network [55]. They are
also called ancestral profiles [56].

Ancestral profiles have thus far been studied for encoding results on the class of
semi-binary time-consistent tree-sibling networks [55] and tree-child networks [57]. For
the class of binary stack-free orchard networks [56, 58], a stronger encoding result was
shown: it was shown that given a binary stack-free orchard network N and a binary
stack-free network N ′ (not necessarily orchard), N and N ′ have the same ancestral pro-
files if and only if they are isomorphic. These encodings were also used to give a natural
metric on the network classes [55–57].

Unfortunately, there is not much of a biological interpretation behind ancestral pro-
files. The number of paths can, for example, denote the different ways in which genetic
material has passed. Or, it could indicate some difference measure in the genome of the
ancestral species and an extant species [56]. However, it is, simply put, a form of data
that provides enough information to identify networks within certain classes and can
therefore be used as basis for metrics, for example.
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Results from Chapter 6 We give a counter-example to Theorem 3.1 of [58], to show
that semi-binary stack-free orchard networks are not reconstructible from their ances-
tral profiles within the space of stack-free networks. We give intuition for why this is,
and contribute by suggesting possible ways to prove a similar claim, that semi-binary
stack-free orchards are reconstructible from their ancestral profiles. We also introduce
the class of tree-clone-free networks, which are networks wherein every tree vertex has
a different µ-vector. We show preliminary results for this class of networks, such as the
relationship between two vertices with the same µ-vector, as well as the trivial automor-
phism group on tree-clone-free networks.

The results of this chapter have not yet been published.

DISTANCE MATRICES (CHAPTER 7)
The third building block we consider in this thesis for encodings is the distance matrix
and generalizations thereof. A (metric) distance matrix on a set X is an |X |×|X | symmet-
ric matrix with non-negative elements d(i , j ) for i , j ∈ X , such that

1. every element in the matrix entry is positive except for those on the diagonal,
which are all zeroes;

2. the triangle inequality is satisfied. That is, for elements a,b,c ∈ X ,

d(a,c) ≤ d(a,b)+d(b,c).

We focus on undirected networks in Chapter 7. Every undirected network induces a
shortest distance matrix, where the rows and columns of the matrix are indexed by the
leaves of the network, and every element d(i , j ) of the matrix represents the shortest dis-
tance between leaves i and j . We say that a network realizes a distance matrix M if its
induced shortest distance matrix is equal to M . In this thesis, we shall also consider the
longest distance matrices, which can be obtained by taking each element d(i , j ) to be
the length of a longest path between leaves i and j .

Encoding results in phylogenetics have also considered different variants of distance
matrices, called the sets and multisets of distances induced by networks [29, 59]. Given
a network N on X , the multisets of distances on a set X induced by N is the |X | × |X |
symmetric matrix with multisets of distances of all paths between leaf pairs as elements.
The sets of distances has the set of distance of all paths between leaf pairs as its matrix
elements. The difference between sets and multisets of distances is that the latter takes
into account the multiplicity of each path length, while the former does not. Observe
that the shortest distance matrix and the longest distance matrix can be obtained from
the sets of distances, and that the sets of distances can be obtained from the multisets of
distances.

Finding a weighted undirected graph that realizes a distance matrix has applications
not only in phylogenetics [2, 13], but also in psychology [60, 61], electricity networks [62,
63], information theory [64], and other areas. In their seminal paper, [62] showed that
a necessary and sufficient condition for a distance matrix to be realizable on a graph is
for it to be a metric space. While this gave existence for graph realizations on any metric
spaces, such realizations were not necessarily unique.
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In phylogenetics, distances are defined between pairs of taxa to denote the num-
ber of character changes (in terms of the nucleotide bases in DNA) or the evolutionary
/ genetic distance between them. Such distance data are often obtained from multi-
ple sequence alignments by first taking the Hamming distance and applying a transfor-
mation based on a chosen model of evolution (e.g., Jukes-Cantor, Kimura 2-parameter,
etc.) [2]. Two foundational phylogenetic tree distance-based methods are UPGMA [65]
and Neighbor-Joining [66] (for an overview, see, for example, [67]). The main advantage
of distance-based methods is that they are fast compared to other phylogeny construc-
tion methods such as maximum likelihood and maximum parsimony [68]. The focus
now has shifted towards constructing phylogenetic networks exactly from distance ma-
trices [28, 69].

Refocusing back to the idea of encodings, we say that a network is encoded by their in-
duced distance matrix if it is the only network that realizes the distance matrix. Not much
is known about encoding results for undirected networks. It was shown in [70] that op-
timal cactus graphs are reconstructible from their shortest distances. Cactus graphs are
connected graphs in which each edge belongs to at most one cycle. Here, optimal means
that the sum of all edge weights is minimal over all cactus graphs. Another undirected
network distance encoding result is over level-k networks. We showed in [71] that undi-
rected unweighted binary level-2 networks are reconstructible from their multisets of
distances. In the same paper, we showed that level-2 networks were not reconstructible
in general from their shortest distance matrices. These results of [71] are not included in
this thesis as they follow from the stronger results presented in Chapter 7. For directed
networks, distance encoding results are relatively well studied. Reconstructibility results
for tree-child networks from the sets of distances [29] and the multisets of distances [59],
as well as reconstructibility results for so-called normal networks from shortest distance
matrices [72, 73] have been shown. For more on reconstructibility results for directed
networks, see Section 7.1.

Results from Chapter 7 In Chapter 7, we investigate reconstructibility results by con-
sidering shortest and longest distance matrices as building blocks. We first show that
undirected networks with, in a certain sense, enough leaves, are reconstructible from
their induced shortest distance matrix. Then, we show reconstructibility results for the
class of undirected level-2 networks. We show that level-2 networks are reconstructible
from their induced shortest and longest distance matrices. Since level-2 networks are
not reconstructible from just their shortest distances [71], the additional longest dis-
tances give the necessary information for this encoding result. Following this, we give
a characterization of level-2 networks that are not reconstructible from their induced
shortest distance matrix.

The results of this chapter has been published in [74].

1.3.3. ORCHARD NETWORK CHARACTERIZATIONS
Orchard networks are a class of networks that can be reduced by a sequence of cherry
reductions (called cherry-picking sequences). Cherry reductions are graph operations
where subgraphs on two leaves and their parents are altered to obtain a new network.
We introduced the network class as cherry-picking networks in [75]; the same network
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Figure 1.8: An orchard network N with a cherry-picking sequence (3,2)(1,2)(3,4)(2,4), with its corresponding
cherry cover indicated by the colors. The undirected version U (N ) of N obtained by removing edge directions
from N . The shortest distance matrix D induced by U (N ), given that every edge of U (N ) is of distance 1.

class for the binary case was independently discovered in [56], where it the class was
called the class of orchard networks. We shall call the class orchard networks instead
of cherry-picking networks throughout this thesis. Chapters 4 and 5 will go over the
current state of the art for orchard networks, with results from [75] and [76], respectively;
a rigorous definition of the network class, results pertaining to cherry reductions and
network containment, a recursive encoding of orchard networks using smallest cherry-
picking sequences, and two non-recursive characterizations of orchards, and more, shall
be explored.

Cherry picking sequences were developed to tackle variations on the HYBRIDIZATION

NUMBER problem, of finding a network with a minimum number of reticulations that
displays a given set of trees [35, 38, 77, 78]. Two leaves of a tree form a cherry if they
share a common parent—by successively ‘picking’ cherries (removing one of the leaves
in a cherry) from the set of input trees, we obtain a sequence of cherries that ultimately
reduce each input tree to a tree on a single leaf. This sequence of cherries corresponds
to some network that contains the set of all input trees. Therefore, the actions of these
sequences were until now defined only for trees; we start by extending this definition to
networks.

ORCHARD NETWORKS AND NETWORK CONTAINMENT (CHAPTER 4)
We investigate the correspondence between orchard networks and the sequences that
reduce them, and ultimately show that some orchard networks are encoded by their
smallest cherry-picking sequences (Theorem 10). Although [35] and [77] mention how
one can construct some network from a cherry-picking sequence, no further character-
izations for the type of networks that can be obtained from such sequences have been
investigated. Here, we reintroduce these constructions as a way to reverse the reduction.
As different networks can be reduced by the same cherry-picking sequence, this rever-
sal cannot be unique. Hence, we investigate several constructions corresponding to the
different reversals of the reductions. Each construction then leads to a reconstructible3

3The word choice here is intentional, with respect to the reconstructibility / encoding theme that we have
discussed in Section 1.3.2. We shall see that the networks in the reconstructible classes are uniquely encoded
/ characterized by the smallest cherry-picking sequences that reduce them.
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class of networks, for which we can prove relations between containment and reduction
by cherry-picking sequences.

These relations depend on a careful definition of what it means for a network to be
a subnetwork of and to be contained in another network. A network N ′ is contained in
another network N if N ′ can be obtained from N by deleting reticulation edges, sup-
pressing degree-2 vertices, and by contracting edges. We show that within particular
classes of orchard networks, if a sequence for a network N reduces another network N ′,
then N ′ is contained in N (Lemma 33). The converse holds when the two input networks
are tree-child, but not for orchard inputs (Theorem 12).

It turns out that the class of tree-child networks is contained in the class of orchard
networks, as each tree-child network has a special type of cherry-picking sequence—
a tree-child sequence—that reduces it. We examine how these sequences can be used
to solve NETWORK CONTAINMENT for tree-child networks. NETWORK CONTAINMENT is
the following problem: for given networks N and N ′ on the same set of species, decide
whether N contains N ′. In particular, we show that a tree-child sequence for a tree-child
network N reduces another tree-child network N ′ if and only if N ′ is contained in N
(Theorem 13). Following this, we provide a linear-time algorithm for NETWORK CON-
TAINMENT for inputs of tree-child networks (Algorithm 7). The algorithm has been im-
plemented in Python, which shows that the linear theoretical running time is achievable
in practice.

The results of this chapter has been published in [75].

CHERRY COVERS AND HGT-TIME CONSISTENT LABELLING(CHAPTER 5)

In Chapter 5, we give two non-recursive characterizations of orchard networks. The first
characterization is based on covering the edges of the network using so-called cherry
shapes. Such a characterization of a network class is often called a structural charac-
terization, i.e., one that is not recursive, but static. Structural characterizations are im-
portant, as they can be used to prove numerous results about the network class. In-
deed, they provide a tangible property of the network class that can be easy to work
with in some situations. The second characterization is based on a vertex time labelling,
called HGT-time consistent labelling. The labelling requires that exactly one parent of
each reticulation vertex (hybridization event) is contemporaneous with the reticulation
vertex, thereby showing that binary orchard networks are merely trees with horizontal
edges added. This gives the first biologically relevant motivation for considering orchard
networks.

Structural characterizations already have been discovered for tree-based networks.
Binary tree-based networks have been characterized in the form of forbidden substruc-
tures [79], matchings [80], and using antichains and path-partitions [81]. Non-binary
tree-based networks have been characterized by extending the matching notion [80].
For the class of orchard networks, a structural characterization has not been found be-
fore. Therefore in Chapter 5, we provide the first structural characterization of orchard
networks, using cherry covers. We also show that the class of tree-based networks can
be characterized using cherry covers. One consequence of these results will be that the
class of orchard networks is contained in the class of tree-based networks.
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We start with elementary definitions from graph theory. A graph G = (V ,E) contains a
set of vertices V and a set of edges E ⊆V ×V . Depending on whether edges are directed
or undirected, we call the graphs directed or undirected, respectively. Directed acyclic
graphs are directed graphs with no directed cycles. Note that edge notation may some-
times differ in different chapters. In particular, an edge between two vertices u and v
will be denoted (u, v) in Chapter 3, and uv in all chapters thereafter ((u, v) will carry a
different meaning in Chapters 4 and 5). Let v be a vertex of a directed graph G . We say
that v is a cut-vertex if deleting v from G results in a disconnected graph. We say that u is
an incoming neighbour of v if uv is an edge in G . Conversely, we say that u is an outgoing
neighbour of v if vu is an edge in G . We shall denote the set of incoming neighbours and
the set of outgoing neighbours of v by Γ−(v) and Γ+(v), respectively. The indegree and
outdegree of a vertex v are |Γ−(v)| and |Γ+(v)|, respectively. The degree of a vertex is the
sum of its indegree and outdegree. Let v be a vertex of an undirected graph H . We say
that u is a neighbour of v if uv is an edge in H .

Algorithms take data as input and return an output solution. The performance of an
algorithm is measured by its running time with regards to the input size. For an overview
of polynomial-time algorithms and complexity theory in general, we refer the interested
reader to [1].

We give all general definitions in this chapter, and define more specific terms in each
of the respective chapters.

2.1. DIRECTED PHYLOGENETIC NETWORKS
In Chapters 3, 6 and 7, we consider only binary networks. In Chapters 4 and 5, we will
always mention in the statement of a claim whether a network has to be binary, semi-
binary, or non-binary, to make the assumptions on the degrees of the network vertices
clear.

A few of the terms used to describe relationships between network vertices are bio-
logically motivated. If there is a directed path from a vertex u to a vertex v , we say that u
is an ancestor of v and that v is a descendant of u. We also say that u is above v and
that v is below u. If the path consists only of a single edge, that is, uv is an edge, then u is
a parent of v and v is a child of v . We also call u and v the tail and head of the edge uv ,
respectively. If the tail of an edge uv is the root of the network, then uv is called the
root edge. We say that u is a lowest common ancestor (LCA) of two vertices x and y if u
is above x and y , and no other vertices below u has this property. Within trees, the LCA
of any two vertices is unique; this property does not hold in networks. Two vertices are
incomparable if both vertices cannot be reached from the other via a directed path.

An important subgraph that will appear many times in this thesis is the crown. We say
that a network contains a crown if there exists a set of vertices {u1, . . . ,uk , v1, . . . , vk } with
edges {ui vi ,ui vi+1 : i ∈ [k]} where [k] = {1, . . . ,k}, where the indices are taken modulo k
(the network N5 of Figure 2.1 on page 29 contains a crown on four vertices).

2.1.1. CHERRIES AND RETICULATED CHERRIES
Let (x, y) be an ordered pair of leaves of a network N , and let px , py denote the parents
of x, y , respectively. We call (x, y) a cherry if px = py , that is, if x and y share a common
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parent. Note that if (x, y) is a cherry, then (y, x) is also a cherry. We call (x, y) a reticulated
cherry if px is a reticulation, py is a tree vertex, and py is a parent of px . If (x, y) is a
cherry or a reticulated cherry in N , we say (x, y) is a reducible pair. See Figure 1.3 for an
example of a cherry and a reticulated cherry.

2.1.2. SIMPLE GRAPH OPERATIONS
Many of the results presented in this thesis involve applying simple graph operations to
our networks. We start with the notion of cleaning up a graph, which is generally applied
after applying some graph operation. This is to ensure that the resulting graph remains
a network. Cleaning up a directed acyclic graph is the act of applying the following op-
erations until none is applicable:

1. delete an unlabelled outdegree-0 vertex;

2. suppress an indegree-1 outdegree-1 vertex (i.e., if uv w is a directed path where v
is an indegree-1 outdegree-1 vertex, we suppress v by deleting the vertex v and
adding an edge uw);

3. replace a pair of parallel edges by a single edge.

Observe that the above three operations do not give a way of dealing with indegree-0 and
outdegree-2 vertices. In this thesis, we shall apply cleaning up after deleting reticulation
edges – this means in particular that such vertices will not be created.

Edge Deletion Deleting an edge uv from a network N is the action of removing uv
from N and cleaning up. Deleting a reticulation edge from a network and cleaning up
always returns a network.

Vertex Deletion Deleting a vertex x from a network N is the action of removing x, delet-
ing all its incident edges from N , and cleaning up.

Edge Contraction (for directed networks) Let u, v be adjacent vertices of a network N .
Then contracting the edge uv is the action of deleting u and v , adding a vertex w , and
adding edges xw for each x ∈ Γ−(u)∪Γ−(v) \ {u} and edges w y for each y ∈ Γ+(u) \ {v}∪
Γ+(v).

We say that a path is contracted if every edge in the path is contracted, and partially
contracted if some of the edges in the path are contracted.

Vertex Refinement (for directed networks) The reverse operation of edge contraction
is vertex refinement (the term splitting vertices is also used in graph theory). Let N be a
directed network, and let w be a tree vertex of degree at least 4 in N , and let pw be the
parent of w in N . Then refining the tree vertex w is the action of deleting w , adding tree
vertices u, v , adding edges pw u,uv , and adding edges (at least one) from u to some of
the vertices in the set Γ+(w), and adding edges (at least one) from v to the rest of the
vertices in Γ+(w). This increases the number of tree vertices by exactly one. Now let r be
a reticulation of degree at least 4 in N with child cr . Then refining the reticulation r is the
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action of deleting r , adding reticulations s, t , adding edges st , tcr , adding edges (at least
one) from some of the vertices in the set Γ−(r ) to s, and adding edges (at least one) from
the rest of the vertices in Γ−(r ) to t . This increases the number of reticulation vertices by
exactly one. Observe that contracting the newly introduced edge upon refining a vertex
returns the original network.

Cherry Reduction Let (x, y) be a cherry on the leaves x and y in a network N . Reducing
a cherry (x, y) from N is the action of deleting the leaf x and cleaning up. Note that a
cherry reduction from a network always returns a network.

Cutting a Reticulated Cherry / Reticulated Cherry Reduction Let (x, y) be a reticu-
lated cherry on the leaves x and y in a network, where px , py are parents of x, y , respec-
tively. Cutting (x, y) is the action of deleting the edge px py and cleaning up. We also
refer to this action as reducing the network by a reticulated cherry (x, y). Reticulated
cherry reduction and cherry reduction will be grouped together to be called reducible
pair reduction.

Isolating a Reticulated Cherry (only for binary networks) Let (x, y) be a reticulated
cherry of a binary network. Let gx denote the parent of px that is not py . Isolating (x, y)
is the action of deleting the edge gx px and cleaning up. Note that the resulting network
contains a cherry (x, y).

Adding vertices Let x be a leaf in a network N with a parent vertex p. Adding a vertex q
directly above x is the action of deleting the edge px and adding two edges pq and qx.

Upon adding a vertex to a network, the resulting graph is no longer a network since
there is a vertex of indegree-1 and outdegree-1. We note here that adding a vertex to a
network is a technical operation that is always succeeded by another graph operation,
in which we add an edge incident to the recently added indegree-1 and outdegree-1 ver-
tex. While the intermediate graphs are sometimes not networks, this ensures that the
resulting graph obtained from our graph operations is a network.

2.1.3. SUBNETWORKS AND CONTAINMENT
A network can be consistent with another network in many ways. The following defines
precise notions of when a network displays another network as a subnetwork, or when a
network contains another network. One is a generalization of the other: if a network is a
subnetwork of another network, then it is contained by that network.

Let N and N ′ be non-binary networks on X and X ′, respectively. We say that we clean
up a DAG with respect to X ′ if in addition to the normal cleaning up definition, we remove
all outdegree-0 vertices that are not labelled by X ′. We say that N ′ is a subnetwork of N
if N ′ can be obtained from N by

1. deleting reticulation edges;

2. cleaning up with respect to X ′.
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Equivalently, N ′ is a subnetwork of N if there exists an embedding of N ′ into N : an in-
jective mapping f : V (N ′) → V (N ) of the vertices of N ′ to a subset of the vertices of N ,
where each leaf of N ′ is mapped to the leaf in N of the same label, and each edge uv
in N ′ is mapped to a path from f (u) to f (v) in N . If there exists an embedding of N ′
into N , then we say that N ′ can be embedded into N .

Before we define containment, we require the following definition. Let N and N ′ be
non-binary networks on X . Then N is a refinement of N ′ if N ′ can be obtained from N
by contracting some edges. A non-binary network N contains another non-binary net-
work N ′ if some refinement N ′

b of N ′ is a subnetwork of N , i.e., if N ′ can be obtained
from a subnetwork of N by contracting edges (see Figure 1.3).

The difference between being a subnetwork of a network and being contained in a
network can be seen in Figure 4.8 on page 87. As seen, a subnetwork of a network can
be defined by deleting reticulation edges and cleaning up, but also with embeddings.
The equivalence of these two definitions has been shown for when the two networks are
binary and on the same leaf-sets (Lemma 1 of [2]). It is easy to extend this equivalence to
non-binary networks on different leaf-sets (in which one leaf-set is a subset of the other).

Lemma 1 ([3]). Let N and N ′ be non-binary networks on X and X ′ ⊆ X . N ′ can be em-
bedded into N if and only if N ′ can be obtained from N by deleting a set of reticulation
edges and then cleaning up with respect to X ′.

Proof. First suppose there is an embedding of N ′ into N . Note that in this embedding,
we may assume that the root of N ′ is mapped to the root of N . The image of this map
(a subgraph of N ) is a subdivision of N ′. Let R be the set of reticulation edges of N not
used in the embedding. We will show that N ′ can be obtained from N by removing R
and cleaning up w.r.t X ′. To show this, we prove that the edges that are removed in the
clean-up are exactly the edges not used by the embedding of N ′ into N .

Let M be the network obtained from N by removing R and cleaning up w.r.t. X ′. First
note that no edges used by the embedding are removed in the process of removing R and
cleaning up: indeed, for each such edge, there is a path to a leaf of X ′ using only edges of
the embedding, which cannot be removed by cleaning up. Now suppose M has an edge
that is not used in the embedding of N ′ into N . Consider a lowest such edge x y .

Node y cannot be a leaf of N , because all leaves of N are in the embedding of N ′
into N ; or they are removed in the clean-up because they are not in X ′, in which case
they cannot be part of M .

Now suppose that y is a tree node of N . It is impossible for an outgoing edge of y
to be in the embedding, because the root of the embedding is the root of N . Hence, the
outgoing edges of y are not in the embedding. At least one of these outgoing edges of y is
in M , because, otherwise, y would have been deleted by cleaning up outdegree-0 nodes.
Hence, at least one outgoing edge of y is in M but not in the embedding of N ′ into N ,
contradicting the assumption that x y is a lowest such edge.

Lastly, suppose that y is a reticulation. If none of the other incoming edges of the
reticulation are in the embedding, it follows, similarly to the previous case, that the out-
going edge of y is in M but not in the embedding. This contradicts the assumption
that x y is a lowest such edge. Hence, at least one incoming edge of y is used by the
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embedding. This implies x y is an element of R, and has been deleted, contradicting the
assumption that x y is an edge of M .

For the other direction, suppose N ′ can be obtained from N by removing a set of
reticulation edges R and cleaning up. By reversing the operations used to clean up, we
get an embedding of N ′ into N . Indeed, this only introduces reticulation edges not used
by the embedding, and subdivides edges. When subdividing an edge used by the em-
bedding, adapt the embedding accordingly, by mapping the edge of N ′ to the resulting
path.

Two networks N , N ′ on X are isomorphic if N is a subnetwork of N ′ and if N ′ is a
subnetwork of N . Equivalently, N and N ′ are isomorphic if there exists a bijection f
between the vertices of N and the vertices of N ′ such that uv is an edge of N if and only
if f (u) f (v) is an edge of N ′ and each leaf of N is mapped to a leaf of N ′ with the same
label.

2.1.4. CLASSES OF DIRECTED PHYLOGENETIC NETWORKS
Phylogenetic networks are often categorized into different classes depending on their
topological nature. While biological interpretations of such classes are offered, the rea-
son for studying such classes are often computational. They are used as stepping stones
to solve many NP-hard problems - by restricting the search space to particular network
classes, the problem can sometimes become tractable, with some being solvable via an
algorithm with a theoretical linear running time. See Figure 2.1.

STACK-FREE NETWORKS

A network is stack-free if no two reticulations are adjacent.

TREE-CHILD NETWORKS

A network is tree-child if every non-leaf vertex has a child that is either a tree vertex or
a leaf [4]. This property inherently implies that every vertex in a tree-child network has
a tree path, which is a path to a leaf having only tree-vertices as internal vertices. By
definition, tree-child networks are stack-free.

Observation 1. Every vertex in a tree-child network has a tree path to a leaf.

Tree-child networks have gained some popularity within the mathematical phyloge-
netics field over the last decade. This is due to its convenient structure and nice proper-
ties, including the following.

Lemma 2 (Lemma 4.1 of [5]). Tree-child networks on at least two leaves contain a re-
ducible pair. The network obtained by reducing a cherry or a reticulated cherry in a tree-
child network and cleaning up is tree-child.

TREE-SIBLING NETWORKS

Let N be a network, and let u be a vertex of N . We say that v is a sibling of u if u and v
share a common parent. A network is tree-sibling if every reticulation has a sibling that
is a tree vertex or a leaf [6].
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a b a bc a bc a b a b

N1 N2 N3 N4 N5 N6

a b

u1 u2

v1 v2

Figure 2.1: Six distinct networks Ni , i ∈ [6] on either two or three taxa that are contained in different net-
work classes. The networks N5 and N6 are level-3 networks; all other networks are level-2. The network N1
is stack-free and tree-based, but not tree-child, valid, nor orchard. The network N2 is stack-free, tree-child,
valid, orchard, and tree-based. The network N3 is stack-free, valid, orchard, and tree-based, but not tree-child.
The network N4 is orchard and tree-based, but not stack-free, tree-child, nor valid. The network N5 is tree-
based, but not stack-free, tree-child, valid, nor orchard. It contains a crown on the vertices {u1,u2, v1, v2}. The
network N6 is not stack-free, tree-child, valid, orchard, nor tree-based.

VALID NETWORKS

A reticulation edge deletion from a binary network is valid if the resulting subnetwork
contains exactly 2 vertices and 3 edges fewer than the original network, i.e., only the
reticulation edge is deleted and its endpoints suppressed. A reticulation edge deletion is
invalid otherwise. Call a reticulation edge valid / invalid if its deletion is valid / invalid.
A network is valid if all reticulation edges in the network are valid.

ORCHARD NETWORKS

A network is orchard if it can be reduced to a network on a single leaf by a sequence of
cherry and reticulated cherry reductions. By Lemma 2 it is easy to see that tree-child net-
works are always orchard. We shall define orchard networks in more detail in Chapter 4.

Orchard networks are a relatively new class of networks within phylogenetics, intro-
duced as cherry-picking networks by our paper [3] and also introduced independently
by [7]. Throughout the thesis, we refer to this class of networks as orchard networks.

TREE-BASED NETWORKS

Tree-based networks were initially introduced and defined for binary networks by Fran-
cis and Steel [8]. This definition was extended for non-binary networks by Jetten and
van Iersel [9] with two varying definitions: “tree-based” and “strictly tree-based”. In this
paper, we only focus on the “tree-based” definition.

A network N is tree-based with base tree T if N can be obtained from T via the follow-
ing steps:

1. Replace some edges of T by paths, whose internal vertices are called attachment
points of indegree-1 and outdegree-1.

2. Add edges, called linking arcs, between pairs of attachment points and from tree
vertices to attachments points, so that N remains acyclic, attachment points have
indegree or outdegree 1, and N has no parallel edges.

3. Clean up the acyclic directed graph.
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The biological motivation for considering such networks hatched from an ongoing
debate on whether or not evolutionary histories should be viewed as tree-like with retic-
ulate events sprinkled in (e.g., in the context of horizontal gene transfer within prokary-
otes [10]).

TEMPORAL NETWORKS

A network N is temporal or time-consistent if it admits a temporal labelling t : V →R on
its set of vertices V such that

1. For all tree edges uv , t (u) < t (v).

2. For all reticulation edges uv , t (u) = t (v).

Temporal networks are used to describe histories where both parents of reticulation
vertices, as well as the reticulation vertex itself, are contemporaneous [11, 12]. Further-
more, speciation events always produce offsprings in a later generation. This has since
been widely popular in defining network classes, for which results were obtained regard-
ing metrics [13], applications for network class encodings (temporal tree-sibling) [13],
and reduction of solution space in tackling the HYBRIDIZATION NUMBER problem (tem-
poral tree-child) [14, 15].

HYBRIDIZATION NUMBER AND LEVEL-k NETWORKS

The hybridization number r (N ) of an acyclic directed graph N is the sum of all non-
root vertex indegrees minus the number of vertices in N . Effectively, the reticulation
number counts the number of hybridization edges that must be removed to obtain a
tree, thereby acting as one measure of how much a network deviates from being a tree.
Letting ρ denote the root of N , we have

r (N ) = ∑
v∈N \{ρ}

(|Γ−(v)|−1) .

In a binary network, the hybridization number of a network is simply the number of
reticulations in the network.

Another measure of non-treeness can be defined by a level of a network. A bicon-
nected component refers to a maximal subgraph of a network with at least 3 vertices such
that no vertex of the subgraph is a cut-vertex. The level of an acyclic directed graph is the
maximum hybridization number across all biconnected components. A network is a
level-k network if every biconnected component has hybridization number at most k,
and at least one biconnected component has hybridization number exactly k.

2.2. UNDIRECTED PHYLOGENETIC NETWORKS

T HE definitions listed hereafter are the undirected analogues of terms defined in the
previous section. Given a non-empty set of extant taxa X , a (non-binary) undirected

(phylogenetic) network on X is an undirected connected simple graph with

• unlabelled internal vertices of degree at least 3;
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• leaves of degree-1 that are labelled bijectively by the elements of X .

A (non-binary undirected phylogenetic) tree on X is a network on X with no cycles.

Edges of undirected networks are undirected, which is the biggest distinction be-
tween directed and undirected networks. Because of this, undirected networks, although
they can be seen as representations of evolutionary histories, are used more often as a
data-display graph [16]. Undirected networks can be used to represent data that cannot
be represented on a single tree due to conflicting signals. However, they can be used
to represent evolutionary histories of which the location of the root and reticulations is
unknown [17].

We call an undirected network binary if all internal vertices are of degree-3. We call
it non-binary otherwise. We call an edge uv a cut-edge if deleting uv returns a graph on
two components.

Due to the lack of a root and direction on the edges, internal vertices of undirected
networks cannot be distinguished from one another; there is no distinction between
tree-vertices and reticulation vertices as in the directed case. However, cycles within
networks are formed as a result of non-treelike evolution being detected in the input
data. Through this, we may analogously define the level of a network as a measure of
how much a network deviates from being a tree. As before, a biconnected component is a
biconnected maximal subgraph on at least three vertices. The hybridization number of
an undirected network is the minimum number of edges that need to be removed from
the graph to break all of its cycles. A network is of level-k if every biconnected compo-
nent has hybridization number at most k, and at least one biconnected component has
hybridization number exactly k.

2.2.1. CHERRIES AND CHAINS

Let N be an undirected network. A set of two leaves {x, y} of N forms a cherry if they
share a common neighbour. Let a = (a1, . . . , ak ) be an ordered sequence of k leaves, and
let pa = (v1, . . . , vk ), where vi is the neighbour of ai for each i ∈ [k]. We allow for v1 = v2

and vk−1 = vk , in which case pa contains only one of v1, v2 and / or vk−1, vk . If pa is
a path in N then a is called a chain of length k ≥ 0. We call chains of length 0 empty
chains. Assume that all chains are non-empty unless stated otherwise. Letting chains be
of empty length is to generalize some statements later on in the thesis. We say that a is
a maximal chain if a does not form a subsequence of some other chain. We assume all
chains to be maximal, unless stated otherwise. If a is a chain, then the vertices of pa are
called the spine vertices, and the path pa is called the spine. The vertices a1, ak are called
the end-leaves of the chain a, and the vertices v1, vk are called the end-spine vertices of
the chain. For brevity, given a set S, we shall write S∪a to denote the set S∪{a1, a2, . . . , ak }.
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3
RECONSTRUCTING LEVEL-k

TREE-CHILD NETWORKS FROM

RETICULATE EDGE-DELETED

SUBNETWORKS

In this chapter, we show that directed level-k tree-child networks are encoded by their
reticulate-edge-deleted subnetworks, which are subnetworks obtained by deleting a sin-
gle reticulation edge, if k ≥ 2. Following this, we provide a polynomial-time algorithm
for uniquely reconstructing such networks from their reticulate-edge-deleted subnetworks.
Moreover, we show that this can even be done when considering subnetworks obtained by
deleting one reticulation edge from each biconnected component with k reticulations.

3.1. INTRODUCTION

I T has been shown by Huber et al. in [2] that there exist networks which are not en-
coded by all subnetworks (called subnets) induced on proper subsets of the taxa. This

is not to say that subnets do not encode many networks; in fact, it has been shown time
and time again that considering topologically restricted classes of networks can help by-
pass this complication [3–6]. Two of the more prominent network classes are the tree-
child networks [7] and the level-k networks [8].

In this chapter, we show that binary level-k tree-child networks, where k ≥ 2 are en-
coded by reticulate-edge-deleted subnetworks, which are subnetworks obtained by delet-
ing a single reticulation edge. In fact, we prove an even stronger result that this network
class is encoded by its Maximum Lower-Level Subnetworks (MLLSs), the subnetworks
obtained by deleting a reticulation edge from every level-k biconnected component. We

The contents of this chapter have been published in Bulletin of Mathematical Biology 81, 3823-3863 (2019) [1].
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EDGE-DELETED SUBNETWORKS

a b c d

j

f g h ie k l m n

N

Figure 3.1: A level-4 tree-child network N on the set of species X = {a, . . . ,n}. Though N is a directed acyclic
graph, the edge directions are omitted to avoid cluttering. The arcs are directed downwards. The leaf pair {e, f }
is a cherry since they share a common parent. The leaf pair {a,b} is a reticulated cherry since the parent of a is
also the parent of the parent of b.

do so by exploiting the fact that tree-child networks contain either a cherry or a retic-
ulated cherry [9]. Cherries need not be reconstructed, since they stay intact in every
MLLS; therefore we focus on reconstructing reticulated cherries and show that they are
uniquely reconstructible through an exhaustive case study. In proving this result, we ex-
plore ‘blob trees’, an underlying tree of a network, introduced initially by Gusfield and
Bansal [10]. These labelled trees are obtained from networks by collapsing every bicon-
nected component to a single node, labelling the vertex by its set of leaf-descendants,
and removing the leaves. In the case of valid networks, a class of networks more gen-
eral than the tree-child networks, we show that we can reconstruct the blob tree of the
original network from the blob trees of all MLLSs (Theorem 3).

The motivation behind studying reconstructibility results from MLLSs lies in the fact
that not much is yet known regarding construction of networks of higher level. Indeed,
deleting reticulation edges from each highest level blob ensures that the level of the re-
sulting network is of lower level. We combine these lower level subnetworks to construct
the original network of higher level. Until now, trees [11], level-1 networks [5, 12] and
level-2 networks [4, 13] have garnered much attention in the reconstructibility literature.
Our results from this chapter provide the first steps in the endeavour of finding higher
level networks.

In related literature, it has been shown that tree-child networks are encoded by trinets [4]
but not by trees (see Figure 3.2). Gambette et al. [5] showed that level-1 networks (which
are necessarily tree-child) with girth (shortest cycle in underlying graph) at least 5 are
reconstructible from their triplets. The triplets are phylogenetic trees on 3 leaves; as the
set of triplets can be computed from the set of all displayed trees of the network, level-
1 networks of girth at least 5 are encoded by trees and therefore by their MLLSs. Apart
from this result by Gambette et al., reconstructing networks from MLLSs, or reticulation-
edge-deleted subnetworks, has not been studied before.

The chapter is organized as follows. In the next section we define essential terms
relevant to this chapter, including MLLSs and the notion of encoding / reconstructibility.
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a b c a b cd e f d e f a b c d e f

N N 0

a b c d e f
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Figure 3.2: Networks N and N ′ are non-isomorphic but have the same lower-level subnetworks. Hence,
any class containing N and N ′ is not level-reconstructible. However, these networks have different subnet-
works: N1 is a subnetwork of N but not of N ′; N2 is a subnetwork of N ′ but not of N . So {N , N ′} is subnetwork-
reconstructible.

Section 3.3 presents the definitions and the key results on blob trees. In Section 3.4 we
investigate the possible topologies for each leaf pair. Per our definition, there are 5 possi-
bilities for each leaf pair up to isomorphism, and we develop a method for reconstructing
a blob containing a particular leaf pair topology. In Section 3.5, we show our main result
for this chapter, that binary level-k ≥ 2 tree-child networks are reconstructible from their
MLLSs (Theorem 6). A polynomial-time (in the size of the leaf set and the MLLS set) al-
gorithm for reconstructing tree-child networks from their MLLSs follows naturally from
our proof, and we present this in Section 3.6. In the last section, we conclude with some
discussion of potential future directions.

3.2. PRELIMINARIES

I N this chapter, we assume all networks to be directed and binary. Also in this chapter
only, we let (u, v) denote an edge from u to v instead of writing uv . Let N (N ) de-

note the set of all subnetworks on X , excluding N itself. A class C of networks is called
subnetwork-reconstructible if for any two networks N , N ′ ∈ C with N (N ) = N (N ′), we
have that N and N ′ are isomorphic. Recall that two networks N , N ′ on X are isomor-
phic if there exists a bijection f between the vertices of N and the vertices of N ′ such
that (u, v) is an edge of N if and only if ( f (u), f (v)) is an edge of N ′ and each leaf of N is
mapped to a leaf of N ′ with the same label.

A related but subtly different notion is the following. Let N be a level-k network.
Then N k−1(N ) denotes the set of subnetworks of N that is of level at most k − 1. The
networks in N k−1(N ) are called the lower-level subnetworks of N . Then a class C of net-
works is called level-reconstructible if for any two networks N , N ′ ∈C of level-k and N k−1(N ) =
N k−1(N ′), we have that N and N ′ are isomorphic. Note that if a network is level-reconstructible
then it is subnetwork-reconstructible. The converse is not true in general, and an exam-
ple of this is shown in Figure 3.2.

In this chapter we prove a result that is stronger than level-reconstructibility. Recall
that a valid network is one where every reticulation edge deletion, upon suppressing
degree-2 vertices, yields a network. An example of a valid reticulation edge is shown in
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a b c a b c a b a ba b c a b c

N2 N
0
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Figure 3.3: Three networks N1, N2, N3 with their respective maximum subnetworks N ′
1, N ′

2, N ′
3 obtained by

deleting the red reticulation edge and subsequently cleaning up. The red reticulation edge in N1 is valid, how-
ever the red reticulation edges in N2 and N3 are invalid. The subnetwork N ′

2 contains 4 fewer vertices and 6
fewer edges than N2, and N ′

3 contains 3 fewer vertices and 5 fewer edges than N3.

Figure 3.3.

Lemma 3. All reticulation edges in a tree-child network are valid.

Proof. Let N be a tree-child network and suppose for a contradiction that deleting some
reticulation edge e = (u, v) is invalid. We note that v is a reticulation. As N is tree-
child, we also have that u is a tree node. Therefore, after deleting e, u and v will each
be indegree-1 outdegree-1 nodes, and will be suppressed by cleaning up. This removes
a total of 2 vertices and 3 edges. Hence, to show that e is valid, it remains to show that
no further cleaning up occurs after deleting e and suppressing u and v . As all remaining
vertices have the same indegree-and outdegree-as before, there are no unlabelled out-
degree 0 vertices and no remaining indegree-1 outdegree-1 nodes. So we just need to
show that deleting e creates no parallel edges.

We split into three sub-cases. First assume that suppressing u results in the creation
of parallel edges. Then we must have that u is contained in a ‘triangle’ with nodes x, y
and edges (x,u), (x, y), (u, y). But then y is a reticulation, implying that u is the parent of
two reticulations y and v . Thus u has no child that is a tree vertex or a leaf, contradicting
the tree-child property of N . Next assume that suppressing v results in the creation of
parallel edges. Then we must have that v is contained in a triangle with nodes x, y and
edges (x, v), (x, y), (v, y). But then y is a reticulation, implying that v is the parent of a
reticulation y . Thus v has no child that is a tree vertex or a leaf, contradicting the tree-
child property of N . Finally assume that suppressing both u and v results in the creation
of parallel edges. Then we must have that e formed the central edge of a ‘diamond’ with
nodes x, y and edges (x,u), (x, v), (u, v), (u, y), (v, y). However this cannot occur since the
child of v , y , would be a reticulation, which again contradicts the tree-child property
of N .

Therefore, every reticulation edge of a tree-child network is valid.

The above lemma does not hold for general networks (see Figure 3.3). Intuitively,
Lemma 3 states that removing any reticulation edge from a tree-child network is self-
contained, and it does not affect any other reticulations within the network. No addi-
tional information is ‘lost’ when deleting valid reticulation edges. In particular, Lemma 3
implies that tree-child networks are valid.

From here onwards, it is implicitly assumed that the network N ′ obtained by deleting
some reticulation edges from N undergoes cleaning up.
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Definition 1. A maximum subnetwork of a network N is a subnetwork obtained by a
single reticulation edge deletion from N .

Note in particular, that maximum subnetworks can be obtained both from valid and
invalid reticulation edge deletions.

Lemma 4. Every maximum subnetwork of a tree-child network is tree-child.

Proof. Suppose that there exists a tree-child network N with a maximum subnetwork N ′
that is not tree-child. Then there exists a node t in N ′ such that all of its children are
reticulations. Let (u, v) be the reticulation edge deleted from N to obtain N ′. Since t has
a tree vertex as a child in N , node u must be a child of t in N . Hence, (t ,u) and (u,r ) are
edges in N , for some child r of t in N ′. But then N is not tree-child as u is the parent of
only reticulations v and r , a contradiction.

Definition 2. A maximum lower-level subnetwork (MLLS) of a level-k network N is a
subnetwork obtained by deleting exactly one valid reticulation edge from every level-k
blob in N . Let N ml l s (N ) denote the set of all MLLSs of N .

Observe that, as long as N ml l s (N ) is a non-empty set, it is equal to the set of all
subnetworks of N with level at most k −1 and a maximum number of edges.

By considering each reticulation edge deletion separately, it follows from Lemma 4
that the MLLSs of a tree-child network are tree-child.

A class C of networks is called MLLS-reconstructible if for any two networks N , N ′ ∈C

with N ml l s (N ) =N ml l s (N ′), we have that N and N ′ are isomorphic. Because all MLLSs
are lower level subnetworks of N , we have N ml l s (N ) ⊆ N k−1(N ). Therefore, if a class
of networks is MLLS-reconstructible, then it is level-reconstructible. The converse also
holds for valid networks: the set of lower-level subnetworks of a valid network can be ob-
tained by deleting further edges from the MLLSs. Therefore we have that if a class con-
taining only valid networks is level-reconstructible, then it is also MLLS-reconstructible.

Observation 2. Let C be a class of networks. If C is MLLS-reconstructible, then C is also
level-reconstructible. If C is level-reconstructible, then C is also subnetwork-reconstructible.

We will henceforth assume that all considered networks are binary tree-child net-
works on a non-empty set of taxa X , unless stated otherwise.

3.3. BLOB TREES

I N this section we show how to reconstruct a blob tree, the underlying tree of a net-
work. The tree has a similar construction as the ‘blobbed trees’ in [10] with further

modifications.

Definition 3. The blob tree of a network N , denoted BT (N ), is the labelled tree obtained
by applying the following:

1. contract every blob into a single node, and label each node, except for the root
node, by the leaf-descendant set of the top vertex of the blob;
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Figure 3.4: A tree-child network N , its maximum subnetworks N 1, N 2 obtained from deleting edges 1 and 2
respectively, together with their blob trees.

2. delete all leaf nodes.

We call the vertices in BT (N ) blob nodes.

An example of a blob tree is illustrated in Figure 3.4.
We refer to the top vertices of blobs as pure nodes. In the case of a level-0 blob, this

top vertex is simply the tree vertex itself. Let x denote the pure vertex of some blob B of
some network N . Then descN (x) = descN (B) denotes the set of leaf-descendants of x
(and thus B) in N .

For a general network N , it is possible for BT (N ) to contain two vertices with the
same label if there is a blob in N of indegree-1 and outdegree-1. However the same
cannot occur in tree-child networks, due to the following lemma.

Lemma 5. Let N be a tree-child network on X , let A ⊆ X and let x be a highest tree vertex
with descN (x) = A. If a tree node y 6= x also has descN (y) = A then one child of x is a
reticulation r such that y is below x and y is above r . Hence, x is the unique highest tree
vertex with descN (x) = A and all other tree nodes y with descN (y) = A are in the same
blob.

Proof. Let y 6= x be a tree vertex with descN (y) = A. To begin, note that y must be either
above or below x. To see this, note that by the tree-child property of N , there exists a
leaf l that is reached by x via a tree path. Then for y to be an ancestor of l , y must be
either above or below x. Hence, x is the unique highest tree vertex with descN (x) = A
and y is below x.

By the tree-child property of N , either x can have two children that are tree vertices
or leaves, or x can have one tree vertex or leaf child and one reticulation child. Let c1,c2

denote the children of x, and by the tree-child property of N , there exist leaves l1, l2 that
are reached by c1,c2 via tree paths respectively.

First suppose that the two children c1,c2 of x are tree vertices or leaves. Then for y to
be an ancestor of both l1 and l2, y must be an ancestor of both c1 and c2, contradicting
that y 6= x is below x.

Hence, one of the two children of x, is a reticulation r . Without loss of generality, r =
c1. It remains to show that y is above c1. Since y is an ancestor of l1, and there is a tree
path from c1 to l1, node y is either above or below c1. Suppose for contradiction that y is
below c1. Since y is also an ancestor of l2, there exists a directed path from y to l2. This
path must pass through x since the path from x to l2 is a tree path. This is a directed path
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from y to x. However, since there is also a directed path from x to y (via c1), and y 6= x, it
follows that there exists a directed cycle, a contradiction.

The following corollary follows immediately from Lemma 5.

Corollary 1. Let N be a tree-child network. Then its blob tree BT (N ) contains vertices
with unique labels.

Due to this, we identify blob vertices by their vertex labels, e.g., for a blob B in N
with descN (B) = A, the corresponding blob vertex in BT (N ) is A.

3.3.1. ON RETICULATED CHERRIES
In a phylogenetic network N , non-reticulation nodes {x, y} form a reticulated cherry shape
if px , py are parents of x, y respectively, where py is a reticulation and px is a parent of py

(see Figure 3.5 (a)). In this case we say that the reticulation is on y and that the reticu-
lation py is in the reticulated cherry shape {x, y}. This notion is a generalization of the
reticulated cherries defined by Bordewich et al. in [14], in which both x and y are leaves.

Lemma 6. In a tree-child network, all reticulations are in a reticulated cherry shape.
Moreover, for k ≥ 1, there is at least one reticulation in each level-k blob that is in a reticu-
lated cherry shape formed by two vertices outside of the blob.

Proof. Let N be a tree-child network and consider a reticulation r in an arbitrarily cho-
sen blob B . By the tree-child property, r must have a non-reticulation child y and two
tree vertex parents t1, t2. The child of t1 that is not r must be a non-reticulation x. Then r
is in a reticulated cherry shape formed by {x, y}.

Now consider a lowest tree node a in B . If both children of a were to be non-reticulations
then at least one of the children would also be contained in B , contradicting our choice
of a. If both children of a were to be reticulations then the network would no longer be
tree-child, a contradiction. Thus, one child of a is a reticulation, say c, and the other a
non-reticulation, say x. The child of c, say y , must be a non-reticulation as the network
is tree-child, and thus B contains a reticulated cherry shape formed by two nodes x, y .
Moreover, x and y are outside of B because they are either leaves or tree nodes, and
below a lowest tree vertex in B .

A reticulated cherry shape {x, y} is called a lowest reticulated cherry shape of a blob B ,
if the parent px of x is a lowest tree vertex of B . This implies that x and y are not con-
tained in B , as shown in the proof of Lemma 6.

Let N ′ be a maximum subnetwork of a tree-child network N obtained by isolating a
lowest reticulated cherry shape of a blob B . Then there is a pure vertex in N ′ that is not a
pure vertex in N (Figure 3.5). Moreover, if blob B is of level at least 2, the leaf-descendant
set of the new pure vertex is not equal to the leaf-descendant set of any vertex in N . This
leads to the following observation.

Observation 3. For a tree-child network N and B a level-k blob, with k ≥ 2, there is always
a reticulation edge we can delete from B such that the blob tree of the resulting subnetwork
is not equal to BT (N ).
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Figure 3.5: (a) A portion of the network showing a lowest reticulated cherry shape in a blob B . (b) The same
portion of the network after isolating the reticulate cherry shape {x, y}. Note here that px is a pure vertex in the
subnetwork, but px in not a pure vertex in the original network.

Now suppose x and y are both leaves. If x and y share a common parent, then they
form a cherry. If {x, y} forms a reticulated cherry shape then it is a reticulated cherry. The
following Lemma from Bordewich and Semple [9] is essential for our results and will be
used extensively throughout the text.

Lemma 7 ([9]). If N is a tree-child network on at least two leaves, then N contains either
a cherry or a reticulated cherry.

3.3.2. RECONSTRUCTING THE BLOB TREE OF A TREE-CHILD NETWORK
Lemma 8. For a valid network N , if the blob tree BT (N ) contains a blob node A then BT (N ′)
contains the blob node A for all maximum subnetworks N ′ of N .

Proof. First suppose that A is a blob vertex corresponding to a level-0 blob in N . The
corresponding node t in N is not incident to any reticulation edges, so it is not possible
to suppress t via a reticulation edge deletion. Note that a reticulation edge deletion from
a blob above or below t would not change the leaf-descendant set of t . Hence t remains
a level-0 blob in all maximum subnetworks of N with leaf-descendant set A. Thus A is a
blob vertex in all BT (N ′) for all maximum subnetworks N ′ of N .

Now suppose that A is a blob vertex corresponding to a blob of level at least 1. Sup-
pose t is the corresponding pure vertex in N . If t is not incident to a reticulation edge
then there is no way of suppressing t by means of edge deletions and any reticulation
edge deletion will not change the leaf-descendant set of t . Hence, t is a pure vertex with
leaf-descendant set A in all maximum subnetworks of N . If on the other hand there is a
reticulation r with edges (t ,r ), (s,r ) then let c be the child of t that is a tree vertex (it is
possible that c = s). Because t is the top vertex of the blob, there is a directed path from t
to s, which must include c. Hence there is a directed path from c to s and to r . Therefore,
we have descN (r ) ⊆ descN (c). So descN (c) = descN (c)∪descN (r ) = descN (t ) = A. We
now use the fact that, after a valid edge deletion, only the endpoints of the edge are sup-
pressed in the resultant maximum subnetwork. The maximum subnetwork where (t ,r )
is deleted contains c as a pure node, and hence A is a blob vertex in its blob tree. The
maximum subnetwork where (s,r ) is deleted contains t as a pure node, and hence A is
a blob vertex in its blob tree. The maximum subnetwork where some other reticulation
edge is deleted contains t as a pure node, and hence A is a blob vertex in its blob tree.
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Thus A is a blob vertex in BT (N ′) for all maximum subnetworks N ′ of N .

Lemma 9. For a valid network N , if BT (N ′) contains a blob node A for all maximum
subnetworks N ′ of N then BT (N ) also contains the blob node A.

Proof. Consider some lowest reticulation r in N such that r is the ancestor of some a ∈ A.
Let c be the child of r in N . Since r is of outdegree-1, we have descN (r ) = descN (c). We
may assume descN (r ) 6= A, as otherwise c is the root of a pendant subtree spanning A
in N , and consequently A is a blob vertex in BT (N ). Let (u,r ), (v,r ) be the edges leading
into r . Let N ′, N ′′ be the maximum subnetworks of N obtained by deleting (u,r ), (v,r )
respectively. Note here that every node x in N ′ or N ′′ is also a vertex in N . We now
examine the relations between descN (r ) and A exhaustively.

• Suppose descN (r ) 6⊂ A and A 6⊂ descN (r ). We show that there is no vertex in N ′
that has leaf-descendant set A. By assumption, there exists a node a′ ∈ descN (r )
such that a′ ∉ A. Then, a′ ∈ descN ′ (c). Let x be a vertex in N ′ (which is also a vertex
in N ). We examine the relations between x and c in N ′ exhaustively.

– If x is an ancestor of c in N ′ then descN ′ (x) 6= A since a′ ∈ descN ′ (c) ⊆ descN ′ (x).

– If x is a descendant of c in N ′ then descN ′ (x) 6= A since A 6⊂ descN ′ (c).

– If x is incomparable to c in N ′ then descN ′ (x) 6= A since a ∉ descN ′ (x) by
assumption that r was the lowest reticulation above a.

It follows that A is not in BT (N ′), and this case is not possible. The only possibili-
ties then, are either A ( descN (r ) or descN (r )( A.

By assumption, BT (N ′) and BT (N ′′) both contain A. Because of this, there are corre-
sponding pure nodes x ′, x ′′ in N ′, N ′′ (also in N ) respectively with descN ′ (x ′) = descN ′′ (x ′′) =
A.

• Suppose A ( descN (r ). Then x ′ must be a descendant of c in N ′, implying that x ′
must be a descendant of r in N . We claim that x ′ is a pure vertex in N with descN (x ′) =
A. If x ′ is not a pure vertex in N then there exists a reticulation s 6= r below x ′
where s and x ′ are contained in the same blob in which x ′ is not the top-node,
in N . The edge deletion does not suppress or delete the node s, since s is a de-
scendant of r , and any directed path from r to s is of length at least 2. Then, s
is a reticulation that is below r such that the leaf-descendant set of s contains an
element of A. This contradicts our choice of r , so x ′ must be a pure vertex in N .
Furthermore, we must have descN (x ′) = descN ′ (x ′) = A where the first equality
holds as deleting a reticulation edge from above a vertex does not change its leaf-
descendant set in the resultant subnetwork. Then x ′ must be a pure vertex in N
with descN (x ′) = A and we are done.

• So we may assume descN (r ) ( A. We now claim that descN (v) ⊆ A. Suppose not.
Noting that v is not suppressed in N ′ (since N is a valid network), and since descN ′ (v) =
descN (v), we split into the three possible cases for the relation between x ′ and v
in N ′.
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– If x ′ is an ancestor of v then it is also an ancestor of b ∉ A in N ′ for some b ∈
descN ′ (v), a contradiction.

– If x ′ is incomparable to v then x ′ is also incomparable to c in N ′. Then,
since a ∈ A is a leaf-descendant of x ′ in N ′, there is a reticulation s below r
in N such that s is an ancestor of a, which contradicts our choice of r .

– If x ′ is a descendant of v then it must either be incomparable to or be a de-
scendant of c in N ′.
¦ If x ′ is incomparable to c in N ′, then we reach a contradiction by the

same argument as above.

¦ If x ′ is a descendant of c in N ′, then as descN ′ (c) ( A (since descN (r ) =
descN ′ (c)) we have that descN ′ (x ′)( A, a contradiction.

Thus we have that descN (v) ⊆ A. By an analogous reasoning on x ′′ in N ′′, we have
that descN (u) ⊆ A. It follows that x ′ must be an ancestor of v in N ′, and so x ′ must
be an ancestor of v in N . It also follows that x ′ must be an ancestor of u in N to
ensure that there is a path from x ′ to the leaf-descendants of u in N ′.

We now claim that x ′ is also a pure vertex in N with leaf-descendant set A. Indeed,
adding the edge (u,r ) to N ′ (after undoing any cleaning up) only joins descendants
of x ′, implying x ′ has leaf-descendant set A in N . Furthermore, it cannot add any
vertices that are not descended from x ′ to the blob containing x ′. It follows that x ′
remains a pure vertex in N with leaf-descendant set A.

By combining the previous two lemmas, we see that the blob trees of valid networks
are reconstructible from their maximum subnetworks.

Theorem 1. For a valid network N , given a set A ⊆ X , the blob tree BT (N ) contains a blob
node A if and only if BT (N ′) contains a blob node A for all maximum subnetworks N ′
of N .

Proof. Follows from Lemmas 8 and 9.

We can prove a similar result for MLLSs.

Theorem 2. Let N be a level-k valid network, with k ≥ 2. Given a set A ⊆ X , the blob
tree BT (N ) contains the blob node A if and only if BT (N ml l s ) contains A for all MLLSs N ml l s

of N .

Proof. Suppose first that the blob tree BT (N ) contains the node A, and let N ml l s be
an MLLS of N obtained by deleting the edges in the set E = {e1, . . . ,em}. Consider the
maximum subnetwork N ′ of N obtained by deleting the reticulation edge e1. By Theo-
rem 1, BT (N ′) contains the blob node A. Now consider the maximum subnetwork N ′′
of N ′ obtained by deleting the reticulation edge e2. Then BT (N ′′) contains the blob
node A by Theorem 1. Continuing in this fashion for all edges in E shows that BT (N ml l s )
contains the blob node A.
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Now suppose that A is not a blob vertex of BT (N ). We prove the contrapositive that
there exists an MLLS N ml l s of N such that BT (N ml l s ) does not contain the blob node A.
Since A is not a blob vertex of BT (N ), there exist blob nodes C and D such that C ⊆
A ⊆ D . Let B denote the blob in N with leaf-descendant set D . Consequently, if there
exists a pure vertex in an MLLS N ml l s of N with leaf-descendant set A, then it must be
a vertex that was originally in the blob B . Now observe that deleting reticulation edges
from blobs that are not B do not affect the leaf-descendant set of all vertices in B . Then
we may assume, without loss of generality, that N is a single blob network. But then by
Theorem 1, we have that A is not a blob vertex in BT (N ml l s ), for all MLLSs N ml l s of N .

We call a set A ⊆ X a foundation node of N if BT (N ) contains the node A. Let F (N )
be the set of all foundation vertices of N .

Theorem 3. For a level-k valid network N , with k ≥ 1, its blob tree BT (N ) is recon-
structible from its MLLSs.

Proof. By Theorem 2, the set of all foundation nodes F (N ) consists of the blob vertices
that appear in every MLLS blob tree. Then, the blob tree BT (N ) is the tree with vertex
set F (N ) and an edge (A,B) precisely if B ( A and there is no C ∈ F (N ) with B ( C (
A.

3.3.3. MINIMUM NUMBER OF MLLSS TO RECONSTRUCT THE BLOB TREE

OF A TREE-CHILD NETWORK
We consider the minimum number of MLLSs required to reconstruct the blob tree of a
tree-child network. Let r be some reticulation in a blob B . We call the node s a pseudo
pure vertex of r if it is the lowest vertex in B such that there are two edge disjoint directed
paths from s to r .

Lemma 10. Let N be a level-k tree-child network where k ≥ 1. Two maximum subnet-
works N ′ and N ′′ of N suffice to reconstruct BT (N ).

Proof. Let r be a lowest reticulation in some blob B . Let {x, y} denote a reticulated cherry
shape corresponding to r . Let px and py = r be the parents of x and y , respectively, and
let g y be the parent of py that is not px . Let N ′ and N ′′ be the maximum subnetworks
of N derived by cutting and isolating {x, y} respectively. Let P ′,P ′′ denote the set of all
pure vertices in N ′, N ′′ respectively, that are not pure vertices in N . We claim that the
intersection of P ′ and P ′′ is empty, from which it follows that the intersection of the ver-
tex sets of BT (N ′) and BT (N ′′) contains the foundation vertices of N . Since by Lemma 8
each foundation vertex of N is a foundation vertex of each maximum subnetwork, it
follows that the intersection of BT (N ′) and BT (N ′′) is precisely the set of foundation
vertices of N .

Claim 1. Let p ∈ P ′ (p ∈ P ′′). Then p is an ancestor of r in N .

Proof. Suppose not. First suppose that p is a descendant of r in N . As r is a lowest retic-
ulation in N , p is a tree vertex or a leaf in N ′ (N ′′). If p is a tree vertex then p must have
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been a pure vertex in N to begin with: the pendant subnetwork rooted at the child of r
is an invariant upon obtaining maximum subnetworks of N , since r is a lowest reticula-
tion. This contradicts the fact that p is an element of P ′ (P ′′). If p is a leaf then p cannot
be a pure vertex in N ′ (N ′′), a contradiction.

Now suppose that p is incomparable to r in N . Let p be the pure vertex of a blob B ′
in N ′ (B ′′ in N ′′). As p is not an ancestor of r in N , p must also not be an ancestor of px

nor g y in N . We see that B ′ (B ′′) remains a blob after adding the edge (px ,r ) to N ′ ((g y ,r )
to N ′′), and so p remains a pure vertex in N , a contradiction.

Claim 2. Let p ∈ P ′ (p ∈ P ′′). Then p is a descendant of the pseudo pure node s of r in N
and p 6= s.

Proof 1: Suppose not.
If p is equal to or strictly above s then p is an ancestor of both px and g y . Adding the

edge (px ,r ) to N ′ ((g y ,r ) to N ′′) only joins descendants of p. Furthermore, it cannot add
any vertices that are not descended from p to the blob in N ′ (N ′′) containing p. It follows
that p remains a pure vertex in N , a contradiction.

Now suppose that p is incomparable to s. If p is not in the blob B , then as reticu-
lation edge deletions do not affect other blobs, we have that p must have been a pure
vertex in N . This contradicts our assumption on p. So p must be in the blob B . Since p
is incomparable to s, but p must still be an ancestor of r by Claim 1, p must be an an-
cestor of a reticulation r ′ such that s is an ancestor of r ′ and r ′ is an ancestor of r . The
parent of s, denoted ps , is not suppressed in both N ′ and N ′′. Now ps is either above or
incomparable to p, and the two vertices belong to the blob which contains r ′ in N ′ (N ′′).
It follows that p cannot be a pure vertex in N ′ (N ′′), which contradicts our assumption.
■

It remains to show that P ′ ∩P ′′ = ;. Let P ′
x = {p ∈ P ′ : p is an ancestor of px in N }

and let P ′
y = {p ∈ P ′ : p is an ancestor of g y in N }. By Claim 1, we have P ′ = P ′

x ∪P ′
y . By

Claim 2, we have P ′
x∩P ′

y =;. Define P ′′
x and P ′′

y analogously. Let a′ ∈ P ′
x , a′′ ∈ P ′′

x and b′′ ∈
P ′′

y . Let u ∈ descN (x) and let v ∈ descN (y). Clearly, u ∈ descN ′ (a′) and u, v ∈ descN ′′ (a′′).
By Claim 2, v ∉ descN ′ (a′) and u, v ∉ descN ′′ (b′′). We now see that a′ 6= a′′ because one
has leaf v as descendant and the other one not. So P ′

x∩P ′′
x =;. Similarly, a′ 6= b′′ because

one has leaf u as descendant and the other one not. So P ′
x ∩P ′′

y = ;. It follows that P ′
x

and P ′′ are disjoint. By an analogous argument, P ′
y and P ′′ are disjoint. Therefore P ′

and P ′′ are disjoint.

Let N be a network and let NA be a pendant subnetwork of N rooted by a vertex with
leaf-descendant set A. Collapsing NA from N means that we replace NA by a leaf A.
Let N \ NA denote the network obtained by collapsing NA from N .

Lemma 11. Let N be a tree-child network, and let NA denote a pendant subnetwork of N
rooted at a vertex with leaf-descendant set A. Then BT (N \ NA) is obtained from BT (N )
by deleting the pendant subtree rooted at A.

Proof. By definition, there exists a blob node A in BT (N ). Note that pendant subnet-
works of N uniquely correspond to a pendant subtree of BT (N ), by definition of blob
trees and also because vertex labels of blob trees are unique for tree-child networks
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Figure 3.6: Visual aid for Lemma 10 proof. (a) Proof of Claim 2. Cutting or isolating {x, y} results in subnetworks
where ps and p lie in the blob containing r ′. (b) Proof of the paragraph after Claim 2, which shows that P ′∩P ′′ =
;.

(Corollary 1). Then the pendant subtree of BT (N ) rooted at A is uniquely defined by NA

and vice versa: this implies the lemma.

Lemma 12. Let N be a level-k tree-child network with k ≥ 2. Two MLLSs N ml l s
1 and N ml l s

2
of N suffice to reconstruct BT (N ). In particular, N ml l s

1 is the MLLS obtained by cutting a
lowest reticulated cherry shape in every level-k blob, and N ml l s

2 is the MLLS obtained by
isolating these reticulated cherry shapes. That is, the vertices of the blob tree of N corre-
spond to the vertices that are a vertex of each blob tree of these two MLLSs.

Proof. We prove the lemma by induction on the number of level-k blobs l in N . For the
base case, there is only one level-k blob in N . By Lemma 10, we are done.

So suppose now that N contains l ≥ 2 level-k blobs. Consider a lowest level-k blob B
in N , and let A denote the leaf-descendant set of B . Let NA and N ml l s

i A denote the pen-

dant subnetwork of N and N ml l s
i rooted at the pure vertex with leaf-descendant set A,

for i = 1,2. By Theorem 2, A is a blob vertex in BT (N ml l s
i ) for i = 1,2, and therefore

such pendant subnetworks exist. Note that the pendant subnetworks N ml l s
i A are maxi-

mum subnetworks of NA obtained by cutting and isolating the reticulated cherry shape
associated with some lowest reticulation r . By Lemma 10, we have that N ml l s

1A and N ml l s
2A

suffice to reconstruct BT (NA). We now collapse N ml l s
i A from the MLLS N ml l s

i for i = 1,2.
Furthermore we collapse NA from the network N . Note that N \NA is a level-k tree-child
network with l −1 level-k blobs, and that N ml l s

i \ N ml l s
i A are MLLSs of N \ NA obtained by

cutting and isolating a lowest reticulated cherry shape from every level-k blob, for i = 1,2
respectively. By the induction hypothesis, these two MLLSs of N \ NA suffice to recon-
struct BT (N \ NA). Now by Lemma 11, we have that BT (N ) is the blob tree obtained by
appending BT (NA) to BT (N \ NA). We append BT (NA) to the node C in BT (N \ NA),
such that A ⊆C , and there exists no node D ∈ BT (N \ NA) where A ⊆ D ⊆C .



3

46
3. RECONSTRUCTING LEVEL-k TREE-CHILD NETWORKS FROM RETICULATE

EDGE-DELETED SUBNETWORKS

3.3.4. IDENTIFYING THE LEVEL-k BLOBS OF A TREE-CHILD NETWORK

We now show that given the MLLSs, it is possible to identify which foundation vertices
correspond to a level-k blob in the original tree-child network. A pendant subnetwork of
a network N is obtained by deleting a cut-edge (x, y) from N and taking the connected
component containing y . A pendant subtree is a pendant subnetwork that is a tree.

Lemma 13. Let N be a level-k tree child network with k ≥ 2. A blob of N is level-k ′ < k
if and only if the set of outgoing neighbors of the corresponding blob vertex in BT (N ml l s ),
for every N ml l s ∈ N ml l s (N ), is precisely the set of outgoing neighbors of the blob vertex
in BT (N ).

Proof. Suppose B is a level-k ′ < k blob in N . Then B remains intact (no reticulation
edges deleted) in all MLLSs of N . Let B ′ be a blob in N that is directly below B , and let e
denote the outgoing edge from B to the pure vertex of B ′. The edge e is not suppressed
in any MLLS of N . And since edges are deleted to obtain MLLSs of N , we have that the
number of leaves that are below the edge e (below the child of e) stays the same since
blobs are biconnected. By Theorem 2, every vertex in BT (N ) is a vertex in BT (N ml l s )
for all MLLSs N ml l s of N . Furthermore for tree-child networks, the vertex labels in blob
trees are unique. Then the blob vertex of B must have the blob vertex of B ′ as one of its
outgoing neighbors in the blob tree of all MLLSs. Since B ′ was chosen arbitrarily, this
implies that the outgoing neighbors of the blob vertex in BT (N ml l s ), for every N ml l s ∈
N ml l s (N ), is precisely the outgoing neighbors of the blob vertex in BT (N ).

For the other direction, we prove the contrapositive. Suppose B is a level-k blob
in N , and let descN (B) = A. By Observation 3, we can isolate a lowest reticulated cherry
in B to obtain an MLLS N ml l s of N where BT (N ml l s ) is different from BT (N ). In this
construction of N ml l s , there exists a pure vertex in N ml l s which was not a pure vertex
in N . Then the outgoing neighbors of A in BT (N ml l s ) is not the same as the outgoing
neighbors of A in BT (N ).

Figure 3.7 illustrates Lemma 13 with a level-4 tree-child network N . The blob trees
of its MLLSs are taken, from which the blob tree of N can be reconstructed (Theorem 2).
Then, it can be seen that the set of outgoing neighbors of the blob node {a, . . . ,n} in BT (Ni )
for i = 1,3,5,6,7,8 differs from the the set of outgoing neighbors of {a, . . . ,n} in BT (N ).
Hence, the blob with leaf-descendant set {a, . . . ,n} is of level-4. Since the outgoing neigh-
bors of the other blob vertices do not change, the blobs with leaf-descendant sets {a,b,c},
{e, f } and {k, . . . ,n} are blobs of level lower than 4.

3.4. LEAF PAIR ANALYSIS

I N order to reconstruct a tree-child network from its MLLSs, we require a way of lo-
cating the position of the missing reticulation edges. In this section, we show that

studying the topology of a leaf pair in the MLLSs gives enough information to infer the
topology of those same leaves in the original network. The next section will show how we
can use this to find the location of the missing reticulation edge of each blob by choosing
the appropriate leaf pair.
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Figure 3.7: Ni for i = 1,2, . . . ,8 refers to the MLLS of a level-4 tree-child network N obtained by deleting the
reticulation edge i . BT (N ) is the blob tree of the network N and BT (Ni ) is the blob tree of Ni for each i . The
foundation vertices are highlighted in yellow.
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a b c d

Figure 3.8: A network N on 4 leaves. The shortest ac up-down distance is 5 (blue path) however, the shortest ac
distance in the underlying undirected graph of N is 4 (red path).

We use the inter-vertex distance as defined by Bordewich and Semple [9]. For our
purposes, we slightly tweak the definition by allowing the endpoints to be non-leaf nodes.

Definition 4. Let N be a network and let x, y ∈ N . An up-down path of length p from x
to y is a sequence of nodes x = v0, v1, v2, . . . , vp−1, vp = y in N , such that for some 0 ≤ i ≤
p, N contains the edges

(vi , vi−1), . . . , (v1, x)

and
(vi , vi+1), (vi+1, vi+2), . . . , (vp−1, y).

The node vi is the apex of this up-down path. The length of a shortest x y up-down path P
in N is denoted dN (x, y). If P is an up-down path in N and N ml l s an MLLS of N , PN ml l s

is the x y up-down path P restricted on the vertex and edge sets of N ml l s , given it is still
an up-down path in N ml l s .

Note that the shortest up-down distance dN (x, y) in a network N may not necessarily
be the shortest distance in the underlying undirected graph of N (where the underlying
undirected graph of N is obtained by replacing every directed edge by an undirected
edge), see Figure 3.8.

Let Q be an up-down path between nodes u and v of length at least 2 in a tree-child
network N . An edge (u, v), if it exists, is called a shortcut. In some papers, the notion
of a shortcut (also known as a redundant arc) is defined on directed paths rather than
on up-down paths [14, 15]. For the purposes of this paper and since a directed path is
by definition an up-down path (without the ‘up’ portion), we define shortcuts on the
up-down paths. Call an up-down path which has no shortcuts in N a shortcut free up-
down path. Note that shortest up-down paths are necessarily shortcut free. Let N ′ be
a maximum subnetwork of N obtained by deleting some reticulation edge (u,r ). Let P ′
be an x y up-down path in N ′ for nodes x, y . Reinsert the edge (u,r ) in N ′. Then the x y
up-down path P ′, together with any vertices in {u,r } that bisect some edge of P ′ is called
the embedded path of P ′ in N .

Lemma 14. In a tree-child network, deleting a single reticulation edge can reduce the up-
down distance between any two leaves by at most one.

Proof. Let N be a tree-child network and let N ′ be a maximum subnetwork of N ob-
tained by deleting some reticulation edge (u,r ). Let v be the parent of r in N that is
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not u. Take any x y up-down path P ′ in N ′, and let P be its embedded path in N . Let P∗
be an up-down path in N derived from P by taking the shortcut (u,r ) if it is a shortcut
in P . We show that |P∗| ≤ |P ′|+1. Now compared to P ′, the up-down path P contains at
most 2 additional vertices - the nodes u and r . If it contains:

• 0 additional vertices then (u,r ) cannot be a shortcut of the embedded path P .
So, |P | = |P∗| = |P ′|;

• 1 additional vertex then again, (u,r ) cannot be a shortcut of the embedded path P .
So, |P | = |P∗| = |P ′|+1;

• 2 additional vertices then (u,r ) must be a shortcut in P , as otherwise deleting (u,r )
disconnects P ′. This implies that currently, P contains all three of the points {u, v,r }.
Then |P ′| = |P |−2 ≥ |P∗|−1, where the inequality follows as taking a shortcut re-
duces the length of an up-down path by at least 1.

It then follows that a single reticulation edge deletion from N can reduce dN (x, y) for any
two leaves x, y ∈ N by at most 1.

Lemma 15. Let N be a tree-child network. There are four possible shapes on a pair of
leaves {x, y}, depending on the shortest x y up-down path (see Figure 3.9):

• a cherryΛ(x, y) with nodes a, x, y and edges (a, x), (a, y);

• a cherry subdivided by one tree node. If this tree vertex is the parent of y, we call
this λ(x, y). The shape has nodes a,b,c, x, y and edges (a, x), (a,b), (b, y), (b,c);

• a reticulated cherry K (x, y) is a cherry subdivided by one reticulation, where the
reticulation is on y. The shape has nodes a,b,c, i , x, y and edges (a, x), (a,c), (b,c), (c, y), (i , a);

– if i = b then call this shape A(x, y);

– if i 6= b then call this shape H(x, y).

• if dN (x, y) ≥ 4, we say that N contains Π(x, y). Note that, when N contains Π(x, y),
this does not mean just that there exists an x y up-down path of length at least 4, but
also that there does not exist an x y up-down path of length at most 3. We call this a
shape for brevity.

Proof. We employ the following distance arguments.

• If dN (x, y) = 2 then N must containΛ(x, y).

• If dN (x, y) = 3 then there is at most one reticulation on the shortest x y up-down
path. So if in addition we have that

– there are no reticulations on the shortest x y up-down path. Then N must
contain λ(x, y) or λ(y, x);

– there is one reticulation on the shortest x y up-down path then N must con-
tain a reticulated cherry K (x, y) or K (y, x).
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x y x y x y x y

a b i

a
c

a

c

b

i b

x y

a
c

x y

a

c

b

λ(x; y)Λ(x; y) K(x; y) A(x; y) H(x; y) Π(x; y)

Figure 3.9: All possible shapes on two leaves {x, y} (up to permuting x and y). The dashed line indicates that
any i b up-down path has length at least 2.

• If dN (x, y) ≥ 4 then N must containΠ(x, y).

We now show that the shape on leaves x and y in a tree-child network is identifiable
from the shapes on x and y in its MLLSs. This is summarized in Table 3.1. We start with
the following theorem, which shows that each shape is preserved in at least one MLLS.

Theorem 4. Let N be a level-k tree-child network where k ≥ 2, and let x, y be two leaves
in N . If N contains Λ(x, y), λ(x, y), A(x, y), H(x, y) or Π(x, y), then there is an MLLS of N
containingΛ(x, y), λ(x, y), A(x, y), H(x, y) orΠ(x, y) respectively.

Proof. In this proof, we refer to the vertex labels used in Lemma 15.
The case that N containsΛ(x, y) is trivial.
Now suppose N contains λ(x, y). If c, the sibling of y , is a reticulation then deleting

the reticulation edge leading into c that is not (b,c) returns an MLLS containing λ(x, y).
If c is not a reticulation then deleting any reticulation edge will not affect the shortest x y
up-down path. This results in an MLLS containing λ(x, y).

Suppose N contains A(x, y). As x, y are leaves, A(x, y) is a level-1 blob and thus by
definition, every MLLS of N contains A(x, y).

Suppose N contains H(x, y). If the blob containing the reticulation of H(x, y) is of
level lower than k, then every MLLS of N contains H(x, y), and we are done. So suppose
this blob is level-k. As k ≥ 2, there exists a reticulation r , which is not c, with reticu-
lation edges e and f . Let N ′ and N ′′ be the MLLSs of N obtained by deleting e and f
(amongst other reticulation edges) respectively. We claim that at least one of N ′ or N ′′
contains H(x, y). Indeed, if N ′ contains A(x, y), then in N , either b or i must be incident
to e, as otherwise a and c will still have different parents after deleting e and cleaning
up. Now, b cannot be incident to e as it violates the tree-child property, regardless of
whether b is the tree vertex or the reticulation incident to e. Then i must be incident
to e. If i is r , then we note that b cannot be the parent of i due to the tree-child property.
This implies that upon deleting e and cleaning up, a and c have different parents, and
subsequently N ′ contains H(x, y). Thus this case is impossible. If, on the other hand, i
is the tree vertex of e, then neither i nor b are suppressed after deleting f and cleaning
up. This implies that N ′′ contains H(x, y).
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Suppose N contains Π(x, y). Suppose first that dN (x, y) ≥ 5. Take any x y up-down
path in N , and consider BT (N ). Note that any up-down path in N can be mapped to an
up-down path in BT (N ). The ‘up’ portion of the path passes through the blob vertices
containing x in their label, until the first blob vertex containing y is reached. The ‘down’
portion of the path passes through the blob vertices containing y in their label, until a
lowest blob vertex containing y is reached. In particular, the apex is contained in the
lowest blob which contains both x and y in their leaf-descendant set. So every x y up-
down path in N passes through the same set of blobs B. Furthermore, every x y up-
down paths enter and leave the blobs B ∈ B at the same nodes. Let tB and hB denote
these vertices respectively.

We claim that there is a reticulation edge we can delete from any blob B ∈B of level-k
such that every x y up-down path uses at least one edge from B in the resultant subnet-
work. We assume l vl (B) = k as otherwise the claim holds trivially. At least one of tB or hB

must be a reticulation, since we enter, pass through, and leave the blob B . We consider
the cases when they are both reticulations and when tB is a reticulation but hB is not.
Suppose first that tB and hB are both reticulations. Then B must contain the apex of
any x y up-down path; furthermore because of the tree-child property, the shortest tB hB

up-down distance must be at least 3. Then deleting a reticulation edge incident to hB

either disconnects the x y up-down path or reduces the length by at most 1. In any case,
at least one edge of B is still used in the x y up-down paths in the resultant subnetwork.
Now suppose that tB is the only reticulation. Suppose hB is not incident to any reticu-
lation edge. Since l vl (B) = k ≥ 2, there exists a reticulation edge we can delete from B ,
such that neither tB ,hB , nor the edge (tB ,hB ) are suppressed. Now suppose hB is inci-
dent to a reticulation edge into a reticulation r . If this edge is also incident to tB , then
again since l vl (B) = k ≥ 2, there exists a reticulation edge we can delete from B , such
that neither tB ,hB , nor the edge (tB ,hB ) are suppressed. Finally if the edge is not in-
cident to tB , then deleting the reticulation edge incident to r that is not (hB ,r ) ensures
that tB ,hB , nor (tB ,hB ) are suppressed. In any case, deleting the chosen reticulation edge
returns a subnetwork in which an edge of B is used in every x y up-down path.

So if |B| ≥ 2, then there exists an MLLS N ml l s in which all x y up-down paths use
at least two edges from the blobs in B plus at least three edges connecting the two
blobs, x, and y . Therefore, dN ml l s (x, y) ≥ 5. If |B| = 1 then by Lemma 14, there exists
an MLLS N ml l s with dN ml l s (x, y) ≥ 4. Thus, if dN (x, y) ≥ 5 then there is an MLLS of N
containingΠ(x, y).

Suppose now that dN (x, y) = 4. We first show that there are at most 2 shortest x y
up-down paths in N . Let u, v be the parents of x, y respectively. Then any shortest x y
up-down path is always of the form (x,u), (u, w), (w, v), (v, y) (disregarding directions)
where w is some vertex in N , and one of u, v, w is the apex of the shortest up-down
path. Note that u and v are always included in any x y up-down path, since they are
the parents of x and y respectively. Therefore, having two shortest x y up-down paths
where u and v are the apex in each would create a cycle in N , contradicting the fact
that N is a phylogenetic network. Therefore if u is the apex of a shortest x y up-down
path in N then there cannot be a shortest x y up-down path where v is the apex. There
can be, however, a second shortest x y up-down path in N where w is the apex.



3

52
3. RECONSTRUCTING LEVEL-k TREE-CHILD NETWORKS FROM RETICULATE

EDGE-DELETED SUBNETWORKS

fx; : : :g

fx; : : :g

fx; : : : ; yg
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fy; : : :g

fy; : : :g

tB

hB

tB0 hB0 BT (N)

Figure 3.10: Proof visual of Theorem 4, dN (x, y) ≥ 5 case. The red up-down path in BT (N ) represents the
trajectory of every x y up-down path in N , and consequently the set of blobs B through which every x y up-
down path passes. A zoomed-in portion of the two particular blob vertices illustrates the entry point tB and
exit hB in N , and the case for when both points can be reticulations.

w
0

u

w

v

x yz

Figure 3.11: An example of 2 shortest x y up-down paths in N , whenever dN (x, y) = 4. One up-down path (red)
is (x,u), (u, w), (w, v), (v, y) and the other (blue) (x,u), (u, w ′), (w ′, v), (v, y) (disregarding directions).

Since u, v are contained in all x y up-down paths, we have that if two shortest x y
up-down paths have the same apex then they must be the same up-down paths. Oth-
erwise the network would not be binary, or there would be parallel edges. If there were
more than two shortest x y up-down paths then at least one of u or w would have degree
greater than 3. This implies N is non-binary, so there can be at most two shortest x y up-
down paths. This is shown in Figure 3.11. Note that if there are two shortest x y up-down
paths in N then it must be isomorphic to the one shown in Figure 3.11, as otherwise the
only other option would be to have w and w ′ be the apex, in which case w ′ would be a
parent of 2 reticulations, deeming N to be not tree-child.

Now we show that if dN (x, y) = 4 then there is always an MLLS of N containingΠ(x, y).
Suppose first that there are two shortest x y up-down paths. Then, as stated before,

it is isomorphic to the diagram shown in Figure 3.11. There are no reticulation edges
incident to either of the shortest paths other than on the reticulation at v . In particu-
lar (w, z) cannot be a reticulation edge because N is tree-child. As l vl (N ) ≥ 2, there is
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another reticulation edge e incident to a reticulation that is not v . Indeed, parents of x
and y remain different and non-adjacent in the MLLS obtained by deleting e. This par-
ticular MLLS containsΠ(x, y).

Now suppose there is only one shortest x y up-down path P . There are 5 vertices on P
including x and y , and there are at most two reticulation edges incident to P and at most
one on P by the tree-child property. Since l vl (N ) ≥ 2, there is at least one reticulation
edge such that its deletion does not affect P . Deleting this reticulation edge and cleaning
up ensures that the parents of x and y remain different and non-adjacent in the resultant
MLLS. Therefore, there exists an MLLS of N which containsΠ(x, y).

Thus if dN (x, y) = 4 then there exists an MLLS of N containingΠ(x, y). Therefore if N
containsΠ(x, y), there exists an MLLS of N containingΠ(x, y).

Lemma 16. For a tree-child network N , if N contains Π(x, y) then no MLLS of N con-
tainsΛ(x, y).

Proof. We prove the contrapositive. Suppose one of the MLLSs N ml l s of N containsΛ(x, y).
Add the deleted reticulation edges back to N ml l s . Then every vertex on a shortest x y up-
down path, excluding the apex, is incident to a reticulation edge. We first show that these
vertices cannot be pure vertices in N .

Suppose for a contradiction that one of these nodes p is a pure vertex in N . Then p
must be a tree node, and there must exist two disjoint paths from p to its reticulation
child r . Without loss of generality, suppose that p is above x. Then there exists a node z
that is above x and below p such that z is above r . When we delete the reticulation edges
again to obtain N ml l s , we must delete two edges from the blob with pure node p, which
is impossible. We have a contradiction.

Now suppose for a contradiction that there are two nodes u, v on a shortest x y up-
down path in N excluding the apex. By our assumption, u and v are contained in a level-
k blob. By the above claim, neither u nor v can be pure vertices in N , and we note that the
blob containing u contains the apex, and the blob containing v also contains the apex.
This implies that u and v are contained in the same level-k blob. To obtain N ml l s , only
one of u or v can be suppressed. In particular, (u, v) cannot be an edge in N as otherwise,
this blob would be a level-1 blob. This implies that N ml l s does not contain Λ(x, y), a
contradiction.

Therefore, there can only be one vertex on a shortest x y up-down path in N excluding
the apex, and thus dN (x, y) ≤ 3. Hence N does not containΠ(x, y).

Theorem 5. Let N be a level-k tree-child network where k ≥ 2, and let x, y be two leaves
in N . The shape on {x, y} in N is identifiable from the shapes on {x, y} in the MLLSs.

Proof. We now prove a series of claims which state that N contains a certain shape if
and only if there are distinct MLLSs of N containing certain shape(s) on {x, y}, and not
containing certain other shape(s) on {x, y}.

Claim 3. N containsΛ(x, y) if and only if all MLLSs of N containΛ(x, y).
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Proof 1: To show necessity, suppose N containsΛ(x, y) so that dN (x, y) = 2. Since the par-
ent of x and y is a tree node, there is no reticulation edge incident toΛ(x, y). ThenΛ(x, y)
is contained in every maximum subnetwork of N , and therefore in every MLLS of N .

For sufficiency, suppose for a contradiction that all MLLSs of N on X containΛ(x, y),
but N does not. If N contains λ(x, y),λ(y, x),K (x, y),K (y, x), or Π(x, y) then, as these are
the only possible shapes and their shapes are preserved in some MLLSs by Theorem 4,
we have our required contradiction. Thus the claim holds.

■

Claim 4. N contains λ(x, y) if and only if there exists an MLLS of N containing λ(x, y)
and no MLLSs of N contain λ(y, x),K (x, y),K (y, x) orΠ(x, y).

Proof 2: To show necessity note that by Theorem 4, there is an MLLS of N that con-
tains λ(x, y). The only possible reticulation edge incident to λ(x, y) is at b whenever c is
a reticulation. Deleting the edge (b,c) returns an MLLS containing Λ(x, y), and deleting
the reticulation edge incident to c that is not (b,c) returns an MLLS containing λ(x, y).
All other reticulation edges do not intersect λ(x, y) and hence their deletions do not af-
fect λ(x, y). Thus an MLLS of N does not contain λ(y, x),K (x, y),K (y, x) nor Π(x, y). The
condition is therefore necessary.

To show sufficiency, suppose for a contradiction that the conditions hold but N does
not contain λ(x, y). If N containsΛ(x, y) then by Claim 1, no MLLSs of N contain λ(x, y),
a contradiction. If N contains λ(y, x),K (x, y),K (y, x), or Π(x, y) then, as these are the
only possible shapes and their shapes are preserved in some MLLSs by Theorem 4, we
have our required contradiction. The condition is necessary and the claim holds.

■

Since A(x, y) is a level-1 blob in N for two leaves x, y ∈ X , Claim 3 is trivially true.

Claim 5. N contains A(x, y) if and only if all MLLSs of N contain A(x, y).

When N contains H(x, y), let BH be the blob containing the reticulation in H(x, y).

Claim 6. • N contains H(x, y) and l vl (BH ) = k if and only if there exist distinct MLLSs
of N containingΛ(x, y) and H(x, y), and no MLLSs of N contain K (y, x).

• N contains H(x, y) and l vl (BH ) < k if and only if all MLLSs of N contain H(x, y).

Proof 4: We first prove the first statement of the claim. We first show necessity. Isolat-
ing {x, y} returns an MLLS of N containing Λ(x, y). By Theorem 4, there is an MLLS of N
which contains H(x, y). For the third condition, suppose for a contradiction that some
MLLS N ml l s of N contains K (y, x). Since we have a reticulation on y in H(x, y), and be-
cause isolating {x, y} returns Λ(x, y), N ml l s must have been obtained by cutting {x, y}.
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But then we have that the node b, the grandparent of y , has only reticulation children
in N , contradicting the tree-child property of N . We therefore have necessity.

To show sufficiency, suppose for a contradiction that the conditions hold but N does
not contain H(x, y). If N containsΛ(x, y) then by Claim 1, no MLLSs of N contain H(x, y),
a contradiction. If N contains λ(x, y) or λ(y, x) then no MLLSs of N contains H(x, y) by
Claim 2, a contradiction. If N contains A(x, y) then no MLLSs of N contains Λ(x, y) by
Claim 3, a contradiction. If N contains K (y, x) then the shape is preserved in some MLLS
of N by Theorem 4, a contradiction. Finally if N containsΠ(x, y) then no MLLS of N con-
tains Λ(x, y) by Lemma 16, a contradiction. As these are the only possibilities, necessity
follows. The claim holds for l vl (BH ) = k.

We now prove the second statement of the claim. We first show necessity. Now sup-
pose that N contains H(x, y) and l vl (BH ) < k. Then none of the reticulation edges in BH

are deleted to obtain any of the MLLSs of N by definition. It follows that all MLLSs of N
contain H(x, y).

We now show sufficiency. Suppose first that every MLLS of N contains H(x, y). If N
contained a shape that was not H(x, y), then there exists an MLLS of N that contains
that particular shape by Theorem 4. As this is a contradiction, we have that N con-
tains H(x, y). To show that l vl (BH ) < k, we note that if this was not the case, i.e., if l vl (BH ) =
k, then we have shown above that an MLLS of N would contain Λ(x, y), which is a con-
tradiction. So we must have that N contains H(x, y) and that l vl (BH ) < k.

■

Claim 7. N contains Π(x, y) if and only if there exists an MLLS of N containing Π(x, y)
and no MLLSs of N containΛ(x, y).

Proof 5: We first show necessity. There is an MLLS of N that contains Π(x, y) by Theo-
rem 4. By Lemma 16, no MLLSs of N containsΛ(x, y).

To show sufficiency, suppose for a contradiction that the conditions hold, but that N
does not contain Π(x, y). If N contains Λ(x, y) then by Claim 1, every MLLS of N con-
tains Λ(x, y), a contradiction. If N contains λ(x, y) or λ(y, x) then no MLLSs of N con-
tain Π(x, y) by Claim 2, a contradiction. If N contains A(x, y) or A(y, x) then all MLLSs
of N contains A(x, y) or A(y, x) by Claim 3. This is a contradiction as no MLLSs of N
would contain Π(x, y). If N contains H(x, y) or H(y, x) then we split into two cases. Re-
call that BH is the blob of N which contains H(x, y) or H(y, x). If l vl (BH ) < k then all
MLLSs of N contains H(x, y) or H(y, x) by Claim 4. This is a contradiction as no MLLSs
of N would contain Π(x, y). If l vl (BH ) = k then there exists an MLLS of N which con-
tainsΛ(x, y) by Claim 4, a contradiction. The condition is sufficient. The claim therefore
holds.

■

Theorem 5 is summarized in table 3.1. The table covers all of the different cases,
showing which shapes can appear in MLLSs given the shape that the original network
contains. For any two rows in the table, there is some column in which one row has a



3

56
3. RECONSTRUCTING LEVEL-k TREE-CHILD NETWORKS FROM RETICULATE

EDGE-DELETED SUBNETWORKS

N contains Λ(x, y) A(x, y) A(y, x) H(x, y) H(y, x) λ(x, y) λ(y, x) Π(x, y)

Λ(x, y) X X X X X X X X

A(x, y) X X X X X X X X

H(x, y) X(X) X(X) X(X) X(X) X(X) ?(X) ?(X) ?(X)

λ(x, y) ? X X X X X X X

Π(x, y) X ? ? ? ? ? ? X

A(y, x) X X X X X X X X

H(y, x) X(X) X(X) X(X) X(X) X(X) ?(X) ?(X) ?(X)

λ(y, x) ? X X X X X X X

Table 3.1: Given a tree-child network N contains one of the {x, y} shapes listed in the first column, for each
shape listed on the first row, this shape must appear in an MLLS of N if there is a checkmark (X), this shape
cannot appear in an MLLS if there is a cross (X), and a question mark (?) means either could be possible. In
the rows H(x, y) and H(y, x), the non-bracketed marks are for the case l vl (BH ) = k and the bracketed marks
are for the case l vl (BH ) < k.

a b ca b a b

(a) (b)

c b a a b c

Figure 3.12: (a) Two non-isomorphic level-1 networks with girth 3 that share the same subnetworks. (b) Three
non-isomorphic level-1 networks with girth 4 that share the same subnetworks.

check and the other a cross. Thus, we can distinguish between any two cases just by
looking at the MLLSs, and so we can determine the structure between x and y on N .
Because the given shapes are the only possibilities between two leaves x and y , the table
covers all possible cases.

3.5. RECONSTRUCTIBILITY OF TREE-CHILD NETWORKS

I N this section, we show that the class of tree-child networks, excluding trees and level-1
networks with girth at most 4, is MLLS-reconstructible and thus level-reconstructible

and subnetwork-reconstructible (where the girth is the length of a smallest cycle in the
underlying undirected graph). A pair of level-1 networks with girth 3 and girth 4 that is
not subnetwork-reconstructible is shown in Figure 3.12.
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x y

a

z
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c
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x y

a

z

b

c

i

x y

i

a

c

b

λ(x; y) Π(x; y)λ(y; x)

Figure 3.13: The three cases for H(x, y) in Lemma 17. Deleting edge (a,c) yields λ(x, y), λ(y, x), and Π(x, y)
respectively.

Following the leaf pair analysis in Section 3.4, we show here that it is possible to infer
the location of a missing reticulation edge for level-k blobs from the MLLSs. By Lemma 7,
there exists a cherry or a reticulated cherry in every tree-child network. We know that
cherries are level-0 blobs and A shapes are level-1 blobs. Then, the reconstruction of
level-k blobs can be accomplished by reconstructing an H shape of every level-k blob.

We start by analyzing the possible shapes on x, y after cutting a reticulated cherry
on x and y , see Figure 3.13 for examples.

Lemma 17. Let N be a tree-child network and suppose N contains H(x, y) on a leaf
pair {x, y}. Then the maximum subnetwork obtained by cutting the reticulated cherry {x, y}
contains one of λ(x, y),λ(y, x), or Π(x, y). Furthermore, all other maximum subnetworks
of N contain eitherΛ(x, y) or H(x, y).

Proof. Suppose for a contradiction that cutting {x, y} returns a maximum subnetwork N ′
of N containing either Λ(x, y),K (x, y), or K (y, x). If N ′ contains Λ(x, y), then the par-
ent of x and the parent of y must share a common parent in N . This implies that N
contains A(x, y), a contradiction. If N ′ contains K (x, y), then the parent of y is a child
of a reticulation in N . This contradicts the tree-child property of N . N ′ cannot con-
tain K (y, x) by Theorem 5.

To prove the second statement of the lemma, note that isolating H(x, y) returns a
maximum subnetwork of N that containsΛ(x, y), and deleting any reticulation edge that
is not incident to y returns a maximum subnetwork that contains H(x, y), since the par-
ent of x and the parent of y is not suppressed and they are adjacent.

We now show how we can reconstruct a blob containing the reticulation of a reticu-
lated cherry, see Figure 3.14 for an example.

Lemma 18. Let N be a level-k tree-child network, and suppose N contains H(x, y) for a
leaf pair {x, y}. Suppose in addition that the blob B containing the reticulation of H(x, y)
is level-k. Then we can reconstruct B in the MLLSs of N .

Proof. By Theorem 5 and Lemma 17, N contains H(x, y) if and only if all MLLSs of N
contain either Λ(x, y), H(x, y), λ(x, y), λ(y, x), or Π(x, y), and there exist distinct MLLSs
of N that contain Λ(x, y), H(x, y), and one of λ(x, y),λ(y, x), or Π(x, y). Now find the
MLLS N ml l s of N that contains one of λ(x, y),λ(y, x), or Π(x, y). Introduce nodes a,c



3

58
3. RECONSTRUCTING LEVEL-k TREE-CHILD NETWORKS FROM RETICULATE

EDGE-DELETED SUBNETWORKS

w x y zt u v w x y zt u vw x y zt u v
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1
contains Λ(x; y) Nmax

3
contains Π(x; y)Nmax
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contains H(x; y)
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c

p p p

w x y z

p

w x y zt u v

Reconstructing B in Nmax

1

p

N
max

1
N

max

2
N

max

3

Figure 3.14: Three MLLSs N ml l s
1 , N ml l s

2 , and N ml l s
3 of a level-2 tree-child network containing exactly two

level-2 blobs. The three MLLSs contain Λ(x, y), H(x, y), and Π(x, y) respectively. We reconstruct the blob B
with pure node p in N ml l s

3 initially, then reconstruct it in the other MLLSs. In N ml l s
3 , nodes a,c are inserted

directly above x, y respectively, and an edge (a,c) is added (shown in red). To reconstruct B in N ml l s
1 the

pendant subnetwork rooted at p is replaced by the reconstructed pendant subnetwork.

directly above x, y respectively, and add an edge (a,c) to N ml l s . This reconstructs the
blob B in N ml l s .

It remains to show how to reconstruct B in the other MLLSs. Hence, consider an
arbitrary MLLS N ml l s

1 . Let A ⊆ X denote the set of leaf-descendants of the pure node p
of B in N . Then A is a vertex of BT (N ). Let Γ(A) denote the set of all outgoing neighbors
of A in BT (N ). Let pi for i = 1, . . . , |Γ(A)| denote the corresponding pure vertices in N .
In N , delete the tree edge leading into p, and also delete the two outgoing edges of pi

for i = 1, . . . , |Γ(A)|, but do not clean up. Call the component that contains the node p the
B-part of N . By Theorem 2, the MLLS N ml l s

1 contains pure vertices with leaf-descendant
set A and with leaf-descendant set equal to each set in Γ(A). Hence, we can define the
B-part of N ml l s

1 analogously as for N (but note that in N ml l s
1 it is not necessarily a single

blob). We can then reconstruct the blob B in N ml l s
1 by replacing the B-part of N ml l s

1 by
the B-part of N ml l s .

Definition 5. Let N be a tree-child network. A cherry Λ(x, y) is reduced by deleting the
node y and cleaning up (same definition as in [9]). A reticulated cherry K (x, y) is reduced
by isolating K (x, y) and reducing the resultant cherry Λ(x, y) (different definition to one
in [9]).

The following observation shows how we can obtain the MLLSs of a network ob-
tained by reducing a reticulated cherry from the MLLSs of the original network. Note that
a maximum subnetwork obtained by isolating a reticulated cherry in a tree-child net-
work remains tree-child by Lemma 4 and that a network obtained by reducing a cherry
in a tree-child network also remains tree-child [9].

Observation 4. Let N be a level-k tree-child network with a cherry or a reticulated cherry
on {x, y}, and let N ′ be the tree-child network obtained by reducing {x, y} from N .

• If N contains H(x, y) and the blob B containing H(x, y) is of level-k, then, in each
MLLS of N , reconstruct B by Lemma 18 and subsequently reduce the reticulated
cherry H(x, y).
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• Otherwise, reduce {x, y} in all MLLSs of N .

Let S denote the set of networks we obtain from either of the above two cases. Then S is
precisely the set of all MLLSs of N ′.

Theorem 6. The class of binary level-k tree-child networks is MLLS-reconstructible, for
k ≥ 2.

Proof. We prove by induction on |X | that, for each level-k tree-child network N on X
with MLLS set M , the network N is the unique level-k tree-child network with MLLS
set M . The base case |X | = 1 is trivially true as when there is only one leaf, any network
of level-2 or higher is no longer tree-child. So suppose |X | > 1 and that the claim is true
for each level-k tree-child network on at most |X |−1 leaves. Let N be a level-k tree-child
network on X and let M be its MLLS set.

By Lemma 7, there exists at least one leaf pair {x, y} that forms a cherry or a reticu-
lated cherry in N .

If N contains H(x, y) and the blob B containing the reticulation of H(x, y) is of level-
k, then reconstruct B in each element of M as outlined in Lemma 18. If B is the only
level-k blob, we are done. Otherwise, we proceed as follows. Note that we can do this, as
we can identify all level-k blobs by Lemma 13.

Reduce either the cherry or the reticulated cherry {x, y} in each element of M . Call
this new set of networks S . Each network in S is tree-child and contains |X |−1 leaves.
By Observation 4, S is the set of all MLLSs of N ′, the level-k tree-child network obtained
by reducing {x, y} in N . By the induction hypothesis, N ′ is the unique level-k tree-child
networks with MLLS set S . Reconstructing N ′ and undoing the reduction operation
on {x, y} yields the tree-child network N , which is therefore the unique level-k tree-child
network with MLLS set M .

Gambette et al. have shown that level-1 networks with girth at least 5 are level-
reconstructible [5]. The next corollary follows from their results, Observation 2, Theo-
rem 6, and the following observation.

Observation 5. Let N and N ′ be two tree-child networks that are both either level at least 2
or girth at least 4. If the level of N and N ′ is different, then they do not have the same set
of lower-level subnetworks.

Corollary 2. The class of tree-child networks, excluding trees and level-1 networks with
girth at most 4, is MLLS-reconstructible, level-reconstructible and subnetwork-reconstructible.

3.6. RECONSTRUCTION ALGORITHM FOR TREE-CHILD NETWORKS

I N this section we present an algorithm in the form of pseudo-code for reconstructing
tree-child networks from their MLLSs. As shown in Section 3.5, we need only to recon-

struct the H shapes contained in level-k blobs. Algorithm 1 systematically rebuilds every
level-k blob from the bottom-up, reducing common pendant subnetworks to leaves on
the way. We give an example of Algorithm 1 in Figure 3.15. To keep the description of
the algorithm concise, it assumes that the input T consists of the set of MLLSs of some
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level-k tree-child network, with k ≥ 2. Nevertheless, the algorithm can in principle also
be used to decide whether such a network exists or not. If the algorithm returns a net-
work N , then we can check whether T = N ml l s (N ). If this is not the case, or the al-
gorithm fails to output a network, then such a network does not exist (see Theorem 7).
Checking whether T = N ml l s (N ) can be done in O(|T |2|X |2) time, because checking
whether two tree-child networks are isomorphic can be done in O(|X |2) time [7].

Moreover, the algorithm can even be applied to an arbitrary set of level-k − 1 tree-
child networks as input. If a network displaying the input networks exists the algorithm
may find it, but is not guaranteed to do so (see Theorem 8.)

Before presenting the algorithm, we first go over a few key ideas required to prove
the correctness and find the time complexity of the algorithm. We reiterate the idea of
collapsing a pendant subnetwork from a network (presented in Subsection 3.3.3, and
additionally define what it means to collapse a common pendant subnetwork from a set
of networks. Let N be a network and let NA be a pendant subnetwork of N rooted by a
vertex with leaf-descendant set A. Collapsing NA from N means that we replace NA by
a leaf A. Let N \ NA denote the network obtained by collapsing NA from N . Let M be a
set of networks containing a common pendant subnetwork NA . Collapsing NA from M

means that we collapse NA from every network in M . Let M \ NA denote the set of
networks obtained by collapsing NA from M .

Lemma 19. Let N be a level-k tree-child network where k ≥ 2. If there exists a common
pendant subnetwork NA for the MLLSs of N , then NA is a pendant subnetwork of N .

Proof. Consider the blob tree BT (NA). Since NA is a common pendant subnetwork of
all MLLSs of N , the blob tree BT (NA) is a common pendant subtree of all blob trees of
the MLLSs of N . By Theorem 2, BT (N ) must contain BT (NA). By Lemma 13, NA must
be a level-k ′ < k network. Therefore NA is a pendant subnetwork of N .

The following two observations follow directly from Lemma 13.

Observation 6. Let N be a level-k tree-child network where k ≥ 2. There exists no common
pendant subnetwork for the MLLSs of N if and only if all lowest blobs in N are of level-k.

Observation 7. Let N be a level-k tree-child network where k ≥ 2. There exists a common
pendant subnetwork NA for the MLLSs of N if and only if there exists a common pendant
subtree rooted at A for the blob trees of the MLLSs of N .

Theorem 7. Let N be a level-k tree-child network on X where k ≥ 2, and let T =N ml l s (N ).
Algorithm 1 finds the network N in time O(|T ||X |3/k).

Proof. We first prove the correctness of the algorithm. By Lemma 19, every maximal
common pendant subnetwork of T is a pendant subnetwork of N . Let NA be a max-
imal common pendant subnetwork of T . Then we can collapse NA from N and T ,
solve a smaller instance of the MLLS reconstruction problem by reconstructing N \ NA

from T \NA , and then appending NA to the leaf labelled A – which is the final step of the
algorithm – returns the network N . Since all maximal pendant subnetworks are disjoint
from one another, we can repeat this reduction for all maximal pendant subnetworks,
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Algorithm 1: Algorithm TCMLLS-RECONSTRUCTION(T )

Data: A set T =N ml l s (N ) for some level-k tree-child network N , where k ≥ 2
Result: The network N

1 Update T by collapsing maximal common pendant subnetworks from every
network in T

2 Find the blob tree for each network in T

3 Find a minimal set A that is a vertex of the blob tree of each network in T

4 Find a leaf pair {x, y} where x, y ∈ A such that distinct networks N1, N2, N3 of T

containΛ(x, y), H(x, y), and one of λ(x, y),λ(y, x), orΠ(x, y) respectively
5 Update N3 by adding nodes a,c directly above x, y respectively and an edge (a,c)
6 Let NA denote the pendant subnetwork rooted at the top vertex of this blob in N3

7 for N ml l s ∈T do
8 Find the pure node p with leaf-descendant set A
9 Replace the pendant subnetwork rooted at p by NA

10 Collapse NA from N ml l s

11 if T contains a single element T then
12 N ′ := T
13 else
14 N ′ := TCMLLS-RECONSTRUCTION(T )

15 Construct N from N ′ by appending the maximal common pendant subnetworks
we have collapsed

16 return N
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v x y z x y z x y z x y z

N1 N2 N3 N4

fv; w; x; y; zg fv; w; x; y; zg fv; w; x; y; zg fv; w; x; y; zg

fv; w; x; yg fv; w; xg

BT (N1) BT (N2) BT (N3) BT (N4)

N4 contains Λ(fv; wg; x)

N2 contains H(fv; wg; x)

N3 contains Π(fv; wg; x)

The set of foundation nodes is ffv; wg; fv; w; x; y; zgg

Then we add nodes a; c, and add edges (a; fv; wg); (a; c); (c; x) to N3

fv; wg x y z

N3

a

c

w x y z

N

w w ww v v v

fv; wg fv; wg

fv; wg fx; yg

fv; wg

Upon reconstructing the same blob in N1; N2, and in N4,

We are in the if case of the algorithm, and thus it returns the above network, together with
the cherry Λ(x; y) appended to it.

v

Reconstructing a level k blob

The cherry Λ(v; w) is the only common pendant sub-
network of the input networks. We reduce it to a leaf
fv; wg.

Reducing common pendant subnetworks

input

N1 contains H(fv; wg; x)

we note that all the updated networks are isomorphic.

In the reduced networks, we reconstruct the blob with leaf-descendant set ffv; wg; x; y; zg, since
this set corresponds to a lowest foundation node.

Figure 3.15: An example of the algorithm TCMLLS-RECONSTRUCTION({N1, N2, N3, N4}).
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by considering the reductions separately. Let T ′ and N ′ denote the set of networks and
network obtained by collapsing these pendant subnetworks from T and N respectively.
By Observation 6, we have that all lowest blobs of N ′ are of level-k. We search for a lowest
level-k blob B by finding a minimal set A′ that is a vertex of the blob tree of each network
in T . Then A′ is a lowest foundation vertex of N ′ by Theorem 2. Then we search for a leaf
pair {x, y} which form a reticulated cherry in N ′ with the reticulation in B . We note that
such a leaf pair exists since B is a lowest blob and since we have collapsed all common
pendant subnetworks. Moreover, we can find it by searching for a pair of leaves as de-
scribed in the algorithm by Table 3.1 and its proof in Theorem 5. Now we reconstruct B
using the steps outlined in the proof of Lemma 18. Let A′ denote the leaf-descendant set
of B , and let N ′

A′ denote the corresponding pendant subnetwork (the subnetwork is pen-
dant since B is a lowest blob). At this point, if we only needed to reconstruct one level-k
blob (i.e. the case when N ′ contains one level-k blob), then we have reconstructed N ′.
Otherwise, collapsing N ′

A′ gives the full set of MLLSs of the network N ′ \ N ′
A′ . Continuing

this reasoning, the recursive call will return the network N ′. Appending the collapsed
maximum common pendant subnetworks to N ′ returns the network N .

Each recursive call of TCMLLS-RECONSTRUCTION reconstructs one level-k blob, and
therefore the algorithm terminates once we have reconstructed all level-k blobs, in which
case we have reconstructed the network.

For the running time, observe that each recursive call of TCMLLS-RECONSTRUCTION

acts on an instance N ml l s (N ′) on leaf set X ′ such that |X ′| < |X | and there is one fewer
level-k blob that needs to be reconstructed in the networks of N ml l s (N ′) when com-
pared to that of N ml l s (N ). Since every level-k blob has at least k + 1 outgoing edges,
the number of level-k blobs in N is at most |X |/k. Then TCMLLS-RECONSTRUCTION is
called at most |X |/k times.

Each single iteration of TCMLLS-RECONSTRUCTION can be split into four parts -
collapsing largest common pendant subnetworks from the networks, finding a lowest
foundation node A (i.e. finding a lowest level-k blob), reconstructing a lowest level-k
blob, and checking whether all updated networks are isomorphic to one another. Find-
ing a largest common pendant subnetwork can be done by looking at the blob trees,
which can all be constructed in O(|T ||X |) time. By Observation 7, there exists a com-
mon pendant subnetwork rooted at the pure vertex with leaf-descendant set A, if there
exists a common pendant subtree rooted at A in the blob trees. The number of blob
vertices is maximized for a tree on |X | leaves (or whenever every reticulation is in a tri-
angle), in which case it contains 2|X | vertices in total (including the root). Then there
exist at most |X | −1 foundation nodes, and thus at most |X | −1 pendant subnetworks.
For every possible pendant subnetwork, we iterate through the networks in T . This step
takes O(|T ||X |) time. Finding a lowest foundation vertex follows immediately as we have
found all pendant subnetworks of the blob trees. Then this step takes constant time. The
level-k blob reconstruction chooses a pair of leaves which descend from a blob and sub-
sequently searches through all networks in T to see if the pair is the H shape we seek.
This takes O(|T ||X |2) time if we try each pair of leaves (or O(|T |2|X |) time if we try each
cherry of each network). To decide whether all networks have become isomorphic, we
only need to check whether each blob tree consists of just two vertices (including the
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root). It is not necessary to check whether some networks have become isomorphic af-
ter each recursion, since the algorithm still works if the input set contains isomorphic
networks. The algorithm terminates when all level-k blobs have been reconstructed:
this is precisely when all networks become isomorphic. Since we can construct (or up-
date) the blob trees in O(|T ||X |) time, we can decide whether all networks have become
isomorphic in O(|T ||X |) time.

Thus the total time over a single iteration of TCMLLS-RECONSTRUCTION is O(|T ||X |2)
(or O(|T |2|X |)).

It follows that the total running time of the algorithm is O(|T ||X |3/k) (or O(|T |2|X |2/k)).

Here we restrict the input data T to be the full-set of MLLSs of some tree-child net-
work N , and return N . We now show that it is not necessary to have this restriction: in
fact, we require only three MLLSs to reconstruct N . That is, the same three MLLSs can
be used to reconstruct each level-k blob. However, if we do not have all MLLSs, we are
unable to identify the level-k blobs. Therefore, we require here that also the number of
reticulations in the network is given.

Theorem 8. Three MLLSs suffice to reconstruct a level-k tree-child network, with k ≥ 2, if
the number l of level-k blobs is known.

Proof. Let N be a level-k tree-child network with l level-k blobs and k ≥ 2. We first pick
three MLLSs N ml l s

1 , N ml l s
2 , and N ml l s

3 of N and then show that Algorithm 1 returns N
with these inputs and that no other tree-child network exists with these three MLLSs
and l level-k blobs.

Let B1, . . . ,Bl denote the level-k blobs in N , and let, for i = 1, . . . , l , ri denote a reticu-
lation in Bi that is in a lowest reticulated cherry shape, which exists by Lemma 6. Since Bi

is a level-k blob where k ≥ 2, the parents of ri must be non-adjacent (otherwise Bi would
be a level-1 blob). Let N ml l s

1 denote the MLLS of N obtained by cutting the reticulated
cherry shapes that contain ri , and let N ml l s

2 denote the MLLS of N obtained by isolating
the reticulated cherry shapes that contain ri . Let N ml l s

3 denote the MLLS of N obtained
by deleting, from each level-k blob Bi , a reticulation edge that is not incident to ri , and
such that the parents of ri remain non-adjacent in N ml l s

3 . To see that such an MLLS ex-
ists, recall that by Theorem 4, we have that if a network contains H(x, y), then there is an
MLLS of N that contains H(x, y). Therefore, by treating each level-k blob Bi as a level-k
tree-child network, we may invoke Theorem 4 to claim that such an MLLS N ml l s

3 exists.
Now we show that these three MLLSs suffice to reconstruct N with Algorithm 1. Re-

call that Algorithm 1 initially collapses all maximal common pendant subnetworks from
the input. Let N ′ denote the network obtained by collapsing the same pendant subnet-
works from N . Then, the algorithm finds a minimal set A that is a vertex of the blob tree
of each of N ml l s

1 , N ml l s
2 , N ml l s

3 . By Lemma 12, A is a leaf of the blob tree of N ′. Since the

MLLSs N ml l s
1 , N ml l s

2 , N ml l s
3 were constructed in such a way that all common pendant

subnetworks are of level strictly lower than k, the set A is the set of leaf-descendants
of some lowest level-k blob of N ′. Note that, in N ′, r1 is contained in a reticulated
cherry H(x, y) for some leaves x, y , since there are no blobs below B1. By construc-
tion, the MLLS N ml l s

1 contains one of λ(x, y),λ(y, x), or Π(x, y). The MLLS N ml l s
2 con-

tains Λ(x, y), and the MLLS N ml l s
3 contains H(x, y). Hence, we can argue similarly to
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in the proof of Theorem 7 that the algorithm then reconstructs the blob B1 in all input
MLLSs, and that recursing the algorithm reconstructs the next lowest level-k blob (which
can be reconstructed analogously as done for B1). It follows then that the algorithm re-
constructs N after l recursions of the algorithm.

We now show that no other tree-child level-k network with l level-k blobs exists that
displays N ml l s

1 , N ml l s
2 and N ml l s

3 . Suppose such a network N∗ exists. Then its MLLS set

contains N ml l s
1 , N ml l s

2 and N ml l s
3 . Hence, by the arguments above, running Algorithm 1

on the full set N ml l s (N∗) of MLLSs of N∗ returns N . In particular, note that since N∗
has the same number of level-k blobs as N , the same common pendant subnetworks are
collapsed (in each recursive call) when running the algorithm on N ml l s (N∗) as when we
run the algorithm on N ml l s

1 , N ml l s
2 and N ml l s

3 . By Theorem 7, running the algorithm on

N ml l s (N∗) returns N∗. Hence, N∗ and N are isomorphic.

Note that in the proof of Theorem 8, we crafted three particular MLLSs N ml l s
1 , N ml l s

2 ,
and N ml l s

3 however, there could be many triples of MLLSs which are sufficient in recon-

structing the original network. Suppose that we have deleted the reticulation edge e j
i

from the blob Bi to obtain the MLLS N ml l s
j for j = 1,2,3. The proof of Theorem 8 de-

pends on the argument that if for every level-k blob, we can find the particular three
shapes, then we can reconstruct said level-k blob. Then we can define three new MLLSs
that are also sufficient for reconstructing N as follows. Let N1 be the MLLS obtained by

deleting one of the three reticulation edges (e j
1 ,e j

2 ,e j
3) from each level-k blob (Bi ). Let N2

be the MLLS obtained by deleting one of the remaining two reticulation edges, and let N3

denote the MLLS obtained by deleting the remaining reticulation edges from N . If there
were l level-k blobs in N , then we would have 3l possible choices of N1, 2l possible
choices of N2, and 1 possible choice of N3. Therefore we have 6l 2 possible choices for
having a triple of MLLSs that are sufficient for reconstructing the network, given the

reticulation edges e j
i . Note that we simply looked at a particular lowest reticulation ri for

each level-k blob Bi , and also note that there could be more than one reticulation edge
that we could have deleted in retrieving the MLLS N ml l s

3 (in the proof of Theorem 8). This
implies that there could be many more triples of MLLSs that suffice to reconstruct N .

Therefore, it is possible to reconstruct the network from a subset of the MLLSs, given
that they hold enough information. In particular, if we have the three MLLSs as stated in
the proof of Theorem 8, then our algorithm returns the network in time O(|X |2/k).

3.7. DISCUSSION

I N this chapter, we have shown that level-k tree-child networks, where k ≥ 2, are deter-
mined by their MLLSs and provided a polynomial-time algorithm for reconstructing

such a network from its MLLSs. We achieved this result by exploiting one of the tree-child
properties - the lowest tree vertex is in a cherry or a reticulated cherry.

The results of this chapter illustrate one way for how a network can be encoded. The
key element here is uniqueness, that no two tree-child networks, up to isomorphism,
may display the same MLLSs. In particular, this means that in presence of perfect data,
we will be able to reconstruct the one true phylogeny.
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3. RECONSTRUCTING LEVEL-k TREE-CHILD NETWORKS FROM RETICULATE

EDGE-DELETED SUBNETWORKS

a b c d e
fa; : : : ; eg

Figure 3.16: A valid network with a tessellating crown blob and its blob tree. Deleting any of the reticulation
edges keeps the original blob biconnected, and hence it will not affect the blob tree.

An apparent hindrance to our method is that there is no guarantee nor reason to have
the set of all MLLSs of the original network. Converting sequence data into the MLLSs
could be quite challenging, especially for higher level. It would therefore be interesting to
focus on ways to make our results more practical, possibly employing similar approaches
used in methods such as trinet-based methods [12], which work with subnetworks with
only three leaves.

On the positive side, we have shown that it is not necessary to know all MLLSs to
reconstruct the original network: we need only three, see Theorem 8. Therefore, a more
plausible application of our approach would be the following. Suppose, for example, that
different studies each manage to produce a network with some reticulations. However,
in each of these networks some actual reticulate events have been missed, possibly due
to computational limitations or lack of data. Then, a method based on our theoretical
results could be used to reconstruct the full network from the networks with missing
reticulate events.

Extending our MLLS reconstructibility results to a more general class of networks is
another natural step forward. We briefly discuss and explain how it might be possible
to adapt our results to the class of valid networks, where every reticulation edge in the
network is valid.

In the case of valid networks, it is not always true that there exists a reticulation edge
in every blob such that its deletion results in a maximum subnetwork where the blob
tree differs from the blob tree of the original network (i.e., an analogous statement to
Observation 3 does not always hold for valid networks). An example of this, a tessellating
crown, is shown in Figure 3.16.

For leaf pair analysis, there is an extra shape on two leaves {x, y} where both par-
ents px , py of x, y respectively are reticulations, and they share a common parent gx .
This shape, which we call a double-reticulated cherry (see leaves b,c of Figure 3.16), is
distinct from all others (given we adapt the definition of when N contains Π(x, y)) as
it contains K (x, y) and K (y, x) in its MLLSs respectively1. Unlike tree-child networks,
MLLSs of valid networks can contain a cherry, reticulated cherry, or a double-reticulated

1Double-reticulated cherries have a different meaning in other literature [9]. There, they called a leaf
triple (x, y, z) a double-reticulated cherry if the network contained H(x, y) and H(z, y).
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x y

px py

gx

x y

b

a1 a2

py

(a) (b)

Figure 3.17: (a) Double-reticulated cherry on {x, y}. (b) MLLS where the red edge is deleted from (a). We have
two options, a1, a2, for inserting the reticulation edge.

x y x y x y x y x y

N1 N2 A(x; y) A(y; x) Λ(x; y)

Figure 3.18: Two level-2 networks N1 and N2 are non-isomorphic but have the same lower-level subnetworks.
In general, invalid networks are not level-reconstructible.

cherry stemming from the lowest tree node. The reconstruction of a double-reticulated
cherry poses a challenge as there are two potential places to reinsert the reticulation
edge. That is, given an MLLS where (gx , px ) has been deleted, we add two nodes a,b
with edge (a,b). We know that b must be placed directly above x. However, we have two
possibilities for inserting a above py (illustrated in Figure 3.17).

Nevertheless, we conjecture the following:

Conjecture 1. The class of binary valid networks is MLLS-reconstructible.

Note here that invalid networks, where not every reticulation edge is valid, are not
level-reconstructible in general. A counter example is given in Figure 3.18.

Ultimately we wish to characterize precisely which networks are reconstructible from
their MLLSs. Though this could perhaps be possible by an analogous leaf pair analysis
as done in Section 3.4, we quickly reach a large number of cases, with level-2 networks
already containing 15 possible shapes. A more efficient methodology will be required
to treat such general networks. Considering the level-k generators [13] may perhaps
provide an interesting approach to this problem.
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4
ON CHERRY-PICKING SEQUENCES

AND NETWORK CONTAINMENT

In this chapter, we introduce a new class of networks called the orchard networks. These
are networks that may be reduced by repeatedly applying reduction rules on substructures
formed by two leaves in the network. We give an encoding for orchard networks that is dif-
ferent from the encoding given in the previous chapter. Instead of characterizing networks
from their subnetworks, we show that orchard networks are encoded by ‘minimal’ cherry-
picking sequences that reduce them. We explore the characteristics of such classes, and we
also show that orchard networks may be reduced in any order. This leads to a linear-time
algorithm to decide if a given network is orchard.

We use cherry-picking sequences to tackle the NETWORK CONTAINMENT problem: decide
whether a network is contained in another network. We show that an orchard network
is contained in another orchard network if a sequence for the latter network reduces the
former network. Lastly, we show that the converse of the above statement holds for tree-
child networks, thereby showing that NETWORK CONTAINMENT for tree-child network in-
puts can be solved by computing cherry picking sequences in linear time. We show that a
Python implementation achieves the linear-time theoretical bound in practice.

4.1. INTRODUCTION

A LTHOUGH the evolutionary history of a set of species may be reticulate, small stretches
of DNA (e.g., pieces of DNA coding for protein domains) still evolve mostly tree-like.

The network representing the species’ evolution must then contain the trees for such
pieces of DNA. This leads to the following mathematical problem. For a given network
N and a tree T on the same set of species, decide whether N contains T . Solving such a
problem gives one way of validating outputs obtained from network building algorithms,

The contents of this chapter have been published in International Conference on Algorithms for Computa-
tional Biology AlCoB 2020, 93-107 (2020) [1] and in Theoretical Computer Science 856, 121-150 (2021) [2].
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i.e., a way of making sure that the obtained network is biologically plausible. Indeed, a
solution to the above problem presents a way of checking that a network contains gene
trees from a repository agreed upon by biologists for the given set of species (for more
on this, see [3]).

This problem, called TREE CONTAINMENT, is NP-complete for general directed phy-
logenetic networks [4]. Many have overcome this computational challenge by consid-
ering inputs of topologically restricted networks. It was shown initially that TREE CON-
TAINMENT can be solved in polynomial time for non-binary normal networks, binary
tree-child networks, and binary level-k networks [5]. Stronger results have been proven
for genetically stable networks (quadratic time: [6]), binary nearly-stable networks (lin-
ear time: [7]), and for binary tree-child networks (linear time: [7, 8]).

From a biological and a computational perspective, there is no reason to restrict to
inputs of a tree and a network. Indeed, while small stretches of DNA evolve tree-like, it
is possible for larger parts of the genome to evolve as a network. In such instances, it is
of interest to consider a generalization of TREE CONTAINMENT introduced in [1] called
NETWORK CONTAINMENT: For given networks N and N ′ on the same set of species, de-
cide whether N contains N ′.

Computationally, it is natural to wonder whether we can also solve NETWORK CON-
TAINMENT efficiently in all network classes where TREE CONTAINMENT can be solved ef-
ficiently. This question was first posed in the conference paper [1], and an extended ver-
sion was published as a journal paper [2]. This chapter is based on [2]. In that conference
paper, the focus was restricted to semi-binary tree-child networks and all proofs were
omitted. In the journal version, we included all proofs, and we broadened the scope to
include non-binary networks in the class of so-called orchard networks (which we called
cherry-picking networks), which contains the class of tree-child networks. orchard net-
works are networks that may be reduced to a network on a single leaf by a sequence of
reductions on two-leaf structures.

We note that the class of binary orchard networks was also introduced independently
by [9] (they were the first to call the class orchard). One of the main results of this chapter,
that binary orchard networks may be reduced in any order (Theorem 9), was also shown
by [9]. The focus of that paper is rather different from this chapter as they focus on
reconstructing networks from so-called ancestral profiles. Therefore both works have
independently come across the same network class in different contexts.

We investigate the correspondence between orchard networks and the sequences
that reduce them, and ultimately show that within a particular reconstructible class, or-
chard networks are encoded by their smallest cherry-picking sequences (Theorem 10).
These reconstructible classes are based on several constructions used to obtain a net-
work from a cherry-picking sequence. Although [10] and [11] mention how one can con-
struct some network from a cherry-picking sequence, no further characterizations for
the type of networks that can be obtained from such sequences have been investigated.
Here, we reintroduce these constructions as a way to reverse the reduction. As multiple
different networks can be reduced by the same cherry-picking sequence, this reversal
cannot be unique. Hence, we investigate several construction algorithms corresponding
to the different reversals of the reductions. Each construction algorithm then leads to
a reconstructible class of networks, for which we can prove relations between contain-
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ment and reduction by cherry-picking sequences. We show that within particular classes
of orchard networks, if a sequence for a network N reduces another network N ′, then N ′
is contained in N (Lemma 33). Unfortunately the converse does not hold (Theorem 12),
unless the two input networks are tree-child.

It turns out that the class of tree-child networks is contained in the class of orchard
networks, as each tree-child network has a special type of cherry-picking sequence—
a tree-child sequence—that reduces it. We examine how these sequences can be used
to solve NETWORK CONTAINMENT for tree-child networks. In particular, within some
orchard classes, we show that a tree-child sequence for a tree-child network N reduces
another tree-child network N ′ if and only if N ′ is contained in N (Theorem 13). Finally,
we provide a linear-time algorithm for NETWORK CONTAINMENT for inputs of tree-child
networks (Algorithm 7). We test our implementation on simulated data, and show that
even for large data sets (1000 leaves and 1000 reticulations), our software outputs the
solution within a tenth of a second.

Structure of the chapter In Section 4.2, we recall all relevant definitions that are not
in Chapter 2 and outline how to construct networks from cherry-picking sequences. In
Section 4.3, we investigate properties of orchard networks, and show that the order in
which cherries are picked does not matter (Theorem 9). Furthermore, we show that net-
works are unique up to a particular minimal cherry-picking sequence that reduces them,
given an order on the set of species. In Section 4.4, we show that if a sequence for a net-
work N reduces another network N ′, then N ′ is contained in N (Lemma 32). We also give
a counter-example for why the converse does not hold (Theorem 12). In Section 4.5, we
restrict our attention to tree-child networks.We show that a sequence for a tree-child
network N reduces another network N ′ if and only if N ′ is contained in N (Theorem 13).
In Section 4.6, we use this characterization in an algorithm for NETWORK CONTAINMENT

for tree-child networks, and show that its running time is linear. We also show that, by
defining an ordering on the leaves, it is possible to check whether two orchard networks
are isomorphic in polynomial-time (Theorem 16). In Section 4.7, we present an efficient
implementation for solving NETWORK CONTAINMENT in Python, and show that the the-
oretical linear running time is achievable in practice. In Section 5.6, we conclude with
open problems and future directions for the use of cherry-picking strategies. We also
summarize the containment results from this chapter in Table 4.2.

4.2. PRELIMINARIES

W E say that an edge is binary if the head of the edge is a degree 3 vertex. We call an
edge uv an rr-edge if u and v are both reticulations, a tr-edge if u is a tree vertex

and v a reticulation, an rt-edge if u is a reticulation and v a tree-vertex, and a tt-edge
if u and v are both tree-vertices. We call a directed path u1u2 . . .un an rr-path if ui is a
reticulation for all i ∈ [n] = {1, . . . ,n}, an rtr-path if u1 and un are reticulations and ui is a
tree vertex for at least one 2 ≤ i ≤ n −1, a trt-path if u1 and un are tree vertices and ui is
a reticulation for at least one 2 ≤ i ≤ n−1, and a tt-path if ui is a tree vertex for all i ∈ [n].
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4.2.1. CHERRY-PICKING SEQUENCES
In this subsection, we introduce cherry-picking sequences and their action on networks.
This starts with defining what it means to reduce cherries and reticulated cherries from
networks, and show that reversing such reductions—called adding pairs to networks—
can be done in many ways. We show that these additions can be applied to some se-
quence of ordered pairs of leaves to obtain a network. We impose conditions on the
sequences to ensure that these additions are well-defined, and, in doing so, we formally
define cherry-picking sequences and orchard networks. See Figure 4.2 for an illustration
of the terms defined in this subsection.

REDUCIBLE PAIRS

We may reduce cherries and reticulated cherries from a network to obtain a network of
smaller size.

Definition 6. Let N be a network and let (x, y) be an ordered pair of leaves. Reducing
(x, y) in N is the action of

• deleting x and suppressing degree-2 nodes in N if (x, y) is a cherry in N ;

• deleting the reticulation edge between the parents of x and y and subsequently
suppressing degree-2 nodes, if (x, y) is a reticulated cherry in N ;

• doing nothing to N otherwise.

In all cases, the resulting network is denoted N (x, y). We sometimes refer to this as pick-
ing a cherry or pair (x, y) from N . We say that an ordered pair (x, y) affects N if N 6=
N (x, y).

Given a network N and a sequence of ordered pairs S, we denote by N S the net-
work obtained by repeatedly reducing N with each element of S in order. We say that S
reduces N if N S is a network with a single leaf (for any leaf in N ), a root, and no other ver-
tices. In particular, we call these networks single-leaf networks. We say that a sequence
of ordered pairs S affects N if every element of S affects N when applied successively.

ADDING PAIRS TO NETWORKS

As each reduction makes a simple change to a network, it is natural to attempt to reverse
this change. Such reversals can be done by adding a leaf to obtain a new cherry in the
network, or by adding a reticulation edge to create a new reticulated cherry. If the reduc-
tion involved the pair (x, y), then we call the reverse action adding (x, y) to the network.
Since we allow for non-binary networks, it is possible to reduce reticulated cherries with
a multi-reticulation (a reticulation with indegree at least 3). Because of this, there may
not be a unique way to add the reticulation edge back: we have the option of choosing
an existing reticulation vertex or a newly created reticulation vertex as the head of this
reticulation edge.

A similar observation can be made for tree nodes. Just like multi-reticulations, reduc-
tions may pick cherries or reticulated cherries that contain multifurcations (tree nodes
of outdegree more than 2). Here, we have the option of choosing an existing tree vertex
or a newly created tree vertex as the tail of the inserted edge.



4.2. PRELIMINARIES

4

73

N (x, y)

y z

x is not a leaf of N (x, y)
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x y z

(1a)
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x is a leaf of N (x, y)
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Figure 4.1: The six different constructions for adding a reducible pair (x, y) to a network N (x, y), as in Defi-
nition 7. The left and the right boxes show how cherries and reticulated cherries can be added, respectively:
The top subgraphs show the part of the network N (x, y) that will be changed by adding (x, y); the bottom sub-
graphs show the corresponding parts of N for the different constructions. There are more cases, for example
when adding a cherry (left box) and the parent of y is a reticulation. In such cases, however, the constructions
are the same for both 1a and 1b. Similarly, there are more cases for when adding a reticulated cherry. We only
depict these examples, as they showcase each of the different constructions.

With this in mind, there are 6 ways of adding (x, y) to a network: 2 ways of adding
cherries and 4 ways of adding reticulated cherries.

Definition 7. Let N be a non-binary network with a reducible pair (x, y). Let px and py

denote the parents of x and y in N (x, y), respectively (note that x and px may not be
nodes in N (x, y) if (x, y) is a cherry in N ). Then we may add (x, y) to N (x, y) to obtain N
by using one of the following six constructions (see Figure 4.1):

1. If x is not a leaf in N (x, y) (i.e., if (x, y) is a cherry in N ), then add a labelled node x,
add a node q directly above y , and add an edge qx.

(a) Do not contract any edges; or

(b) If py is a tree node, then contract py q .

2. If x is a leaf in N (x, y) (i.e., if (x, y) is a reticulated cherry in N ), then add nodes p, q
directly above x, y , respectively, and add an edge qp.

(a) Do not contract any edges;

(b) If px is a reticulation, then contract px p;

(c) If py is a tree vertex, then contract py q ; or

(d) If px is a reticulation, contract px p; and, if py is a tree vertex, contract py q .
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Since all tree vertices have indegree-1 and all reticulations have outdegree-1, there
are no other ways of adding a reducible pair to a network other than the six ways men-
tioned above. Note that the constructions 1b, 2b, 2c, and 2d may only be used if the
‘if’ conditions are satisfied. Also note that the above actions are only well-defined if y
is a leaf in N (x, y). In the setting of Definition 7, this is not an issue: since we assume
that (x, y) is a reducible pair of N , it is indeed the case that y is a leaf in N (x, y).

On the other hand, if we were to start with any sequence of ordered pairs and sought
to construct a network by successively adding ordered pairs backwards through the se-
quence, the story would be a little different. That is, we may come across a case where,
upon trying to add a reducible pair (x, y) to a network, y does not already exist in the
network as a leaf. Let S = S1S2 . . .S|S| = (x1, y1)(x2, y2) . . . (x|S|, y|S|) be a sequence of or-
dered pairs. Starting with a network on a single leaf y|S|, we may iteratively add Si to
the network for i = |S|, |S|−1, . . . ,1 (i.e., backwards through the sequence S), choosing a
suitable construction for each ordered pair, to obtain some network. We call this a net-
work obtained from S. Now, if yi was not a leaf in the network when adding Si , then
such a construction would not be well-defined. Fortunately, we can fix this by imposing
a simple condition on the sequences. This motivates the following definition.

Definition 8. A cherry-picking sequence (CPS) on a set X is a sequence of ordered pairs
on distinct elements from X , such that the second coordinate of each ordered pair occurs
as a first coordinate in some ordered pair in the rest of the sequence, or as the second
coordinate of the last pair.

Returning to the example that we had before, we observe if S was a CPS, then yi

must already have been a leaf in the network when adding Si = (xi , yi ). By definition of
CPSs, yi appears as a first coordinate in some ordered pair that appears after Si , or yi ap-
pears as the second coordinate of the final ordered pair, which implies that the network
contains the leaf yi in both cases when adding Si = (xi , yi ). Therefore, this construction
is well-defined, and we can always obtain a network from a CPS. This brings us to the
definition of an orchard network.

Definition 9. A network on X is an orchard network if it can be obtained from some
CPS S. Equivalently, an orchard network is a network that can be reduced by some CPS.

See Figure 4.2 for an example of an orchard network with a CPS that reduces it. See
Figure 4.3 for examples of networks that are not orchard networks. In particular, single-
leaf networks are also orchard networks, since these can be reduced by the empty CPS.
By definition, an orchard network with at least two leaves contains either a cherry or a
reticulated cherry. Intuitively, reducing these structures returns a network of smaller size
that is an orchard network; we may repeatedly reduce cherries and reticulated cherries
until the network has been reduced.

A subsequence of a CPS refers to any sequence of ordered pairs that can be obtained
by deleting some elements from the CPS. Note that a subsequence need not be a CPS. In
what follows, we will often have to reduce a network by a subsequence of a CPS. These
subsequences are most often the initial parts of the sequence, and hence we introduce
notation for them. Let S = (x1, y1)(x2, y2) . . . (xn , yn) be a CPS. For i ∈ [n], we use the fol-
lowing notations to denote some subsequence of S. The i th ordered pair of S is Si =
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S = (2,1)(3,2)(3,4)(2,1)(1,4)

N

1 2 3 4

N S[:1]

1 2 3 4

N S[:2]

1 2 3 4

N S[:3]

1 2 4

N S[:4]

1 4

N S

4

(2,1) (3,2) (3,4) (2,1) (1,4)

Figure 4.2: A binary orchard network N reduced to leaf 4 by the CPS S. The reduction is shown as a sequence
of networks N S[:i ] for i = 0,1, . . . ,5 from left to right, in which an element of S is applied to the network suc-
cessively. This sequence is minimal for the network, as every element of the sequence reduces either a cherry
or a reticulated cherry of the network. An example of a cherry (3,4) can be seen in the network N S[:2], and a
reticulated cherry (2,1) can be seen in the network N . Observe that this sequence is not a tree-child sequence,
as the element 2 appears as a first coordinate in S1 and as a second coordinate in S2. Constructing a network
from a sequence S in the class (1a,2a) can be seen by moving through the six networks in reverse order (from
right to left).

N1

1 2 3 4

N2

1 2 3 4

N3

1 2 3 4

Figure 4.3: an orchard network N1 and two non-orchard network networks N2 and N3. We know from Fig-
ure 4.2 that N1 is an orchard network. N2 contains a cherry (2,3); upon reducing (2,3), the resulting network
does not contain a reducible pair because the crown structure (in gray) prevents cherries and also reticulated
cherry. N3 contains a reticulated cherry (3,4); upon reducing (3,4), the resulting network does not contain a
reducible pair because the gray structure prevents 2 from being picked as a cherry or a reticulated cherry.
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(xi , yi ). The first i ordered pairs in S are denoted by S[:i ] = (x1, y1) . . . (xi , yi ). The subse-
quence of S without the first i ordered pairs is denoted by S[i+1:] = (xi+1, yi+1)(xi+2, yi+2) . . . (xn , yn).
We let S[:0] denote the empty sequence.

A CPS S is minimal for an orchard network N if S reduces N and each ordered pair Si

of S affects N S[:i−1] for all i ∈ [|S|]. In other words, N S is a network on a single leaf,
and N S[:i−1] 6= N S[:i ] for all i ∈ [|S|]. We often write a CPS of / for a network N to refer to a
minimal CPS for N .

A partial CPS S′ of length i is a sequence of ordered pairs such that there exists a
CPS S where S[:i ] = S′. If S and S′ are partial CPSs and N is a non-binary network, then
applying S and then S′ is the same as appending S′ to S, denoted SS′, and applying the
whole sequence. In notation, we write

(N S)S′ = N (SS′),

and hence we denote this network without brackets as N SS′.

Observation 8. Let N be a non-binary orchard network that can be reduced by a CPS S.
Then the network N S[:i ] is an orchard network for all i = 1, . . . , |S|.

By choosing a suitable construction, we may obtain an orchard network from any of
its minimal CPSs.

Observation 9. Every non-binary orchard network can be obtained from a minimal CPS
that reduces it.

4.2.2. ORCHARD CLASSES
Using different combinations of the six constructions from Definition 7 can yield differ-
ent orchard networks from the same CPS. These differences could be due to the nature
of the network vertex degrees (binary, semi-binary, non-binary) or due to their topolog-
ical features (stack-free, tree-child). One way of categorizing these orchard networks is
to choose and stay consistent with one particular construction for adding cherries and
reticulated cherries to networks. That is, we construct networks from CPSs with a chosen
construction A to add cherries and a chosen construction B to add reticulated cherries.

There are two motivations to do so. Firstly, this categorizes orchard networks into
classes defined by their topological restrictions. We may specify orchard classes that
contain only binary networks, those that contain only semi-binary networks, those with-
out stacks, and many more. Secondly, and more importantly, we can introduce some
notion of a correspondence between orchard networks and minimal CPSs that reduce
them. Within some orchard classes, it turns out that if a sequence is minimal for two
networks, then the networks must be isomorphic.

Definition 10. Let A and B be a cherry construction and a reticulated cherry construc-
tion, respectively. We let (A,B) denote the class of all orchard networks that can be ob-
tained from CPSs by using the suitable constructions A or B .

Within the orchard class (A,B), we say that we use the (A,B)-construction to obtain
orchard networks from CPSs. We write N ∈ (A,B) or say that N is an (A,B)-orchard to
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S = (3,2)(1,2)(3,2)(3,4)(2,4)

(1a,2a)

1 2 3 4

(1a,2b)

1 2 3 4

(1a,2c)

1 2 3 4

(1a,2d)

1 2 3 4

(1b,2a)

1 2 3 4

(1b,2b)

1 2 3 4

(1b,2c)

1 2 3 4

(1b,2d)

1 2 3 4

Figure 4.4: A CPS S and the unique networks obtained from it within the eight orchard classes. Observe that
the eight networks are distinct.

mean that N is an orchard network in the orchard class (A,B)1.
Since there are two cherry constructions and four reticulated cherry constructions,

there are in total eight orchard classes. For example, the orchard class (1a,2a) contains
all binary orchard networks (see Figure 4.2 for an example of obtaining a (1a,2a)-class
orchard network from a CPS). We note that it is possible obtain the same orchard net-
work from the same CPS within different orchard classes. Indeed, a CPS corresponding
to a tree will give the same network in all the orchard classes that use the 1a cherry con-
struction, and the same can be said for orchard classes that use the 1b cherry construc-
tion. On the other hand, there do exist CPSs that return distinct networks amongst the
different orchard classes; an example of such a CPS is given in Figure 4.4.

Suppose that we are given an orchard network N within an orchard class (A,B), and
let S be a minimal CPS that reduces N . To form some notion of correspondence between
orchard networks and the sequences that reduce them, we pose the following question:
is it always the case that applying the (A,B) construction on S returns the network N ? It
turns out that this is true only for half of the orchard classes. We start by defining what it
means for an orchard class to be reconstructible.

Definition 11. an orchard class C = (A,B) is called reconstructible if for any two net-

1Note that these orchard classes differ from the class of orchard networks that we have mentioned before. The
class of orchard networks refers to the collection of all orchard networks. Orchard classes refer to orchard
networks that can be obtained by applying certain constructions on some CPS. It will be clear which classes
we refer to, either from context or by stating so explicitly.
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works N , N ′ ∈C with a common minimal CPS, we have that N and N ′ are isomorphic.

Since the construction is fixed, each CPS gives rise to a unique network within each
of the orchard classes. Then if two distinct networks N and N ′ have a common minimal
CPS S, at most one of these networks, say N , can be constructed from the sequence.
This means that although S is a minimal CPS of N ′, it cannot be used to construct the
network N ′. Indeed, there does exist some minimal CPS of N ′ which can be used to
construct N ′. Reconstructible orchard classes have the nice property that for a given
orchard network N , any minimal CPS for N can be used to construct N .

Lemma 20. Let (A,B) ∈ {(1a,2a); (1a,2b); (1b,2c); (1b,2d)}. Let N be an orchard network
in the (A,B)-class, and let (x, y) be a reducible pair in N . Then adding (x, y) to N (x, y)
using the (A,B) construction results in N .

Proof. Observe that these four classes are characterised by the following properties. The
networks in (1a,2a) are binary; the networks in (1a,2b) do not contain rr-edges; the
networks in (1b,2c) do not contain tt-edges; and the networks in (1b,2d) do not con-
tain rr-edges nor tt-edges. Since N is a network of one of these classes, N must also
have these properties. Furthermore, the network N (x, y) also has these properties, since
deleting edges and potentially suppressing vertices does not create new vertices, which
may subdivide existing rr-edges or tt-edges. This means that upon inserting an edge to
the network (as a result of adding a cherry or a reticulated cherry (x, y)), one should ei-
ther do nothing; contract all rr-edges; contract all tt-edges; or contract all rr-edges and
tt-edges, depending on which orchard classes are being considered. Note that these con-
tractions, should they occur, only involve vertices that have just been added as a result
of adding the reducible pair, since N (x, y) also has the properties. This is precisely what
happens when we add (x, y) back to the network N (x, y) using the respective construc-
tions, and it follows immediately that the constructions defined in these orchard classes
returns the original network N .

Lemma 20 states that four of the eight orchard classes have the property that adding
back a reduced pair to the network returns the original network. By applying this lemma
in the construction of a network from a CPS, we obtain the following corollary.

Corollary 3. Let (A,B) ∈ {(1a,2a); (1a,2b); (1b,2c); (1b,2d)}. Then (A,B) is reconstructible.

To show that the above lemma and the corollary do not hold for the other four or-
chard classes, we present two networks with a common minimal CPS for each of the
orchard classes in Figure 4.5. Unlike their reconstructible counter-parts, the networks in
these four classes can contain both tt-edges and rr-edges whilst also containing multi-
furcations and multi-reticulations. When constructing networks from CPSs, this allows
for a mixture of choosing to contract some tt-edges and some rr-edges, but not all. This
can make adding reticulated cherries problematic. Take the (1a,2c) class for example.
Since there can exist tt-edges that are binary, we may, in particular, assume that a net-
work in the class contains a reticulated cherry (x, y) where the parent of y is a head of a
binary tt-edge e. But this means that upon reducing (x, y) and adding back the reticu-
lated cherry using the 2c construction, we essentially contract this tt-edge, which returns
a different network (see Figure 4.6).



4.2. PRELIMINARIES

4

79

N

1 2 3

N ′

1 2 3
(a) (1a,2c) : (2,3)(2,1)(2,3)(1,3)

N

1 2 3

N ′

1 2 3
(b) (1a,2d) : (2,3)(1,3)(2,3)(1,3)

N

1 2 3

N ′

1 2 3
(c) (1b,2a) : (2,1)(2,1)(1,3)

N

1 2 3

N ′

1 2 3
(d) (1b,2b) : (2,1)(2,1)(2,3)(1,3)

Figure 4.5: Two distinct networks N and N ′ that can be reduced by the same minimal CPS for the
(1a,2c), (1a,2d), (1b,2a), (1b,2b)-classes. The networks obtained by using the respective constructions are N .
This means that given a network and a minimum sequence that reduces it, the sequence cannot always be
used to construct the original network (let N ′ be the original network in these four cases).

x y x y x y

reduce (x, y) add (x, y)

with (1a,2c)

Figure 4.6: Reducing a reticulated cherry (x, y) and adding it back using the construction (1a,2c) can return a
different network.
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REFINEMENT OF CONSTRUCTED NETWORKS

The six constructions that were introduced in Definition 7 can be rephrased as follows.
When adding (x, y) to a network, check if x is a leaf in the network. If x is not a leaf in the
network, then add a labelled leaf x and an edge from the (newly added) parent of y to x
(add a cherry). If x is a leaf in the network, then add an edge between the newly added
parents of y and x (add a reticulated cherry). Decide whether or not to contract some of
the edges incident to the parent of x and edges incident to the parent of y . This means
that given some CPS S, the binary network N in the (1a,2a)-class constructed from S is
a refinement of all networks that can be constructed from S, using any combination of
the constructions. This gives the following observation.

Lemma 21. Given a non-binary orchard network N and a minimal CPS S for N , there
exists a binary refinement Nb of N such that S is a minimal CPS for Nb .

Proof. The unique binary network Nb obtained by using construction (1a,2a) on S is a
refinement of N , and S is a minimal CPS for Nb by definition of this network.

Finally, the following lemma shows how general refinements of orchard networks
(not necessarily binary) are related to the orchard networks.

Lemma 22. Let Nr be a refinement of a non-binary network N that is an orchard network.
Then N is an orchard network, and every minimal CPS of Nr is also a minimal CPS of N .

Proof. We prove this statement by induction on |N |, the number of edges in N . For
the base case take the single-leaf network. So suppose that for every network of size
at most |N |−1, the claim is true.

Let S be a minimal CPS of Nr , and let S1 = (x, y) be the first element of S. Since Nr

can be obtained from N by refining vertices, it must be the case that S1 is also a reducible
pair in N . Furthermore, if S1 is a cherry in Nr then S1 is also a cherry in N ; if S1 is a
reticulated cherry in Nr then S1 is also a reticulated cherry in N . Now it is easy to see
that Nr S1 is a refinement of N S1 Note that |N S1| < |N | since every reduction reduces
the size of the network. The network Nr S1 is an orchard network by Observation 8. By
induction hypothesis, N S1 is an orchard network and every minimal CPS of Nr S1 is also
a minimal CPS of N S1. Then in particular, S[:2] is a minimal CPS of N S1. It follows then
that S is a minimal CPS of N .

Note that the converse of Lemma 22 does not hold in general. Consider the tree T on
three leaves {x, y, z} that all share a common parent (the claw graph with a root). Let Tr

be a binary refinement of T in which x and y form a cherry. Then the CPS (y, z)(x, z) is
minimal for T but not for Tr .

4.3. PROPERTIES OF ORCHARD NETWORKS

I N this section, we investigate properties of orchard networks. First, we continue where
we left off in the previous section: we inspect the relation between CPSs and orchard

networks. This includes the reticulation number defined by a CPS, changes in the sets
of reducible pairs that are ready for picking after picking a pair, and the order in which
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we can reduce a network. The last of these allows us to consider distinguishability of two
orchard networks by their CPSs. Then, we use this to investigate the relation between
embedded networks of an orchard network and its CPSs.

4.3.1. WHY ORCHARD NETWORKS ARE NICE: ORDER DOES NOT MATTER
Lemma 23. Let S be a minimal length sequence of ordered pairs of leaves that reduces a
non-binary network N . Then S is a CPS. Furthermore, |S| = n+r −1, where n and r denote
the number of leaves and the reticulation number of N , respectively.

Proof. Suppose for a contradiction that S is not a CPS. Then, there is an i < |S| with
Si = (x, y) such that y is not a first coordinate in any of the elements of S[i+1:] or the
second coordinate of S|S|. This means y cannot be a leaf in N S[:i−1] (if it were, then S
would not reduce N ). This implies N S[:i−1] = N S[:i ], and there is a shorter sequence
S[:i−1]S[i+1:] that reduces N , a contradiction. We conclude that S is a CPS.

We now prove the second part of the lemma. Let Si = (x, y). We first construct a
binary network M from S using the (1a,2a) construction. Upon constructing MS[:i−1]

from MS[:i ], a new leaf x is added if x is not a leaf in MS[:i ], and a reticulation is added
otherwise. By Lemma 21, M is a binary refinement of N , and therefore N has the same
leaf set and it has the same reticulation number as that of M . Since S is a minimal CPS
for N , it follows that |S| = n + r −1.

Definition 12. Let N be a non-binary network. Denote with Cc (N ) the set of cherries of
N , and with Cr (N ) the set of reticulated cherries of N . The set of all reducible pairs is
denoted C (N ) =Cc (N )∪Cr (N ).

The following lemma states that all new reducible pairs after picking a pair (x, y) must
involve either x or y .

Lemma 24. Let N be a non-binary network on a taxa set X , and let (x, y) be a reducible
pair of N . Then we have the following inclusion:

C (N (x, y)) \C (N ) ⊆ (
{x, y}×X

)∪ (
X × {x, y}

)
.

Proof. Note that the LHS of the containment relation represents the reducible pairs in
N (x, y) that were not present in N . Suppose, for contradiction, that this set contains a
pair (z, w) not involving x or y . Then, this pair is not reducible in N , but it is in N (x, y).
Adding the pair (x, y) back into N (x, y) may only subdivide the pendant edges leading
to x and y . This implies that this action will not change the fact that z and w form a
reducible pair. Therefore, (z, w) is a reducible pair in N as well, a contradiction. Hence,
all new cherries and reticulated cherries of N (x, y) involve x or y .

We also have similar inclusions for looking at reducible pairs in the original network
that are not reducible pairs in the new network. Roughly speaking, the following lemma
states that reducing a network by the element (x, y) preserves the other reducible pairs.

Lemma 25. Let N be a network on X , and (x, y) a reducible pair of N . Then, if N is non-
binary, we have the inclusion C (N ) \C (N (x, y)) ⊆ {x}×X∪X × {x}, and in particular

Cc (N ) \Cc (N (x, y)) ⊆ {x}×X∪X × {x},
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and
Cr (N ) \Cr (N (x, y)) ⊆ {x}×X .

If N is semi-binary, the inclusions can be sharpened to C (N ) \C (N (x, y)) ⊆ {(x, y), (y, x)},
with

Cc (N ) \Cc (N (x, y)) ⊆ {(x, y), (y, x)},

and
Cr (N ) \Cr (N (x, y)) ⊆ {(x, y)}.

Proof. Let N be a non-binary network and let (x, y) be a reducible pair of N . Let (z, w)
be a reducible pair in N where z 6= x and w 6= x. We claim that (z, w) must also be a re-
ducible pair in N (x, y). Suppose for a contradiction that it was not. Adding the pair (x, y)
may only subdivide the pendant edges leading to x and y ; this action will not change
the fact that (z, w) does not form a reducible pair. But this means that (z, w) is not a re-
ducible pair in N , which is a contradiction. Therefore, (z, w) must also be a reducible pair
in N (x, y). It follows that every reducible pair in N that is not a reducible pair in N (x, y)
must contain the element x. Note that since semi-binary networks are non-binary, this
fact also holds for semi-binary networks.

If (x, y) is a cherry in N , then, since the network is non-binary, it is possible for x to
form a cherry with another leaf, say z. Then (x, z) and (z, x) are both reducible pairs in N ,
while they are not reducible pairs in N (x, y) since x is not a leaf in N (x, y). On the other
hand, if (x, y) is a reticulated cherry in N , then x may only appear as a first coordinate in
a reducible pair of N . Therefore the inclusions for non-binary networks follow.

Suppose now that N is semi-binary. As stated in the first paragraph of this proof, ev-
ery reducible pair in N that is not a reducible pair in N (x, y) must contain the element x.
If (x, y) is a cherry in N , then x may only be in a cherry (and reducible pair) with the
leaf y . If (x, y) is a reticulated cherry in N , then the only reticulated cherry involving the
parent py of y is (x, y). All other reticulated cherries that contain x do not involve py ,
as py is of outdegree-2: this implies all reticulated cherries in N involving x (as the first
coordinate) is still a reducible pair in N (x, y). The inclusions for the semi-binary net-
works then follow.

We now start our investigation into the order in which pairs can be reduced. We start
with a lemma that implies a cherry on two leaves x and y can be reduced either as (x, y)
or as (y, x). Then we show that reducing an arbitrary pair in an orchard network gives a
new orchard network.

Lemma 26. Let S be a minimal CPS for a non-binary orchard network N and suppose
Si = (x, y) reduces a cherry when applying the sequence. Let z and w be distinct leaves
(not necessarily different from x and y) that have a common parent, equal to the parent
of x and y. Let S′ be the sequence S[i+1:] where each occurrence of z is replaced by x. Then
S[:i−1](z, w)S′ is a minimal CPS for N .

Proof. Because (x, y) forms a cherry in N ′ = N S[:i−1], and x and y share their parents with
z and w , the reduced network N ′(x, y) is equal to the network N ′(z, w) when z is replaced
by x. Hence, if we switch the roles of x and z in the remaining part of the sequence, the
result after reduction by both sequences is the same modulo the x ↔ z replacement.
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Lemma 27. Let N be a non-binary orchard network that can be reduced by a minimal
CPS S = S1,S2, . . . ,S|S| such that S2 ∈C (N ). Then N S2 is an orchard network.

Proof. Note that S1,S2 ∈C (N ) by assumption. We distinguish several cases and prove in
every case that N S2 is an orchard network.

• The leaves in S1 and S2 are the same. Then either S1 = S2, or S1 = (x, y) and S2 =
(y, x) for some pair of leaves x, y . In the first case N S2 = N S1, which is an orchard
network. In the second case, as (x, y) and (y, x) are both present in N , (x, y) must
be a cherry in N . This means that N S1S2 = N S1, and thus S is not a minimal CPS
for N . This case is not possible.

Let S1 := (x, y).

• The pairs S1 and S2 have exactly one leaf in common.

– S2 === (x , z). The common leaf x is below the reticulation common to the two
reticulated cherries. Applying S1 and S2 in any order removes these two retic-
ulation edges, so clearly N S1S2 = N S2S1. By Observation 8, N S1S2 is an or-
chard network. This implies N S2S1 is an orchard network and, therefore, that
N S2 is also an orchard network.

– S2 === (z , x). Observe first that (x, y) cannot form a reticulated cherry, as oth-
erwise the first coordinate of every reducible pair that involves x is x, which
contradicts our assumption that S2 = (z, x) ∈ C (N ). Therefore (x, y) must be
a cherry. Then the network N S1 = N (x, y) does not have the leaf x, which im-
plies that S2 = (z, x) is not a reducible pair of N S1. This contradicts the fact
that S was a minimal CPS for N , and therefore this case is not possible.

– S2 === (y, z). The two possibilities for this case are either that x, y, z all share
the same parent, or that (x, y) form a reticulated cherry in N and z shares a
common parent with y . In the former case, N S1S2 is the orchard network
obtained by deleting the leaves x and y and suppressing all degree-2 ver-
tices. We obtain the same orchard network by picking the cherries S2 = (y, z)
and (x, z) in succession, that is, N S2(x, z) = N S1S2. This implies that N S2 is
also an orchard network. A similar argument can be done for the reticulated
cherry case—it is easy to see that N S2(x, z) = N S1S2.

– S2 === (z , y). This is the case where either y and z share a common parent,
or (z, y) forms a reticulated cherry. In both of these cases, the leaf x could
share a common parent with y , or (x, y) could be a reticulated cherry (there
are in total 4 possible cases). In all cases, reducing N by S1 first or by S2

first has no real difference, and so N S1S2 = N S2S1. For the same reason as
before, N S2 is an orchard network.

• The pairs S1 and S2 have no leaf in common. Then obviously, S1 and S2 indepen-
dently remove edges in N , not influenced by the order of S1 and S2. Hence we get
N S1S2 = N S2S1 and for the same reason as before, N S2 is an orchard network.

In all cases, we have concluded that N S2 is an orchard network, so the result follows.
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Lemma 28. Let N be a non-binary network, and (x, y) ∈C (N ). Then, there exists a mini-
mal CPS S for N such that Si = (x, y) or Si = (y, x) for some i , and (x, y) is reducible until
that point, i.e., (x, y) ∈C (N S[: j ]) for all j < i .

Proof. Let S be a minimal CPS for N . If S contains (x, y) or (y, x) as Si , and (x, y) is a
reducible pair in N S[: j ] for all j < i , we are done, so assume that this is not the case.
Let i > 0 be minimal such that (x, y) 6∈ C (N S[:i ]). Then Si = (x, z) or Si = (y, z) for some
z 6= x, y by Lemma 25. Because (x, y) ∈ C (N S[:i−1]), (x, y) 6∈ C (N S[:i ]), and the second
element of Si is z, (y, z) must form a cherry in N S[:i−1].

First, suppose that (x, y) forms a reticulated cherry in N S[:i−1], and that Si = (x, z).
In that case, N S[:i ] = N S[:i−1](x, y), so replacing Si with (x, y) in S gives a new minimal
CPS for N that contains (x, y). Next, suppose that (x, y) forms a reticulated cherry in
N S[:i−1], and that Si = (y, z). Then, upon switching the roles of y and z, we have N S[:i ] =
N S[:i−1](z, y). Letting S′ denote the sequence S[i :] where each occurrence of z is replaced
by y , we obtain a minimal CPS Snew = S[:i−1](z, y)S′ for N . In this sequence, we have that
the minimal value k > 0 for which (x, y) ∉ C (N Snew

[:k] ) satisfies k > i . We may repeat this
until we enter the first case; such a process must terminate as the length of S is finite. On
the other hand if (x, y) forms a cherry in N S[:i−1], then x, y and z share a common parent.
Therefore, by Lemma 26, there is a minimal CPS for N that starts with S[:i−1](x, y).

Proposition 1. Let N be a non-binary orchard network with c ∈ C (N ). Then N c is an
orchard network. That is, there exists a CPS S such that cS is a CPS reducing N .

Proof. Let c = (x, y). By Lemma 28, there is a CPS S′ for N that contains either (x, y)
or (y, x), and (x, y) is reducible until that point in the sequence. If S′

1 = (x, y), then set
S := S′

[2:] and we are done. Now suppose S′
1 is not equal to (x, y). Note that there must be

a smallest i ≥ 1 with S′
i = (x, y) or S′

i = (y, x).

• Suppose S ′′′
i === (x , y). Recall that we have (x, y) ∈ C (N S′

[: j ]) for all j < i . Hence, by

applying Lemma 27 i times, N (x, y) is an orchard network.

• Suppose S ′′′
i === (y, x). Again, we have (x, y) ∈C (N S′

[: j ]) for all j < i . Hence, N S′
[:i−1]

has both reducible pairs (x, y) and (y, x), and it must contain the cherry (x, y). By
Lemma 26 there is a CPS of N starting with S′

[:i−1](x, y). Redefining S′ as this se-
quence, we are in the previous case and thus N (x, y) is an orchard network.

We conclude that N c is an orchard network.

The following theorem is a corollary of the previous proposition. It essentially states
that a network can be cherry picked in any order.

Theorem 9. Let N be a non-binary orchard network, and S a partial CPS. If in each step
of the reduction of N by S, the network is changed, then there exists a minimal CPS S′
starting with S that reduces N .
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N

1 2 3 4 5

Figure 4.7: The smallest CPS for this network is (1,2)(3,2)(3,4)(4,5)(2,5). Initially we have the choice of picking
either (1,2), (2,1), or (3,4). For the smallest CPS we pick the smallest reducible pair (1,2).

4.3.2. DISTINGUISHABILITY
By Theorem 9, any order of picking reducible pairs gives a minimal CPS for an orchard
network. This inherently implies that for a given orchard network, there could be many
CPSs that reduce it. However, given a class (A,B), every CPS uniquely constructs an
orchard network in that class by Lemma 21.

Remark 1. Within an orchard class, exactly one orchard network can be constructed for
each CPS. On the other hand, an orchard network can have more than one minimal CPS
that reduces it.

While this remark holds true for all eight of the orchard classes, only the classes that
are reconstructible are interesting to examine. The aim of this subsection is to set up
some distinguishability notion of orchard networks using their minimal CPSs. That is,
we would like to encode each orchard network by delegating one of its minimal CPSs
to be its representative, such that the sequence can be used to reconstruct the orchard
network. Since there could be more than one orchard network that can be reduced by
the same minimal CPS within orchard classes that are not reconstructible, it makes no
sense to consider these classes. Therefore, we define a distinguishability notion only for
the classes that are reconstructible.

Within a reconstructible orchard class, each network can have many minimal CPSs
that reduce it by Remark 1. To choose a representative from these minimal CPSs, we
introduce an ordering on the CPSs. Doing so allows us to prescribe a unique smallest
CPS to each orchard network. So let us take an arbitrary ordering on the leaves, and let
us define a lexicographical ordering on the reducible pairs as follows. We say that (a,b) <
(c,d) if and only if a < c or if a = c and b < d . We naturally extend this ordering to
minimal CPSs. Let S and S′ be CPSs such that |S| 6= |S′|. If |S| < |S′|, then S < S′—this
ensures the smallest CPS is minimal. Now suppose |S| = |S′| and let i be the smallest
index such that Si 6= S′

i . If no such i exists, then S = S′; otherwise, S < S′ if and only if
Si < S′

i .
By Theorem 9, we may pick an orchard network in any order. We define a small-

est CPS as one that is obtained by picking the smallest reducible pair at each iteration
(see Figure 4.7). Such a sequence is naturally a minimal CPS. By the following theorem,
distinguishing two orchard networks of the same reconstructible class comes down to
finding their smallest CPS and checking whether these are the same.
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Theorem 10. Suppose we are given an ordering on the taxa set X . Every orchard network
on X has a unique smallest CPS. In particular within a reconstructible orchard class, these
CPSs can be used to reconstruct the orchard network. Every CPS can be used to construct
a unique orchard network within each of the eight orchard classes.

Proof. Let N be an orchard network on X . Since we have a total ordering on the cher-
ries of N , we have that if there exists a smallest CPS then it is unique. Furthermore, we
know that a smallest CPS exists: simply pick a smallest reducible pair at every iteration.
Therefore every orchard network on X has a unique smallest CPS. Within reconstructible
orchard classes, no two networks have the same minimal CPSs. It then follows that a
smallest CPS for a network can be used to construct said network.

By Remark 1, we have that every CPS gives rise to a unique orchard network.

The following corollary is a direct consequence of Theorem 10.

Corollary 4. Suppose we are given an ordering on the taxa set X . Within a reconstructible
orchard class, two orchard networks on X are isomorphic if and only if they have the same
smallest CPS.

This leads to a polynomial-time algorithm for checking whether two orchard net-
works of a reconstructible orchard class on the same set of taxa are isomorphic, which
we describe in Section 4.6.

4.4. REDUCTION AND CONTAINMENT

I N this section, we prove that, within reconstructible orchard classes, the reduction of a
network by a CPS for another network implies ‘containment’ of the former in the latter.

We also show that the converse does not always hold: containment of a network N ′ in
another network N does not imply that there exists a minimal CPS of N that reduces N ′.

4.4.1. REDUCTION IMPLIES CONTAINMENT
Let N and N ′ be two non-binary networks on X and X ′, respectively, where X ′ ⊆ X .
Recall that N ′ is a subnetwork of N if N ′ can be obtained by deleting reticulation edges
from N and cleaning up the resulting graph with respect to X ′. Recall also that N ′ is
contained in N if some refinement of N is a subnetwork of N .

In what follows, in settings where we consider whether N ′ is a subnetwork of/contained
in N , we informally refer to N as the larger network and N ′ as the smaller network. Note
that the notions of a network being a subnetwork and a network being contained are
not always synonymous. If N ′ is a subnetwork of N , then N ′ is contained in N . How-
ever, if N ′ is contained in N , then it does not immediately follow that N ′ is a subnetwork
of N . They are synonymous when the smaller network (i.e., N ′) is binary. The following
lemma shows that for any non-binary network (not necessarily an orchard network), the
network obtained by reducing a pair is a subnetwork of the original network.

Lemma 29. Let N be a non-binary network, and c a pair of leaves. Then N c is a subnet-
work of N .
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Figure 4.8: The visualization of the three cases in Lemma 30 (each column corresponds to a case). The six
different cases for adding a pair (x, y) to a network N , and possibly adding (x, y) to a subnetwork N ′ of N . N
is indicated by the black and gray nodes and edges; N ′ is indicated by only the black nodes and edges. Only
the parts of the networks that will be affected by the addition of (x, y) is shown here. The part to the left of
each arrow represents the networks before the addition of (x, y); the part to the right of each arrow represents
the networks after the addition of (x, y). A black arrow indicates that (x, y) is added also to N ′; a gray arrow
indicates that (x, y) will not be added to N ′. The embedding of the black network into the black and gray
network show that in any of the six cases, regardless of whether (x, y) is added to N ′ or not, the resulting
network is still a subnetwork of the other.

Proof. For the embedding of N c into N , note that there is a natural map of the nodes
of N c to the nodes of N . Each edge of N , corresponds naturally to an edge of N c, or is
part of a path (of two edges) if an endpoint got suppressed. These mappings form an
embedding of N c into N , as the mapping of the nodes is respected, and no edge of N c is
part of more than one corresponding path of N .

To show the relation between subsequences and containment, we first focus on the
binary orchard class, (1a,2a), for which the definitions of subnetwork and containment
are synonymous.

SUBNETWORKS

Intuitively, when a CPS S for a binary network N also reduces another binary network N ′,
the embedding of the network N ′ in N can be found as follows. Reconstruct the network
N from S, and annotate the edges used by N ′ in the process. Let S′ denote the CPS
of ordered pairs in S that is used in the reduction of N ′. Let Si = (x, y) be an ordered
pair that appears in S′. Then in N S[:i ], label the paths py y and py x as ‘used’. Upon
reconstructing N , the embedding of N ′ into N can be seen as the subnetwork of N which
uses all labelled edges.

Lemma 30. Let N and N ′ be binary networks, and c = (x, y) a reducible pair in N and N ′.
If N ′c is a subnetwork of N c, then N ′ is a subnetwork of N .

Proof. First note that there are three cases: neither N c nor N ′c contains x; only N c con-
tains x; or both N c and N ′c contain x. To find an embedding ι of N ′ into N , we extend
the embedding ιc of N ′c into N c in each of these cases. We denote the natural embed-
dings of N ′c into N ′ and of N c into N by h′ and h (see Figure 4.9). We now split into three
cases (see Figure 4.8).
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N ′ N

N ′c N c

ι

h′

ιc

h

Figure 4.9: The commutative diagram for the networks N , N ′, N c, and N ′c as in the setting of Lemma 30. Given
the maps h,h′, and ιc , we wish to produce the map ι.

• The leaf x is in neither N c nor N ′′′c . Let p and p ′ be the parent of y in N and
N ′, and g and g ′ the grandparent of y in N and N ′. An embedding ι can be con-
structed from ιc by setting ι(e) = h(ιc (h′−1e)) for all edges of N ′ other than g ′p ′, p ′y ,
and p ′x—h′ maps each edge to a path of length one, except for the edge incident
to y . Then, we map the remaining edges by setting ι(g ′p ′) = h(ι(h′−1(g ′)y)) \ {py},
ι(p ′x) = px, and ι(p ′y) = py—the node h′−1(g ′) is well defined because the embed-
ding h′ is injective on the nodes, and there are exactly two more nodes in N ′ than
in N ′c, which cannot be the image of any node as the edge incident to x is not part
of the embedding. This mapping gives an embedding, because the corresponding
node mapping is still injective, no edge is in more than one image-path of an edge,
and the endpoint relations are respected.

• The leaf x is only in N c . This case is almost the same as the previous case, except
that ι(p ′x) = py px x. The only edge of N that may be in the ι-image of more than
one edge, is px x. However, the only edge in N c that maps to px x is the edge inci-
dent to x, and this edge is not in the image of ιc . Hence, as the image of each edge
other than g ′p ′, p ′y , and p ′x is defined by ι(e) = h(ιc (h′−1e)), no other edge of N ′
is mapped to a path of N that contains px x. Furthermore, the endpoint relations
are still respected, so the map ι is an embedding of N ′ into N .

• The leaf x is in both N c and N ′′′c . Let px and p ′
x be the parent of x, py and p ′

y
the parent of y , gx 6= py and g ′

x 6= p ′
y the other grandparent of x, and g y and g ′

y
the grandparent of y in N and N ′. An embedding ι can be constructed from ιc by
setting ι(e) = h(ιc (h′−1e)) for all edges of N ′ other than g ′

y p ′
y , p ′

y y , p ′
y p ′

x , g ′
x p ′

x and
p ′

x x—h′ maps each edge to a path of length one, except for the edges incident to
x and y . Then, we map the remaining edges by setting ι(g ′

y p ′
y ) = h(ι(h′−1(g ′

y )y)) \

{py}, ι(p ′
y y) = py y , ι(p ′

y p ′
x ) = py px , ι(g ′

x p ′
x ) = h(ι(h′−1(g ′

x )x)) \ {px x}, and ι(p ′
x x) =

px x—the nodes h′−1(g ′
x ) and h′−1(g ′

y ) are well defined because the embedding h′
is injective on the nodes, and there are exactly two more nodes in N ′ than in N ′c,
which cannot be the image of any node as the reticulation edge p ′

y p ′
x is not part

of the embedding. This mapping gives an embedding, because the corresponding
node mapping is still injective, no edge is in more than one image-path of an edge,
and the endpoint relations are respected.

Lemma 31. Let N and N ′ be binary orchard networks on taxa set X and X ′ ⊆ X respec-
tively, and suppose that a CPS S reduces both N and N ′, such that all elements of S that
affect N ′ also affect N . Then N ′ is a subnetwork of N (see Figure 4.10).
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S = (2,1)(3,2)(3,4)(2,1)(1,4)

N

1 2 3 4

N S[:1]

1 2 3 4

N S[:2]

1 2 3 4

N S[:3]

1 2 4

N S[:4]

1 4

N S

4

(2,1) (3,2) (3,4) (2,1) (1,4)

Figure 4.10: A visualization of Lemma 31. The binary orchard network N from Figure 4.2 (gray and black),
together with one of its minimal CPSs S. The subnetwork of N (black) is also reduced by S, and the embedding
can be constructed by building both networks simultaneously and keeping track of the edges added by the
pairs that change the subnetwork (black pairs and arrows).

Proof. Let S′ denote the CPS of ordered pairs in S such that every ordered pair in S′ is
used in the reduction of N ′. Due to this, we have that for every i ∈ {1, . . . , |S′|} there exists
a π(i ) ∈ {1, . . . , |S|} such that S′

i = Sπ(i ). By definition of S′, π : {1, . . . , |S′|} → {1, . . . , |S|} is
a strictly increasing function (i.e., if i < j then π(i ) < π( j )). Recall that S′

[:i ] denotes the
sequence obtained by taking the first i ordered pairs from S′. We show by induction
on i , for i = |S′|, . . . ,0, that the orchard network N ′S′

[:i ] is a subnetwork of the orchard
network N S[:π(i )], where N ′S′

[:0] = N ′, and π(0) =π(1)−1.
For the base case, we prove the claim for i = |S′|. Let S′

|S′| = (x, y). Then N ′S′ is the tree
with one leaf y . Since (x, y) affects N S[:π(|S′|)−1], the network N S[:π(|S′|)] must still contain
y . As there is a path from the root to any leaf in a phylogenetic network, N ′S′ = N ′S′

[:|S′|]
is a subnetwork of N S[:π(|S′|)].

So now assume 0 ≤ i < |S′| and suppose we have proven that N ′S′
[: j ] is a subnetwork

of N S[:π( j )] for every j > i . As i ≥ 0, there is an element S′
i+1 = Sπ(i+1) in each sequence,

and N ′S′
[:i+1] is a subnetwork of N S[:π(i+1)] by the induction hypothesis. By Lemma 30,

N ′S′
[:i ] is a subnetwork of N S[:π(i+1)−1] because S′

i+1 = Sπ(i+1) acts on both networks. Ap-
plying Lemma 29 to N ′S′

[:i ], N S[: j ] and N S[: j+1] for all j =π(i +1)−1, . . . ,π(i ), we get that
N ′S′

[:i ] is a subnetwork of N S[: j ] for all j =π(i ), . . . ,π(i+1)−1. Hence, in particular, N ′S′
[:i ]

is a subnetwork of N S[:π(i )].
Therefore, N ′S′

[:i ] is a subnetwork of N S[:π(i )] for all i ∈ {0, . . . , |S′|}. In particular, N ′ =
N ′S′

[:0] is a subnetwork of N = N S[:0].

Note that Lemma 31 was only shown for the class of binary orchard networks ((1a,2a)
orchard class). This result generalizes to non-binary orchard networks if we consider the
notion of containment instead of subnetwork.

CONTAINMENT RESULTS

Recall that a network N ′ is contained in another network N if there exists a refinement
of N ′ that is a subnetwork of N . We first show a result that follows immediately from
Lemma 31 given that the larger network is binary.

Theorem 11. Let N be a binary orchard network, and N ′ a non-binary orchard network
on X and X ′ ⊆ X , respectively. If a minimal CPS S for N also reduces N ′, then N ′ is con-
tained in N .
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Proof. Let S′ be the subsequence of S consisting of the elements that affect N ′, and let
N ′

b be the unique binary network corresponding to S′. Then, by Lemma 21, N ′
b is a binary

refinement of N ′ with minimal CPS S′. As N is the binary network corresponding to S,
N ′

b is a subnetwork of N by Lemma 31. Hence, N ′ is contained in N .

Unfortunately for two general non-binary orchard networks, an analogue of Lemma 31
is not possible to obtain. For example, the two networks of the orchard class (1a,2c) in
Figure 4.5 are not contained in one another, yet there is a common CPS that reduces both
networks. Therefore, we need to use the more relaxed notion of containment, rather than
subnetwork.

Lemma 32. Let C be a reconstructible orchard class. Let N and N ′ be networks in C on
taxa set X and X ′ ⊆ X , respectively. Then N ′ is contained in N if and only if there exist
binary refinements N ′

b of N ′ and Nb of N such that N ′
b is a subnetwork of Nb .

Proof. See Figure 4.11 for a visualization of the proof. Suppose first that N ′ is contained
in N . Then there exists a refinement N ′

f of N ′ that is a subnetwork of N . There exists an

embedding ι of N ′
f into N .

Observe that every reticulation vertex in N ′
f is mapped to a reticulation vertex in N

of the same or higher degree. Let r ′ be a reticulation vertex in N ′
f , such that ι(r ′) = r

for some reticulation vertex r in N . Let e ′1, . . . ,e ′a denote all incoming edges of r ′, and
let e1, . . . ,eb denote all incoming edges of r where a ≤ b, such that the paths ι(e ′i ) contains
the edge ei for all i ∈ [a]. Resolve r ′ as a single path of reticulation vertices r ′

1 · · ·r ′
a−1

such that the edge e ′1 is incident to r ′
1, and the edges e ′i+1 are incident to r ′

i for all i ∈
[a−1]. Resolve r as a single path of reticulation vertices r1 · · ·rb−1, such that the edge e1 is
incident to r1, and the edges ei+1 are incident to ri for all i ∈ [b−1]. We now show that N ′

f

with r ′ refined in this manner is a subnetwork of N with r refined in this manner. We do
this by altering the mapping ι as follows. The edges e ′i are still mapped to the same paths
containing the edges ei for i ∈ [a]. The reticulation edges r ′

i r ′
i+1 are mapped to ri ri+1

for i ∈ [a −2]. Let c denote the child of r ′ in N ′
f . The edge r ′

a−1c is mapped to the path

from ra−1 to ι(c). All other mappings remain unchanged.
A similar observation can be made for tree vertices. Now, observe that binary refine-

ments of these orchard networks are obtained by either resolving all multifurcations, all
multi-reticulations, or both (depending on C ). Then we may apply the above to all multi-
furcations / multi-reticulations as needed to obtain binary refinements N ′

b of N ′ and Nb

of N such that N ′
b is a subnetwork of Nb .

Now suppose that there exist binary refinements N ′
b of N ′ and Nb of N such that N ′

b is
a subnetwork of Nb . We note that N can be obtained from Nb by contracting all tt-edges,
all rr-edges, or both depending on if N is an orchard network of class (1a,2b), (1b,2c),
or (1b,2d). Now, if Nb = N , then we are done. So suppose that N is not a binary network.

The plan is to contract the edges of Nb to obtain N . In the process, we choose to
either contract or not contract ‘corresponding’ edges in N ′

b , ensuring at each step that
the resulting network is a subnetwork of some refinement of the main network. We start
by looking at contracting the rr-edges of Nb . We claim that contracting all rr-edges in N ′

b
that do not map to an rtr-path gives a refinement of N ′ that is a subnetwork of N .
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Let e be an edge in N ′
b . If e is an rr-edge, then it is mapped to some path Pe in Nb .

Since reticulation vertices are mapped to reticulation vertices in the embedding, the
path Pe is an rr-path or an rtr-path. If Pe is an rr-path, then contract all edges of Pe

in Nb . Contract e in N ′
b . It is easy to see that by mapping the reticulation vertex obtained

by contracting e to the reticulation vertex obtained by contracting Pe , we may extend the
embedding of N ′

b into Nb in a natural manner, thereby showing that the newly obtained
network is a subnetwork of the other. Now suppose that Pe was an rtr-path. Then we
contract all rr-edges contained in Pe . Observe that N ′

b is still embedded in this newly
obtained graph, since we may extend the original embedding by simply changing the
mapping of the edge e to the newly contracted rtr-path. On the other hand, suppose
that e was not an rr-edge. If it is mapped to a path containing rr-edges in Nb , then we
may simply contract the rr-edges of the path, and update the embedding by changing
the mapping of the edge to the newly contracted path. Finally suppose that there exists
an rr-edge in Nb that is not used in the embedding. Then contracting such an edge has
no effect on the embedding.

Similarly, contracting all tt-edges in N ′
b that do not map to a path containing a trt-

path gives a refinement of N ′ that is a subnetwork of N .
We now obtain a sequence of networks N ′

b = N ′
0, N ′

1, . . . , N ′
k and Nb = N0, N1, . . . , Nk =

N such that N ′
i is a subnetwork of Ni for all i ∈ [k], and N ′

i is obtained from N ′
i−1 by

contracting an rr-edge that does not map to an rtr-path in Ni−1 (or by contracting a tt-
edge that does not map to a trt-path in Ni−1, depending on the orchard class) for i ∈ [k].
The networks Ni are obtained by contracting the edges of the rr-path or the rtr-path (or
the tt-path or the trt-path) as outlined in the previous paragraph. Note also that N ′

i is a
refinement of N ′. Then we have that N ′

k , which is a refinement of N ′, is a subnetwork
of N . Therefore N ′ is contained in N .

Finally, we present a lemma analogous to Lemma 31 for two orchard networks within
the same reconstructible class.

Lemma 33. Let C be a reconstructible orchard class. Let N and N ′ be orchard networks
in C on taxa set X and X ′ ⊆ X respectively, and suppose that a minimal CPS S for N also
reduces N ′. Then N ′ is contained in N .

Proof. Let S′ be the subsequence of S consisting of the elements that affect N ′, and let Nb

and N ′
b be the unique binary orchard networks obtained from S and S′ using the (1a,2a)

construction. Then, by Lemma 21, Nb is a binary refinement of N with minimal CPS S,
and N ′

b is a binary refinement of N ′ with minimal CPS S′. By Lemma 31, N ′
b is a subnet-

work of Nb . By Lemma 32, N ′ is contained in N .

Note that Lemma 33 does not hold if we used subnetwork instead of containment
(see Figure 4.12). The converse of Lemmas 31 and 33 do not hold for general orchard
networks, and we show this in the following subsection.

4.4.2. CONTAINMENT DOES NOT ALWAYS IMPLY REDUCTION
Following subsection 4.4.1, we give an example of an orchard network N and a tree T on
the same leaf-sets, for which T is a subnetwork of N , such that there exists no minimal
CPS for N that reduces T to a single leaf. This example is shown in Figure 4.13.
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Figure 4.11: Visualization of proof of Lemma 32. N and N ′ are orchard networks of the (1a,2b) class on differ-
ent sets of taxa where N ′ is contained in N . In proving the “only if” direction (supposing that N ′ is contained
in N ), we use the fact that N ′

k , a refinement of N ′ is a subnetwork of N . The embedding of N ′
k into N can be

seen in the top middle figure, by looking only at vertices and edges in black. In this embedding, r ′ is mapped
to r . We obtain a binary resolution Nb of N by refining r . We refine r ′ to obtain N ′

b , a binary resolution of N ,

which is a subnetwork of Nb . For the other direction (supposing that a binary resolution N ′
b of N ′ is a subnet-

work of a binary resolution Nb of N ), notice that an embedding of N ′
b into Nb maps the edges r ′1r ′2 and r ′2r ′3

into r1r2 and r2r3, respectively. Observe that r1r2 is an rtr-path (with the tree vertex t ) and r2r3 is an rr-path;
because of this, we contract the edge r ′2r ′3 but not r ′1r ′2 to obtain the refinement N ′

k . Upon contracting all rr-

edges of Nb , which is only the edge r2r3 in this case, we obtain N , and we can see that N ′
k is a subnetwork

of N .

N

1 2 3 4

N ′

1 3 4

Figure 4.12: An illustration of Lemma 33. The tree-child network N ′ is contained in the tree-child network N ,
which can be seen by deleting leaf 2 (and as a result deleting the dashed edge and suppressing the degree-
2 vertex) and contracting the dotted edge in N . The TCS (2,1)(3,4)(3,1)(3,4)(1,4) for N reduces N ′ as well.
However, N ′ is clearly not a subnetwork of N .
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T

1 2 3 4 5 6 7

N

1 2 3

4

5 6 7

Figure 4.13: The tree T is a subnetwork of an orchard network N , and one embedding of T into N is shown
(dotted edges). There exists no minimal CPS of N that reduces T to a single leaf.

Theorem 12. There exists a binary orchard network N that contains a tree T , such that
no minimal CPS for N reduces T .

Proof. We refer by N and T to the network and the tree of Figure 4.13.
Note first that C (N ) = {(2,3), (6,5)}. So initially, we are required to pick one of the

reticulated cherries (2,3) or (6,5).
Picking (2,3) first reduces both T and N , and in the next step we have the option of

picking one of the reticulated cherries (3,2) or (6,5). Picking (3,2) does not affect T (2,3),
and reduces the reticulated cherry (3,2) in N (2,3). In N (2,3)(3,2), 3 is no longer a child
of a reticulation. Let u denote the LCA of 1 and 3. The path from u to 3 contains the
parent of 4. This implies that one of 3 or 4 is picked by the time we can pick leaf 1, which
ultimately means that T is not reduced to a leaf with any CPS starting with (2,3)(3,2). So
we pick (6,5).

Picking (6,5) first reduces both T and N , and in the next step we have the option
of picking one of the reticulated cherries (2,3) or (5,6). Picking (5,6) does not affect
T (6,5), and reduces the reticulated cherry (5,6) in N (6,5). Let u denote the LCA of 5
and 7 in N (6,5)(5,6). Since u is the child of the root, the pair (5,7) can only appear in
the CPS as the final cherry. But (5,7) is a cherry in the tree T (6,5)(5,6), which still con-
tains other leaves. This implies that a minimal CPS for N starting with (6,5)(5,6) cannot
reduce T to a single leaf.

Thus, the CPS must start with either (2,3)(6,5) or (6,5)(2,3). Note that T (2,3)(6,5) =
T (6,5)(2,3) and N (2,3)(6,5) = N (6,5)(2,3) and so the order in which we pick the two
reticulated cherries do not matter. In both cases, we have the choice of picking one of
the reticulated cherries (3,2) or (5,6). However, doing so results in a CPS that does not
reduce T to a single leaf, by the argument above. Since every CPS of N starts with these
cherries, we have that T is not reduced to a single leaf for any CPS of N .

Since this particular network is semi-binary stack-free, it serves as an example for
when containment does not imply reduction for the (1a,2a) and the (1a,2b) classes. For
the other two reconstructible classes, the claim may still hold true. We speculate that
similar results follow, which we discuss in Section 5.6.
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In what follows, we show that if we restrict our scope to the class of tree-child net-
works, then the converse does hold. That is, for those networks, containment implies
reduction.

4.5. TREE-CHILD SEQUENCES

R ECALL that a condition was imposed on a sequence of ordered pairs to define CPSs
as those that can be used to construct networks. We show here that imposing an

additional condition on the CPSs can ensure the constructed network to be tree-child.
Recall that a network is tree-child if every non-leaf vertex has a child that is a tree vertex
or a leaf.

In this section, we assume that we work in orchard classes that use the 2b or the 2d
reticulated cherry construction, to ensure that the network constructed from the se-
quences is stack-free. Outside of stacks, the only forbidden structure of tree-child net-
works are tree vertices whose children are all reticulations. To ensure these structures
do not appear in the constructed networks, we impose a condition on our sequences,
that the first coordinate of each pair does not appear as a second coordinate of another
pair in the remainder of the sequence. We will refer to this condition as the tree-child
condition.

Definition 13. A CPS is a tree-child sequence (TCS) if every leaf appearing as the first
coordinate does not appear as a second coordinate in the rest of the sequence.

Lemma 34. Let S be a TCS. Then each of the networks obtained by choosing construc-
tion 2b or 2d for each reticulated cherry is tree-child.

Proof. By construction, the networks obtained from S are orchard networks and they
are stack-free. It remains to show that each tree vertex has at least one child that is a tree
vertex or a leaf.

Let Si = (x, y) be a reticulated cherry, and consider the network N after having just
added Si . In N , the tree vertex parent py of y currently has at least one leaf child y .
Suppose that all its other children were reticulations. For this vertex py to have all retic-
ulation children in the fully constructed network, we require some reticulation vertex to
be inserted between py and y , which can only happen if we add some ordered pair S j =
(y, z) where j < i . However, this would mean that y appears as a first coordinate of some
pair S j and also as a second coordinate of some pair Si later on in the sequence, which
contradicts our tree-child condition.

Now, if Si = (x, y) was a cherry, then the parent p of x cannot be a parent of only retic-
ulations after adding more pairs to the network. Indeed, this would imply that we have
added some reducible pair (y, z) later on to the network—and hence it would appear
earlier in the sequence—which again contradicts our tree-child condition.

Hence all tree vertices of a network obtained from a TCS have at least one child that
is a tree vertex or a leaf. Therefore such a network is tree-child.

Tree-child networks (TCNs) always contain a reducible pair, and after reducing one
of these, we obtain a new tree-child network (Lemma 4.1 of [12]). Naturally, this implies
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that TCNs are orchard networks. As we have seen in the previous section, given an or-
chard network that contains a tree on the same set of taxa, there may not exist a minimal
CPS of the network that reduces the tree (Theorem 12). In this section, we make the
switch from CPSs to TCSs, and show that this is no longer an issue for TCSs. In fact, we
prove a stronger result: within a reconstructible orchard class, a TCN contains another
TCN on the same taxa if and only if every minimal TCS of the first TCN reduces the sec-
ond TCN. If, in addition, the first TCN is binary, then if any minimal TCS for the larger
network reduces the smaller network, then the smaller network is a subnetwork of the
larger network. We also show that—similar to Proposition 1 for orchard networks—we
may pick reducible pairs in any order for TCNs. We start by showing that every TCN has
a minimal TCS. This was shown implicitly for semi-binary TCNs in the proof of Lemma
3.4 of [10]; however we include it here for completeness and to generalize for non-binary
TCNs.

Lemma 35. Let N be a non-binary TCN. Then there is a TCS for N .

Proof. Let N be a network on X . For a partial TCS S, denote by F (S) ⊆ X the set of first
elements of pairs of S. Because N is tree-child, for each node v , there is a path to a leaf
t (v) in which all internal nodes are tree nodes, and t (v) = t (c) for some child c of v if v is
not a leaf node.

Assume S is a partial TCS such that t (v) is still below v via a tree-path for all nodes v
of N S, and for each l ∈ F (S), the nodes v for which t (v) = l , are l , and possibly the parent
of l if it is a reticulation. Suppose N is not fully reduced by S, we show that we can find a
longer sequence S′ starting with S to which the conditions also apply.

Let p be a lowest tree node in N S, then each node below p is either a leaf, or a retic-
ulation which is directly above a leaf. The leaf t (p) is directly below p (as there is a tree-
path from p to t (p)) and t (p) 6∈ F (S) by the assumption on S. By reducing all cherries and
reticulated cherries involving p using t (p) as second element, we obtain a new partial
tree-child sequence S′. In essence, this reduction deletes all outgoing edges of p except
for pt (p), suppresses all degree-2 vertices (which includes p), and deletes any isolated
vertices. We claim that for all nodes v of N S′, t (v) is still below v by a tree-path. Indeed,
deleting all but one outgoing edge of p only affects the tree-paths that were leading to p.
So for all vertices in N S that were not ancestors of p, the claim holds. On the other hand,
for all ancestors g of p in N S with t (g ) = t (p), there is still a tree-path from g to t (g )
in N S′. So our claim holds. Furthermore, each leaf l ∈ F (S′) is either directly below a
reticulation, or directly below a tree node v with t (v) 6= l , as in N S, l was below a reticu-
lation below p; or l ∈ F (S) and l was already below v , so t (v) 6= l in N S by assumption.

Starting with the empty partial TCS, we can repeat this process until N S has no more
tree nodes. When this is the case, we have found a TCS S for N .

4.5.1. SUBNETWORK / CONTAINMENT IMPLIES REDUCTION
As in the previous sections, we will try to keep the results as general as possible. We first
show results on reduction and subnetworks.

Lemma 36. Let N be a non-binary tree-child network, N ′ a tree-child subnetwork of N
with the same leaf set, and S a TCS. Then N ′S is a subnetwork of N S.
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Proof. We prove this fact inductively on the length of S. If S is empty, then N ′S = N ′ and
N S = N , so N ′S is a subnetwork of N S.

Now suppose that for any TCS S′ of length at most j , N ′S′ is a subnetwork of N S′.
We prove that for any TCS S of length j + 1, N ′S is a subnetwork of N S. Let us denote
S = S′(x, y). Note that S′ is of length at most j . Hence, by the induction hypothesis, N ′S′
is a subnetwork of N S′. We consider the following cases:

• N ′′′S ′′′ has only one of x and y . Because S = S′(x, y) is a TCS, y is not the first coordi-
nate in any element of S′. Hence, N ′S′ must still contain y , and x must have been
deleted from N ′ by applying S′. This means the edge of N S′ deleted by applying
(x, y) is not used by the embedding of N ′S′ into N S′, and N ′S = N ′S′ can still be
embedded in N S.

• N ′′′S ′′′ has both x and y . There are a few cases we must consider, depending on
whether there are reducible pairs (x, y) in N ′S′ and N S′.

– N S ′′′ has a cherry (x , y). As N ′S′ also contains both leaves x and y , N ′S′ also
has the cherry (x, y), which is mapped to the corresponding cherry in N S′ by
the embedding. The reduction of (x, y) in both networks removes the pen-
dant edge leading to x in both networks, not changing the embedding other-
wise.

– N S ′′′ has a reticulated cherry (x , y).

¦ The edge p y px is used by the embedding of N ′′′S ′′′ into N S ′′′. First note
that N ′S′ must have either a cherry or a reticulated cherry (x, y): if the
edge py px is used by the embedding, then the only way to reach x and y
in N S′, is by using the edges px x and py y , making (x, y) either a cherry or
a reticulated cherry in N ′S′. Now applying (x, y) to N ′S′ deletes the edge
using py px of N S′ in the embedding. Hence, upon deleting both these
edges by applying (x, y) to both networks, we may naturally extend the
embeddings.

¦ Otherwise. N ′S′ can be embedded in N S′ without the edge py px . Hence,
N ′S′ is a subnetwork of N S′ after the removal of this edge py px (i.e., the
network N S). As N ′S is a subnetwork of N ′S′ and N ′S′ is a subnetwork
of N S, N ′S is a subnetwork of N S.

– Otherwise. The network N S′ contains neither a cherry, nor a reticulated
cherry on x and y . This means N S = N S′. As N ′S is a subnetwork of N ′S′,
and N ′S′ is a subnetwork of N S′, N ′S is a subnetwork of N S(= N S′).

The following corollary follows immediately, as subnetworks of single-leaf networks
are single-leaf networks.

Corollary 5. Let N and N ′ be non-binary tree-child networks on the same leaf set, with
N ′ a subnetwork of N . If a TCS S reduces N , then S also reduces N ′.

Observe that in the setting of Corollary 5, the two networks are reduced to the same
single-leaf network, with the same leaf label.
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Theorem 13. Let C be a reconstructible orchard class. Let N and N ′ be tree-child networks
in C on the same leaf set. Then N ′ is contained in N if and only if any TCS of N reduces
N ′.

Proof. Follows immediately from Corollary 5, Lemma 31, and Lemma 33.

Note that in Theorem 13, it is necessary for the two networks to be contained in the
same reconstructible orchard class. Consider the networks in the (1a, 2d) and the (1b,
2d) classes in Figure 4.4, which are both tree-child and can be reduced by the same tree-
child sequence. The latter network is not contained in the former.

For semi-binary TCNs, we show that the notions of containment and subnetwork are
equivalent.

Lemma 37. Let N , N ′ be both semi-binary TCNs on the same leaf-set. Then N contains N ′
if and only if N ′ is a subnetwork of N .

Proof. One direction is clear by definition of containment and subnetwork, so suppose
that N ′ is contained in N . Then there exists some refinement N ′

f of N ′ that is a subnet-

work of N (i.e., there exists an embedding of N ′
f into N ). If N ′

f = N ′, then we are done, so

we may assume that there exists an rr-edge e of N ′
f that is mapped to an rtr-path Pe of N

in the embedding. This implies that the tree-vertices on this path Pe are not used in the
embedding; in particular, this means that any outgoing edge of a tree-vertex that is not
in Pe is not used in the embedding. Let t denote the lowest tree-vertex on Pe . The child
of t on Pe is a reticulation. By the tree-child property, t must have another child that is
either a tree vertex or a leaf. Such a vertex is not on Pe , and in particular, this implies that
there exists a tt-path from t to some leaf l , such that the path is not on Pe . So this tt-path
is not used in the embedding. But every path from the root to the leaf l uses this tt-path.
It follows that l does not appear as a leaf in the network N ′

f and therefore in N ′. This is

a contradiction as N and N ′ have the same leaf-sets. Thus reticulations in N ′ need not
be refined to obtain N ′

f . However, since all tree vertices in N ′ are binary, all refinements

of N ′ arise from refining its reticulation vertices. Then N ′
f = N ′, and therefore N ′ is a

subnetwork of N .

This lemma does not hold in general, for all other network classes for which the
smaller network is not binary (see Figure 4.14). Furthermore the lemma does not hold
for when the larger network N is not a TCN.

Theorem 14. Let N and N ′ be semi-binary TCNs on the same leaf set. Then N ′ is a sub-
network of N if and only if any TCS of N reduces N ′.

Proof. Follows immediately from Theorem 13 and Lemma 37

Note that we could assume N ′ is non-binary, but to be a subnetwork of a semi-binary
network, it has to be semi-binary as well, because N and N ′ are both TCNs on the same
leaf set. Note that Theorem 14 is no longer true if we allow for the networks to have
different leaf-sets. Let N ′ be the cherry on leaf-set {1,2}, and let N be the balanced tree
on leaf-set {1,2,3,4} with cherries (1,3) and (2,4). Then both networks are semi-binary
tree-child, and N ′ is a subnetwork of N . However, the TCS (1,3)(2,4)(3,4) of N does not
reduce N ′.
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T

1 2 3 4

T f

1 2 3 4

N

1 2 3 4

Figure 4.14: The tree T is contained in the tree-child network N using the refinement T f , but it is not a subnet-
work of N The embedding of T f into N is shown by dotted edges. In particular, T and N belong to the (1b,2c)
and the (1b,2d) classes.

4.5.2. ORDER DOES NOT MATTER IN TCSS
Theorem 9 states that we may pick cherries from an orchard network in any order and
still obtain a minimal CPS. In this section, we show that this also holds for TCSs.

Lemma 38. Let N be a non-binary TCN, S a partial TCS and c an ordered pair of leaves
such that cS is also a partial TCS. Then N cS is a subnetwork of N S.

Proof. We consider the networks N cS[: j ] and N S[: j ] for j ≥ 0. We prove, using induction
on j , that N cS[: j ] is a subnetwork of N S[: j ]. Obviously, this is true for j = 0, as N c is a
subnetwork of N .

Write S j+1 = (x, y) for the j + 1-th element in the sequence. First note that if x is
not a leaf of N cS[: j ], then N cS[: j ] is still a subnetwork of N S[: j ](x, y), as the embed-
ding of N cS[: j ] in N S[: j ] does not use the removed edge that leads only to x. Therefore
N cS[: j+1] = N cS[: j ] is a subnetwork of N S[: j+1] = N S[: j ](x, y).

Now assume x is a leaf of N cS[: j ]. If reducing N S[: j ] with S j+1 = (x, y) does not re-
move an edge e used by the embedding of N cS[: j ], then N cS[: j+1] is still a subnetwork of
N S[: j+1].

So, we now assume reducing S j+1 = (x, y) in N S[: j ] removes an edge e used by the
embedding of N cS[: j ]. Suppose for a contradiction that N cS[: j+1] is not a subnetwork of
N S[: j+1]. For this to be true, the edge of N cS[: j ] mapped to the path containing e must
not be removed by reducing S j+1. This can only happen if N cS[: j ] does not contain the
reducible pair (x, y), whereas N S[: j ] does have it. The reducible pair (x, y) in N S[: j ] must
be a reticulated cherry, as the only other option is that it is a cherry, but then, N cS[: j ]

also contains this cherry, as x and y are both part of N cS[: j ] and N cS[: j ] is displayed by
N S[: j ]. Hence, N cS[: j ] does not contain a cherry nor a reticulated cherry (x, y), and N S[: j ]

contains a reticulated cherry (x, y). As N cS[: j ] is a subnetwork of N S[: j ] whose embed-
ding uses the reticulation edge of the reticulated cherry (x, y), the leaf y must have been
deleted from N cS[: j ] already. This means y must be the first element of a pair in the par-
tial TCS cS[: j ]. However, cS is a partial TCS with y as the second coordinate of S j , so we
have a contradiction. We conclude that if the reduction removes an edge from N S[: j ], it
also removes the corresponding edge (i.e., the edge of N cS[: j ] that was mapped to the
path of N S[: j ] containing the edge) from N cS[: j ].

We conclude that N cS[: j+1] is a subnetwork of N S[: j+1].
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Lemma 39. Let S and S′ be TCSs such that S′ is a subsequence of S. Then there exists a
sequence of TCSs S =Σ0, . . . ,Σ|S|−|S′| = S′ such that |Σi | = |Σi−1|−1 for i ∈ [|S|− |S′|].

Proof. Let S′′ denote the sequence (not necessarily a CPS) obtained by taking the ele-
ments of S which do not occur in S′ (in order). For i ∈ [|S′′|], let f (i ) denote the posi-
tion where Σi−1

f (i ) = S′′
i , which is the element in the sequence that will be deleted to ob-

tain Σi+1. We claim that if Σi is a TCS, then we can obtain a TCS Σi+1 by removing the
element S′′

i =Σi−1
f (i ). Upon repeating this for all i , we obtain the sequence of TCSs that we

are after.
To show this, suppose for a contradiction that Σi is a TCS, but removing S′′

i from Σi

results in a sequence Σi+1 that is not a TCS. Note first that the ‘tree-child property’ of
the sequence is retained when deleting elements from TCSs: indeed, every leaf appear-
ing as a first coordinate still does not appear as a second coordinate in the rest of the
sequence. So we must have that Σi+1 is not a CPS, that is, there exists a leaf that appears
as a second coordinate, but not as a first coordinate in the remaining sequence. Then
the CPS property is violated for an element which occurs in Σi

[: f (i )−1]. Note that Σi
[: f (i )−1]

forms the first f (i )−1 elements of S′, since we defined S′′ as the elements of S which do
not occur in S′ in order. Furthermore, note that at each step we do not add elements to
the sequence. Then Σ|S|−|S′| = S′ cannot be a CPS, let alone a TCS, which contradicts our
assumption that S′ was a TCS. Therefore Σi+1 must be a TCS and the lemma follows.

Corollary 6. Let N be a non-binary TCN with S and S′ TCSs such that S′ is a subsequence
of S. Then N S is a subnetwork of N S′.

Proof. By Lemma 39, we only have to prove this for S′ of length one less than S, so sup-
pose S = S′

[:i ]sS′
[i+1:], where the first or the last part may be empty.

We consider N S = N S′
[:i ]sS′

[i+1:], by applying the three parts of the sequence sepa-
rately. First we note that by writing N ′ := N S′

[:i ], we have N S = N ′sS′
[i+1:] and N S′ =

N ′S′
[i+1:]. Because S is a TCS, the sequence sS′

[i+1:] is in particular also a TCS. Hence, by
Lemma 38, N S is a subnetwork of N S′.

The following proposition says that we can find a TCS for a TCN by picking an arbi-
trary reducible pair, reducing it, and repeating this process.

Proposition 2. Let N be a semi-binary TCN and S a partial TCS with every element af-
fecting N . Then there exists a minimal TCS for N starting with S.

Proof. We prove this using induction on the length l of S. If l is 0, then, as each TCN has
a minimal TCS, there is a TCS S′ = SS′ for N , which starts with S. Now suppose for any
partial TCS S of length l < L affecting N in every step, there is a minimal TCS SS′ of N .
We prove that the same holds for any such sequence of length L.

Let S(x, y) be such a sequence of length L (where (x, y) is the last element of this
sequence). Because each element of S(x, y) affects N , we know in particular that (x, y) ∈
C (N S). By the induction hypothesis, there is a TCS SS′ for N starting with S. The part S′
of this sequence must contain an element (x, y) or (y, x) as N is semi-binary (Lemma 25).
Let S′

i be the first occurrence of such an element.
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Each of the intermediate networks N SS′
[: j ] for j < i has the reducible pair (x, y). This

means the only pairs involving x that affect these networks have x as first coordinate, or
are equal to (y, x). As S′

i is the first occurrence of (x, y) or (y, x) in S′, all S′
j with j < i

cannot have x as second coordinate. This means that S(x, y)S′ is a TCS, and it reduces N
by Corollary 6.

Note that each element of S(x, y) affects N . Since we know SS′ is a minimal TCS
for N , and because S(x, y)S′ contains one extra element, there is an element of S′ that
reduces nothing in N in the sequence S(x, y)S′. Removing this element gives a minimal
TCS for N starting with S(x, y).

Proposition 3. Let N be a non-binary TCN and S a partial TCS that affects N . Then there
exists a minimal TCS for N starting with S.

Proof. Let N ′ denote the refinement of N obtained by applying the (1a,2b) construction
on N S for the sequence S. Observe that N ′ is a TCN since N S is tree-child. Because of
this, every multifurcation of N ′ has a child that is a leaf or a tree vertex, which we call t .
By refining each multifurcation as a path in which the lowest vertex is the parent of t ,
we obtain a semi-binary refinement N ′

sb of N ′ that is tree-child. In particular, the tree-
vertices of the reducible pairs in N ′

sb that are reduced by S have outdegree-2, because
of the construction we have used to obtain N ′. The way in which we have obtained N ′

sb
ensures that S is a partial TCS that affects N ′

sb . By Proposition 2, there exists a minimal
TCS S′ for N ′

sb starting with S. Since N ′
sb is a refinement of N , it follows then that S′ must

also reduce N .

4.6. COMPUTATIONAL ASPECTS OF CONTAINMENT PROBLEMS

T HE TREE CONTAINMENT problem is a well studied problem, where one asks whether
a tree is contained in a given network (with a common set of taxa). In this section,

we look at the more general problem NETWORK CONTAINMENT, where the aim is to de-
termine whether a network is contained in another network. We restrict our attention
to the problem where the input networks are both semi-binary, tree-child networks with
the same leaf set. We will give an algorithm for this problem that runs in linear time. We
also show that it is possible to check in linear time whether two orchard networks are
isomorphic.

NETWORK CONTAINMENT

Instance: Two networks N and N ′ on the same leaf-set.
Question: Does N contain N ′?

4.6.1. TREE-CHILD NETWORK CONTAINMENT
In this section, we give the linear time algorithm (Algorithm 7) for NETWORK CONTAIN-
MENT. We use a few small subroutines (Algorithms 2, 3, 4, 5, 6). The idea of the algorithm
follows from Theorem 13 and Proposition 2. For two TCNs N and N ′, find a minimal TCS
of N by picking reducible pairs in any order. See if this TCS reduces N ′ to a network on a
single leaf: if it does, then N contains N ′; otherwise, N does not contain N ′. Assume in
this subsection that every network is semi-binary stack-free, unless stated otherwise.
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Within semi-binary networks, tree vertices are of outdegree-2. This means that each
leaf appears as a second coordinate in at most one reducible pair in a network. Algo-
rithm 2 finds such a reducible pair, if it exists, for a given leaf, in constant time.

Algorithm 2: FINDRP2ND(N , x)

Data: A semi-binary network N and a leaf x
Result: The singleton set containing the reducible pair of N having x as a second

coordinate if it exists, ; otherwise
1 Let p be the parent of x
2 if p is a tree node then
3 let c(p) be the child of p that is not x
4 if c(p) is a leaf then
5 return {(c(p), x)}
6 if c(p) is a reticulation and the child c(c(p)) of c(p) is a leaf then
7 return {(c(c(p)), x)}

8 return ;

Lemma 40. Let N be semi-binary, and x a leaf of N . If a reducible pair with x as the
second element of the pair exists, then Algorithm 2 finds this pair. Otherwise, it returns the
empty set. The algorithm runs in constant time.

Proof. Each leaf is a second coordinate of at most one reducible pair, and this pair is
found by taking the unique path down from the parent of this leaf. This algorithm runs in
constant time: using in- and out-adjacency lists, we can check in constant time whether
a node is a tree node, a reticulation node, or a leaf, and the out-list of each node has size
at most 2 (as tree nodes have outdegree 2, reticulations outdegree 1, and leaves outde-
gree 0).

Algorithm 3 on the other hand finds all reticulated cherries that contain a given leaf
as the first coordinate of the reducible pair. The running time for this algorithm depends
on the indegree of the parent of the given leaf, as this gives the maximum possible num-
ber of such reticulated cherries.

Algorithm 3: FINDRC1ST(N , x)

Data: A semi-binary network N and a leaf x
Result: The set Cr = {(l ,k) ∈C (N ) : l = x} of reticulated cherries in N having x as

first coordinate
1 Let p be the parent of x
2 Set Cr =;
3 if p is a reticulation then
4 for every parent g of p do
5 let c(g ) be the other child of g
6 if c(g ) is a leaf then
7 Cr =Cr ∪ {(x,c(g ))}

8 return Cr
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Lemma 41. Let x be a leaf in a semi-binary network N and let px denote the parent of x.
Let I denote the indegree of px . Algorithm 3 finds the set of all reticulated cherries with the
reticulation on the leaf x in O(I ) time.

Proof. We simply check that the parent of x is a reticulation, and that (x, y) is a reticu-
lated cherry if a grandparent of x is the parent of y . The for loop iterates at most I times.
The steps within the for loop runs in constant time, since we may use the in- and out-
adjacency lists as stated in the proof of Lemma 40. Therefore, Algorithm 3 runs in O(I )
time.

Algorithm 4: REDUCEPAIR(N , (x, y))

Data: A non-binary network N and a pair (x, y)
Result: The network N (x, y)

1 if (x, y) is a cherry in N then
2 Let p be the parent of x and y
3 Remove edge px from N
4 Suppress p (if necessary) and remove x in N
5 if (x, y) is a reticulated cherry in N then
6 Let px be the parent of x and py the parent of y
7 Remove edge py px from N
8 Suppress py and px (if necessary) in N

9 return N

Lemma 42. Algorithm 4 reduces a given reducible pair in a non-binary network N . The
algorithm runs in constant time.

Proof. The algorithm takes exactly the steps which define a reduction of a pair in a net-
work, so the algorithm is correct. Then for the running time: comparing the unique
parents of the leaves, we can check whether a pair constitutes a cherry or a reticulated
cherry in constant time. Indeed, if a pair (x, y) forms a cherry, then the parents of x and
y are the same; and if (x, y) forms a reticulated cherry, then the unique other child of
the parent of y is the parent of x. The removal of the edge with subsequent suppression
takes at most constant time. Hence, the subroutine runs in constant time.



4.6. COMPUTATIONAL ASPECTS OF CONTAINMENT PROBLEMS

4

103

Algorithm 5: FINDTCS(N )

Data: A semi-binary TCN N
Result: A minimal TCS S for N

1 Set C =;
2 for x ∈ L(N ) do
3 C∪FINDRP2ND(N , x)

4 Let S be an empty sequence
5 while C 6= ; do
6 Choose (x, y) ∈C

7 Set S = S(x, y)
8 N ′ = REDUCEPAIR(N , (x, y))
9 if (x, y) is a cherry in N then

10 C =C \ {(x, y), (y, x)}∪FINDRP2ND(N ′, y)∪FINDRC1ST(N ′, y)
11 if (x, y) is a reticulated cherry in N then
12 C =C \ {(x, y)}∪FINDRP2ND(N ′, y)∪FINDRC1ST(N ′, y)

13 N = N ′

14 return S

Recall that TCSs have the additional rule, on top of that of the CPSs, that any leaf
appearing as a first coordinate of a pair in the sequence must not appear as a second
coordinate of a pair later on in the sequence. Therefore we may have a cherry (x, y) in
the network that can only be picked as (x, y) and not (y, x). We define a notion of when a
reducible pair is forbidden before proving the correctness of Algorithm 5.

Definition 14. Given a partial TCS S, a reducible pair (x, y) is forbidden after S if y has
appeared as the first coordinate of a pair in S.

Lemma 43. Let N be a semi-binary TCN on taxa set X and reticulation number r . Algo-
rithm 5 finds a minimal TCS for N in O(|X |+ r ) time.2

Proof. The first for loop finds all reducible pairs of N , as they all have a unique second
coordinate, and each leaf is a second coordinate in at most one pair in a semi-binary
network. Now by Proposition 2, each choice of non-forbidden pair gives a partial TCS for
N . Hence, the algorithm may choose any non-forbidden pair and reduce it, so suppose
that we pick (x, y). Regardless of whether (x, y) is a cherry or a reticulated cherry, the
reduction takes constant time as REDUCEPAIR(N , (x, y)) runs in constant time. If (x, y) is
a cherry, then we remove the pairs (x, y), (y, x) from our list of pairs C . All other pairs of
C are still reducible in N (x, y) by Lemma 25, and they are not forbidden because x is not
a leaf of N (x, y), so clearly there is no reducible pair with x as second coordinate. Noting
that x is no longer a leaf in N (x, y), the only new cherries in N (x, y) must involve y .
Since y is not a forbidden leaf, any cherry pair involving y is not forbidden: therefore we
update our list C by appending both FINDRP2ND(N , y) and FINDRC1ST(N , y).

2[13] provided an improvement to our old version of Algorithm 5 in lines 11 and 13, when the newly obtained
network is scanned for new reducible pairs. The algorithm presented here is the improved version. Before,
the running time of the algorithm depended on the maximum indegree of the vertices in the network; now,
the running time only depends on the number of leaves and the number of reticulation vertices.
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On the other hand if (x, y) is a reticulated cherry, then the new cherry pairs in N (x, y)
must involve x or y , so by removing the pair (x, y) from the current list C and then adding
the new pairs involving x and y , we get the updated list of pairs C for the TCN N (x, y);
we ensure that this updated list contains only non-forbidden pairs.

Observe that all reducible pairs of N (x, y) that involve x are already contained in the
set C . Indeed, if x is involved in a cherry or a reticulated cherry (x, z), then (x, z) must
have formed a reticulated cherry in N , which would have been found in the previous
iteration of the while loop or in the initial search for all reducible pairs with second co-
ordinate z. Note that x cannot be involved in a reticulated cherry where its parent px is
a tree node, as this would imply that px was the parent of two reticulations in N , con-
tradicting the tree-child property of N . Furthermore, since x has just been picked as
a first element of some reducible pair, all pairs involving x as a second coordinate are
now forbidden. Therefore, all possible new cherry pairs not in C that appear as a re-
sult of reducing (x, y) from N must involve the leaf y . These pairs are made up of those
pairs contained in FINDRP2ND(N , y) or in FINDRC1ST(N , y). The only potential prob-
lem that we may face is when (y, x) ∈FINDRC1ST(N , y). However this is impossible; in-
deed, if N (x, y) contained a reticulated cherry (y, x), then it is immediately clear that N
was not a tree-child network. The grandparent of x that is not the parent of y is a tree
node parent of two reticulations in N . Therefore appending the cherries from the two
sets FINDRP2ND(N , y) and FINDRC1ST(N , y) to C ensures that there are no forbidden
cherry pairs in the updated list C . Furthermore, updating C in this way ensures that we
only look for each reducible pair once.

In the above cases, we must also make sure that the list C is non-empty as long as
the network has not been reduced to a single leaf. But this is immediate by Proposition 2,
and since we add all non-forbidden newly possible reducible pairs to the list. Therefore,
Algorithm 5 is correct; repeating the while loop will eventually completely reduce the
network, and give a TCS. In particular, since all ordered pairs in the sequence reduce a
cherry or a reticulated cherry, the output TCS is minimal.

We now compute the running time of the algorithm. Let |X | and r denote the num-
ber of leaves and the reticulation number of the network, respectively. Each call of
FINDRP2ND takes constant time, so the for loop takes O(|X |) time. Within the while
loop, the algorithms REDUCEPAIR, FINDRP2ND, and FINDRC1ST are called |X | + r − 1
times since the length of a minimal TCS is of length |X |+r −1 by Lemma 23. Each call of
REDUCEPAIR and FINDRP2ND runs in constant time. Since every reducible pair is found
at most once, Lines 5-7 of FINDRC1ST are called at most r times in total. This means that
although FINDRC1ST will be called |X |+ r −1 times, the part of the algorithm that is de-
pendent on the indegree of the reticulation vertex will only run at most r times. It follows
then that the while loop runs in time at most O(|X |+ r ), and therefore that Algorithm 5
runs in O(|X |+ r ) time.
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Algorithm 6: CPSREDUCESNETWORK(N ,S)

Data: an orchard network N and a CPS S
Result: Yes if S reduces N , No otherwise

1 for i = 1, . . . , |S| do
2 N = REDUCEPAIR(N ,Si )

3 if N is a network on a single leaf then
4 return Yes

5 return No

Lemma 44. Let N be a CPS on taxa set X and reticulation number r , and let S be a CPS
of length |S|. Algorithm 6 correctly checks whether S reduces N and runs in O(|S|) time if
N is semi-binary.

Proof. The correctness of the algorithm follows straight from the definition of reducing
a pair from orchard networks. To compute the running time, note that we iterate over
the for loop |S| times. The step within the for loop, Algorithm 4, runs in constant time for
semi-binary networks. Hence, it is clear that the algorithm runs in O(|S|) time.

Algorithm 7: TCNCONTAINS(N , N ′)
Data: Two semi-binary TCNs N and N ′ on the same set of taxa
Result: Yes if N contains N ′, No otherwise

1 Set S =FINDTCS(N )
2 return CPSREDUCESNETWORK(N ′,S)

Theorem 15. Given two semi-binary TCNs N and N ′ on taxa set X where the reticulation
number of N is r , it can be decided in time O(|X |+ r ) whether N ′ is a subnetwork of N .

Proof. We prove the correctness of Algorithm 7 and show that it runs in linear time. We
use Algorithms 5 and 6. First we find a TCS for N in O(|X | + r ) time with Algorithm 5.
Then, again in O(|X | + r ) time, we see if this TCS reduces N ′ using Algorithm 6. If this
TCS does indeed reduce N ′, then N ′ is a subnetwork of N by Theorem 13. Hence, com-
bining the two algorithms, the second algorithm outputs yes precisely if N ′ is a subnet-
work of N . Furthermore, the algorithm runs in linear time as the combination of the two
algorithms runs in O(|X |+ r ) time.

A python implementation of Algorithm 7 was presented and tested in [13]. The algo-
rithm was tested again on different data sets in [1]. In both analyses, it was concluded
that the algorithm runs in linear time in practice as well, thereby showing that NETWORK

CONTAINMENT can be solved for semi-binary tree-child networks in linear time in prac-
tice. The results show that even networks with over a thousand leaves can be dealt with
within a second.

Two networks are isomorphic if both networks are subnetworks of the other. There-
fore, Theorem 15 has the following corollary regarding NETWORK ISOMORPHISM, which
asks whether two given networks are isomorphic. The problem for tree-child networks
was previously shown to be solvable in O(|X |2) time [14]. We present the first linear-time
algorithm for checking whether two tree-child networks are isomorphic.
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Corollary 7. Given two semi-binary TCNs N and N ′ on taxa set X where the reticulation
number of N is r , it can be decided in O(|X |+ r ) time whether N is isomorphic to N ′.

4.6.2. ISOMORPHISM RESULTS FOR ORCHARD NETWORKS
We mentioned in Section 4.3.2 that we can distinguish orchard networks within recon-
structible classes by comparing their smallest CPSs. Indeed, by altering Algorithm 5, we
can find the smallest CPS for a given orchard network in polynomial-time.The change is
simple: at the start of the while loop, simply choose the smallest cherry instead of choos-
ing any arbitrary cherry. Furthermore, every time we update the cherry list C , if we have
just reduced a reticulated cherry (x, y) from N , then we add another set FINDRP2ND(N , x).

There is another thing to take into consideration. Tree-child networks are defined
to be stack-free; binary orchard networks are not necessarily stack-free. Because of this,
upon reducing a reticulated cherry (x, y) from a binary orchard network, it is possible
that a new reticulated cherry with x as the first coordinate is in the reduced network.
This means that when updating the list of reducible pairs (C in the algorithms), we
must also append elements in which x occurs as the first element, by calling the algo-
rithm FINDRC1ST(N , x). Observe that we do not need to do this if the orchard network
is stack-free, due to the same argument as stated in the proof of Lemma 43.

We start by introducing an algorithm that finds a smallest CPS for a semi-binary
stack-free orchard network, and then show that simply changing one of the lines in
the algorithm allows for an input of binary orchard networks. A slightly more involved
change allows for an input of non-binary reconstructible orchard networkS.

Algorithm 8: FINDCPS(N )

Data: A semi-binary stack-free orchard network N , an ordering on the leaf set
of N

Result: A smallest CPS S for N
1 Set C =;
2 for x ∈ L(N ) do
3 C∪FINDRP2ND(N , x)

4 Let S be an empty sequence
5 while C 6= ; do
6 Choose (x, y) ∈C such that (x, y) is smallest
7 Set S = S(x, y)
8 N ′ = REDUCEPAIR(N , (x, y))
9 if (x, y) is a cherry in N then

10 C =C \ {(x, y), (y, x)}∪FINDRP2ND(N ′, y)∪FINDRC1ST(N ′, y)
11 if (x, y) is a reticulated cherry in N then
12 C =

C \ {(x, y)}∪FINDRP2ND(N ′, x)∪FINDRP2ND(N ′, y)∪FINDRC1ST(N ′, y)

13 return S

Lemma 45. Let N be a semi-binary stack-free orchard network on taxa set X with reticu-
lation number r . Algorithm 8 finds a smallest CPS for N in O((|X |+r )|X | log(|X |)) time, if
an ordering is given on X .
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Proof. Initially, we find the full set of reducible pairs by noting that a leaf appears as a
second coordinate in a reducible pair at most once (the first for loop). Within the while
loop, we always pick a smallest reducible pair. After picking a reducible pair (x, y), we
update the list of all possible reducible pairs by adhering to Lemma 24: all new reducible
pairs must contain one of the leaves x or y . As was the case for Algorithm 5, there is no
need to include the set of reducible pairs FINDRC1ST(N , x) as these pairs would have
been found in one of the previous iterations. This ensures that all possible reducible
pairs are put into the set C . Therefore, the algorithm iteratively picks the smallest re-
ducible pair from a list of all possible reducible pairs—hence, it returns a smallest CPS of
the input orchard network (minimal in particular, since all the elements of the sequence
reduce a cherry or a reticulated cherry in the orchard network).

To compute the running time, observe first that the for loop takes O(|X |) time. Within
the while loop, we first choose a reducible pair that is smallest. This takes O(|C | log(|C |))
time by running some sorting algorithm, and since any leaf can appear as a second co-
ordinate of at most one reducible pair, we have that |C | = O(|X |). Therefore, choosing a
smallest reducible pair takes at most O(|X | log(|X |)) time. By the same argument used in
the proof of Lemma 43, we have that all other steps within the while loop take O(|X |+ r )
time. Therefore the algorithm runs in O((|X |+ r )|X | log(|X |)) time.

For the algorithm to work on binary orchard networks, simply exchange Line 12 of
Algorithm 8 by the following:

C =C \ {(x, y)}∪FINDRP2ND(N ′, x)∪FINDRC1ST(N ′, x)

∪FINDRP2ND(N ′, y)∪FINDRC1ST(N ′, y);

Lemma 46. Let N be a binary orchard network on taxa set X with reticulation num-
ber r . Algorithm 8 with the modification to Line 12 finds a smallest CPS for N in O((|X |+
r )|X | log(|X |)) time, if an ordering is given on X .

Proof. The correctness of the algorithm follows from the proof of Lemma 45, with the
addition that upon reducing the network by a pair (x, y), the newly introduced reducible
pairs may have x as a first coordinate (which appear due to stacks). We resolve this by
appending FINDRC1ST(N ′, x) to the list of possible reducible pairs (Line 12).

For the running time analysis, observe first that the for loop runs in O(|X |) time. The
while loop is iterated O(|X | + r ) times, as a minimal CPS for a network on |X | leaves
and reticulation number r has length |X |+ r −1 by Lemma 23. As shown in the proof of
Lemma 45, the running time of finding the smallest reducible pair from C takes O(|X | log(|X |))
time. All other steps within the while loop take constant time: in particular, FINDRC1ST

takes constant time as the indegree of the reticulation vertices is bounded in a binary
network. Hence, the while loop runs in O((|X | + r )|X | log(|X |)) time, so the algorithm
runs in O((|X |+ r )|X | log(|X |)) time.

In case of non-binary reconstructible orchard networks, the operations require a
slight care. This precaution stems from two reasons. Firstly, tree vertices are now al-
lowed to have outdegree greater than 2. This means that every leaf no longer appears
at most once as a second coordinate of a reducible pair: they can be a second coordi-
nate of a pair multiple times. Therefore Algorithm FINDRP2ND may now return a set
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containing more than one element. This poses a potential problem in the original Algo-
rithm 8, since upon reducing the network, we update the list of reducible pairs by adding
either FINDRP2ND(N ′, x) or FINDRP2ND(N ′, y) (or both). Indeed, this could mean that
we could obtain the same reducible pairs multiple times if there exist cherries or reticu-
lated cherries with a multifurcation. To avoid this, we only invoke these updates when-
ever the outdegree of the parent of x and y (in either the original or the reduced network)
is 2. This helps avoid double or triple counting of the same reducible pairs. Secondly, as
seen in Lemma 25 reducible pairs of the original network may not be reducible pairs in
a reduced network, although the pair itself was not reduced. For example if a network
contains cherries (x, y) and (x, z), then upon reducing by the pair (x, y), the new network
no longer contains the cherry (x, z), since x is no longer a leaf in the network. Due to
this, we must replace the lines 9 – 12 of Algorithm 8 by the following.

10 if (x, y) is a cherry in N then
11 for l ∈ L(N ) do
12 if (x, l ) is a cherry in N then
13 C =C \ {(x, l ), (l , x)}

14 C =C∪FINDRC1ST(N ′, y)
15 Let py denote the parent of y in N
16 if outdeg r ee(py ) = 2 then
17 C =C FINDRP2ND(N ′, y)
18 if (x, y) is a reticulated cherry in N then
19 for l ∈ L(N ) do
20 if (y, l ) is a cherry in N then
21 C =C \ {(x, l )}

22 C =C \ {(x, y)}∪FINDRC1ST(N ′, y)
23 Let px denote the parent of x in N
24 Let py denote the parent of y in N
25 if i ndeg r ee(px ) = 2 then
26 C =C∪FINDRC1ST(N ′, x)∪FINDRP2ND(N ′, x)
27 if outdeg r ee(py ) = 2 then
28 C =C∪FINDRP2ND(N ′, y)

Lemma 47. Let N be a non-binary reconstructible orchard network on taxa set X with
reticulation number r . Algorithm 8 with the modification to Lines 9 – 12 finds a smallest
CPS for N in O((|X |+ r )|X |2 log(|X |2)) time, if an ordering is given on X .

Proof. The correctness of the algorithm follows from the proof of Lemma 45, with the
changes outlined as above. As before, the first for loop finds all reducible pairs within the
network. Upon reducing the smallest reducible pair, we update the list of reducible pairs
by using the above replacement of the algorithm. Suppose that we have just reduced by
a reticulated cherry (x, y). Let N denote the original network and N ′ = N (x, y), as in the
algorithm. As mentioned before, there may be reducible pairs in N that are no longer
reducible pairs in N ′. These are all reticulated cherries of the form (x, z), for which the
reticulation edge was between the parent of y and the parent of x. Then, y and z must
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have formed a cherry in N —therefore we check for all such cherries (line 20), and remove
the corresponding reducible pairs from the list. When updating the list, all new reducible
pairs involve either the leaf x or y . To avoid seeking for pairs that are already contained in
the list, we only invoke the FINDRP2ND algorithm whenever new pairs arise in N ′, that is,
whenever the reticulation parent of x is of indegree-2 or when the tree vertex parent of y
is of outdegree-2 in N . This holds similarly for updating the list upon reducing cherries.
Therefore, we find each reducible pair exactly once in the algorithm.

For the running time, observe that the for loop takes at most O(|X |2) time, as there
can be at most

(|X |
2

)
possible reducible pairs in a network. Therefore |C | = O(|X |2). The

while loop is iterated O(|X |+ r ) times, as a minimal CPS for a network on |X | leaves and
reticulation number r has length |X | + r − 1 by Lemma 23. Each call of REDUCEPAIR

runs in constant time. The running time for finding the smallest reducible pair from |C |
takes O(|X |2 log(|X |2)) time. Upon reducing (x, y) from a network N , we enter a for loop
that checks whether there are reducible pairs in the list that are no longer reducible pairs
in the network. This step takes O(|X |) time. Since each reducible pair is found at most
once, the part of the algorithms FINDRP2ND and FINDRC1ST that has a dependency
on the outdegree and the indegree, respectively will only run at most O(

(|X |
2

)
) = O(|X |2)

times. Therefore the steps within the while loop runs in time at most O(|X |2 log(|X |2)
time, and therefore Algorithm 8 with the proposed changes runs in O((|X |+r )|X |2 log(|X |2))
time.

Theorem 16. Suppose we are given an ordering on the taxa set X . Let N and N ′ be two
networks with r reticulations within the same reconstructible class. Then it can be de-
cided in O((|X | + r )|X |2 log(|X |2) time whether they are isomorphic. In particular if the
classes are (1a,2a) (binary) or 1a,2b) (semi-binary stack-free), then this can be decided
in O((|X |+ r )|X | log(|X |) time.

Proof. Use Algorithm 8 twice to find the smallest CPSs for the two orchard networks.
This can be done in O((|X | + r )|X |2 log(|X |2)) time (in O((|X | + r )|X |2 log(|X |2) for the
classes (1a,2a) (binary) or 1a,2b) (semi-binary stack-free)). By Corollary 4, these CPSs
are the same if and only if the orchard networks are isomorphic.

4.7. IMPLEMENTATION

A LGORITHM 7, which checks whether a given tree-child network is a subnetwork of an-
other, was implemented in Python by Robbert Huijsman to test the theoretical linear

bound in practice [13]. In this section, we present running time results of the implemen-
tation on a large randomly generated data set. We show that the theoretically proven lin-
ear running time is indeed achievable in practice. The tests were run on a Linux system
with a quad-core Intel Xeon W3570 running at 1.7GHz and 24GB of DDR3 RAM clocked
at 1333MHz. The operating system was Debian GNU/Linux 9 with a 4.19.46-64 Linux
kernel. The software was written in Python version 3.7.3.

4.7.1. GENERATING THE DATASETS
For the test data, we generated 131200 instances of the tree-child network containment
problem: two yes-instances and two no-instances for all n,r,r ′ ∈ {25,50, . . . ,975,1000}
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with r ′ ≤ r , where n is the number of leaves of both networks, r is the reticulation num-
ber in the first network, and r ′ the reticulation number in the second network. Each
instance consists of two semi-binary tree-child networks on the same leaf-set, for which
we asked whether the first network contained the second network.

For each instance, we generated the first network with n leaves and reticulation num-
ber r using Algorithm 10. The second network was generated depending on whether it
was a yes- or a no-instance. If it was a yes-instance, a subnetwork with reticulation num-
ber r ′ was obtained using Algorithm 11; for a no-instance, a network on the same num-
ber of leaves and reticulation number r ′ was randomly generated with the same process
as the first network (using Algorithm 10).

This way, each generated yes-instance is always a yes-instance for the NETWORK

CONTAINMENT problem. For the no-instances, however, the random generation of the
second network could also give a subnetwork of the first network, but the probability of
that event is very small, as the number of tree-child networks grows very quickly with the
number of leaves and reticulations [15].

The dataset used for the experiment along with the code for generating random datasets,
and the actual implementation of Algorithm 7 can be found on https://github.com/
RemieJanssen/Cherry-picking_TC_Network_Containment.

GENERATING RANDOM NETWORKS

The tree-child networks were randomly generated as TCSs using Algorithm 10. This al-
gorithm takes two positive integers n and r , and outputs a tree-child network with n
leaves and reticulation number r . It starts with the cherry (1,2), and successively adds
leaves as cherries, and reticulated cherries between two leaves that already exist in the
network (respecting the tree-child condition).

In the algorithm, this is achieved by building a tree-child sequence backwards. It
chooses to add a reducible pair corresponding to a cherry or reticulated cherry uniformly
at random until we have added the required number of leaves and reticulation number.
To make sure the sequence is a tree-child sequence, we keep a list N F of taxa that are
‘non-forbidden’, which, in this case, means that the taxon is not currently the child of
a tree node that has a reticulation as the other child (i.e., the leaf has not appeared as
a second coordinate element of a reducible pair). If a taxon is in N F , it is possible to
take this taxon as the first element of a pair appended at the start of the sequence. As a
tree-child network always has a cherry or a reticulated cherry, N F is never empty. This
implies that the algorithm should never output False, but lines 15 and 16 are kept so that
the algorithm can easily be adapted to return only binary tree-child networks. To achieve
this, one only has to add the line “N F = N F \ {first_element}” between lines 21 and 22 in
the algorithm.

https://github.com/RemieJanssen/Cherry-picking_TC_Network_Containment
https://github.com/RemieJanssen/Cherry-picking_TC_Network_Containment
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Finally, the algorithm outputs a TCS, from which we can uniquely construct a TCN.

Algorithm: RANDOMTCS(X ,r )

Data: A set of taxa X = {1, . . . ,n}, and a reticulation number r
Result: A TCS S on X of length n + r −1

1 Initialize Y = {1,2} the current set of taxa
2 Initialize S = (2,1) the current sequence
3 Initialize L = n −2
4 Initialize R = r
5 Initialize N F = {2}
6 while L > 0 or R > 0 do
7 type_added = None
8 if |N F | > 0 and L > 0 and R > 0 then
9 With probability L

L+R , type_added = L
10 Otherwise, type_added = R
11 else if |N F | > 0 and R > 0 then
12 type_added = R
13 else if L > 0 then
14 type_added = L
15 else
16 return False

17 first_element = None
18 second_element = None
19 if type_added = R then
20 Set first_element to an element of N F chosen uniformly at random
21 Set R = R −1
22 else
23 Set first_element to the first element of X \ Y
24 Set L = L−1
25 Set Y = Y ∪ {first_element}
26 Set N F = N F ∪ {first_element}

27 Set second_element to an element of Y \ {first_element} chosen uniformly at
random

28 N F = N F \ {second_element}
29 S = (first_element,second_element)S

30 return S

Note that each tree-child network has positive probability of appearing for this pro-
cess. In fact, each tree-child sequence ending with (1,2) has positive probability.

Let us now turn to the procedure to generate a tree-child subnetwork (i.e., gener-
ating the second network in a yes-instance). For this purpose, we again work with the
representation of the networks as tree-child sequences.

We first select ordered pairs from the sequence of the first network, such that the
resulting subsequence corresponds to a tree. This is simply done by selecting a pair with
first element x for all x ∈ X uniformly at random. Because the sequence we started with
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is a tree-child sequence, the subsequence consisting of the chosen pairs is a tree-child
sequence as well: suppose (x, y) and (y, z) are selected. Then (y, z) must appear after
(x, y), because otherwise y appears as a first element after it has appeared as a second
element in the original sequence.

After selecting the pairs that form a base tree of the network (the subdivision of which
forms a spanning tree of the network with leaf-set X ), we select r ′ additional pairs that
will form the r ′ reticulations of the subnetwork. By a similar argument as for the base
tree, this subsequence is a tree-child sequence. And as it is reduced by the subsequence,
it is also reduced by the sequence of the original network. Hence, the network corre-
sponding to the chosen pairs is a tree-child subnetwork of the original network.

Algorithm: RANDOMSUBTCS(S,r ′)
Data: A TCS S on X of length |X |+ r −1, and a number r ′ ≤ r
Result: A sub-TCS S′ of S on X of length |X |+ r ′−1

1 Let S be indexed by {1, . . . , |S|}
2 Set IS′ =;
3 for x ∈ X do
4 Let Ix be the set of indices of pairs of S with x as first element
5 Pick ix uniformly at random from Ix

6 Set IS′ = IS′ ∪ {ix }

7 Randomly add r ′ elements from {1, . . . , |S|} \ IS′ to IS′
8 Let S′ be the subsequence of S consisting of the elements indexed by IS′
9 return S′

4.7.2. RESULTS
For all yes-instance tests in which the second network was a subnetwork of the first (i.e.,
the ones generated by Algorithm 11), the algorithm correctly returned a true value. Sim-
ilarly, for all no-instance tests in which the second network was generated randomly
and independently from the first network, the algorithm correctly found that the second
network was not a subnetwork of the first. This means that, even though there was a
non-zero probability that the second network was a subnetwork, this did not happen in
any of the instances. We expected this, as the probability of this happening is extremely
small.

Note that the largest test instances (1000 leaves, 1000 reticulations) had a running
time of approximately 0.1s. This is expected to scale well for even larger instances, as the
linear fit of the data is very good. The R2 values for the fits and the linear dependence
of the running time on the number of leaves and reticulations can be found in Table 4.1.
For this fit, we performed a standard linear regression with an intercept of 0 (i.e., forced
through the origin), which makes sense because the running time should be zero for an
empty instance.

Note that the fits become much better when we split the data in instances where the
second network is or is not a subnetwork of the first (i.e., between the yes- and the no-
instances), even though the dependence of the running time on the parameters does not
change much after this split. The most striking difference we can see in this analysis, is
the dependence on the reticulation number of the second network.
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Figure 4.15: The dependence of the running time on the number of leaves n (left) and the number of reticula-
tions in the second network r ′ (right). This was visualized by fixing the other parameters to a set value of 1000
in both plots.

Table 4.1: Linear regression analysis for tree-child network containment on 131200 instances, for which half
were yes-instances and the other half no-instances. The high R2 value indicates that the fit of the curve is
essentially linear (where an R2 value of 1 indicates a perfect linear fit) and the slopes indicate the change in
running time for every increase in the number of leaves, reticulation number r , and reticulation number r ′.

R2 slope
leaves (s/leaf) r (s/reticulation) r ′ (s/reticulation)

all data 0.9725659 3.03328079 ·10−5 2.99713310 ·10−5 4.75681146 ·10−6

subnetwork: YES 0.9966596 3.14405850 ·10−5 2.89850496 ·10−5 9.54505907 ·10−6

subnetwork: NO 0.9976078 2.92250310 ·10−5 3.09576119 ·10−5 −3.14361016 ·10−8

As shown in Figure 4.15, the no-instances were consistently, and marginally, faster
than the yes-instances. For varying leaf numbers, the instances where the second net-
work was not a subnetwork (no-instances), were consistently, but marginally, faster than
when the second network was a subnetwork (yes-instances) (Figure 4.15, Left). This was
similarly true for when we varied the reticulation number r ′ of the second network. The
effect of varying r ′ on instances for when the second network was not a subnetwork (no-
instances) was negligible. This can be seen in the right figure of Figure 4.15, but also
in Table 4.1, where the order of the slope of r ′ for the no-instances is far smaller than
all other slopes in all the instances. For the yes-instances, the running time of the al-
gorithm showed a linear dependence on r ′, which was in the same order as the other
parameters. This can be explained as follows. When the second network is not a sub-
network, the second part of the algorithm (Algorithm 6) will seldom need to reduce a
pair: it will check whether the pair in the sequence is reducible in the second network.
As the second network is randomly generated independently of the first network, it will
not have many pairs in common with the first network, which means it will not have to
reduce pairs often.
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4.8. DISCUSSION

I N this chapter, we have looked at the correspondence between cherry-picking se-
quences and containment and subnetwork relations. For this purpose, we have ex-

tended the definition of cherry reductions to networks. This lead to the introduction of
the class of orchard networks (consisting of all networks that can be reduced by a CPS),
and of constructions that produce an orchard network from a CPS. All networks obtain-
able from a given construction were then said to be in the same reconstructible class.

We have shown that, within reconstructible classes, a network is encoded by the
smallest sequence that reduces it (given an ordering on the leaves). This correspon-
dence can be used to check whether two orchard networks in the same reconstructible
class are isomorphic in polynomial-time. Moreover, we showed that if a sequence for
a network reduces another network, then the second network is contained in the first
network. For tree-child networks, we further showed that the converse was also true,
i.e., that a tree-child network contained in another tree-child network will be reduced by
any tree-child sequence of the second network, given that the networks are in the same
reconstructible class. A summary of all results that relate reduction of a network and
subnetwork / containment can be found in Table 4.2.

Table 4.2: Main results of the chapter relating network containment and CPSs. The two networks N and N ′ are
assumed to have the same leaf-sets. The N and N ′ columns show the assumptions on both networks, where TC
stands for tree-child. The direction column shows whether containment of N ′ in N implies ( =⇒ ), is implied
by ( ⇐= ), or is equivalent to ( ⇐⇒ ) reduction of N ′ by any CPS for N . The subnetwork column contains a
Xwhen N ′ can be assumed to be a subnetwork instead of a contained network of N . For results in which only
one direction is presented, we have counter-examples showing that the converse does not hold.

Result N N ′ Direction Subnetwork

Lemma 31 Binary ⇐= X

Theorem 11 Binary Non-binary ⇐=
Lemma 33 Same reconstructible class ⇐=
Corollary 5 Non-binary TC =⇒ X

Theorem 13 Same reconstructible TC class ⇐⇒
Theorem 14 Semi-binary TC ⇐⇒ X

An apparent limitation of the CPS approach is that they cannot be used to charac-
terize every phylogenetic network, but only orchard networks. The reason for this stems
from the inability to pick a double-reticulated cherry. Two leaves x and y form a double-
reticulated cherry if both parents px , py of x, y respectively are reticulations, and px

and py share a common parent. As seen in other literature, the double-reticulated cherry
poses a challenge when trying to correctly add back a once-removed reticulation edge [12,
16]. A CPS may contain a double-reticulated cherry, as long as there is an ‘escape’ at
one of the sides of the double-reticulated cherry: a reticulated cherry which can be re-
duced, and whose reduction turns the double-reticulated cherry into a regular reticu-
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1 2 34

Figure 4.16: A tree-based network on leaves {1,2,3} that is not an orchard network, since it contains a crown
(the subgraph induced by the parents and the grandparents of the leaves 1,2,3) without the gray vertex). The
network on {1,2,3,4} is an orchard network, since it provides a reticulated cherry (1,4), an ‘escape’ for the
crown.

lated cherry. With no escapes however, there is currently no way of dealing with double-
reticulated cherries.

One way of resolving this issue would be to consider leaf attachments as done by [10].
Given any phylogenetic network, add a minimal number of leaves to make it an orchard
network. Recall that every reconstructible orchard network has a unique smallest CPS
(Theorem 10). Is it possible to extend this result to general networks by attaching leaves?
If so, will the placement of the leaves affect the uniqueness of its smallest CPS? Further-
more, what is the minimal number of additional leaves to turn a general network into an
orchard network? To answer these questions, one could study the forbidden structures
of an orchard network; currently, very little is known about these.

Obviously, crowns cannot be contained in orchard networks. Aside from this, we
are not aware of other forbidden structures of orchard networks. In any case, we may
gauge where the class of orchard networks resides with respect to other prominent net-
work classes. The class of orchard networks does not contain the class of tree-based net-
works [17], since tree-based networks may contain crowns (see Figure 4.16). Conversely,
each binary orchard network is tree-based [18], and the next chapter (of which is a part
of [19]) contains a proof that this holds in the non-binary case as well. Furthermore, as
there exists a CPS (in fact, a TCS) for every TCN, we conclude that class of orchard net-
works strictly contains the class of TCNs. Therefore, in the binary case, but possibly also
in the non-binary case, the class of orchard networks is intermediate between tree-child
networks and tree-based networks.

We briefly comment on the correspondence between containment and reduction,
and pose conjectures for remaining open questions. Let N and N ′ be orchard networks
in the same reconstructible class on the same leaf-sets. If a CPS S of N reduces N ′,
then N ′ is contained in N (Lemma 33). We have shown that the converse of this does not
hold for the reconstructible classes (1a,2a) and (1a,2b) (Theorem 12). For the recon-
structible classes (1b,2c) and (1b,2d), the problem remains open. Therefore we conjec-
ture the following.

Conjecture 2. There exist orchard networks N and N ′ on the same leaf-set in the (1b,2c)
class where N ′ is contained in N , but no cherry-picking sequence of N reduces N ′.



4

116 REFERENCES

Conjecture 3. Let N and N ′ be orchard networks on the same leaf-set in the (1b,2d) class,
where N ′ is contained in N . Then there exists a cherry-picking sequence of N that re-
duces N ′.

Upon restricting N and N ′ to be tree-child, we have shown that the converse holds
for all reconstructible classes: if N ′ and N are both in the same reconstructible class
and N ′ is contained in N , then there exists a TCS of N that reduces N ′. We believe that
this still holds when N and N ′ are general non-binary tree-child networks, by requiring
a stronger condition. Note that it is easy to find an example of two non-binary tree-child
networks that are not contained in one another, such that a TCS for one network reduces
the other (see Figure 4.5 d).

Conjecture 4. Let N and N ′ be non-binary tree-child networks on the same leaf set. Then
N ′ is contained in N if and only if all TCSs of N reduce N ′.

In Section 4.1 we mentioned how cherry-picking sequences originated as a tool to
tackle the problem of finding a ‘simple’ network that contains a given set of trees. This
problem, called HYBRIDIZATION, and our results on cherry-picking sequences—in par-
ticular Lemma 31—provide insight into how we may solve generalizations of this prob-
lem, where we have inputs consisting of networks [20]. Indeed, if we find a CPS that
reduces the input set of networks, then the network corresponding to this CPS contains
the input set. However, it is not quite clear when this gives an optimal orchard network
with minimal reticulation number. For example, take the network N and the tree T in
Figure 4.13. If a CPS reduces the tree and the network, the corresponding orchard net-
work must have at least one more reticulation than the optimal network, which is clearly
the input network N . This means that given an input of networks, it may not be possible
to find a CPS that corresponds to the orchard network with minimal reticulation num-
ber that contains all inputs. It would be interesting to see if this problem also occurs
when the input consist solely of trees. That is, given an input of trees, can we always find
the CPS which corresponds to an orchard network with minimal reticulation number
containing all these trees? This problem aside, the problem of finding a minimal CPS
gives an upper bound for HYBRIDIZATION, and a lower bound for TC CHERRY-PICKING,
where TC CHERRY-PICKING asks to find a minimal TCS which reduces all trees in the in-
put set. Hence, it might also be of merit to see what exactly happens when only trees
are considered as the input: does the minimal CPS give useful information about any of
these problems?
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5
A UNIFIED STRUCTURAL

CHARACTERIZATION OF ORCHARD

AND TREE-BASED NETWORKS

Phylogenetic networks are often categorized into classes by their topological features, which
stem from both biological and computational motivations. We study the structural char-
acterization of two network classes in this chapter: tree-based networks and orchard net-
works. Tree-based networks are those that can be obtained by inserting edges between the
edges of an underlying tree. Orchard networks are those that may be reduced to a net-
work on a single leaf by a sequence of reductions on substructures induced by two leaves.
Orchard networks were introduced in Chapter 4. Structural characterizations have al-
ready been discovered for tree-based networks; this is not the case for orchard networks.
In this chapter, we introduce cherry covers—a unifying characterization of both network
classes—in which we decompose the edges of the networks into so-called cherry shapes
and reticulated cherry shapes. We show that cherry covers can be used to characterize the
class of tree-based networks as well as the class of orchard networks. Moreover, we also
generalize these results to non-binary networks. Finally, we give a biologically meaning-
ful interpretation of orchard networks, by showing that orchard networks admit a special
type of time labelling on the vertices, called HGT-consistent labellings. This characteriza-
tion shows that orchards are merely trees with horizontal edges added.

5.1. INTRODUCTION

P HYLOGENETIC networks have been categorized into many topological classes for both
biological and computational incentives (for an overview of a few binary network

classes, see, for example, [2]). One of the largest of these network classes is the class of

The contents of this chapter have been published in Advances in Applied Mathematics AAM, 102222 (2021) [1]
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tree-based networks. Hatched from an ongoing debate on whether evolutionary histo-
ries should or should not be viewed as tree-like with reticulate events sprinkled in (e.g.,
in the context of horizontal gene transfer within prokaryotes [3]), tree-based networks
were introduced as those that can be obtained from trees by inserting new reticulate
edges between the edges of the tree [4]. In their seminal paper, Francis and Steel explored
the mathematical properties of these tree-based networks and provided a linear time al-
gorithm to check whether a binary network was tree-based. Following this, structural
characterizations for binary tree-based networks were introduced in the form of forbid-
den substructures [5], matchings [6], and using antichains and path-partitions [7]. Jet-
ten and van Iersel further extended the matching characterization result to non-binary
networks, and showed that it is possible to decide whether a non-binary network is tree-
based in polynomial-time [6].

Within the class of binary tree-based networks lies the recently introduced class of
binary orchard networks (shown in [8]). These networks generalize the prominent class
of tree-child networks. It was shown that orchard networks are uniquely reconstructible
from their ancestral profiles [9] and that it can be determined whether two binary (or
semi-binary stack-free) orchard networks are isomorphic in linear time [10]. Orchard
networks contain either a cherry (two leaves with a common parent) or a reticulated
cherry (two leaves with distinct parents, for which one parent is the parent of another,
and the lower parent is a reticulation), such that reducing a cherry or a reticulated cherry
yields an orchard network of smaller size. With this reduction, we saw in the previous
chapter that one can obtain a sequence of ordered pairs—which corresponds to reduc-
ing either a cherry or a reticulated cherry that involves the two leaves in the pair—that it-
eratively reduces the orchard network to a single leaf. Janssen and Murakami, and Erdős
et al. have independently shown that such a reduction can be done in any order, and
therefore that it can be decided in linear time whether a network is orchard [9, 10]. While
these sequences do characterize orchard networks, the recursive nature of this charac-
terization may make it impractical to use.

In this chapter, we present a unified structural (non-recursive) characterization for
both non-binary tree-based networks and non-binary orchard networks. We first de-
compose networks into so-called cherry shapes and reticulated cherry shapes. If each
edge of the network belongs to at least one of these two structures, then we say that the
network has a cherry cover. This turns out to be a necessary and a sufficient condition for
the network to be tree-based (Theorem 17). In addition we consider an ordering on the
cherry and reticulated cherry shapes of a network. We prove that a network is orchard
precisely if it has an acyclic cherry cover (Theorem 18). In particular, this shows that the
class of non-binary orchard networks are contained in the class of non-binary tree-based
networks (Corollary 9). Finally, we introduce the HGT-consistent labelling of networks
and show that binary orchard networks are exactly those that admit an HGT-consistent
labelling (Theorem 19). This gives another proof for showing that binary orchard net-
works are contained in the class of binary tree-based networks. We extend the labelling
characterization for non-binary orchard networks, by means of resolving the network
and finding a labelling for the resolution.

We also give a biologically meaningful interpretation of orchard networks by giving
a characterization based on a certain time labelling of the network class, called HGT-
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consistent labellings. Networks that admit an HGT-consistent labelling can be seen as
those that can be obtained from some base tree with only horizontal edges added, which
can explain reticulate phenomena such as horizontal gene transfer. The time labelling
forces one parent of each reticulation to be contemporaneous with the reticulation ver-
tex, thereby signalling how the genes may have been inherited. This is similar, though
different to the temporal labellings that have been studied prior [11, 12].

5.2. PRELIMINARIES

R ECALL that two networks N and M on X are isomorphic if there exists a bijection f
that maps the vertices and edges of N to the vertices and edges of M , such that uv

is an edge of N if and only if f (u) f (v) is an edge of M , and leaves are mapped to leaves
of the same label. A semi-binary resolution of a network N is a semi-binary network N ′,
from which a network isomorphic to N can be obtained by contracting edges. A binary
resolution of a network N is a binary network N ′, from which a network isomorphic to N
can be obtained by contracting edges. Observe that a non-binary network generally has
multiple non-isomorphic (binary and semi-binary) resolutions.

5.2.1. CHERRY COVER
A cherry shape is a subgraph on three distinct vertices x, y, p with edges px and py . The
internal vertex of a cherry shape is p, and the endpoints are x and y . A reticulated cherry
shape is a subgraph on four distinct vertices x, y, px , py with edges px x, py px , py y , such
that px is a reticulation in the network. The internal vertices of a reticulated cherry shape
are px and py , and the endpoints are x and y . The internal reticulation and the mid-
dle edge of a reticulated cherry shape are px and py px , respectively. The edge py y is
called the free edge of the reticulated cherry shape. We will often refer to cherry shapes
and the reticulated cherry shapes by their edges (e.g., we would denote the above cherry
shape {px, py} and the reticulated cherry shape {px x, py px , py y}). We say that an edge uv
is covered by a cherry or reticulated cherry shape C if uv ∈C . Given a set P of cherry and
reticulated cherry shapes, we say that an edge is covered by P if the edge is covered by at
least one shape in P . We now investigate how sets of cherry shapes and reticulated cherry
shapes may form a decomposition or cover for a given binary, semi-binary, or non-binary
network (see Figure 5.1).

BINARY NETWORKS

Definition 15. A cherry decomposition of a binary network is a set P of cherry shapes
and reticulated cherry shapes, such that each edge except for the root edge is covered
exactly once by P .

We recall the following key lemma on the number of edges and vertices for each ver-
tex type in a binary network.

Lemma 48 (Lemma 2.1 of [13]). Let N be a binary network on n leaves and reticulation
number r . Then N contains n + r −1 tree vertices and 2n +3r −1 edges.1

1Note that networks in [13] have roots of indegree-0 and outdegree-2 and thus are differently defined to the
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Figure 5.1: Examples of networks and their bulged versions with cherry covers and decompositions. All edges
in networks are directed downwards from the root to the leaves, and reticulations are indicated by square
vertices. (a) A non-binary network N and its bulged version B(N ). Observe that both leaves a,b are incident
to parallel edges in B(N ), because both leaves are children of reticulation vertices with indegree-3. A cherry
cover of B(N ) is visualized using different edge types. The edge e in N is duplicated in B(N ) to depict what
happens when an edge is covered twice by a cherry cover. However, it does not represent parallel edges. (b)
A semi-binary resolution N s of N , obtained by resolving the multifurcation in N . The bulged version of N s is
shown on the right, together with a cherry decomposition of B(N s ). (c) A binary resolution N b of N . A cherry
decomposition of B(N b ) = N b is displayed on the right network.

Lemma 49. Let N be a binary network on n leaves and reticulation number r , and let P be
a cherry decomposition of N . Then P contains exactly n−1 cherry shapes and r reticulated
cherry shapes.

Proof. By Lemma 48, the total number of edges in N is 2n+3r −1. Then the total number
of edges of N excluding the root edge is 2(n −1)+3r . Recall that every outgoing edge of
a reticulation vertex must be covered by a reticulated cherry shape. Indeed, since retic-
ulations have one unique child, no outgoing edge of a reticulation vertex can be covered
by a cherry shape. Since there are r such edges and because a reticulated cherry shape
is composed of 3 edges, we have that 3r of the edges of N are covered by reticulated
cherry shapes, and that the rest of the edges of N must be covered by cherry shapes. As
each cherry shape is composed of 2 edges, and since every tree vertex in semi-binary
networks are bifurcations, there must be n −1 cherry shapes in P . We conclude that P
contains exactly n −1 cherry shapes and r reticulated cherry shapes.

SEMI-BINARY NETWORKS

We extend the notion of a cherry decomposition to semi-binary networks by introducing
the following “bulged version” of a network.

Definition 16. Let N be a network. Then the bulged version of N , B(N ), is the multi-
graph obtained from N by replacing the outgoing edge of each reticulation vertex with
indegree-k by k − 1 parallel edges. In B(N ), we call a vertex a root if it is a vertex of
indegree-0 and outdegree-1, a tree-vertex if it has exactly one parent and at least two
children, a reticulation if it has at least two parents and exactly one child, and a leaf if it

networks used in this chapter. However this is a technicality; their counting argument can be used in our
network by tweaking values.
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is labelled. In particular, tree vertices with two children are called bifurcations and tree
vertices with more than two children are called multifurcations.

This action merely adds new edges between existing parent child pairs in the net-
work; it does not add any new vertices. The edges added when obtaining the bulged
version B(N ) of N are all parallel edges. Because of this, we observe that a vertex is a
tree-vertex, a reticulation, or a leaf in N if and only if it is a tree-vertex, a reticulation, or
a leaf in B(N ). We now define the reverse action to finding a bulged version of a network.

Definition 17. Let G be a directed acyclic multigraph. Then the un-bulged version U (G)
of G is the multigraph obtained from N by deleting all but one edge from each collection
of parallel edges.

Lemma 50. Let N be a non-binary network, and let B(N ) denote the bulged version of N .
Then U (B(N )) is isomorphic to N .

Proof. The multigraph B(N ) is obtained from N by adding parallel edges. Because of
this, we may define a mapping f from the vertices and the edges of N to the vertices and
edges of B(N ) such that if uv is an edge in N , then f (u) f (v) is also an edge in B(N ), and
further that f preserves leaf labels. Clearly, the mapping f uses every edge of B(N ) that
is not a parallel edge; for each collection of parallel edges, the mapping uses exactly one
edge.

Consider the graph U (B(N )) obtained by deleting all but one edge from each collec-
tion of parallel edges in B(N ). The choice for which parallel edges are deleted does not
matter in this process, so choose to delete the edges that are not used in the mapping.
Then f can be naturally extended to become a mapping of N into U (B(N )), where every
edge of U (B(N )) is used. But this means that N and U (B(N )) must be isomorphic.

When we restrict the domain to the set of non-binary phylogenetic networks and the
codomain to the image of the domain under B , it is easy to see that U is the inverse
of B . Therefore, we shall denote U as B−1 from here onwards. If N is binary, we have
N = B(N ), but, in general, bulged versions of networks are not always networks, since
they may contain parallel edges and vertices not listed in the definition of networks.

Lemma 51. Let N be a semi-binary network on n leaves with reticulation number r . Then
B(N ) has 2n +3r −1 edges, r of which are out-edges of reticulation vertices.

Proof. Let Vr be the set of reticulation vertices in N , and let k = |Vr |. Any binary resolu-
tion of N has the same number of tree vertices as N . By Lemma 48, N has n leaves, 1 root,
k reticulation vertices, and n+r −1 tree vertices. Note that there are k outgoing edges of
reticulation vertices in N and the sum of the indegrees of the reticulation vertices is r +k.
Because in constructing B(N ), we add

∑
v∈Vr (|Γ−(v)|−2) = r +k−2k edges to N , the sum

of the outdegrees of the reticulation vertices in B(N ) is k+(r +k−2k) = r . Hence, we can
count the number of edges in B(N ) by counting the total number of outgoing edges for
each vertex type: the leaves have 0 outgoing edges, the root has 1 outgoing edge, the tree
vertices have 2(n + r −1) outgoing edges, and the reticulation vertices have r outgoing
edges. Therefore, we conclude that B(N ) has 1+2(n + r −1)+ r = 2n +3r −1 edges.
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Definition 18. A cherry decomposition of the bulged version of a semi-binary network N
is a set P of cherry shapes and reticulated cherry shapes, such that each edge of B(N ),
except for the root edge, is covered exactly once by P .

Observe that a reticulation vertex in the bulged version of the network is always
mapped to an internal reticulation of a reticulated cherry shape in the cherry decom-
position. This brings us to the following lemma, whose proof follows an analogous argu-
ment as used in the proof of Lemma 49.

Lemma 52. Let N be a semi-binary network on n leaves and reticulation number r , and
let P be a cherry decomposition of N . Then P contains exactly n −1 cherry shapes and r
reticulated cherry shapes.

Proof. The bulged network B(N ) has 2n+3r −1 edges (Lemma 51). Then the total num-
ber of edges of B(N ) excluding the root edge is 2(n − 1)+ 3r . Observe that every out-
going edge of a reticulation vertex must be covered by a reticulated cherry shape, and
each reticulated cherry shape must cover such an edge. Since there are r such edges
(Lemma 51) and because a reticulated cherry shape is composed of 3 edges, we have
that 3r of the edges of B(N ) are covered by reticulated cherry shapes, and that the rest of
the edges of B(N ) must be covered by cherry shapes. As each cherry shape is composed
of 2 edges, this implies that there must be n−1 cherry shapes in P . Therefore P contains
exactly n −1 cherry shapes and r reticulated cherry shapes.

NON-BINARY NETWORKS

For non-binary networks, we generalize the concept of cherry decompositions by allow-
ing certain edges to be covered multiple times.

Definition 19. A cherry cover of (the bulged version) of a non-binary network N is a set P
of cherry shapes and reticulated cherry shapes with the following properties on B(N ):

• each edge except for the root edge is covered by at least one shape in P ,

• each outgoing edge of a reticulation vertex is covered exactly once,

• each edge covered by the middle edge of a reticulated cherry shape is covered ex-
actly once.

Note that cherry covers may contain cherry shapes that cover the same edge of the
bulged version of the network, as long as the above properties are respected (see Fig-
ure 5.2). Note also that there may exist many distinct cherry covers for one network.

Lemma 53. Let P be a cherry cover of a non-binary network N , and let uv be an edge
of B(N ) that is covered by at least two shapes in P. Then u must be a multifurcation in N .

Proof. First observe that u cannot be the root since the root edge is not covered by P , and
it also cannot be a vertex of outdegree-0. Furthermore, u cannot be a reticulation vertex
by the second condition of Definition 19. Therefore u must be a tree vertex. Suppose
that u is a bifurcation, and let uw be an edge of B(N ) that is not uv . Then the edges uv
and uw must be contained in a same shape A in P . If A was a reticulated cherry shape,
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Figure 5.2: Cherry covers of sizes 3 (left) and 2 (right) for the same tree. We duplicate the edges incident to b
and c to show how an edge can be covered more than once in a cherry cover. The cherry cover of the left tree
reflects the cherry cover used in the proof of Lemma 54.

then one of uv or uw must form the middle edge of A; by the third condition of the
cherry cover definition, no other shape of P can contain the edge uv . On the other hand,
if A was a cherry shape, then for uv and uw to be covered by a shape B that is not A, B
must be a reticulated cherry shape. But this would again violate the third condition of the
cherry cover definition. Thus, no other shape of P can contain the edge uv . Therefore,
the edge uv is covered only by one shape in P , and u cannot be a bifurcation. By process
of elimination, it follows that u must be a multifurcation.

It follows that cherry covers are indeed a generalization of cherry decompositions,
since a cherry cover of a binary or a semi-binary network covers each edge of the bulged
version of the network exactly once. Observe that the converse of Lemma 53 is not nec-
essarily true. That is, given a cherry cover of a network, it is not always the case that a
multifurcation has an outgoing edge that is covered more than once (see Figure 5.2).

Lemma 54. Let N be a network on n leaves. Then B(N ) has a cherry cover using only
cherry shapes if and only if N is a tree. Furthermore, if N is a tree, then there exists a
cherry cover of N that contains exactly n −1 cherry shapes.

Proof. The first statement follows from the definition of a cherry cover. To prove the
second statement, we construct a cherry cover for N as follows. Let t be a tree vertex
in N of outdegree-d . Arbitrarily enumerate the d outgoing edges of t by e1,e2, . . . ,ed ,
and define cherry shapes Cti = {ei ,ei+1} for i ∈ [d −1] = {1, . . . ,d −1}. These d −1 cherry
shapes cover all outgoing edges of t . We repeat this for all tree vertices, and since the tail
of every edge, except for the root edge, is a tree vertex, we obtain a cherry cover.

Let T (N ) denote the tree vertices of N . Since the sum of the indegrees is equal to the
sum of the outdegrees, we get that

n +|T (N )| = ∑
v∈N

|Γ−(v)| = ∑
v∈N

|Γ+(v)| = 1+ ∑
t∈T (N )

|Γ+(t )|.

Rearranging this equation, we find∑
t∈T (N )

|Γ+(t )|− |T (N )| = n −1.

In the construction of a cherry cover of T above, each tree vertex t gives |Γ+(t )|−1 cherry
shapes. Hence, the size of the cherry cover is exactly

∑
t∈T (N ) |Γ+(t )|− |T (N )| = n −1.
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Definition 20. Let P be a cherry cover of some network. A shape A ∈ P is directly above
another shape B ∈ P if an internal vertex of B is an endpoint of A. A shape A ∈ P is above
a shape B ∈ P if there is a sequence A = A0, . . . , An = B such that Ai−1 is directly above Ai

for all i ∈ [n]. The cherry cover P is called acyclic if no shape is above itself.

Given a cherry cover of some network, Definition 20 naturally gives rise to an auxil-
iary graph where the cherry shapes and reticulated cherry shapes are the vertices and an
edge is drawn from one shape to another if it is directly above the shape. It can be used
to determine the acyclicity of a cherry cover. An example of such a graph can be seen in
Figure 5.3c.

5.2.2. NETWORK CLASSES
Tree-based networks For the definition of tree-based networks, see Section 2.1.4. See
Figure 5.3 for an example of a tree-based network, its bulged version, and a cherry cover
for the network.

Recall that tree-based networks are defined as those that can be obtained by adding
vertices and edges to a tree, which we call the base tree. Given a tree-based network N ,
we may reverse this action by removing a subset Er of the edges and suppressing all
indegree-1 outdegree-1 vertices until we obtain a base tree T (note that Er may not nec-
essarily be unique). Letting V (N ) and E(N ) denote the vertices and the edges of N re-
spectively, we define the embedding of T in N by the subgraph of N with vertex set V (N )
and edge set E(N )\Er . Observe that suppressing all indegree-1 outdegree-1 vertices from
the embedding of T in N returns the tree T . Since a tree-based network may have more
than one unique base tree, such a set Er is not necessarily unique.

Let N be a network on X . We say that the bulged version of N , B(N ), is tree-based if
the leaves of some spanning tree of B(N ) are labelled bijectively by X . Because a span-
ning tree of B(N ) contains exactly one edge from each set of parallel edges, we come to
the following observation.

Observation 10. A network N is tree-based if and only if B(N ) is tree-based.

Orchard networks For the definition of orchard networks, see Section 2.1.4. See Fig-
ure 5.4 for an example of an orchard network, its bulged version, and its acyclic cherry
cover.

5.2.3. REDUCING SHAPES
To characterize orchard networks using cherry covers of bulged networks, we show that
it is possible to reduce a pair in a network N by modifying its bulged version. To do so,
we first define the process of removing a reducible pair from a bulged network.

Definition 21. Let (x, y) be a reducible pair in a network N with corresponding (reticu-
lated) cherry shape A in B(N ). If the parent py of y is a bifurcation (resp. multifurcation),
then reducing A in B(N ) consists of deleting each edge of A (resp. A \ {py y}) from B(N ),
then deleting all isolated vertices, and finally, labelling all unlabelled outdegree-0 ver-
tices by the label of one of their children in B(N ) before removal. The resulting bulged
network is denoted B(N ) \ A (resp. (B(N ) \ (A \ {py y})).
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Figure 5.3: (a) A semi-binary tree-based network N that is not orchard. A base tree of N is indicated by the
solid edges. (b) The bulged version of N with a cherry cover {C1,C2,R1,R2,R3}. Each cherry shape is indicated
using a distinct line type for the edges. (c) An auxiliary graph that shows the order on the cherry shapes. An
edge is drawn from one cherry shape to another if it is directly above it. In this case, the cherry cover is not
acyclic since {R1,R2} form a cycle.

Only if A is a cherry shape and the common parent px of x and y is a bifurcation,
we have multiple options for labelling the outdegree-0 vertex. To solve this, we reduce a
cherry as an ordered pair (x, y), and we label the outdegree-0 vertex px with the label of
y .

In this definition, we claim that the resulting graphs are bulged versions of networks.
This follows from the fact that removing a reticulated cherry shape, the indegree and
outdegree of a reticulation vertex both go down by one, so the number of parallel edges
below the reticulation is still correct.

Finally, we prove that reducing a (reticulated) cherry in a network N is the same as
reducing the corresponding (reticulated) cherry shape in B(N ).

Lemma 55. Let (x, y) be a reducible pair in N , and let py denote the parent of y in N .
Let A denote the cherry shape or the reticulated cherry shape of B(N ) corresponding to the
reducible pair (x, y).

• If py is a bifurcation, then N (x, y) = B−1(B(N ) \ A).

• If py is a multifurcation, then N (x, y) = B−1((B(N ) \ (A \ {py y})).

Proof. First suppose that (x, y) is a cherry. Recall that reducing (x, y) in N consists of
first removing the edge of py x and, if py is a bifurcation, additionally removing the edge
py y and relabelling py with the label of y in N . Hence, N (x, y) can be obtained from
N by removing every edge in {py x, py y} = A from N and relabelling py with the label
of y . If py was a multifurcation, then no suppression will happen, and N (x, y) can be
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Figure 5.4: (a) A semi-binary orchard network N on taxa set {a,b,c,d}. One sequence for reducing N to a
network on a single leaf is (d ,c)(b, a)(b,c)(d ,c)(b,c)(a,c). (b) The bulged version of N with one possible cherry
cover {C1,C2,C3,R1,R2,R3}. (c) An auxiliary graph that shows the order on the cherry shapes. In this case, the
cherry cover is acyclic.

obtained from N by simply removing every edge in {py x} = A \ {py , y} from N . As no
reticulation vertices are involved here, we can equivalently remove these edges in B(N ),
so we conclude that N (x, y) = B−1(B(N ) \ A) or N (x, y) = B−1(B(N ) \ (A \ {py y})) if py is a
bifurcation or multifurcation respectively.

Now suppose that (x, y) is a reticulated cherry. Reducing (x, y) in N consists of re-
moving py px and, if px (resp. py ) is not binary, additionally removing px x (resp. py y)
and relabelling px (resp. py ) with the label of x (resp. y). In contrast to the case that
(x, y) is a cherry, we must now consider the outgoing edges of px in B(N ) to see how we
can equivalently remove the edges A (or A \ {py y}) from B(N ) instead of from N . If px

is binary, we here remove the edge px x just like when we reduce (x, y) in B(N ), hence,
there is a clear correspondence between these processes. If px is not binary, then the
reduction in B(N ) removes an outgoing edge of px , whereas the reduction in N does
not. This is compensated for by the fact that px has multiple outgoing edges in B(N ).
Indeed, after removing one incoming edge of px in N , px should have should have one
fewer outgoing edge in the bulged version of the resulting network. Hence, the edge px x
needs to be removed from B(N ) as well to obtain the bulged version of N (x, y). Hence,
in the case that (x, y) is a reticulation, we also have N (x, y) = B−1(B(N )\ A) and N (x, y) =
B−1(B(N ) \ (A \ {py y})) when py is a bifurcation or multifurcation, respectively.

5.3. TREE-BASED NETWORKS

I N this section, we show that a binary network is tree-based if and only if it has a cherry
decomposition. We do this by showing that for non-binary networks, the same char-
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Figure 5.5: (a) A non-binary tree-based network N on {a,b}. A base tree is indicated by the solid edges. (b) A
semi-binary resolution N s of N that is not tree-based with a cherry cover. (c) The bulged version of N s that
does not have a cherry cover. This can be seen as follows. There are four edges incident to the leaves and each
of these edges can only be covered by reticulated cherry shapes. However, it is not possible to add four such
reticulated cherry shapes without covering any middle edge of a reticulated cherry shape more than once.

acterization holds if we look at cherry covers in the bulged version of the network. Taking
the bulged version is crucial in this characterization. Figure 5.5b (from [6]) is an example
of a (non-bulged) semi-binary network that is not tree-based with a cherry cover. In the
same figure, we show that its bulged version does not have a cherry cover (Figure 5.5c),
and also that contracting one of the edges in the network yields a non-binary network
that is tree-based (Figure 5.5a). This latter point proves the following observation.

Observation 11. Let N be a tree-based network. Then there may exist a semi-binary reso-
lution of N that is not tree-based.

Lemma 56. Let N be a network. Then N is tree-based if and only if some binary resolution
of N is tree-based. N is tree-based if and only if some semi-binary resolution of N is tree-
based.

Proof. The first statement follows from [6] Observation 3.2. To show the second state-
ment, let N be a tree-based network, and let T be a base tree of N . By definition of base
trees, T must visit every tree vertex in the network. In particular, it must visit every mul-
tifurcation, and exit such vertices via one of its outgoing edges. Let t denote such a tree
vertex and let s denote the child of t in N such that t s is an edge that is used by T . Then
we resolve t by replacing it by a caterpillar such that the parent of s is the bottom-most
vertex. It remains to check that the base tree covers all the newly introduced vertices.
However this is immediate; by the placement of s, we note that the path from t to s cov-
ers all the newly introduced vertices. Therefore the tree T with the edge t s changed to the
path from t to s is a base tree of the new network. Repeating this for all multifurcations
yields a semi-binary resolution of N that is tree-based.
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On the other hand, if a semi-binary resolution N ′ of N is tree-based, then it is easy to
see that N must also be tree-based. Indeed, upon contracting some of the edges of N ′,
we adjust the base tree of N ′ by contracting an edge in the base tree if it used a path that
was contracted, in the embedding, and not changing the base tree otherwise. In case
a few edges of the path were contracted, we still map the edge of the base tree to the
partially contracted edge. Doing so gives a base tree of N .

Theorem 17. A network N is tree-based if and only if B(N ) has a cherry cover.

Proof. First suppose that N is a tree-based network. Let T be a base tree of N , and
let Er = {e1, . . . ,ek } denote the reticulation edges that were deleted to obtain T from N .
By Lemma 54, T has a cherry cover P consisting of only cherry shapes. We use this cherry
cover to produce a cherry cover of N .

Each cherry shape C in P maps to a pair of paths c1 and c2 in B(N ) that are vertex-
disjoint except at their highest vertices. All these paths together cover the edges of the
embedding ET of T in B(N ). Taking the first edge of both c1 and c2, we obtain a cherry
shape C |N of B(N ). Let P ′ = {C |N : C ∈ P } be the set of cherry shapes in B(N ) obtained
from cherry shapes in P , and let F = ET \P ′ be the edges of ET that are not covered by P ′.

The edges of B(N ) apart from the root edge that are not yet covered by P ′ are as
follows:

• the reticulation edges ei = ui vi ∈ Er ,

• all outgoing edges of vi for all i ∈ [k],

• and for each ui for all i ∈ [k], at most one outgoing edge fui ∈ F .

For the last point, if the endpoint ui were to have more than one outgoing edges in F ,
then they would be part of a cherry shape in P ′; hence, they cannot be in F , but they
must be in P ′. Therefore this case is not possible. If there is no outgoing edge of ui con-
tained in F , then ui must have two outgoing edges that form a cherry shape in B(N ) that
is contained in P ′. Otherwise ui would not have been covered by ET , which would con-
tradict the fact that T was a base tree of B(N ). If there was exactly one outgoing edge fui

of ui contained in F , then ui was not a tree vertex in T (in particular it must have been
added as an attachment point). Thus, fui is not a highest edge in the embedding of a
cherry shape of P , so fui is not covered by P ′. Observe that fui cannot be the reticulation
edge ei itself, since Er contains all the reticulation edges that are not used in the embed-
ding of T in N . Therefore, each endpoint ui of a reticulation edge ei = ui vi ∈ Er has an
outgoing edge in F , or an outgoing edge that is covered by P ′.

We augment P ′ to a cherry cover P ′′ of B(N ) by adding a reticulated cherry shape
{vi xi ,ui vi ,ui yi } for each ei = ui vi ∈ Er satisfying the following conditions: for each i ,
either ui yi ∈ F or ui yi is covered by P ′, and for any i 6= j , vi xi 6= v j x j . This last condition
is possible because the number of outgoing edges of a reticulation vertex v is equal to
the number of incoming edges of v that are in Er . By construction, P ′′ is a cherry cover
of B(N ).

Now suppose that the bulged version of the network N has a cherry cover P . For
every reticulation vertex v of indegree k, exactly k −1 incoming edges are contained in
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a reticulated cherry shape as the middle edge in P . By definition of reticulated cherry
shapes, the tail of each of these reticulation edges has at least one child other than v .
This inherently implies that deleting these k − 1 reticulation edges will not create any
unlabelled outdegree-0 vertices. Repeating this deletion for all such reticulation edges
and removing all parallel edges returns a spanning tree of the graph whose leaves are la-
belled bijectively by the leaf-set of N ; therefore B(N ) is tree-based. By Observation 10, N
is tree-based.

By Lemma 54, there exists a cherry cover of a tree on n leaves that contains exactly n−
1 cherry shapes. The next corollary follows immediately from this observation and the
arguments used in the proof of Theorem 17.

Corollary 8. Let N be a tree-based network on n leaves and reticulation number r . Then
there exists a cherry cover of N that contains exactly n − 1 cherry shapes and exactly r
reticulated cherry shapes.

5.4. ORCHARD NETWORKS

W E now show that a network is orchard if and only if its bulged version has an acyclic
cherry cover. Note that it is necessary to consider the bulged version of the net-

work, as there exist networks that are not orchard that have an acyclic decomposition
into cherry and reticulated cherry shapes, such as the network depicted in Figure 5.6.
Note that the bulged version of this network has no acyclic cherry cover. To see this, ob-
serve that the edge incident to a must be covered by a reticulated cherry shape—say it is
covered by a reticulated cherry shape containing R. In the bulged version of the network,
there are parallel edges incident to the leaf b; one of these edges must be covered by a
reticulated cherry shape containing the edges of R ′. However, the shapes containing R
and R ′ are then above one another, so no cherry cover can be acyclic.

In Figure 5.7, the network N is an orchard network, as (a,b)(d ,c)(b,c)(a,c)(d ,c) is
a sequence of reducible pairs that reduce N to a network on a single leaf c. The same
figure presents a semi-binary resolution N s of N that is not orchard. Since there are
no reducible pairs (no cherries nor reticulated cherries) in N s , it is immediately clear
that N s is not orchard. Therefore we obtain the following observation.

Observation 12. Let N be an orchard network. Then there may exist a semi-binary reso-
lution of N that is not orchard.

Lemma 57. Let N be a network where B(N ) has a cherry cover P. Suppose A ∈ P is a lowest
shape with endpoints x and y where the parent py of y is a tree vertex. Then,

• (x, y) is a reducible pair in N , and

• B(N (x, y)) has a cherry cover P \ {A} if py is a bifurcation; otherwise, B(N (x, y)) has
a cherry cover (P \ {A})∪ {Z }, where Z is a shape with endpoint y.

Proof. We first show that x and y are leaves in B(N ). Suppose for a contradiction that x
is not a leaf. Then it is either a tree vertex or a reticulation vertex. In either case, x has an
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Figure 5.6: An example showing why it is necessary to consider cherry covers in bulged versions of networks.
The tree-based network N (also shown in Figure 5.3(a)) is not orchard. Nevertheless, there is an acyclic decom-
position of N into the cherry and reticulated cherry shapes {C1,C2,C3,R1,R2}. Every cherry cover of B(N ) must
be cyclic, because each of the edges labelled R and R ′ must be contained in a reticulated cherry shape whose
endpoint is the leaf a or b. These shapes will be directly above one another, creating a cycle in the auxiliary
graph.

outgoing edge which must be part of some shape Y ∈ P . As x is not a lowest vertex in Y ,
x must be an internal vertex of Y . This implies that A is above Y , which contradicts the
fact that A is a lowest shape. Hence, x must be a leaf. By the same argument, y is a leaf.
Hence, x and y are both leaves of N . We now split into two cases: either A is a cherry
shape, or A is a reticulated cherry shape.

First suppose A = {py x, py y} is a cherry shape. As B(N ) has edges py x and py y ,
N must also have such edges. As N has edges py x and py y , and x and y are leaves,
N has the cherry (x, y). This means (x, y) is a reducible pair in N . Now suppose A =
{px x, py px , py y} is a reticulated cherry shape. Then N also contains edges px x, py px ,
and py y . As x and y are leaves in N and px is a reticulation vertex—by the properties of
a cherry cover—(x, y) is a reticulated cherry in N , which is a reducible pair. This proves
the first part of the lemma.

For the second part of the lemma, we split the proof into two subcases. First suppose
that py is a bifurcation. The first part of the current lemma implies that A corresponds
to the reducible pair (x, y) of N , so by Lemma 55, we have N (x, y) = B−1(B(N )\ A). More-
over, by assumption, P is a cherry cover of B(N ), A is an element of P . Hence, it follows
that the set P \ {A} is a cherry cover of B(N (x, y)) = B(B−1(B(N ) \ A)) = B(N ) \ A.

Now suppose that py is a multifurcation. Then, the first part of this lemma again
implies that A corresponds to the reducible pair (x, y), so B(N (x, y)) = (B(N ) \ A)∪ {py y}
by Lemma 55. Moreover, P \ {A} covers all edges of B(N ) \ A, so only the edge py y may
not be covered by P \ {A}. If the edge py y is covered by P \ {A}, then this is a cherry cover
of (B(N ) \ A)∪ {py y} and therefore of B(N (x, y)) and we are done. So suppose py y is
not covered by P \ {A}. Excluding the edge py y , if all other outgoing edges of py formed
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Figure 5.7: An orchard network N and a non-orchard semi-binary resolution N s of N .

the middle edge of reticulated cherry shapes, then py y must have formed the free edge of
each of these reticulated cherry shapes. This implies that the edge py y must already have
been covered by P \{A}, which is not true by our assumption. Therefore, there exists some
outgoing edge py z of py that is covered by P \{A}, such that py z does not form the middle
edge of a reticulated cherry shape. Then, we obtain a cherry cover (P \ {A})∪ {py y, py z}
of (B(N ) \ A)∪ {py y} and therefore of B(N (x, y)).

Theorem 18. A network N is orchard if and only if B(N ) has an acyclic cherry cover.

Proof. First suppose that a network N is orchard. We prove by induction on the sum
S = n + r of the number of leaves n and the reticulation number r of N that B(N ) has an
acyclic cherry cover. The induction basis is the case with one leaf and no reticulations:
the empty set is an acyclic cherry cover for such a network.

Now suppose that for each orchard network N ′ with n′+ r ′ = S′, B(N ′) has an acyclic
cherry cover. We prove that for any network N with n+r = S = S′+1, B(N ) has an acyclic
cherry cover. For this purpose, let N be an orchard network with n leaves and r reticula-
tions, such that n+ r = S = S′+1, and let (x, y) be a reducible pair in N . Note that as N is
an orchard network, such a reducible pair must exist.

First suppose that the parent py of y is a bifurcation. By Lemma 55, we have that
B(N (x, y)) = B(N )\ A, where A is a cherry shape if (x, y) is a cherry, and A is a reticulated
cherry shape if (x, y) is a reticulated cherry. By definition of orchard networks and re-
ductions of reducible pairs, N (x, y) is an orchard network and the sum of its leaves and
reticulations is S′. By the induction hypothesis, B(N (x, y)) has an acyclic cherry cover P .
We may obtain a cherry cover for B(N ) by appending the shape A to P . Therefore B(N )
has a cherry cover P ∪ {A}. As the endpoints of A are leaves, the element A is above no
other shape in P . Therefore the cherry cover P ∪ {A} is acyclic.

Now suppose that the parent of py is a multifurcation. By Lemma 55, B(N (x, y)) =
(B(N )\ A)∪{py y}, where A is either a cherry shape or a reticulated cherry shape on (x, y).
We have again that N (x, y) is an orchard network, and the sum of its leaves and reticula-
tions is S′. By the induction hypothesis, this implies that there is an acyclic cherry cover
P of B(N (x, y))∪ {py y}, which gives a cherry cover P ∪ {A} of B(N ). This cherry cover is
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acyclic because the new element A is above no other shape as its endpoints are leaves.
Hence, for each orchard network N with a total S′+1 of leaves and reticulations, there

is an acyclic cherry cover of B(N ).

To prove the other direction of the theorem, suppose that B(N ) has an acyclic cherry
cover P and let A ∈ P be a lowest shape with endpoints x and y . Observe that such a low-
est shape must exist as otherwise the cherry cover would not be acyclic. By Lemma 57,
(x, y) is a reducible pair in B(N ), and B(N (x, y)) has a cherry cover (P \{A})∪ {Z } or P \ A,
in which the order on the remaining shapes is not changed. This means B(N (x, y)) is
smaller than B(N ), and it has an acyclic cherry cover. This process continues until P =;,
and both N and B(N ) are reduced to a single leaf network. Since we have successively
reduced cherries or reticulated cherries from N to obtain a single leaf network, N is an
orchard network.

We now prove a lemma that is analogous to Lemma 56 for orchard networks using
acyclic cherry covers.

Lemma 58. Let N be a network. Then N is orchard if and only if some binary resolution
of N is orchard. Similarly, N is orchard if and only if some semi-binary resolution of N is
orchard.

Proof. We first assume that there exists some binary resolution N b of N that is orchard,
and independently, that there exists some semi-binary resolution N s of N that is or-
chard. We claim that contracting an edge of an orchard network whose head and tail are
both tree vertices or both reticulation vertices results in an orchard network. By defini-
tion, we may obtain N by contracting exactly these edges from N b and from N s (different
edges for the two resolutions), from which it follows that N is orchard. We now prove the
claim.

Let M be an orchard network, and let st be an edge in M such that s and t are both
tree vertices. We show that the network obtained by contracting st in M is orchard. By
Theorem 18, M has an acyclic cherry cover P . The edge st is covered as an edge in a
cherry shape or as a free edge in a reticulated cherry shape in P (or possibly both and
multiple times, if s is a multifurcation). Moreover, at least one of the outgoing edges
of t is also covered as an edge in a cherry shape or as a free edge in a reticulated cherry
shape in P . Let us denote this edge by tu. We now contract the edge st , and replace the
edge st that appeared in every shape in P by tu. All other shapes of P are preserved and
we call this new set of shapes P ′. All edges of the contracted network are covered and it
is easy to check that P ′ is a cherry cover. It remains to show that P ′ is an acyclic cherry
cover. This follows immediately, because the shapes in P that contained the edge st
are no longer directly above the shapes in P that contained the vertex t as an internal
vertex; furthermore, the shapes in P that contained the edge st are now directly above
the shapes in P that contained the vertex u as an internal vertex. These new edges do
not create a cycle in the auxiliary graph, as otherwise P would have been cyclic.

Now let pq be an edge in M such that p and q are both reticulations. By definition
of cherry covers, there must exist one incoming edge kp of p such that kp is covered
as an edge in a cherry shape or as a free edge in a reticulated cherry shape A ∈ P . Let r
be the child of q . We now contract the edge pq , calling the new vertex q ′, and replace
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the edge pq that appeared in every shape in P by an edge q ′r . All other shapes of P are
simply kept, and we call this new set of shapes P ′. Note that the number of q ′r edges
in shapes of P ′ is equal to (|Γ−(p)|−1)+ (|Γ−(q)|−1) = |Γ−(q ′)|−1, which is the number
of outgoing edges of q ′ in B(N ) after contraction. Hence, P ′ forms a cherry cover of the
contracted network.

Moreover, P ′ is acyclic for the following reason. The only difference between the
auxiliary graph of P and the auxiliary graph of P ′ is that the arrow between shapes of P
containing pq and the shapes of P containing qr has been deleted, and the arrow from A
to shapes of P containing qr has been added. But A was already above these shapes in
the auxiliary graph of P . The same can be said for all reticulated cherry shapes that
covered an incoming edge of p as the middle edge. Hence, contracting an edge of an
orchard network whose head and tail are both tree vertices or both reticulation vertices
returns an orchard network. Therefore the network N is orchard.

To prove the other direction, suppose that N is an orchard network. By Lemma 2
in [10], there exists a binary resolution of N that is orchard. Since any binary network is
also semi-binary, the binary resolution of N is also semi-binary.

It was shown in [8] that binary orchard networks are tree-based. It follows from The-
orems 17 and 18 that this is also true for the non-binary case.

Corollary 9. All orchard networks are tree-based.

5.5. HGT TIME-CONSISTENCY FOR ORCHARD NETWORKS

I N this section, we provide another characterization of orchard networks, by means of
a time labelling on the vertices of the network. We give this characterization first for

binary orchard networks, and later extend the characterization to non-binary orchard
networks.

5.5.1. BINARY ORCHARD NETWORKS
Definition 22. Let N be a binary phylogenetic network with vertex set V . An HGT-
consistent labelling of N is a labelling t : V →R such that

1. For all edges uv , t (u) ≤ t (v) and equality is only allowed if v is a reticulation.

2. For each non-leaf vertex u, there is at least one child v of u such that t (u) < t (v).

3. For each reticulation r with parents u and v , exactly one of t (u) = t (r ) and t (v) =
t (r ) holds.

The conditions listed above in Definition 22 will be referred to as conditions 1,2, and
3, respectively. The biological interpretation of a network with an HGT-consistent la-
belling is that reticulations are caused within the network by horizontal gene transfers.
The third condition above ensures that reticulation vertices are contemporaneous with
one of their parents – in particular, with the parent from which genetic material is passed
via horizontal gene transfer. This labelling is different to the temporal labelling of net-
works as defined in Section 2.1.4, as in a temporal labelling, all parents of a reticulation
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vertex, as well as the reticulation vertex itself, are contemporaneous. The next lemma
shows that networks that admit an HGT-consistent labelling are tree-based, where the
network can be obtained by adding horizontal edges to some base tree.

Lemma 59. Each binary network that admits an HGT-consistent labelling is tree-based.
In particular, a base tree can be obtained by deleting all reticulation edges where the tail
and head have the same time labels.

Proof. We prove the claim by induction on the number of vertices. For the base case,
let N be a binary tree; the claim is trivially true. So suppose that N is a binary network
on n vertices, and that the claim holds for every binary network on fewer than n vertices.
Let t : V → R denote the HGT-consistent labelling of N . Consider a reticulation edge uv
where t (u) = t (v). By condition 2 of HGT-consistent labelling, we know that the vertex u
must be a tree vertex. Delete the edge uv and suppress the vertices u, v to obtain a net-
work N ′. We claim that restricting the labelling t to the vertices of N ′, which we shall
call t ′ is an HGT-consistent labelling. The parts of N ′ that we must check carefully are
the vertices in the neighbourhood of u and v in N ; all other vertices and edges inherit
their HGT-consistency directly from the fact that t is an HGT-consistent labelling of N .

Recalling that u is a tree vertex and v a reticulation vertex, let a be the parent of u,
let b be the child of u that is not v , let c be the parent of v that is not u, and let d be the
child of v . In N ′, we have two new edges ab and cd ; we must check that these edges
adhere to the HGT-consistent labelling. By condition 2, we have t (u) < t (b) since t (u) =
t (v). This means t ′(a) ≤ t (u) < t (b) = t ′(b). If b was a reticulation, then it must have
had to inherit its time label in N from the parent k that is not u – otherwise we get a
contradiction for condition 3. In particular, b continues to inherit its time label from k
in N ′. So condition 3 still holds for b in N ′ under t ′. But this means that the edge ab
adheres to the HGT-consistent labelling in N ′ under t ′. On the other hand, note first
that t (v) < t (d) by condition 2 since v is a reticulation. This implies that t ′(c) = t (c) <
t (v) < t (d) = t ′(d). If d was a reticulation, then it must have had to inherit its time label
in N from the parent that is not v – otherwise t would not be a HGT-consistent labelling
under condition 2 for the vertex v . So condition 3 still holds for d in N ′ under t ′. Thus, t ′
is HGT-consistent for N ′.

Observe that N ′ contains two fewer vertices than N . By the induction hypothesis,
there exists a base tree T ′ of N ′ that can be obtained from N ′ by deleting all reticulation
edges where the tail and head have the same time labels. We claim that the embedding
of this base tree into N ′ uses the edges ab and cd . Indeed, if b was a tree vertex, the use
of the edge ab would be immediate. If b was a reticulation, then its parent k that is not a
must have the same time label, i.e., t ′(b) = t ′(k). But this would imply that the edge kb
is deleted to obtain the base tree, and that the edge ab then must be used in the embed-
ding. An analogous argument can be used for d , to see that the edge cd is used in the
embedding of this base tree into N ′. Upon subdividing the edges ab and cd by vertices u
and v respectively, and adding the edge uv to N ′, we undo the reticulate edge deletion
from before to obtain N . A base tree T of N can be obtained from the base tree T ′ of N ′
by replacing the edges ab and cd by paths aub and cvd in the embedding. It follows
immediately that this is a base tree of N that can be obtained by deleting all reticulation
edges where the tail and head have the same time labels (since t ′ and t coincide at all
vertices except for uv ; we do not use the edge uv to obtain T ).
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Figure 5.8: A network N on the taxa set {a,b} containing a crown on the vertices t1, t2,r1,r2. If N admit-
ted an HGT-consistent labelling t , then assuming without loss of generality that t (t1) ≥ t (t2), we must have
that t (t1) = t (r1) = t (r2). But this contradicts condition 2 of the HGT-consistent labelling definition for the
vertex t1. Therefore, N does not admit an HGT-consistent labelling.

The converse of Lemma 59 does not hold. Consider a tree-based network that con-
tains a crown (see Figure 5.8). As can be seen from the figure, it is not possible to give
crowns an HGT-consistent labelling.

Lemma 60. Each binary orchard network admits an HGT-consistent labelling t where
|t−1(i )| ≤ 2 for all time labels i .

Proof. Let N be a binary orchard network, and let S = (x1, y1), . . . , (xm , ym) be a cherry-
picking sequence for N . Because N is binary, it can be reconstructed from S by starting
with the one-leaf tree with leaf ym and reattaching the pairs from S in reverse order (see
Chapter 4, Definition 7). Define a labelling t : V → R on the vertices V of N . Label the
root vertex ρ with t (ρ) = 0, the leaves with times m + 1, . . . ,m +n arbitrarily, and each
interior vertex v added when reattaching the pair (xi , yi ) with t (v) = m +1− i .

We show that t is indeed an HGT-consistent labelling of N . When adding a pair to
a network, the two newly introduced vertices lie below existing internal vertices. This
means that vertices that are added later have a greater time labelling than internal ver-
tices that are added before. Adding to the fact that we relabel the leaves so that they have
labels of at least m +1 and internal vertices have labels of at most m, we have that for all
edges uv , t (u) ≤ t (v). The relabelling of the leaves also means that two vertices in the
network have the same label under t if they are a parent-child pair where the child is a
reticulation. Therefore, condition 1 of the HGT-consistent labelling is satisfied. To see
that t satisfies condition 2, we look at tree vertices and reticulations separately. A tree
vertex u has two children, one of which is possibly added to the network at the same
time as u. The other child v of u is either a leaf or an internal vertex that is added to
the network after u has been added. But this would mean that t (u) < t (v). On the other
hand, a reticulation r has one child c. Every reticulation vertex is added to the network
with one of its parents; this means that c is either a leaf or an internal vertex that is added
to the network after r has been added. This implies t (r ) < t (c). So condition 2 is satisfied.
Finally, to see that condition 3 is also satisfied, consider a reticulation r with parents u
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and v . The reticulation r must have been added to the network with one of its parents,
say u, so that t (u) = t (r ). This means that the vertex v was already in the network when r
was added; due to how we have defined t , we must have that t (v) < t (r ). Thus t satisfies
condition 3, and therefore it is an HGT-consistent labelling.

In addition, this gives a labelling t with |t−1(i )| ≤ 2 for all times i . Indeed for each
i ∈ {1, . . . ,m}, the vertices with label i are added to the network when (xi , yi ) is reattached,
and for each such reattachment, at most two vertices are added to the network.

Lemma 61. Each binary network that admits an HGT-consistent labelling is orchard.

Proof. Suppose a binary network N admits and HGT-consistent labelling t . We will
prove that N is orchard by proving that each network that admits an HGT-consistent
labelling and which has at least one internal vertex must contain a cherry or reticulated
cherry. Moreover, after reducing such a pair, the resulting network still admits an HGT-
consistent labelling. Therefore, any HGT-consistent network can be reduced to a tree
with one leaf, and is thus orchard.

Let x be a non-leaf vertex with t (x) maximal. If x is a reticulation, then its child l
must be a leaf, and one of its parents p has label t (p) = t (x), by condition 3. The vertex p
cannot be a reticulation as this would contradict condition 2 of HGT-consistency. Hence,
the other child l ′ of p must be a leaf as well, and (l , l ′) is a reticulated cherry in N . Re-
ducing this reticulated cherry, we obtain a new network N ′, which still admits an HGT-
consistent labelling t ′ = t |V (N ′). If x is a tree node, then either both of its children are
reticulations, one of its children v is a reticulation vertex, or both its children are leaves.
In the first case, the reticulation children v1 and v2 must have labels t (v1) = t (v2) = t (x),
since reticulations inherit their time label from the parent with the greater time label,
by condition 3. But this contradicts condition 2, so this case is not possible. In the sec-
ond case, the reticulation child has label t (v) = t (x), and we can reduce the reticulated
cherry involving x and v as in the previous case. In the third case, x has two leaf chil-
dren, which must thus form a cherry. After reducing this cherry, the network still admits
an HGT-consistent labelling, which can be obtained by restricting t to the remaining
vertices.

A direct consequence of these lemmas is the following new characterization of or-
chard networks as networks that admit an HGT-consistent labelling.

Theorem 19. A binary network N is orchard if and only if it admits an HGT-consistent
labelling.

Since networks with HGT-consistent labellings are tree-based by Lemma 59, this
gives another proof for showing that binary orchard networks are contained in the class
of binary tree-based networks.

5.5.2. NON-BINARY ORCHARD NETWORKS
We extend the HGT-consistent labelling characteristics to non-binary orchard networks.

Theorem 20. A non-binary network N is orchard if and only if some binary resolution
of N admits an HGT-consistent labelling.
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Proof. The combination of Theorem 19 and Lemma 58 immediately gives the claim.

Ideally, we can further extend this characterization by finding a direct time labelling
of non-binary networks that captures orchard networks, with a meaningful biological in-
terpretation. With Theorem 20 in mind, a natural candidate seems to be to find a binary
resolution, find an HGT-consistent labelling of the resolution, and then to contract the
edges of the network to obtain the original non-binary network, in the meantime alter-
ing the labelling to adhere to the monitonically increasing order (condition 1). To do so,
whenever we contract an edge uv , we shall label the new vertex w with the greater time
label, which would be that of v .

This results in a network N with vertex set V with the labelling t : V →R such that

1. For all edges uv , t (u) ≤ t (v).

2. For each non-leaf vertex u, there is at least one child v of u such that t (u) < t (v).

3. For each reticulation r with parents pi for i ∈ [k], t (r ) = t (p j ) for exactly one par-
ent p j .

Unfortunately, while it is the case that every non-binary orchard network admits
such a labelling, networks that are not orchard can also have such labellings. Figure 5.9
gives a non-orchard network with such a labelling. The network here contains a crown
on the tree vertices with time stamps 1,2 and the two reticulations of the network. Be-
cause the two other parents of the reticulations are there, i.e., the two tree vertices la-
belled 3 and 4, we are able to circumvent the issue of having to label the reticulation
vertices with time stamp 2.

The last condition can be changed to something that would imply the existence of
a base tree, for which all edges that are not in the base tree are horizontal edges. This
requires changing condition 3 to the following.

3. For each reticulation r with parents pi for i ∈ [k], t (r ) = t (pi ) for all but exactly one
parent p j .

Unfortunately, this change still does not fully capture the class of orchard networks.
Figure 5.9 gives an example of a non-binary orchard network that does not admit a la-
belling under this rule change.

5.6. DISCUSSION

I N this chapter we have provided a unifying structural characterization for tree-based
networks and orchard networks using cherry covers. We have shown that a binary

network is tree-based if and only if it can be decomposed into cherry shapes and retic-
ulated cherry shapes. A binary network is orchard if such a decomposition exists that
also satisfies a certain acyclicity condition. Moreover, we have generalized these charac-
terizations to non-binary networks by considering bulged versions of the networks and
using covers rather than decompositions. Prior to having this characterization, orchard



5

140
5. A UNIFIED STRUCTURAL CHARACTERIZATION OF ORCHARD AND TREE-BASED

NETWORKS

a0

a1

a2

a4 a3 a 2

a
5a4 a 5

a6 a 6a6

N

a cb

a

at1

a a

at2

at3 a r

N ′

a b

Figure 5.9: (Left) A non-binary non-orchard network N on {a,b,c} that admits a time-labelling on the vertices
that adheres to the ‘reticulations have the same labels as exactly one of its parents’ rule. (Right) A non-binary
orchard network N ′ on {a,b} that does not admit a time-labelling on the vertices that adheres to the ‘reticula-
tions have the same labels as all but one of its parents’ rule. Indeed, under this rule, exactly two of t1, t2, t3 must
have the same time-label. But in all possible cases therein, such a labelling does not satisfy either condition 1
or 2. In particular, these examples show that neither of these two labelling rules are enough to characterize the
class of non-binary orchard networks.

networks were characterized only by the sequences that reduced them. Therefore we
have provided the first structural (non-recursive) characterization for orchard networks.
As a result, we have shown that the class of non-binary orchard networks is contained in
the class of non-binary tree-based networks. We have also given a biological interpreta-
tion of orchard networks as those that can be obtained by adding horizontal edges to its
base tree.

Structural characterizations for many network classes have generally focused more
on ‘forbidden structures’ rather than on decompositions. Tree-based networks cannot
contain a maximum zig-zag path that starts and ends at a reticulation (W-fences) [5, 14];
tree-child networks cannot contain adjacent reticulation vertices nor tree vertices with
only reticulation children. While structures such as crowns and W-shapes cannot be
contained in orchard networks, it remains open whether orchard networks can be char-
acterized by a list of forbidden substructures.

In the other direction, it may be of interest to extend our cherry cover results to char-
acterize other network classes that are contained in the class of tree-based networks.
Since (the bulged versions of) these networks have a cherry cover, this may be possible
by imposing additional conditions on the cherry cover. Finding such characterizations
for all known network classes, such as tree-child, reticulation-visible, and stack-free, will
truly bring to light a unifying structural characterization of known phylogenetic network
classes.

Outside of characterizing network classes, cherry covers can be used to prove other
results within phylogenetics. One particular case in which this could have been useful is
in proving certain results for orchard networks and tree-based networks in the paper [8].
In that paper, it was shown that leaves may be added to, and some leaves may be re-
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moved from orchard and tree-based networks to obtain a network that was still orchard
or tree-based (in particular, Lemmas 10,11 and 13). Employing cherry covers to prove
these results is more concise, since adjusting the cherry cover of networks after such
actions is easier than trying to alter, say, the sequence for the network (for orchards).

Another area in which cherry covers may be useful is in solving enumeration prob-
lems, which is formulated as follows. Given parameters n and r , find the number of
distinct networks on n leaves with hybridization number r . When considering the class
of tree-based networks, there exist cherry covers for such networks that contain n − 1
cherry shapes and r reticulated cherry shapes by Corollary 8—can we somehow count all
possible arrangements of these shapes to enumerate the space of both network classes?
Perhaps, for non-binary networks, this line of attack will be too complicated due to
shapes being able to cover the same edges. However, for binary networks this may be
viable, as each edge of the network is covered exactly once in a cherry decomposition by
Lemma 49.

On the algorithmic front, one may find a cherry cover for a tree-based network and
an acyclic cherry cover for an orchard network in polynomial-time. For orchard net-
works, we may find reducible pairs, cover the edges involved using the steps outlined in
the proof of Theorem 18, reduce the shape, and continue until an acyclic cherry cover is
obtained. Since we may pick reducible pairs from orchard networks in any order (Theo-
rem 9), this bottom-up approach provides a polynomial-time algorithm for finding an
acyclic cherry cover of an orchard network. For tree-based networks, we first find a
base tree in polynomial-time with the matching approach used in the proof of Theo-
rem 3.4 in [6]. Then, one may follow the steps outlined in the proof of Theorem 17 of
this chapter to convert the cherry cover of this base tree to a cherry cover of the network
in polynomial-time. Without the base tree however, it is not clear if there is a systematic
way of obtaining a cherry cover. Indeed, it is not enough to naively cover the edges in any
fashion (e.g., bottom-up), as shown in Figure 5.10. We wonder if it would be possible to
directly obtain a cherry cover of a tree-based network without first having to find a base
tree; and if this is the case, can it be done faster than the algorithm presented in [6]?

The HGT-consistent labelling gives a biologically meaningful characterization of bi-
nary orchard networks, and outlines the motivation for studying them apart from com-
putational reasons. In particular, we have shown that binary orchards networks are those
that can be obtained from trees by adding horizontal edges. More still needs to be done
in this area, especially for characterizing non-binary orchard networks. We have tried
two labellings to characterize non-binary orchard networks: one where all arcs added to
the base tree are horizontal, and one where only one arc, per reticulation, added to the
base tree is horizontal. We saw in Section 5.5.2 that these two labellings do not fully cap-
ture the network class. Nevertheless, while a direct characterization may not have been
found yet, we may characterize non-binary orchards using time labels by first finding
a binary resolution of the network (which exists by Lemma 58), and then by finding an
HGT-consistent labelling of the resolution.
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6
ENCODING BY NUMBER OF PATHS

TO A LEAF

In Chapters 3 and 4, we saw network encodings from displayed subnetworks as well as
from cherry-picking sequences. In this chapter, we show a third type of encoding called µ-
representations. The µ-vector of each vertex has the number of paths from it to the i th
leaf for its i th element. The set of all µ-vectors for each vertex in the network is called
the µ-representation (and it is equivalent to a notion called ‘ancestral profiles’). It has
been shown that non-binary tree-child networks are encoded by their µ-representation.
It has also been shown that binary stack-free orchard networks are strongly encoded by
their µ-representation. Here, we introduce the class of tree-clone-free networks, which
are networks whose tree vertices all have a unique µ-vector. We show preliminary results
for tree-clone-free networks regarding the structure of such networks, and conjecture that
binary tree-clone-free networks are encoded by their µ-representations. Recently, it was
claimed that stack-free orchard networks (not necessarily binary) were encoded by their µ-
representations within the class of all stack-free networks. We also provide a counter-
example to this claim, and layout the intuition for why this is.

6.1. INTRODUCTION

T HE number of evolutionary paths from a non-extant species (internal vertex of a net-
work) to an extant species (leaf) denotes the different possible ways in which genetic

material has passed. For trees, this number is binary; either the vertex is or is not an an-
cestor of the leaf. For networks however, the existence of reticulation vertices allows for
more than one path to the same taxon.

For each vertex in the network, we denote the number of paths from it to each leaf
in the network as a vector called the µ-vector. The multiset of µ-vectors of a network is
called the µ-representation of the network. For trees, the µ-representation of the net-
work corresponds to its set of clusters. We know that a tree is reconstructible from their
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set of clusters [1, Theorem 9.2], and therefore from their µ-representation. When then,
is a network reconstructible from its µ-representation? Prior results have shown that
tree-child networks and time-consistent tree-sibling networks are reconstructible from
their µ-representations [2, 3]. It is also known that binary stack-free orchard networks
are strongly encoded by their µ-representations [4].

The initial motivation for considering µ-representations was to construct a distance
metric on some class of networks [2]. Comparing networks is necessary for assessing the
accuracy of network construction methods [5]; starting with a network N , obtain some
form of building block from it. This could be in the form of a sequence alignment, a set
of reticulate-edge-deleted subnetworks (what we saw in Chapter 3), or a distance matrix
(we will see this in Chapter 7). Construct a network N ′ from the building block(s), and
compute the distance between N and N ′. Ideally N ′ is isomorphic to N , which is the
case if and only if the distance between them is 0 for a distance metric.

Note that the existence of an encoding for a class of networks immediately implies
the existence of a distance metric for the class. Let C be a class of networks that are
encoded by some type of building block S, where the set of building blocks for a net-
work N ∈ C is denoted by S(N ). Define a distance metric between two networks N , N ′
in C by taking the size of the symmetric difference between the two building blocks
|S(N )4S(N ′)|. Since no two distinct networks have the same building blocks, and be-
cause the triangle inequality holds for the size of symmetric differences, it follows that
this yields a distance metric within the class. This means that showing that a class of
networks is encoded by the µ-representations immediately provides a distance metric
for the class.

An advantage of defining distance metrics based on encodings is that they are much
faster to compute compared to some other distance metrics. Generally, the building
blocks for a network in a certain class can be computed in polynomial-time. Find-
ing the symmetric difference between two multisets can also be done quickly. On the
other hand, consider rearrangement moves, which are graph operations that remove and
reattach parts of the network (for an overview on rearrangement moves, see, for exam-
ple [6, 7]). These are popular methods in traversing the space of phylogenetic networks
to obtain optimal solutions in a Bayesian, a maximum likelihood, or a maximum par-
simony framework. The distance between two networks can be obtained by taking the
number of moves required to transform one into the other; unfortunately, computing
this distance is known to be NP-hard for most known types of moves [8].

Recently, it was claimed that semi-binary stack-free orchard networks are strongly
encoded by their µ-representations [9]. In this chapter, we give a counter-example for
this statement, and we conjecture that the non-uniqueness is caused perhaps by tree
clones, which are two tree vertices with the same µ-vector. Interestingly, orchard net-
works do not contain tree clones; due to this, we consider the class of tree-clone-free
networks, and we show preliminary results on the class. Furthermore, we show that
the automorphism group on tree-clone-free networks contains only the trivial element.
This automorphism result could have applications in Bayesian methods, where current
methods do not take into account the internal symmetries of a phylogenetic network.
This can lead to undersampling of symmetric networks within Bayesian methods in Phy-
loNet [10].
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Structure of the chapter: In the next section we formally define the notion of a µ-
representation, and we list all known reconstructibility results for µ-representations. In
Section 6.3, we give a counter-example to Theorem 3.1 of Bai et al. [9]. In Section 6.4, we
show that the clones in a tree-clone-free network must either be contained in the same
reticulation equivalence class, or they are parent-child pairs for a reticulation and a tree
vertex (Lemma 64). Furthermore, we show that the semi-binary tree-clone-free networks
have only one automorphism (Theorem 25). In Section 6.5, we layout the roadmap for
future research in this area.

6.2. PRELIMINARIES

I N this chapter we consider only semi-binary rooted networks. Furthermore, we con-
sider the version of networks in which roots have indegree-0 and outdegree-2 (essen-

tially contract the edge between the root and the first tree vertex). Recall that in a semi-
binary network, every tree vertex is of total degree 3 and every reticulation vertex is of
total degree ≥ 3. The stack identification of a network N , denoted by i d(N ), is the semi-
binary network obtained by contracting every reticulation edge with a reticulation vertex
tail [9]. Observe that a network N is stack-free if and only if N ∼= i d(N ). We say that two
reticulations u, v are equivalent if there exists a reticulation r such that there is an rr-path
from u to r and an rr-path from v to r . Recall that an rr-path is a path consisting only of
reticulation vertices (see Section 4.2). This forms an equivalence class on the reticulation
vertices of networks.

Let N be a network on the taxa set X , and let V denote the vertex set of N . Since X
is chosen arbitrarily, we may assume without loss of generality that X = [n] = {1,2, . . . ,n}
for some positive integer n. For each vertex v ∈V , let mi (v) denote the number of paths
from v to the leaf i . As every vertex has a path to itself, namely the empty path, we have
that mi (i ) = 1 for all leaves i ∈ [n]. The µ-vector of v ∈ N is the vector

µN (v) = (m1(v),m2(v), . . . ,mn(v)).

The µ-representation of N is the multiset of every µ-vector in N

MN = {µN (v) : v ∈V }.

Let v1, v2, . . . , v` be an arbitrarily fixed labelling of the vertices V in N . The ancestral
tuple of i ∈ [n] is the vector

σ(i ) = (mi (v1),mi (v2), . . . ,mi (v`)).

The ancestral profile of N is the set of ordered pairs

ΣN = {(i ,σ(i )) : i ∈ [n]}.

Note that in the original definition, only the non-leaf vertices were included in the an-
cestral tuple, and therefore in the ancestral profile [4]. The addition of the leaf vertices
does not make use of any additional information, however, it does make the proof of the
following observation more simple.
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Observation 13. Let N be a network on X with vertex set V . Then theµ-representation MN

can be obtained from the ancestral profile ΣN and vice versa.

Proof. Consider an X ×V matrix where the (i , v)-th element is the number of paths
from the vertex v to the leaf i . The multiset of the column vectors is precisely the µ-
representation of N . The set of ordered pairs with a leaf as first element and the corre-
sponding row vector as the second element is precisely the ancestral profile of N (with
the ordering on V determined by how V is ordered in the matrix columns). One can
therefore derive the µ-representation of N from its ancestral profile.

We say vertices u, v in a network are clones if µ(u) = µ(v). If clones u, v are both
tree vertices, we say that u, v are tree clones. We say that a network is tree-clone-free if it
contains no tree clones. We call a stack-free tree-clone-free network a STCF network.

6.2.1. KNOWN RECONSTRUCTIBILITY RESULTS FOR ANCESTRAL PROFILES
For definitions of the following network classes, we refer the reader to Section 2.1.4.
Some network classes are known to be reconstructible from their µ-representations.

Theorem 21 (Theorem 1 of [2]). Let N , N ′ be semi-binary tree-child networks. Then N ∼=
N ′ if and only if µ(N ) =µ(N ′).

This was also shown to be true for time-consistent tree-sibling networks.

Theorem 22 (Proposition 8 of [3]). Let N , N ′ be semi-binary time-consistent tree-sibling
networks. Then N ∼= N ′ if and only if µ(N ) =µ(N ′).

Recently, the result was also shown for binary orchard networks by [4, 9].

Theorem 23. Let N be a binary stack-free orchard network, and let N ′ be a binary stack-
free network. Then N ∼= N ′ if and only if µ(N ) =µ(N ′).

Note that this third theorem differs from the first two theorems, as the first two results
give encoding results where both networks must be within the same restricted classes
(defined as weak encoding in Section 1.3.2). The third theorem gives a strong encoding
result within a larger class.

6.3. COUNTER-EXAMPLE FOR BAI ET AL.’S THEOREM

T HE following was claimed in a recent paper by Bai et al.

Conjecture 5 (Theorem 3.1 of [9]). Let N be a semi-binary stack-free orchard network
on X , and let N ′ be a semi-binary stack-free network. Then N ∼= N ′ if and only if µ(N ) =
µ(N ′).

Figure 6.1 shows that this conjecture cannot be true. The network N is a binary stack-
free orchard network; network N ′ is a semi-binary stack-free network that is not orchard.
Both networks have the same µ-representations, yet they are not isomorphic. The issue
arises from the fact that we cannot discern between reticulated cherries with differing
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Figure 6.1: Two stack-free networks N and N ′ on the same leaf set {1,2,3}. The network N is
a binary orchard network with the cherry-picking sequence (2,3)(1,2)(1,3)(2,3)(2,3). The network N ′
is semi-binary and is not orchard. The µ-vector labels each vertex (the leaves therefore have two
labels: the leaf label as well as the µ-vector). Both networks have the same µ-representation
{(331,1), (221,1), (111,1), (110,2), (011,1), (100,2), (010,2), (001,1)}, where each element in the set has a µ-vector
as the first coordinate and its multiplicity as the second coordinate. The networks N and N ′ act as a counter-
example to Conjecture 5.

indegrees on the reticulation parent. In Figure 6.1, both networks contain the reticulated
cherry (2,3), where in N , the indegree of the parent of 2 is 2, and that in N ′ is 3. Therefore,
we obtain the following theorem.

Theorem 24. Semi-binary stack-free orchard networks are not encoded by theirµ-representations.

In this particular example, another key difference between N and N ′ is that N con-
tains 3 reticulation vertices whereas N ′ contains 2 reticulation vertices. The µ-vector of
one of the reticulations in N , namely 110, appears as a µ-vector of a tree vertex in N ′.
Because 110 is also a µ-vector of a tree vertex in N , this leads to N ′ containing a tree
clone for the µ-vector 110. The existence of this tree clone essentially ‘allows’ for the root
vertex to choose between the two tree clones as its children, leading to the creation of
the counter-example. Interestingly, it is known that orchard networks contain no tree
clones (Lemma 4.4 of [9]). In an effort to extend Theorem 23 to a more general class of
networks, it is natural then, to consider the class of tree-clone-free networks.

Further observation of N ′ in Figure 6.1 shows that the tree clones exist as a result
of a crown in the network. However, tree clones are not necessarily the product only of
crowns. Figure 6.2 gives two non-isomorphic networks with the sameµ-representations,
with no crown. Therefore the symmetric difference between the class of crown-free net-
works and the class of tree-clone-free networks is non-empty. Furthermore, this shows
that crown-free networks are not encoded by their µ-representations.

The reason for delving into these two classes is because we know that orchard net-
works are necessarily crown-free and that they are also tree-clone-free (Lemma 4.4 of [9]).
Furthermore, the above example exemplifies the point that simply considering crown-
free networks is not enough. In the next section we look at a few preliminary results on
tree-clone-free networks.

6.4. STRUCTURE OF TREE-CLONE-FREE NETWORKS
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Figure 6.2: Two non-isomorphic binary stack-free non-orchard networks with the sameµ-representation. Both
networks contain a tree clone on the µ-vector 1110, however, they do not contain crowns.

W E recall the following key lemma which states that the µ-vector of a vertex is the
sum of the µ-vectors of all its children.

Lemma 62 (Lemma 4b of [2]). Let N be a network. Let v be a vertex of N with chil-
dren c1, . . . ,ck . Then µ(v) =∑

i∈[k]µ(ci ).

We say that two reticulations r1,r2 are in the same reticulation equivalence class if
there exists a reticulation r such that there exists an rr-path from r1 to r , and an rr-path
from r2 to r . It is easy to check that this forms an equivalence class on the reticulations
of N .

Observation 14. Let N be a network. Let r be a reticulation of N . Then there exists a tree
vertex or a leaf t that can be reached from r by a path whose internal vertices consist only
of reticulations. For any such t, it holds that µ(r ) =µ(t ).

Proof. Consider the lowest reticulation v contained in the same reticulation equivalence
class as r . As v is lowest, the child t of v must be a tree vertex or a leaf. Furthermore by
Lemma 62, µ(v) =µ(t ). Since r and v are contained in the same reticulation equivalence
class, and as v is the lowest such reticulation, there must exist an r r -path from r to v .
Furthermore, the µ vector of all vertices on this path is the same by Lemma 62; in partic-
ular, µ(r ) = µ(v). Therefore there exists a path from r to t consisting only of reticulation
internal vertices, such that µ(r ) =µ(t ).

Lemma 63. Let N be a tree-clone-free network, and let vi , v j be reticulations in N . Then
µ(vi ) = µ(v j ) if and only if vi and v j are contained in the same reticulation equivalence
class.

Proof. Suppose first that vi and v j are contained in the same reticulation equivalence
class. Then there exists a reticulation v such that vi and v j have disjoint paths to v
consisting only of reticulations. If vi is above v j , then v is the vertex v j (and also vice
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versa). Since the µ-vector of a reticulation is equal to the µ-vector of its only child by
Lemma 62, we must have that µ(vi ) =µ(v) =µ(v j ).

Now suppose that µ(vi ) = µ(v j ). Suppose for a contradiction that vi and v j are
contained in different reticulation equivalence classes. Since reticulations in the same
equivalence classes have the same µ-vectors (by what we have just shown in the first
part of this proof), we may, without loss of generality, assume that vi and v j are the
lowest reticulations in their respective classes. This means that the child ci of vi and
the child c j of v j are either tree vertices or leaves. By Lemma 62, we must have µ(ci ) =
µ(vi ) =µ(v j ) =µ(c j ). As N is a tree-clone-free network by assumption, ci and c j cannot
both be tree vertices. So one of these must be a leaf, say ci . The vertex c j cannot also be
a leaf as network leaves are uniquely labelled. So vertex c j must be a tree vertex; how-
ever, this would mean that c j either has a path to a leaf that is not ci , or c j has more than
one path to ci . In both cases, we would have that µ(ci ) 6=µ(c j ), which is a contradiction.
Therefore vi and v j must be contained in the same reticulation equivalence class.

The following is a generalization of Lemma 4.4 in [9] from orchard networks to tree-
clone-free networks.

Lemma 64. Let N be a tree-clone-free network. Any two non-leaf vertices vi , v j in N are
clones if and only if one of the following holds:

1. vi and v j belong to the same reticulation equivalence class; or

2. exactly one of vi and v j is a reticulation, say vi , and there is a path from vi to v j

where the internal vertices are all reticulations.

Proof. If one of the two conditions holds, then the vertices vi and v j are clones by Lem-
mas 63 and 62. Therefore suppose that vi and v j are clones. Since N is tree-clone-
free, vi and v j cannot both be tree vertices. If vi and v j are both reticulations, then by
Lemma 63, they must be contained in the same reticulation equivalence class. So it re-
mains to show that the claim holds when one is a tree vertex and the other a reticulation.

Suppose without loss of generality that vi is a tree vertex and that v j is a reticulation.
By Observation 14, there exists a tree vertex t that can be reached from v j by a path
whose internal vertices consist only of reticulations, such that µ(v j ) =µ(t ). Because N is
tree-clone-free, we must have that t = vi . This proves the claim.

From Lemma 64, the next corollary follows immediately for STCF networks.

Corollary 10. If an STCF network has µ-representation M, then the multiplicity of ev-
ery µ-vector is at most 2 in M.

6.4.1. HYBRIDIZATION NUMBER OF STCF NETWORKS FROM µ-REPRESENTATIONS
In this section, we show that the reticulation number and the hybridization number of
a semi-binary STCF network can be inferred from its µ-representation. Recall that the
hybridization number of a network is the total indegree of all reticulation vertices mi-
nus the total number of reticulation vertices. Following this, we show that semi-binary
networks with at most one reticulation vertex are encoded by their µ-representations,
within the class of semi-binary STCF networks.



6

152 6. ENCODING BY NUMBER OF PATHS TO A LEAF

Lemma 65. Let N be a semi-binary STCF network, and let M be itsµ-representation. Let v
be a vector in M with multiplicity 2. Let r,c be vertices of N such that µ(r ) = µ(c) = v.
Then exactly one of r,c, say r , is a reticulation vertex and c is a non-reticulation vertex
such that r c is an edge of N . Conversely, for every reticulation r in N , the multiplicity of
the vector µ(r ) in M is 2.

Proof. By Lemma 64, either r and c belong in the same reticulation equivalence class,
or r is a reticulation in the same equivalence class as the parent of c and c is a non-
reticulation vertex. As N is stack-free, every reticulation equivalence class is of size 1.
This means in particular that the first case is not possible. For the second case, this
implies that r is the parent of c, which is what we wanted.

To prove the second statement, the child c of r is a non-reticulation since N is stack-
free, and we also have that µ(r ) =µ(c) by Observation 14. So the multiplicity of µ(r ) is at
least 2 in M . By Corollary 10, every µ-vector in M is of multiplicity at most 2. Therefore,
the multiplicity of µ(r ) is exactly 2.

Corollary 11. Let N be a semi-binary STCF network, and let M be its µ-representation.
Let u denote the number of vectors in M of multiplicity 2. Then N contains u reticulation
vertices.

Lemma 66. Let N be a semi-binary STCF network, and let M be itsµ-representation. Let n
denote the number of leaves in N , and let f denote the number of vectors with multiplicity
1 in M. Then the hybridization number of N is

f −2n +2.

Proof. By Corollary 10, every vector in M is of multiplicity at most 2. By Lemma 65,
every vector in M of multiplicity 2 corresponds to a parent child pair, where the parent is
a reticulation and the child is a non-reticulation vertex. Every vector in M of multiplicity
1 therefore corresponds either to a tree vertex or a leaf. Together, this means that the
number of vectors with multiplicity 1 in M , denoted by f , is the number of tree vertices
and leaves in N . By Lemma 51, we know that a semi-binary network with n leaves and t
tree vertices has hybridization number t −n + 2. Since f = t +n, this means that the
hybridization number of N is f −2n +2.

At the start of Section 6.3, we commented on why Conjecture 5 cannot hold by giving
the counter-example of Figure 6.1. The existence of the counter-example stemmed from
the fact that one cannot discern between reticulated cherries with reticulations of differ-
ing indegrees. One can indeed identify a reticulated cherry from the µ-representations
of a stack-free network by Lemma A.1 of [9]; it is just not possible to comment on the
indegree of the reticulation involved. This is the step that is currently lacking in the
proof of an encoding result for semi-binary stack-free orchard networks from their µ-
representations. Lemma 4.3 of [9] gives a way of reducing reticulated cherries and a
way of adjusting the µ-representation accordingly. If one can infer the indegree of each
reticulation vertex of every reticulated cherry from theµ-representations, then we would
have the right ingredients to prove Conjecture 5. For now, we can do this as long as
the network contains exactly one reticulation vertex, i.e., in the case that the indegree
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of the reticulation vertex is exactly the number of vectors of multiplicity 2 in the µ-
representation. In fact, we show the following in the larger class of semi-binary STCF
networks.

Lemma 67. Let N be a semi-binary network with at most one reticulation vertex, and
let N ′ be a semi-binary STCF network. Then N ∼= N ′ if and only if µ(N ) ∼=µ(N ′).

Proof. Note first that N is stack-free and orchard. By Lemma 4.4 of [9], this means that N
is tree-clone-free, so we may use the results from above. One direction, that if N ∼= N ′
then µ(N ) ∼=µ(N ′) is trivial, so suppose that µ(N ) ∼=µ(N ′).

We prove the claim by induction on the number of vertices |N | in N . If |N | = 1 or |N | =
3, we either have a network on a single leaf or a network with a cherry, respectively. It
is not possible to have a network on 2 vertices. These cases follow trivially, and so we
assume that |N | ≥ 4.

By definition, orchard networks contain either a cherry or a reticulated cherry. Iden-
tifying a cherry from µ(N ) is possible by Corollary 3.2 of [4]; identifying a reticulated
cherry from µ(N ) is possible by Lemma A.1 of [9]. If there were to be a reticulated
cherry, we know from Corollary 11 that the network realising µ(N ) contains at most
one reticulation vertex; we can also infer the hybridization number of the network re-
alising µ(N ) by Lemma 66. Since there is at most one reticulation vertex, its indegree,
should it exist, must be the hybridization number itself. Suppose that N contains a
reducible pair (x, y). Then, we may use Lemma 4.3 of [9] to reduce (x, y) from N and
adjust the µ-representation accordingly. Call the reduced network N1 and the adjusted
µ-representation µ(N1). The network N1 is semi-binary, contains fewer vertices than
that of N , and it still contains at most one reticulation vertex. By the induction hypoth-
esis, N1 is the unique network within the class of semi-binary STCF networks, up to iso-
morphism, whose µ-representation is µ(N1).

We now look at N ′; we are in the case where the µ-representation of N ′ is µ(N ). The
reducible pair (x, y) of N is also a reducible pair of N ′ by Corollary 3.2 of [4] and Lemma
A.1 of [9]1. Since N ′ is STCF, it also follows from Corollary 11 and Lemma 66 that N ′ must
contain at most one reticulation vertex, and its indegree can be inferred. But this means
that when reducing (x, y) from N ′ using Lemma 4.3 of [9], we get a network N ′

1 with
the µ-representation µ(N1). By the induction hypothesis, we must have that N1

∼= N ′
1.

Adding the pair (x, y) to N1 can only be done in one way, since we require the resulting
network to be semi-binary stack-free (Lemma 20). We must then have that N ∼= N ′.

6.4.2. AUTOMORPHISM GROUP OF NETWORKS

Let N be a network. An automorphism f on N is a bijective mapping from N to N , such
that uv is an edge of N if and only if f (u) f (v) is an edge of N , and leaves are mapped to
leaves of the same label. An example of a non-trivial automorphism is given in Figure 6.3.

Observation 15. Let N be a network and let f be an automorphism on N . Then f maps
every vertex to a vertex of the same type (root, tree vertex, reticulation, or leaf) and we
have µ(v) =µ( f (v)) for every vertex v in N .

1This is where we require N ′ to be stack-free.
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a a
1 2

Figure 6.3: A network on two taxa {1,2} with an automorphism group of size 2. Apart from the trivial automor-
phism, we obtain a non-trivial automorphism by mapping t1 and t2 to one another, and mapping the other
elements to themselves.

Proof. Since f is an automorphism, we have that uv is an edge of N if and only if f (u) f (v)
is an edge of N . For the indegrees and outdegrees of vertices to coincide, we must have
that vertices of a certain type are mapped to vertices of the same type. To prove the sec-
ond statement, observe that distinct paths are mapped to distinct paths under f . There-
fore, the number of paths to a leaf is preserved under f .

Ancestral profiles are not only useful in showing encoding results for networks; they
can be used to show results on automorphisms.

Theorem 25. Let N be a semi-binary tree-clone-free network. Then there exists only one
automorphism of N , namely the identity map.

Proof. Let f be an automorphism of N . We shall prove that f is the identity map. As
leaves are uniquely labelled, leaves are uniquely mapped to leaves of the same labels
under f . By Observation 15, tree vertices must be mapped to tree vertices of the same µ-
vector. As N contains no tree clones, tree vertices are mapped to themselves under f .
Therefore it remains to show that reticulations must also be mapped to themselves un-
der f .

Suppose for a contradiction that this was not the case, i.e., that a reticulation is mapped
to another reticulation under f . Let r1 and r2 denote such two distinct reticulations,
where f (r1) = r2. In particular, choose r1 to be a highest such reticulation. Because f
is an automorphism, we have that uv is an edge of N if and only if f (u) f (v) is an edge
of N . This means that the parents of r1 must also be mapped to the parents of r2. Since
we chose r1 to be the highest such reticulation, the parents of r1 must both be tree ver-
tices. If a parent of r1 was a reticulation, then we have f (r3) = r3 by choice of r1, at which
point we would have that r1 = r2. Consequently, the parents of r2 must also both be tree
vertices by Observation 15. But tree vertices are mapped to themselves, as N contains
no tree clones. It follows then that r1 and r2 have the same parents. As they have at least
two parents, there exist at least two tree vertices t1, t2 where µ(t1) = µ(r1)+µ(r2) = µ(t2)
by Lemma 62. This means that t1 and t2 are tree clones. But this contradicts the fact
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that N is tree-clone-free. Thus reticulations must be mapped to themselves under f ,
and therefore we conclude that f is the identity map.

6.5. DISCUSSION

I N this chapter, we showed that binary stack-free orchard networks are not recon-
structible from their µ-representations within the class of semi-binary stack-free net-

works. Noting that the reason for this, in the particular example, stemmed from the
existence of tree clones within the network, we turned our attention to tree-clone-free
networks. We showed that within tree-clone-free networks, two vertices are clones if
and only if they are a parent-child pair where the parent is a reticulation and the child is
a tree vertex, or if they are reticulations in the same equivalence class. We also showed
that tree-clone-free networks only have one automorphism.

There are a multitude of ways in which reconstructibility results fromµ-representations
can be explored. A natural step is to try to show the reconstructibility of semi-binary tree-
clone-free networks or to show the reconstructibility of semi-binary stack-free orchard
networks from their µ-representations. This can of course be investigated for recon-
structibility within their respective classes (weak encodings), or within a larger space of
networks (strong encodings). The networks in Figure 6.1 show that for orchards, this can
not be done within the class of semi-binary stack-free networks.

The difficulty in showing reconstructibility results for semi-binary tree-clone-free
networks is that the traditional approach of reducing either a cherry or reticulated cherry
and arguing by induction no longer works. There is no guarantee that tree-clone-free
networks contain either a cherry or a reticulated cherry. Indeed, upon finding a low-
est tree vertex, it is easy to see that it could be contained in a double-reticulated cherry
(see Section 4.8). The problem with double-reticulated cherries, is that upon deleting a
reticulation edge from such structures, there may be more than one possibility for reat-
taching the tail of the edge. Perhaps this can be remedied for tree-clone-free networks
by looking at the µ-vectors. However, the network obtained by deleting this reticulation
edge does not need to be tree-clone-free. This is problematic in an inductive argument,
and thus a new approach is needed (or one that carefully chooses an edge, so that the
resulting network remains tree-clone-free).

Showing that semi-binary stack-free orchard networks are reconstructible requires a
result on distinguishing between reticulated cherries where the reticulation vertices have
different indegree. Existing results show that reticulated cherries for stack-free networks
can be identified from the µ-representations of networks (Lemma 3.3 of [4], with fixes
from [9]). Furthermore we know how to obtain the µ-representation of a network upon
reducing a cherry or a reticulated cherry (in all reticulation indegree cases) (Lemma 4.3
of [9]). Finally, because we know that a network obtained by reducing a cherry or a reticu-
lated cherry from an orchard network is orchard (see Chapter 4), the missing piece for an
inductive argument is the ability to distinguish between reticulated cherries with retic-
ulations of distinct indegree. Perhaps the following conjecture may be the required first
step in proving this reconstructibility result.

Conjecture 6. Let N and N ′ be semi-binary stack-free orchard networks with the same µ-
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representation. Let r,r ′ be reticulation vertices in N , N ′, respectively, with the same µ-
vectors. Then the indegree of r and the indegree of r ′ are the same.
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7
ENCODINGS OF LEVEL-k

NETWORKS FROM SHORTEST AND

LONGEST DISTANCES

Recently it was shown that a certain class of unrooted phylogenetic networks, called level-
2 networks, are not encoded by their induced shortest distance matrices. In this chapter,
we show that they can be reconstructed from their induced shortest and longest distance
matrices. That is, if two level-2 networks without branch lengths induce the same shortest
and longest distance matrices, then they must be isomorphic. We further show that level-2
networks are reconstructible from their shortest distance matrices if and only if they do not
contain a subgraph from a certain family of graphs. We also show that networks with, in
a certain sense, leaves everywhere, are reconstructible from their induced shortest distance
matrix.

7.1. INTRODUCTION

I N this chapter we look at a third type of substructure that could be used for encod-
ing phylogenetic networks. Where previous chapters considered subnetworks and

cherry-picking sequences, this chapter studies whether some unrooted network classes
can be encoded by their inter-taxa distances. Distance matrices labelled by a set of
taxa X describe the genetic distance between pairs of taxa.

Because networks contain undirected cycles, there can be many paths between two
leaves (leaves are labelled by unique taxa, so leaves and taxa will be used interchange-
ably). This is in contrast to trees which contain only one path between each leaf pair. So
while a tree induces only one metric, networks may induce many. A matrix consisting
of inter-leaf shortest distances, and a matrix consisting of inter-leaf longest distances

The contents of this chapter have been published in [1] and in [2].
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are two examples of a metric induced by a network. To date, different matrices have
been considered for phylogenetic network reconstruction. These include the shortest
distances (the traditional distance matrix), the sets of distances [3], and the multisets of
distances [1, 4], where the latter two are not distance matrices in the traditional sense of
the term. An element of the multisets of distances is a multiset of all distances between
a pair of leaves, together with the multiplicities associated to each length. The set of dis-
tances can be obtained from the multisets of distances by ignoring the multiplicities1.

Both the sets and multisets of distances were first introduced to prove reconstructibil-
ity results for distance matrices induced by particular phylogenetic network classes [3,
4]; shortest distances have also been used to prove reconstructibility results (split net-
works [6]; cactus graphs [7]). Reconstructibility results have also been proven on other
distance metrics (TOM-networks) [8]. Recent results have shown unique realizability
from sets and multisets of distances for certain rooted networks (tree-child and normal
networks) [9, 10] and for certain unrooted networks (level-k networks) [1].

In particular, the paper “Reconstructibility of unrooted level-k phylogenetic networks
from distances” showed that unweighted binary level-2 networks are reconstructible
from their multisets of distances [1]. They also showed that level-1 networks are re-
constructible from their shortest distances, but that level-2 networks were not recon-
structible in general from their shortest distances (Figure 7.1). It was also shown that
level-k networks for k > 2 are not reconstructible from their multisets of distances, in
general. The results presented in this chapter are stronger than those presented in [1],
and therefore we do not include the contents of that paper in this chapter.

a
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Figure 7.1: Two level-2 networks with the same shortest distances between any pair of leaves. The shortest
distance can be worked out by taking the length of the shortest path between a pair of leaves, where each edge
is of length 1.

This is our starting point for this chapter. Here we investigate the level-2 networks
that are reconstructible from their shortest distances, and in the case it is not possible,
the additional information that is needed to be able to do so. There are two main moti-
vations behind this. Firstly, not much is known regarding the unique reconstructibility of
level-k unrooted networks from their induced distance matrices. Of the reconstructibil-
ity results discussed in the previous paragraph, only two focus specifically on level-k
unrooted networks [1, 7]. To add to this, reconstructibility implies an existence of an al-
gorithm for constructing level-2 networks from a distance matrix (a unique network if

1The motivation for considering multisets of distances is mostly combinatorial. It is not clear how such dis-
tances can be obtained from a multiple sequence alignment. A possibility is to divide the alignment into
blocks depending on the parts of the chromosome responsible for encoding a particular gene, or by opti-
mizing constraints such as the homoplasy score [5]. Treating each of these blocks as an alignment yields a
distance matrix for each block, which can be collated to give multisets of distances between pairs of taxa.
However, every multiset of distances between leaf pairs would be of the same size (in particular the number
of blocks), which is not always the case in the results where these multisets are used.
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given the right input). While we do not explicitly give the algorithm in this chapter, it
is possible to infer it from the results provided here. Secondly, we have seen that mul-
tisets of distances have been used to show reconstructibility results both for rooted and
unrooted networks. The problem is that it is not clear how such distances can be ob-
tained from a multiple sequence alignment. A possibility is to divide the alignment into
blocks depending on the parts of the chromosome responsible for encoding a particu-
lar gene, or by optimizing constraints such as the homoplasy score [5]. Treating each
of these blocks as an alignment yields a distance matrix for each block, which can be
collated to give multisets of distances between pairs of taxa. However, every multiset
of distances between leaf pairs would be of the same size (in particular the number of
blocks), which is rarely the case for multisets of distances induced by networks. There-
fore we stay away from multisets of distances, and we show that the shortest and longest
distances suffice in showing that level-2 networks are reconstructible. Note that these
two distance metrics can be obtained from the outlined procedure above (in particular,
the set of distances can be obtained).

Here, we answer three open problems for binary networks from [1] on unique realiz-
ability of certain distance matrices.

1. Networks with a leaf on every generator side are reconstructible from their in-
duced shortest distance matrix in the space of all unrooted networks (Theorem 26);

2. Level-2 networks are reconstructible from their induced shortest and longest dis-
tance matrix in the space of unrooted level-2 networks (Theorem 28);

3. We characterize subgraphs of level-2 networks that are responsible for the class to
not be reconstructible from their induced shortest distance matrix (Theorem 29).

Structure of the chapter In Section 7.2, we give formal definitions of phylogenetic
terms. In Section 7.3, we show that networks with a leaf on every generator side (i.e.,
every vertex on the network is at most shortest distance-2 away from a leaf) are re-
constructible from their shortest distances (Theorem 26). In Section 7.4, we show that
level-2 networks are reconstructible from their sl-distance matrices (Theorem 28). This
is proven by first showing that the splits of the network (cut-edges that induce a partition
on the labelled leaves) are determined by the shortest distances that they realize (The-
orem 27). In Section 7.5, we show a construction for obtaining pairs of distinct level-2
networks from a binary tree that realize the same shortest distance matrix. We show that
having such a network as a subgraph renders a level-2 network to be non-reconstructible
from their shortest distances, thereby characterizing the family of subgraphs that are re-
sponsible for the non-reconstructibility (Theorem 29). We close with a discussion in
Section 7.7, presenting ideas for possible future directions.

7.2. PRELIMINARIES

A blob of a network is a maximal 2-connected subgraph with at least three vertices.
Recall that a network is a level-k network, with k ≥ 0, if at most k edges must be
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deleted from every blob to obtain a tree. We call a cut-edge trivial if the edge is inci-
dent to a leaf, and non-trivial otherwise. Given a cut-edge uv we say that a leaf x can
be reached from u (via uv) if, upon deleting the edge uv without suppressing degree-2
vertices, x is in the same component as v in the resulting subgraph. We say that a leaf
is contained in a blob if the neighbour of the leaf is a vertex of the blob. We say that a
chain is contained in a blob if any of the leaves of the chain are contained in the blob
(and therefore all leaves of the chain are contained in the blob). An edge is incident to a
blob if exactly one of the endpoints of the edge is a vertex of the blob. A blob is pendant
if there is exactly one non-trivial cut-edge that is incident to the blob. We say that a leaf x
can be reached from a blob B via a cut-edge uv if u is a vertex of B and x can be reached
from u via uv . In this case, we also say that uv or u separates x from B .

Letting X be a set of taxa, a split on X is a partition {A,B} of X . We denote a split
which induces the partition {A,B} of X by A|B where the order in which we list A and B
does not matter. Observe that some cut-edges of a network on X naturally induce a split
as there are exactly two parts of the network separated by the edge. We call this a cut-
edge induced split. We call a split A|B non-trivial if both A and B contain at least two
elements. Otherwise we call a split trivial. Observe that non-trivial cut-edges induce
non-trivial splits, and that trivial cut-edges induce trivial splits.

In this chapter, we assume the restriction that every cut-edge must induce a unique
split. Firstly, such a restriction eliminates the possibility for networks to contain redun-
dant blobs, which are pendant blobs that contain no leaves. Secondly, the restriction
removes all blobs that do not contain leaves, that are incident only to two non-trivial
cut-edges. Such blobs can be interpreted as higher-level analogues of parallel edges.

The generator G(N ) of a network N is the multi-graph obtained by deleting all pen-
dant subtrees (i.e., deleting all leaves from N ) and suppressing degree-2 vertices. The
generator may contain loops and parallel edges. A vertex of N that is not deleted or sup-
pressed in the process of obtaining G(N ) is called a generator vertex. We call the edges
of G(N ) the sides of N . Observe that the sides of N correspond to paths of N . Let s
be a side of N , and let e0v1v2 · · ·vk e1 with k ≥ 0 denote the path in N corresponding
to s, where e0 and e1 are vertices of the generator. If k = 0, then the path is simply the
edge e0e1. We call e0 and e1 the boundary vertices of side s. We say that a leaf x is on side s
if x is a neighbour of vi for some i ∈ [k]. We say that a chain is on side s if all leaves of the
chain are on the side s. Observe that a leaf of a chain is on a side if and only if the chain
is on the side. Observe also that v1 · · ·vk is a spine of some chain on s. We say that a side
is empty if no leaves are on the side. A side of a blob B is an edge of G(N ) which corre-
sponds to a path in B . Observe that level-2 blobs contain exactly two vertices that are
not cut-vertices. We call these the poles of the blob. There are exactly three edge-disjoint
paths between the two poles. We call these three paths in N the main sides of B . The
vertices in a main side s of B that are adjacent to the endpoints of s are called the main
end-spine vertices.

We adopt the following notation for pendant level-2 blobs from [1]. Let B be a pen-
dant level-2 blob, and let a,b,c,d denote the four chains contained in B of lengths k,`,m,n ≥
0, respectively, such that chains c and d are on the same main side of B as the non-trivial
cut-edge. Then we say that B is of the form (a,b,c,d) (see Figure 7.2). The order of the
first two elements a,b, and the order of the last two elements c,d do not matter. For
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Figure 7.2: The seven possible pendant blobs in a level-2 network. The leftmost pendant blob is level-1, and
the other pendant blobs are all level-2. Observe that for the pendant level-1 blob and the pendant level-2 blob
of the form (a,0,0,0), the length of the chain a must be of length at least 2. This is due to the fact that networks
do not contain parallel edges nor level-2 blobs with only two cut-edges incident to it. The dashed edges in
these two blobs indicate that the chain can be longer than 2. For the five other pendant blobs, each of the
leaves a,b,c,d indicates a chain.

ease of notation, a side without leaves is seen as a length-0 chain. Note that since ev-
ery cut-edge induces a unique split, it is not possible to obtain the pendant blob of the
form (1,0,0,0).

7.2.1. DISTANCES

For a network N on X , we let d N
m (x, y) and d N

l (x, y) denote the length of a shortest and a
longest path between two vertices x, y in N , respectively. We exclude the superscript N
when there is no ambiguity on the network at hand. Let a = {a1, . . . , ak } be a set of vertices
in N , and let u be a vertex in N that is not in a. Then we define the shortest distance
from u to a as the shortest distance from u to any of the vertices in a, that is, d N

m (a,u) =
min{dm(ai ,u) : i ∈ [k] = {1, . . . ,k}}2. Similarly, define the longest distance from u to a as
the longest distance from u to any of the vertices in a, that is, d N

l (a,u) = max{dl (ai ,u) :
i ∈ [k]}.

The shortest distance matrix Dm(N ) of N is the |X |× |X | matrix whose (x, y)-th entry
is d N

m (x, y). A network N realises the shortest distance matrix Dm if Dm(N ) = Dm . re-
constructible within a class C from its shortest distance matrix if N is the only network
in C , up to isomorphism, that realises Dm(N ). Here, we say that two networks N and N ′
on X are isomorphic if there exists a bijection f from the vertices of N to the vertices
of N ′, such that uv is an edge of N if and only if f (u) f (v) is an edge of N ′, and the leaves
of N are mapped to leaves of N ′ of the same label. Similarly, we define the sl-distance
matrix (shortest longest - distance matrix) D(N ) as the |X | × |X | matrix whose (x, y)-th
entry is d N (x, y) = {d N

m (x, y),d N
l (x, y)}. We say that a network N realizes the sl-distance

matrix D if D(N ) =D. A network N is reconstructible within a class C from its sl-distance
matrix if N is the only network in C , up to isomorphism, that realises D(N ).

2For consistency later on the section, we let [0] =;, the empty set.
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Figure 7.3: A level-2 network N on the taxa set {a,b,c1,c2,d1,d2, f , g }, its generator G(N ), and its sl-distance
matrix. N contains a cherry { f , g } and four chains (a), (b), (c1,c2) and (d1,d2). N contains two pendant blobs:
the leftmost is a level-2 blob of the form ((a), (b), (c1,c2),;), and the rightmost is a level-1 blob containing the
leaves d1 and d2. The poles of the pendant level-2 blob are labelled by p1 and p2. The dotted cut-edge e
induces the non-trivial split {a,b,c1,c2,d1,d2}|{ f , g }. The blob side indicated by the dashed path contains the
chain (c1,c2). The chains (a) and (c1,c2) are adjacent once. The chains (a) and (b) are adjacent twice. The sl-
matrix has i j -th elements of the form (x, y), where x and y denote the shortest and longest distances between i
and j in N . The diagonal elements, which are all (0,0), and the lower triangular elements are omitted as the
matrix is symmetric.

7.2.2. REDUCING CHERRIES

By definition, we may identify cherries from shortest distance matrices.

Observation 16. Let Dm be a shortest distance matrix. A network N on X that realises Dm

contains a cherry {x, y} if and only if dm(x, y) = 2.

Reducing a cherry {x, y} to a leaf z from N is the action of deleting both leaves x, y and
labelling the remaining unlabelled degree-1 vertex as z, assuming that z ∉ X (this vertex
was the neighbour of x and y in N ). As a result of reducing the cherry {x, y}, observe that
the shortest distance between two leaves that are both not z are unchanged; the shortest
distance between z and another leaf l ∈ X − {x, y} is exactly one less than that of x and l
in N .

Observation 17. Let N be a network on X containing a cherry {x, y}. Upon reducing the
cherry to a leaf z, we obtain a network N ′ on X ′ = X ∪ {z}− {x, y} such that the shortest
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distance matrix for N ′ contains the elements

d N ′
m (a,b) =

{
d N

m (a,b) if a,b ∈ X − {x, y}

d N
m (a, x)−1 if a ∈ X − {x, y} and b = z.

In the setting of Observation 17, one may obtain a network that is isomorphic to N
from N ′ by adding two labelled vertices x and y , adding the edges zx and z y , and unla-
belling the vertex z. We call this replacing z by a cherry {x, y}.

Observation 18. Let N be a network on X , and let z be a leaf in N . Let x, y ∉ X be leaf
labels that do not appear in N . Then upon replacing z by a cherry {x, y}, we obtain a
network M on Y = X ∪ {x, y}− {z} that realises the shortest distance matrix with entries

d M
m (a,b) =


d N

m (a,b) if a,b ∈ Y − {x, y}

d N
m (a, z)+1 if a ∈ Y − {x, y} and b ∈ {x, y}

2 if a = x and b = y.

It is easy to see that replacing a leaf by a cherry and reducing a cherry are inverse
operations of one another.

Lemma 68. Let N be a network with a cherry {x, y}, and let N ′ denote the network ob-
tained by reducing the cherry from N to a leaf z. Then N is reconstructible from its shortest
distance matrix if and only if N ′ is reconstructible from its shortest distance matrix.

Proof. Suppose first that the network N is reconstructible from its shortest distance ma-
trix. Suppose for a contradiction that the shortest distance matrix Dm(N ′) of N ′ is also
realised by a network N ′′ that is not isomorphic to N ′. Consider the networks M ′ and M ′′
obtained from N ′ and N ′′, respectively, by replacing z by a cherry {x, y}. By Observa-
tion 18, the two distinct networks M ′ and M ′′ realise the same shortest distance ma-
trix. However, this shortest distance matrix is precisely Dm(N ), since M ′ is isomorphic
to N . This contradicts the fact that N is reconstructible from its shortest distance matrix.
Therefore N ′ must be reconstructible from its shortest distance matrix.

Now suppose that the network N ′ is reconstructible from its shortest distance ma-
trix. If there were two distinct networks N and M realising Dm(N ), then these networks
must both contain the cherry {x, y}. Reducing this cherry to a leaf z, we see by Observa-
tion 17 that both reduced networks, which are distinct, realise the same shortest distance
matrix, which is exactly Dm(N ′). However, this is not possible, as N ′ is reconstructible
from its shortest distance matrix. Therefore N is also reconstructible from its shortest
distance matrix.

Let N be a network. Subtree reduction refers to the action of reducing cherries of N
until it is no longer possible to do so. We refer to the resulting network as the subtree
reduced version of N . Note that the subtree reduced version of N is unique, and the or-
der in which the cherries are reduced does not matter. The following corollary follows
immediately by applying Lemma 68 to every cherry that is reduced in the subtree reduc-
tion.
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Corollary 12. A network N is reconstructible from its shortest distance matrix if and only
if the subtree reduced version of N is reconstructible from its shortest distance matrix.

Note that Observations 17 and 18, Lemma 68, and Corollary 12 can naturally be ex-
tended to the sl-distances, with a single tweak for Observations 17 and 18, where the
longest distances are adjusted exactly the same as done for the shortest distances (re-
place dm by dl wherever possible). This means we may assume for the rest of the chap-
ter, that all networks have undergone subtree reduction, and therefore that all networks
contain no cherries.

7.2.3. CHAINS
Upon reducing all cherries from our networks, we may identify unique chains from short-
est distance matrices. Recall that chains are written as sequences a = (a1, . . . , ak ) for
some k ≥ 1. We shall sometimes write these as (a,k). In what follows, we will often
require a way of referring to leaves of the network that are not in a particular chain.
So while a is a sequence of leaves, we shall sometimes treat a as a set of leaves, e.g.,
X −a = {l ∈ X : l 6= ai for i ∈ [k]}.

Observation 19. Let Dm be a shortest distance matrix. A network N on X that realises Dm

contains a chain a = (a1, . . . , ak ) where k ≥ 1 if and only if dm(ai , ai+1) = 3 for all i ∈ [k−1]
and there exists no leaf l ∈ X −a such that dm(a, l ) = 3.

Observation 19 implies that the leaves in a network without cherries can be parti-
tioned into chains. Indeed, no leaf can be contained in two distinct chains, as other-
wise the chains would be non-maximal. Let (a,k) and (b,`) be two distinct chains. We
say that (a,k) and (b,`) are adjacent if dm(ai ,b j ) = 4 for some combination of i ∈ {1,k}
and j ∈ {1,`}. Observe that adjacent chains of a network N can be identified from short-
est distance matrices, by first partitioning the leaf set of N into chains and then checking
for chain end-leaves that are distance-4 apart. We say that two chains (a,k) and (b,`) are
adjacent once if exactly one distinct pair of (a,k) and (b,`) are distance-4 apart. We say
that the chains (a,k) and (b,`) are adjacent twice if two distinct pairs of (a,k) and (b,`)
end-leaves are distance-4 apart. Since we assume networks to be binary, two chains may
be adjacent at most twice. In the special case where k = ` = 1, we can only tell whether
the chains are adjacent from the shortest distances. We cannot tell whether they are
adjacent twice. This can however be inferred from the sl-distance matrix.

7.2.4. KNOWN RESULTS
The following results appeared in [1].

Lemma 69 (Theorem 4.2; Lemma 4.4; Lemma 5.3 of [1]). Let N be a level-2 network
on |X |. Then N is reconstructible, within the class of level-2 networks, from its shortest
distance matrix if N is also level-1, if |X | < 4, or if N contains only one blob.

Therefore we may assume that the networks we consider are always at least level-2
on at least four leaves, and that the network contains at least two blobs. Furthermore,
from Section 7.2.2, we may assume that the networks contain no cherries.
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7.3. LEAF ON EACH GENERATOR SIDE

I N this section, we consider networks with at least one leaf on each generator side, and
show that such networks are reconstructible from their shortest distance matrices,

regardless of level. Let N be one such network. Since we may assume that N has no
cherries, each side of N can be determined by the chain contained therein. Furthermore,
two sides are adjacent (i.e., the sides share a common endpoint in G(N )) if and only if
the chains on the sides are adjacent. Since chains partition the leaf set of N , this implies
that the structure of the generator G(N ), and therefore the structure of the network N is
determined by the chains of N and their adjacency in N .

Every vertex in N is either a leaf, a spine vertex of some chain, or a generator vertex.
Since networks considered here are binary, exactly two or three generator sides may be
incident to the same vertex in G(N ) (as per conventional graph theory, we say that an
edge is incident to its endpoints). If a vertex is incident to exactly two sides in G(N ),
then one of these sides must be a loop. Loops in G(N ) correspond to pendant level-1
blobs in N . Suppose that (a,k) is a chain (recall that this is a chain of length k) and
is adjacent to exactly one chain (b,`) twice, and that (a,k) is not adjacent to any other
chains. Then (a,k) is contained in a pendant level-1 blob, since we may assume that N is
a level-2 network with at least two blobs. Note that k ≥ 2 as N contains no parallel edges.
In such a case, we call the pair (a,b) the bulb of a and b. We say that a is contained in
the bulb as the petal. We say that N contains the petal (a,b).

If a generator vertex is incident to three sides, then the three distinct chains in the
network, corresponding to these three sides must be pairwise adjacent. Now consider
three pairwise adjacent distinct chains (a,k), (b,`), (c,m) in N . Since we may assume N
is not a level-2 network with a single blob (as we know such networks are reconstructible
from their shortest distances by Lemma 69), any three chains may be pairwise adjacent
at most once. In particular, the end-leaves of a,b,c that are adjacent are unique. In this
case, we say that (a,b,c) forms a pairwise adjacent triple (see Figure 7.4 for examples of
pairwise adjacent triples and petals). Therefore, if (a,b,c) is a pairwise adjacent triple,
then there is a generator vertex that is incident to three sides such that one side contains
chain a, one chain b and one chain c. We say that N contains the pairwise adjacent
triple (a,b,c).

Note that bulbs and pairwise adjacent triples both consist of three leaves. In what
follows, the notion of a median vertex will be important. Given three vertices a,b,c of a
network, a median of a,b,c is a vertex that belongs to a shortest path between each pair
of a,b,c. A median may not always exist for any three vertices (consider, for example, a
cycle on three vertices). However, for our purposes, we shall consider medians of three
leaves, which will always exist. Moreover, a median of three vertices is not necessarily
unique, as there may be more than one shortest path between a pair of vertices in a
network.

Lemma 70. Let Dm be a shortest distance matrix. Then Dm can only be realised by a
network N with leaves on each side of the generator, where N is not a single level-2 blob if
and only if each chain of Dm is contained in either

(i) two distinct pairwise adjacent triples; or
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Figure 7.4: A level-3 network with leaves on every generator side. Each letter represents a chain on a side of the
network. The network contains the pairwise adjacent triples (a,b, f ), (a,c,d), (b,c,e), (d ,e, g ), ( f , g ,h) and the
bulb (i ,h) with i as the petal. The dashed edges indicate how each of the nine chains is of length at least 1.

(ii) one pairwise adjacent triple and one bulb as a non-petal; or

(iii) one bulb as the petal; or

(iv) two bulbs as non-petals.

Proof. Let N be a network with leaves on each generator side and suppose that N re-
alises Dm . Then each generator vertex of N is the median of three end-leaves of (not
necessarily distinct) chains, such that these end-leaves are pairwise shortest distance-4
apart. Any three chains may be pairwise adjacent at most once (unless N is a network
with a single level-2 blob, but we have specifically excluded this case in the statement of
the lemma), and a chain contained in a pendant level-1 blob is adjacent twice to exactly
one other chain. As N is binary, these median vertices encode either pairwise adjacent
triples or bulbs. By encode, we mean that for every three end-leaves that are pairwise
distance-4 apart, the median vertex corresponding to it is unique. Each chain is con-
tained in exactly two of such constructs, where being contained in a bulb as the petal
counts as two, since each side has two boundary vertices (except for the loop). The re-
sult follows immediately.

To show the other direction of the lemma, we prove the contrapositive. Let N be
a network that has at least one empty generator side, and suppose that N realises Dm .
We want to show that at least one chain of N does not satisfy any of the four properties
(i )−(i v) as stated in the statement of the lemma. Find adjacent sides s1 and s2 of N , such
that s1 contains a chain c while s2 is empty. Clearly, c cannot be contained in a bulb as its
petal, since s2 contains no chains to which c can be adjacent twice (cannot satisfy (i i i )).
So we may assume that c is not contained in a pendant level-1 blob, and therefore that
the boundary vertices e0,e1 of s1 are distinct. We may assume without loss of generality
that e0 is the boundary vertex of s2. Since s2 is empty, e0 cannot be a median of three
distinct end-leaves of chains. This implies that c can only be contained in exactly one
pairwise adjacent triple, or in exactly one bulb as a non-petal (which is encoded by e1)
(cannot satisfy (i ), (i i ), nor (i v)).
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Lemma 71. Let N and N ′ be networks with a leaf on each generator side, such that nei-
ther N nor N ′ are level-2 and contain precisely one level-2 blob. Then N and N ′ are iso-
morphic if and only if they contain the same chains, the same pairwise adjacent triples,
and the same bulbs.

Proof. Suppose first that N and N ′ contain the same chains, the same pairwise adjacent
triples, and the same bulbs. Then the networks must contain the same leaves and the
same spine vertices (and also the edges therein). The remaining vertices in N and N ′
are their generator vertices, and the remaining edges are those incident on generator
vertices and the end-spine vertices.

We show first that G(N ) = G(N ′). Every edge in the generator is a side that contains
a chain. Since N and N ′ have the same chains, the number of edges in G(N ) is the same
as that in G(N ′). Every vertex in the generator is a median of end-leaf vertices of three
(not-necessarily distinct) chains. These generator vertices uniquely encode a pairwise
adjacent triple or a bulb, since N and N ′ are not level-2 networks that contain precisely
one level-2 blob. Since N and N ′ have the same pairwise adjacent triples and the same
bulbs, G(N ) and G(N ′) must have the same number of vertices. To see that G(N ) =G(N ′),
observe that each generator vertex that encodes the pairwise adjacent triple (a,b,c) or
a bulb (a,b) links the generator edges that contain the chains a,b,c or a,b, respectively.
This means that two generator edges share a common endpoint if and only if the chains
that they contain are in the same pairwise adjacent triple or bulb.

To see that N is isomorphic to N ′, simply attach all chains to their corresponding gen-
erator sides, noting that the placement of the end-leaves are determined by the composi-
tion of the pairwise adjacent triples. Since N and N ′ contain the same pairwise adjacent
triples and bulbs, they must be isomorphic.

Conversely, if two networks are isomorphic, then they must have the same chains,
the same pairwise adjacent triples, and the same bulbs.

Theorem 26. Given a network N with a leaf on each generator side, N is the only net-
work that realizes Dm(N ). That is, networks with leaves on each generator side are recon-
structible, within the class of all unrooted networks, from their shortest distances.

Proof. If N is a level-2 network with a single blob, then N is reconstructible from its
shortest distances by Lemma 69. Therefore we may assume N is not a level-2 network
on a single blob, and therefore we may call Lemmas 70 and 71.

Let N be a network with a leaf on each generator side. This means that every chain
in N satisfies one of properties (i )−(i v) of Lemma 70. As before, let Dm(N ) be the short-
est distance matrix of N . Suppose that N ′ is another network that realises Dm(N ). Be-
cause each chain of Dm(N ) satisfies one of the four properties (i )− (i v) of Lemma 70, N ′
must be a network with a leaf on each generator side. Furthermore, any network realis-
ing Dm(N ) must contain the same chains as N , by Observation 19. Therefore N and N ′
have the same chains. To see that N and N ′ also have the same generator vertices, ob-
serve that N and N ′ contain the same pairwise adjacent triples and the same bulbs; these
can indeed be inferred from chain adjacencies, which can be inferred from Dm(N ) by
definition of adjacent chains. It follows by Lemma 71 that N and N ′ must be isomor-
phic.
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7.4. LEVEL-2 RECONSTRUCTIBILITY FROM SL-DISTANCE MATRIX
As was pointed out in [1], level-2 networks are in general not reconstructible from their
induced shortest distance matrix. Figure 7.1 illustrates two distinct level-2 networks on
four leaves with the same shortest distance matrices (Figure 2 of [1]). In this section, we
show that level-2 networks are reconstructible from their sl-distance matrix.

7.4.1. CUT-EDGES

First, we show that for a level-2 network, we may obtain all the cut-edge induced splits
from its shortest distance matrix. Though the section is concerned with sl-distance re-
constructibility, we show that the shortest distance matrix suffices in obtaining the cut-
edge induced splits.

Theorem 27. All cut-edge induced splits of a level-2 network N may be obtained from its
shortest distance matrix Dm(N ). A split A|B is induced by a cut-edge of N if and only if for
all a, a′ ∈ A and b,b′ ∈ B,

(i) dm(a,b)+dm(a′,b′) = dm(a,b′)+dm(a′,b); and

(ii) dm(a, a′)+dm(b,b′) ≤ dm(a,b)+dm(a′,b′)−2.

Proof. The first statement of the theorem follows from the second statement of the the-
orem. Here, we prove the second statement.

Let N be a level-2 network on X . Suppose first that A|B is a split induced by some
cut-edge uv in N . Let a, a′ ∈ A and b,b′ ∈ B be arbitrarily chosen. Since every shortest
path from a leaf of A to a leaf of B contains the edge uv , we must have that

dm(a,b)+dm(a′,b′) = dm(a,u)+dm(u,b)+dm(a′,u)+dm(u,b′)
= dm(a,b′)+dm(a′,b).

So property (i ) holds. Since the length of the edge uv is 1, property (i i ) also holds be-
cause

dm(a,b)+dm(a′,b′) = dm(a,u)+1+dm(v,b)+dm(a′,u)+1+dm(v,b′)
≥ dm(a, a′)+dm(b,b′)+2,

where in particular, we obtain equality if there exist a shortest path between a and a′ and
a shortest path between b and b′ containing the vertices u and v , respectively.

Now suppose that properties (i ) and (i i ) hold for a partition A|B of the leaf-set of N .
We shall show that A|B is induced by a cut-edge of N . Let a ∈ A, and let e = uv be a cut-
edge in N that is farthest from a, such that e induces a split which separates a from B . If e
induces the split A|B , then we are done. So suppose that there exists an a′ ∈ A such that e
induces a split that separates a from B ∪ {a′} (in particular, we may assume that |A| ≥ 2
as every trivial split is clearly induced by a cut-edge). Without loss of generality, suppose
that u is closer to a than to v . We consider several cases (see Figure 7.5 for an illustration
of the cases).
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Figure 7.5: All cases examined in the proof of Theorem 27. The dotted edges represent a path between the two
vertices.
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1. v is not in a blob: Let w, x denote the two neighbours of v that are not u. By our
choice of e, there must be a leaf b ∈ B that can be reached from the edge v w , and a
leaf b′ ∈ B that can be reached from the edge v x. Without loss of generality, assume
that a′ can be reached from the edge v x. But this means that

dm(a,b)+dm(a′,b′) ≤ dm(a, v)+dm(v,b)+dm(a′, x)+dm(x,b′)
= [dm(a, v)+dm(v, x)+dm(a′, x)]−dm(v, x)

+ [dm(b, v)+dm(v, x)+dm(x,b′)]−dm(v, x)

= dm(a, a′)−dm(v, x)+dm(b,b′)−dm(v, x)

= dm(a, a′)+dm(b,b′)−2

< dm(a, a′)+dm(b,b′),

where the first inequality may be strict since the shortest path between a′ and b′
may not pass through x. This contradicts the second condition of the claim.

2. v is a vertex of a blob C : The blob C must be incident to at least two cut-edges e1,e2

other than uv , for which there must be elements b and b′ in B that are reachable
from e1 and e2 respectively. Otherwise, as before, this would contradict our choice
of a farthest uv . We claim that if a′ can be reached from either e1 or e2, then we
would reach a contradiction. Without loss of generality, suppose that a′ can be
reached from e2. Letting e1 = u1v1 and e2 = u2v2 where v1 and v2 are vertices
on C , we have that

dm(a,b)+dm(a′,b′) < dm(a, v)+dm(v, v1)+dm(v1,b)+dm(a′, v2)+dm(v2,b′)
= dm(a, a′)−dm(v, v2)+dm(b,b′)−dm(v1, v2)+dm(v, v1)

≤ dm(a, a′)+dm(b,b′),

where the first inequality follows as the shortest path between a′ and b′ does not
contain v2, and the final inequality follows from the triangle inequality. This con-
tradicts the second condition of the claim. Therefore, we may assume from now
that there are at least four cut-edges incident to the blob C and that no leaves
from A and B can be reached from the same cut-edge incident to C . That is, ev-
ery cut-edge incident to C induces a split that has either a subset of A or a subset
of B as one of its parts. We refer to these as type-A cut-edges and type-B cut-edges,
respectively.

We have another case that is common both for the instances when C is either a
level-1 or a level-2 blob. Suppose first that there exist two pairs of cut-edges e1,e2,
and e3,e4 incident to C , whose endpoints are adjacent, respectively, such that all
four edges are distinct and a,b, a′,b′ are reachable from e1,e2,e3,e4 respectively.
We let vi denote the vertices of C that are endpoints of ei for i = 1,2,3,4, respec-
tively. Then we have

dm(a,b)+dm(a′,b′) = dm(a, v1)+dm(v1, v2)+dm(v2,b)+dm(a′, v3)

+dm(v3, v4)+dm(v4,b′)
= dm(a, a′)+dm(b,b′)−dm(v1, v3)−dm(v2, v4)+2

≤ dm(a, a′)+dm(b,b′),
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where the second equality follows as dm(v1, v2) = dm(v3, v4) = 1. This contradicts
the second inequality of the claim.

If C is a level-1 blob, then the above case always applies. Indeed, there must be
at least four cut-edges incident to C , of which at least two are type-A and the re-
maining edges are type-B . If there was only one type-B edge, then such a cut-
edge induces the split A|B , and we are done. So this implies that there are always
two distinct pairs of type-A and type-B edges, whose endpoints on C are adjacent.
Thus we may assume that C is a level-2 blob.

We may assume that each main side of C contains only type-A cut-edges or only
type-B cut-edges, or a combination of the two, for which such a main side con-
tains one type of cut-edges, a single cut-edge of the other type, and possibly cut-
edges of the first type. For example, a path corresponding to a main side of B
may be e0v1 · · ·vk e1 where k ≥ 2 and e0,e1 are boundary vertices. For some in-
teger j ≤ k, we have v1, v2, . . . , v j−1, v j+1, . . . , vk are incident to type-A cut-edges,
and v j is incident to a type-B cut-edge. We call such a main side a combination
side. Observe that a combination side contains either one type-A or one type-
B cut-edge. Also note that the blob C contains at most one combination side as
otherwise there would be two distinct pairs of type-A and type-B edges, whose
endpoints on C are adjacent.

(a) C contains one combination side s: Suppose without loss of generality that s
is a combination side containing exactly one type-A cut-edge. Let v1 denote
the endpoint of this cut-edge on C , and let v2 be an adjacent vertex on C that
is incident to a type-B cut-edge. Since C is incident to at least two type-A cut-
edges, there must be another main side s′ of C that is incident to only type-A
cut-edges. Similarly, since C is incident to at least two type-B cut-edges, there
must be another type-B cut-edge e4 that is incident to C . We may assume in
particular that an endpoint v4 of e4 is a main end-spine vertex incident either
to s or to the third main side of C . Either way, there must exist an end-spine
vertex v3 on s′ such that dm(v3, v4) = 2. Observing that v3 is an endpoint of
a type-A cut-edge, we may assume that the leaves a,b, a′,b′ are separated
from C by v1, v2, v3, v4, respectively. Then,

dm(a,b)+dm(a′,b′)−2 = dm(a, v1)+dm(v1, v2)+dm(v2,b)+dm(a′, v3)

+dm(v3, v4)+dm(v4,b′)−2

= dm(a, a′)+dm(b,b′)+dm(v1, v2)+dm(v3, v4)

−dm(v1, v3)−dm(v2, v4)−2

≤ dm(a, a′)+dm(b,b′)+1+2−2−dm(v1, v3)

−dm(v2, v4)

< dm(a, a′)+dm(b,b′),

since dm(v1, v3) ≥ 1 and dm(v2, v4) ≥ 1. This leads to a contradiction of the
second condition.

(b) Each main sides of C contain cut-edges of the same type: Observe that at
least one main side must contain at least two cut-edges, since there are at
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least four cut-edges incident to C and C has three main sides. Without loss
of generality, suppose that there is a main side s with at least 2 type-B edges.

i. There is another main side s′ with at least two type-A edges: Then
choose v1, v3 and v2, v4 to be the main end-spine vertices of s′ and s,
respectively, such that dm(v1, v2) = 2 and dm(v3, v4) = 2. Supposing that
the leaves a,b, a′,b′ are separated from C by v1, v2, v3, v4, respectively,
we have that

dm(a,b)+dm(a′,b′) = dm(a′,b)+dm(a,b′)−dm(v1, v4)−dm(v2, v3)

+dm(v1, v2)+dm(v3, v4)

≤ dm(a′,b)+dm(a,b′)−3−3+2+2

< dm(a′,b)+dm(a,b′),

since dm(v1, v4) ≥ 3 and dm(v2, v3) ≥ 3, where this inequality is strict
when the third main side contains no cut-edges. This clearly contradicts
the first condition of the claim.

ii. The other two main sides contain exactly one type-A edge each: Choose v1, v3

to be the two possible vertices incident to the type-A cut-edges, and v2, v4

to be the main end-spine vertices of s. Supposing that the leaves a,b, a′,b′
are separated from C by v1, v2, v3, v4, respectively, we have that

dm(a,b)+dm(a′,b′) = dm(a, a′)+dm(b,b′)+dm(v1, v2)

+dm(v3, v4)−dm(v1, v3)−dm(v2, v4)

= dm(a, a′)+dm(b,b′)+4−2−dm(v2, v4)

< dm(a, a′)+dm(b,b′)+2,

which contradicts the second condition of the claim.

This covers all possible cases, for which we have obtained a contradiction in each case.
Therefore A|B must be a cut-edge induced split of the network.

Note that Theorem 27 does not hold for networks of level at least 3 (see Figure 7.6).
Let us call a split A|B minimal if there exists no non-trivial split A′|B ′ of the same network
such that A′ and B ′ are proper subsets of A, or such that one of A′ and B ′ is a proper
subset of A or B . We say that A and B are minimal parts of A|B , respectively. Note that
minimal parts of a split may not be unique as two pendant blobs may be connected by a
non-trivial cut-edge e, for which both parts of the split are minimal parts.

Lemma 72. Let N be a level-2 network on X with at least two pendant blobs. Then N
contains a pendant blob containing the set of leaves A if and only if A|B is a minimal
cut-edge induced non-trivial split where A is a minimal part.

Proof. Suppose first that N contains a pendant blob C containing the set of leaves A.
Then there exists exactly one non-trivial cut-edge e incident to C , which induces the
non-trivial split A|B (where B = X − A). To see that A is a minimal part, observe that
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Figure 7.6: A level-3 network on leaf-set {a, a′,b,b′}. Observe that the conditions for Theorem 27 are satisfied
for A = {a, a′} and B = {b,b′}, but there is no cut-edge that induces the split A|B .

for every cut-edge induced split A′|B ′ where A′ ⊆ A, we have |A′| = 1, since every cut-
edge incident to C other than e is trivial. Therefore, A|B is a minimal split, where A is a
minimal part.

Suppose now that A|B is a minimal non-trivial split induced by e, where A is a mini-
mal part. Suppose for a contradiction that N did not contain a pendant blob with the set
of leaves A. Because we may assume N contains no cherries, the part of N correspond-
ing to the split part A (i.e., the graph obtained by deleting e and taking the component
with the leaves from A) must contain a pendant blob C . Such a pendant blob contains
the set of leaves A′, where A′ ⊆ A. The non-trivial cut-edge incident to C induces the
split A′|B ′, where B ′ = X − A′. By definition, A′|B ′ must be a non-trivial split. But this
contradicts the fact that A|B was minimal. Therefore, N must contain a pendant blob
with the set of leaves A.

7.4.2. SL-DISTANCE RECONSTRUCTIBILITY
We show now that we can identify pendant blobs of level-2 networks from their sl-distance
matrices.

Lemma 73. Let N be a level-2 network on X with at least two blobs. Let A|B be a non-
trivial split of N where A is the minimal part. Then N contains a pendant blob containing
the set of leaves A, and if A contains

• 1 chain (a,k), then N contains

– a pendant level-1 blob containing (a,k) if and only if

¦ 2 ≤ k ≤ 3, dm(a1, ak ) = k +1, and dl (a1, ak ) = 4.

¦ k ≥ 4 and dm(a1, ak ) = 4.

– a pendant level-2 blob of the form (a,0,0,0) if and only if

¦ 2 ≤ k ≤ 3, dm(a1, ak ) = k +1, and dl (a1, ak ) = 6.

¦ k ≥ 4 and dm(a1, ak ) = 5.

• 2 chains (a,k) and (b,`), then N contains

– a pendant level-2 blob of the form (a,b,0,0) if and only if for all x ∈ X −(a∪b),
we have dm(a, x) = dm(b, x).

– a pendant level-2 blob of the form (a,0,b,0) if and only if for all x ∈ X −(a∪b),
we have dm(a, x) = dm(b, x)+1.
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• 3 chains (a,k), (b,`), and (c,m), then N contains

– a pendant level-2 blob of the form (a,b,c,0) if and only if for all x ∈ X − (a ∪
b ∪ c), we have dm(a, x) = dm(b, x) = dm(c, x)+1.

– a pendant level-2 blob of the form (a,0,b,c) if and only if for all x ∈ X − (a ∪
b ∪ c), we have dm(a, x) = dm(b, x)+min{`,m}+1 = dm(c, x)+min{`,m}+1.

• 4 chains (a,k), (b,`), (c,m), and (d ,n) then N contains a pendant level-2 blob of the
form (a,b,c,d) if and only if (a,b,c) and (a,b,d) are both pairwise adjacent triples.

Proof. The fact that N contains a pendant blob containing the set of leaves A follows
from Lemma 72.

Suppose first that N contains either a pendant level-1 blob or a pendant level-2 blob
of the form (a,b,c,d), where a,b,c,d could be empty chains. Then it is easy to see by
inspection that these distances hold and also that the pairwise adjacent triple statement
holds in the case of 4 chains (see Figure 7.2).

To show the other direction, note that within a level-2 network, there is one possible
level-1 pendant blob, and there are six possible level-2 blobs. We know that N contains
a pendant blob with the leaves of A; it remains to show that if the conditions on the
distances are satisfied, then N must contain the corresponding pendant blob. From the
sl-distance matrix, we can infer the number of distinct chains contained in A, as well
as their adjacencies. Then, we can infer the type of this pendant blob by looking at the
distance from the leaves of A to some leaf that is not in A. We give one example here for
the case when A consists of exactly three chains. The proof for the other cases follow in
an analogous fashion.

We give a proof for the case when A contains 3 chains (a,k), (b,`), and (c,m). Pendant
level-1 blobs contain exactly 1 chain; thus the pendant blob must be level-2. Level-2
pendant blobs have three main sides, one of which contains the endpoint of the incident
non-trivial cut-edge. This main side, say s, contains at least 1 chain and at most 2 chains,
whilst the other two main sides contain at most 1 chain. Let x ∈ X − a ∪ b ∪ c be an
arbitrary leaf. Two of the chains, say a and b, have the same minimal distance to x, and
the other chain c has different minimal distance. If the odd one out is shorter, say, then
we know that c must be contained in the main side s of B , and we have a pendant level-2
blob of the form (a,b,c,0). On the other hand, if the odd one out is longer, then we know
that a and b must be contained in the main side s of B , and we have a pendant level-2
blob of the form (c,0, a,b).

Observe that in the proof of Lemma 73, the longest distance information was used
only to distinguish the pendant level-1 blob with a chain (a,k) and the pendant level-2
blob of the form (a,0,0,0) for k ∈ {2,3}. In other words, using only the shortest distances,
the pendant level-1 blob containing 2 leaves cannot be distinguished from the pendant
level-2 blob also containing 2 leaves on the same side; the pendant level-1 blob con-
taining 3 leaves cannot be distinguished from the pendant level-2 blob of containing the
same leaves on the same side. We shall denote these four subgraph structures as bad
blobs. That is, we say that a level-1 blob is bad if it is incident to exactly three or four
cut-edges. We say that a level-2 blob B is bad if, of the three main sides s1, s2, s3 of B ,
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the main side s1 is incident to a single cut-edge, s2 is incident to no cut-edges, and s3 is
incident to exactly two or three cut-edges.

The reason why we cannot discern these bad blobs is because the shortest distance
between the end-leaves of the chain uses the path containing the spine of the chain,
which is the same length for both pendant level-1 and pendant level-2 blobs. Whenever
these chains contain at least 4 leaves, a shortest path no longer contains the spine; since
such paths differ in distance for pendant level-1 and pendant level-2 blobs with a single
chain, we are able to identify such pendant blobs. We later show that level-2 networks
that do not contain bad blobs are reconstructible from their shortest distances (Corol-
lary 13).

The following lemma states that if we can identify certain structures within level-2
networks, then we may replace them by a leaf, and we may obtain the distance matrix of
the reduced network.

Lemma 74. Let N be a level-2 network on X with a pendant blob B, and replace B by a
leaf z ∉ X to obtain the network N ′. Letting Y denote the set of leaves contained in B, we
have that the sl-distance matrix of N ′ contains the elements

d N ′
(p, q) = d N (p, q)

for all pair of leaves p, q ∈ X −Y . Now, for all p ∈ X −Y , we have the following.

• B is a pendant level-1 blob with the chain (a, k):

d N ′
(p, z) = {d N

m (p, a)−2,d N
l (p, a)− (k +1)}

• B is a pendant level-2 blob of the form F :

d N ′
(p, z) =



{d N
m (p, a)−3,d N

l (p, a)− (k +3)} if F = (a,0,0,0)

{d N
m (p, a)−3,d N

l (p, a)− (k +`+3)} if F = (a,b,0,0)

{d N
m (p,c)−2,d N

l (p,c)− (k +m +3)} if F = (a,0,c,0)

{d N
m (p,c)−2,d N

l (p,c)− (max{k,`}+m +3)} if F = (a,b,c,0)

{d N
m (p,c)−2,d N

l (p,c)− (k +m +n +3)} if F = (a,0,c,d)

{d N
m (p,c)−2,d N

l (p,c)− (max{k,`}+m +n +3)} if F = (a,b,c,d)

Proof. To obtain the inter-taxa distances for N ′, it suffices to simply subtract the shortest
/ longest distances from the vertex of the pendant blob incident to the non-trivial cut-
edge to an end-spine leaf of a chain. These distances are easy to obtain as we know
exactly what the pendant blobs are in all cases, due to Lemma 73.

The above two lemmas will now be combined to prove the following result.

Theorem 28. Level-2 networks are reconstructible within the class of level-2 networks,
from their sl-distance matrix.
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Proof. We prove by induction on the size of the network. For the base case, we know by
Lemma 69 that a network on a single blob is reconstructible from its shortest distances.
So suppose that we are given a level-2 network N with |E(N )| edges, and that the result
holds for all level-2 networks with at most |E(N )|−1 edges.

We may assume that N contains at least two pendant blobs. By the results in Sec-
tion 7.2.3, we can partition the leaves into chains, and adjacency between chains can be
obtained from sl-distance matrices. By Theorem 27, we can obtain all cut-edge induced
splits of N from its shortest distance matrix; by Lemma 73, we can identify all pendant
blobs from these splits, by using the sl distance matrix. We can also replace one of these
pendant blobs P by a leaf z to obtain a smaller level-2 network N ′, for which its shortest
and longest inter-taxa distances can be obtained by Lemma 74. By induction hypothe-
sis, N ′ is reconstructible. Then, we can obtain a network isomorphic to N by replacing
the leaf z with the pendant blob that was originally present.

To see that this network is unique, consider another network M that is not isomor-
phic to N such that M induces the same sl-distance matrix as N . Note that M must also
contain a pendant blob P , and upon replacing P in M by a leaf z, we get by the induc-
tion hypothesis that the resulting network M ′ must be isomorphic to N ′. We obtain a
network isomorphic to M by replacing the leaf z by P in M ′: but this operation yields a
network that is also isomorphic to N . It follows that N and M must be isomorphic.

Therefore, level-2 networks are reconstructible from their sl-distance matrices.

As stated before, it is possible to distinguish all pendant blobs from the shortest dis-
tances matrices if the networks do not contain the bad blobs. It follows then that the
proof of Theorem 28 can be adapted to prove the following corollary, when we look at
restricted level-2 networks.

Corollary 13. Let N be a level-2 network containing no bad blobs. Then N is recon-
structible, within the class of level-2 networks, from its shortest distance matrix.

A direct consequence of Theorem 28 and Corollary 13, for restricted level-2 networks,
is that by iteratively reducing pendant subtrees and pendant blobs from a network, it
is possible to reconstruct the network from its sl-distance matrix and shortest distance
matrix, respectively. Note that subtree reduction may be necessary after a few iterations
of reducing pendant blobs from a network, as it is possible to obtain cherries from such
reductions. Therefore the above results implicitly give an algorithm for reconstructing
level-2 networks from their sl-distance matrices.

Completely excluding all bad blobs is quite restrictive. There can indeed exist net-
works that contain bad blobs that are still reconstructible from their shortest distances.
For example, take a network in which there is exactly one bad blob. By reducing all cher-
ries and all other pendant blobs before we reduce the bad blob, we are able to obtain a
network on a single blob (which is necessarily the bad blob). Since networks on single
blobs are reconstructible by Lemma 69, it follows then that the original network is also
reconstructible. Therefore, in an effort to weaken the restriction of completely disallow-
ing bad blobs, we next aim to characterize level-2 networks that are not reconstructible
from their shortest distances.
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7.5. CHARACTERIZATION OF LEVEL-2 NETWORKS THAT CAN-
NOT BE RECONSTRUCTED FROM THEIR SHORTEST DISTANCES

In this section we show that level-2 networks that cannot be reconstructed from their
shortest distances can be categorized by a type of subgraph that they must contain. We
only consider shortest distances in this section; we use use d N (x, y) to denote the short-
est distance between two vertices x and y in a network N .

7.5.1. ALT-PATH STRUCTURES
Let T be any binary tree with labelled leaves. Two-color the vertices of T with colors
black and red. Let G denote a graph obtained by

• replacing each black internal vertex by a certain level-2 blob. That is, for each
internal vertex v with neighbours ui for i ∈ [3], delete v , add vertices vi ,nv , sv and
edges ui vi ,nv vi , sv vi for i ∈ [3];

• replacing each black leaf by a pendant level-2 blob of the form (2,0,0,0) or (3,0,0,0);
and

• replacing each red leaf by a pendant level-1 blob with two or three leaves.

The leaves of G are unlabelled. We call G an alt-path structure of T . We may obtain
another alt-path structure H of T by swapping the roles of the red and black vertices in
the blob replacement step. We say that H is similar to G if every pendant blob of H that
replaces a leaf l of T contains the same number s of leaves as that of G that replaces l .
See Figure 7.7 for an example of obtaining two similar alt-path structures from the same
binary tree. Note that every binary tree T on at least two leaves gives rise to exactly two
alt-path structures, and these are similar to each other.

We say that a network contains an alt-path structure of some tree if the alt-path struc-
ture is a subgraph of the network up to deleting leaf labels. Suppose that N contains an
alt-path structure G of some tree T .

We define the operation of replacing G by its similar alt-path structure. For a mo-
ment, consider labelling the leaves of G . Let H be the similar alt-path structure to G ,
and label the leaves of H , such that its leaves in a pendant blob have the same labels
as the leaves in the pendant blob of G that replaced the same leaf of T . Label the ver-
tices of N that correspond to the leaves of G with the same labels, and delete the edges
in G that are incident to the leaves of G . This operation creates two components. Take
the component that contains the leaves of N , and append H by taking the union of the
vertices (where vertices with the same label are counted as one vertex) and the union of
the edges. Remove labels from non-leaf vertices to obtain a network N ′. We call N ′ the
network obtained by replacing G by its similar alt-path structure.

Lemma 75. Similar alt-path structures of a given binary tree realise the same shortest
distance matrix.

Proof. Let N be a level-2 network that is an alt-path structure G of some binary tree T .
Let N ′ be a network obtained from N by replacing G by its similar alt-path structure.



7

178 7. ENCODINGS OF LEVEL-k NETWORKS FROM SHORTEST AND LONGEST DISTANCES

a
T

b c

d

e

la1

N1

la2

lb1

lb2

lc1 lc2

ld1

ld2

le1

le2

la1

N2

la2

lb1

lb2

lc1 lc2

ld1

ld2

le1

le2

Figure 7.7: An example of obtaining two alt-path structures from a binary tree T . The network N1 is obtained
by replacing all filled internal vertices by a level-2 blob with each cut-edge subdividing the three different sides,
filled leaf vertices by a pendant level-2 blob of the form (k,0,0,0) for k = 2 (note that this can also be k = 3), and
unfilled leaf vertices by a pendant level-1 blob of 2 or 3 leaves. The similar alt-path structure N2 is obtained by
the same construction, with the roles of filled and unfilled vertices reversed. Observe that N1 and N2 has the
same shortest distance matrix, as stated in Lemma 75.
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Let x and y denote two leaves in N . The two networks N and N ′ both contain the
same chains by construction. Furthermore, each chain is of length at most 3. Thus we
have that d N (x, y) = d N ′

(x, y) if x and y are contained in the same chains. So we may
assume that x and y are contained in different chains. We wish to show that d N (x, y) =
d N ′

(x, y). Consider the leaves lx and ly of T that were replaced by the pendant blobs
containing x and y , respectively. If dT (lx , ly ) is odd, then there is an even number of in-
ternal vertices in the path between lx and ly in T . This means that N and N ′ contain the
same number of non-pendant level-2 blobs and the same number of non-leaf vertices
not contained in blobs in the shortest path between x and y . Moreover, due to parity, ex-
actly one of the two leaves will be contained in a pendant level-1 blob in N and the other
leaf in a pendant level-2 blob. The reverse is true for N ′. Thus it follows that if dT (lx , ly )

is odd, then d N (x, y) = d N ′
(x, y). Now if dT (lx , ly ) is even, the number of non-pendant

level-2 blobs in the shortest path between x and y will be greater by one in either N or
in N ′. Without loss of generality, suppose that N has this property. But this difference is
offset by the fact that the pendant blobs in this path are both level-1 in N , whereas they
are both level-2 in N ′. Therefore d N (x, y) = d N ′

(x, y).

Corollary 14. Let N be a level-2 network containing an alt-path structure G of some bi-
nary tree T as a subgraph. Then N is not reconstructible from its shortest distance matrix.

Proof. Let N ′ denote the network obtained from N by replacing G by its similar alt-path
structure. We claim that the distinct networks N and N ′ must realise the same shortest
distance matrix, thereby proving that N is not reconstructible from its shortest distance
matrix. Consider any two leaves x and y of N , and let P denote a shortest path between x
and y in N . If P does not contain any edges of G , then a path between x and y on the
same length must exist in N ′, since only the subgraph G of N was changed to obtain N ′.
On the other hand, if P contains an edge of G , then P must contain exactly one path
of G that starts and ends at two leaves l1, l2 of G . Since only the subgraph G of N was
changed to obtain N ′, we have that d N (x, l1) = d N ′

(x, l1), and that d N (l2, y) = d N ′
(l2, y).

By Lemma 75, we have that d N (l1, l2) = d N ′
(l1, l2). So a path between x and y on the

same length must also exist in N ′. It follows that d N ′
(x, y) ≤ d N (x, y).

Now consider a shortest path Q between x and y in N ′. By applying the same argu-
ments to Q, but with the alt-path structure that is similar to G , we conclude that d N (x, y) ≤
d N ′

(x, y). This proves that d N (x, y) = d N ′
(x, y).

It is now easy to explain why the two networks in Figure 7.1 realise the same shortest
distance matrix; they contain similar alt-path structures of a binary tree on two leaves.
We show in the next subsection that the converse of Corollary 14, that a level-2 network
containing no alt-path structure is reconstructible, is also true.

7.5.2. LEVEL-2 NETWORKS WITHOUT ALT-PATH STRUCTURES ARE RECON-
STRUCTIBLE

We introduce some more terminology. Let N be a level-2 network. A blob tree of N is
the graph obtained by contracting all edges of blobs, deleting all labelled leaves, and
suppressing all degree-2 vertices. A vertex of a blob-tree is called a blob-vertex. We define
the connection of a pendant blob as the endpoint of the non-trivial cut-edge incident to
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the blob that is not on the blob. We say that a blob B contains a pendant blob C if the
connection of C is a vertex of B . For any blob B in N , we let l (B) denote the level of B .

Let P1 be a bad pendant blob on two leaves l1, l2, and let u be a vertex of N that is
not a neighbour of l1 nor l2. We let d N (P1,u) = d N (l1,u) denote the shortest distance
between P1 and u. This is well-defined for all bad pendant blobs containing exactly two
leaves, since the shortest distance from either of the two leaves to any other vertex in the
network is the same. Let P2 be another bad pendant blob on two leaves l ′1, l ′2. Then we
may similarly define the shortest distance between P1 and P2 by d N (P1,P2) = d N (l1, l ′1).
This again is well-defined as the two bad pendant blobs both contain two leaves.

Let P1 and P2 be two pendant blobs that are contained in the same blob B . Let p1

and p2 be the connections of P1 and P2, respectively. We say that P1 and P2 are adjacent
if p1 and p2 are adjacent. Let l be a leaf that is not contained in P1. We say that l and P1

are adjacent if the neighbour of l is adjacent to p1. We say that P1 is adjacent to a chain
of leaves (a,k) if P1 is adjacent to an end-leaf of (a,k).

Lemma 76. Let N be a level-2 network on X containing a bad pendant blob with 3 leaves (a1, a2, a3),
and let N ′ denote the network obtained by deleting a2 from N . Then the shortest distance
matrix realized by N ′ is given by

d N ′
(x, y) =

{
d N (x, y) if x, y ∈ X − {a2} and {x, y} 6= {a1, a3};

3 if {x, y} = {a1, a3}.

Proof. The only shortest paths containing the edges incident to the neighbour of a2 in N
were those involving a2, or the path between a1 and a3. Since a2 is no longer a leaf in N ′,
the only path that is affected in the leaf deletion is the path between a1 and a3, which is
now of length 3 in N ′.

We are now ready to prove the main theorem of the section. Because the proof ex-
haustively checks for contradictions within each case, it is rather long, and so we split
the three main cases of the proof into subsubsections. In each subsubsection, a short
summary will be given to clarify the proof steps.

Theorem 29. Let N be a level-2 network with no alt-path structure, and let N ′ be a level-2
network. Then N and N ′ realize the same shortest distance matrix if and only if they are
isomorphic. That is, a level-2 network containing no alt-path structure is reconstructible
from its shortest distances within the class of level-2 networks.

Proof. Suppose for a contradiction that there exist distinct networks N and N ′ with no
alt-path structures that realise the same shortest distance matrix. In particular, choose N
and N ′ to be minimal counter-examples with respect to the size of the networks. This
means that every pendant blob of N and N ′ must be a bad blob; indeed, all other pen-
dant blobs are identifiable from the shortest distance matrix by Lemma 74, and thus can
be reduced otherwise, allowing for smaller counter-examples to exist. We may further
assume that all pendant bad blobs contain exactly two leaves, as otherwise we can find a
smaller counter-example by calling Lemma 76. Finally, observe that if N contains a pen-
dant level-1 blob with some leaves l1, l2, then N ′ must contain a pendant level-2 blob
of the form (2,0,0,0) containing the leaves l1, l2, as again we would be able to obtain a
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smaller counter-example otherwise. Similarly, if N contains a pendant level-2 blob of
the form (2,0,0,0) with leaves l1, l2 then N ′ must contain a pendant level-1 blob with
leaves l1, l2. If N contains a pendant blob Pi , we say that N ′ contains the corresponding
pendant blob P ′

i on the same leaves such that l (Pi ) 6= l (P ′
i ). For each pendant blob Pi ,P ′

i
in N , N ′, we let pi , p ′

i denote their connections, respectively.
Since N and N ′ realize the same shortest distance matrix, the two networks have the

same cut-edge induced splits by Theorem 27. Since each cut-edge in our networks in-
duces a unique split, this implies that their blob-trees must be identical. This follows as
every edge of the blob tree is a cut-edge of the network, and because trees are uniquely
determined by their induced splits [11]. Note that the blob-vertices of the blob-trees
correspond to either a degree-3 vertex, a level-1 blob, or a level-2 blob of the network.
Observe that the blob-tree of N must contain at least 3 blob-vertices, as otherwise N
would be a level-2 network with a single blob – which is reconstructible from their short-
est distances by Lemma 69 – or a level-2 network with two pendant blobs, which implies
that N must contain an alt-path structure as N contains only bad pendant blobs, or N
and N ′ cannot realize the same shortest distance matrix.

Consider the blob-vertex u whose neighbours are all leaves, except possibly for one
neighbour; let uv denote the edge in the blob-tree to this one neighbour. Since every
edge of the blob-tree corresponds to a non-trivial cut-edge in the network, the edge uv
must be incident to a degree-3 vertex / blob which correspond to u in N and N ′. Let B ,B ′
denote the corresponding structures in N , N ′, respectively. Then B contains at least one
pendant blob, possibly some chain of leaves, and the cut-edge uv incident to it, with u
as a vertex of B . The same can be said for B ′, but we use u′ instead of u to be the ver-
tex of B ′ incident to the cut-edge for clarity. Note that it is possible for u and u′ to be a
connection of some pendant blob. Let B̄ be the graph obtained from N by deleting the
edge uv and taking the component containing u. Similarly define B̄ ′ as the graph ob-
tained from N ′ by deleting the edge u′v and taking the component containing u′. Since
we have deleted the edges corresponding to the same edge in the blob-tree, B̄ and B̄ ′
contain the same chains, and B̄ contains a pendant blob if and only if B̄ ′ contains the
corresponding pendant blob. Observe that B̄ and B̄ ′ are not networks because they con-
tain a degree-2 vertex u and u′, respectively. However, to avoid having to introduce new
notation, we shall still use terms defined for networks, such as blobs containing pendant
blobs, pendant blobs being adjacent to one another in B̄ and B̄ ′.

The rest of the proof will be as follows. We consider the cases where B is a degree-3
vertex, a level-1 blob, or a level-2 blob. Based on the graph B̄ in comparison with the
graph B̄ ′, we seek a contradiction with regards to the networks realizing the shortest
distance matrix and the choice of the minimum counter-example. Because the results
are symmetric, it is worth mentioning that once we have proven the case for when B is a
degree-3 vertex, then we may assume that B ′ is also not a degree-3 vertex. After we prove
the case for when B is a level-1 blob, then we may assume that B ′ is also not a level-1
blob.

The following claim will be used extensively throughout the proof.

Claim 8. Let x, y be leaves in B̄ . Then

d N (x,u)−d N ′
(x,u′) = d N (y,u)−d N ′

(y,u′).
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Proof. Let z be a leaf of N that is not in B̄ . Such a leaf must exist by our choice of B , and
in particular, z must be reachable from B via uv . Then we have

d N (z, x) = d N (z,u)+d N (u, x)

d N (z, y) = d N (z,u)+d N (u, y),

which gives

d N (z, x)−d N (z, y) = d N (x,u)−d N (y,u).

Similarly we have

d N ′
(z, x)−d N ′

(z, y) = d N ′
(x,u′)−d N ′

(y,u′).

Since the shortest distance matrices of N and N ′ are the same, we have

d N (x,u)−d N ′
(x,u′) = d N (y,u)−d N ′

(y,u′).

B IS A DEGREE-3 VERTEX IN N :
Suppose first that a leaf l is a neighbour of u in B̄ , and let P1 be a pendant blob in B̄
whose connection is u. Since N ′ has the same cut-edge induced splits, B̄ ′ must either be
a degree-3 vertex or a blob that contains l and the corresponding pendant blob P ′

1. But
then

d N (P1, l ) = 4,

whereas

d N ′
(P ′

1, l ) ≥ 5,

which contradicts the fact that N and N ′ must realize the same shortest distance matrix.
So now suppose that u is the connection of two pendant blobs P1 and P2 in B̄ . We

check the three possible scenarios with regards to the levels of P1 and P2.

1. l (P1) === 1 and l (P2) === 1: Then we have d N (P1,P2) = 6. But since l (P ′
1) = l (P ′

2) = 2,

we must have that d N ′
(P ′

1,P ′
2) ≥ 8. This contradicts the fact that N and N ′ realize

the same shortest distance matrix.

2. l (P1) === 1 and l (P2) === 2: Then we have d N (P1,P2) = 7. Since l (P ′
1) = 2 and l (P ′

2) = 1,

we have that d N ′
(P ′

1,P ′
2) ≥ 7, where equality is achieved whenever u′ is a degree-3

vertex. But this would mean that

d N (P1,u)−d N ′
(P ′

1,u′) =−1,

whereas

d N (P2,u)−d N ′
(P ′

2,u′) = 1,

which contradicts Claim 8.
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3. l (P1) === 2 and l (P2) === 2 (see Figure 7.8 for an illustration of the cases): Then d N (P1,P2) =
8. Since l (P ′

1) = l (P ′
2) = 1, and because N ′ contains a split with one of the sets con-

taining exactly the leaves of P ′
1 and P ′

2, B ′ must be a level-2 blob. In particular, P ′
1

and P ′
2 cannot be adjacent. There are two possibilities for this – u′ is a neighbour

of one of p ′
1 or p ′

2 but not the other, or all three vertices u′, p ′
1, p ′

2 are pairwise non-
adjacent (i.e., they all lie on different main sides of B̄ ′). In the former case, we have
that, assuming without loss of generality that u′ is adjacent to p ′

1,

d N (P1,u)−d N ′
(P ′

1,u′) = 4−4 = 0,

whereas
d N (P2,u)−d N ′

(P ′
2,u′) = 4−5 =−1,

which contradicts Claim 8. For the latter case, we claim that there is a smaller
counter-example. We replace B̄ in N by a pendant level-1 blob P3 containing two
leaves l1, l2. We replace B̄ ′ in N ′ by a pendant level-2 blob P ′

3 of the form (2,0,0,0)
with the same leaves l1, l2. Then, we may adjust the shortest distance matrix by
first deleting elements containing the leaves of P1 and P2. And for all other leaves z
in the network, we add the elements

d N (li , z) = d N (P1, z)−2,

and
d N ′

(li , z) = d N (P ′
1, z)−2

for i = 1,2. All other matrix elements remain the same. Note that before the re-
placement of the blobs,

d N (P1,u) = d N (P2,u) = 4,

and
d N ′

(P ′
1,u′) = d N ′

(P ′
2,u′) = 5.

The replacement of B̄ and B̄ ′ by pendant level-1 and level-2 blobs, respectively en-
sures that the distance differences are preserved. Therefore the modified networks
both must satisfy this new reduced shortest distance matrix. These modified net-
works N and N ′ still contain no alt-path structures, as otherwise the original net-
works also must have contained alt-path structures; all other parts of the networks
remain unchanged, and the two leaves l1 and l2 are contained in pendant blobs
of different level in N and N ′. Therefore, this gives a counter-example on fewer
leaves than that of N and N ′, contradicting our original choice of N and N ′.

B IS A LEVEL-1 BLOB IN N :
We may now also assume that B ′ is either a level-1 or a level-2 blob. Note that either B̄
or B̄ ′ must contain a pendant level-1 blob, and that we shall obtain a contradiction in
each of those cases. Before we do so, we prove a claim that will be used in many of the
arguments to come. In the following claim, we assume that B is either a level-1 or a
level-2 blob.
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B

P1 P2

B ′
u′
v ′

P ′
1 P ′

2

B ′
u′
v ′

P ′
1 P ′

2

Figure 7.8: Subsubsection 7.5.2 case 3 in the proof of Theorem 29. The left figure is the part of the network N
containing the internal vertex B and its neighbouring pendant blobs. The middle and the right figures are the
two subcases for what N ′ could look like. In the middle network, two cut-edges are incident to the same side;
in the right network, the three cut-edges are incident to distinct sides of B ′.

Claim 9. Suppose l (B), l (B ′) ∈ {1,2}, and suppose that B̄ contains a pendant level-1 blob P1.
Then,

(i) P1 cannot be adjacent to a chain of leaves (a,k) in B̄ ;

(ii) P1 cannot be adjacent to another pendant level-1 blob in B̄;

(iii) P1 is adjacent to a pendant level-2 blob P2 in B̄ if and only if P ′
1 and P ′

2 are adjacent
in B̄ ′;

(iv) P1 is adjacent to at most one pendant level-2 blob in B̄. In particular, this means
that every pendant level-2 blob in B̄ is adjacent to at most one pendant level-1 blob.

(v) P1 can be shortest distance 6 away from at most two end-leaves of distinct chains
in B̄ .

Proof. (i) If P1 is adjacent to a chain of leaves (a,k), then one of the end-leaves of (a,k)
must be shortest distance 5 away from P1. Without loss of generality, suppose
that d N (P1, a1) = 5. In B ′, since l (P ′) = 2, we must have that d N ′

(P ′
1, a1) ≥ 6, which

contradicts the fact that N and N ′ must realize the same shortest distance matrix.

(ii) If P1 is adjacent to another pendant level-1 blob P2, then d N (P1,P2) = 7. In B̄ ′,
both corresponding pendant blobs are of level-2. This means that d N ′

(P ′
1,P ′

2) ≥ 8,
which contradicts the fact that N and N ′ must satisfy the same shortest distance
matrix.

(iii) If P1 is adjacent to P2, then we have d N (P1,P2) = 8. Since N and N ′ satisfy the
same shortest distance matrix, one must also have d N ′

(P ′
1,P ′

2) = 8. The shortest
distance from P ′

1 to its connection p ′
1, and that from P ′

2 to its connection p ′
2 is 3

and 4, respectively. Since l (B ′) ∈ {1,2}, the vertices p ′
1 and p ′

2 cannot be the same.
Therefore to satisfy P ′

1 and P ′
2 being shortest distance 8 from one another in B̄ ′,

one must have that p ′
1 and p ′

2 are adjacent, which means that P ′
1 and P ′

2 must be
adjacent. The converse follows by symmetry.
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(iv) Suppose for a contradiction that P1 is adjacent to two pendant level-2 blobs P2

and P3 in B̄ . Then d N (P2,P3) = 10. By 3., we know that P ′
1 must be adjacent to

both P ′
2 and P ′

3 in B̄ ′. We also know that l (P ′
2) = l (P ′

3) = 1. It follows that d N ′
(P ′

2,P ′
3) =

8. But this contradicts the fact that N and N ′ must realize the same shortest dis-
tance matrix. If a pendant level-2 blob is adjacent to two pendant level-1 blobs,
then the corresponding pendant level-1 blob in B̄ ′ is adjacent to two pendant
level-2 blobs, which we have just shown cannot be true.

(v) Suppose l is an end-leaf of a chain such that d N (P1, l ) = 6. Since l (P ′
1) = 2, and

since N and N ′ realize the same shortest distance matrix, the leaf l must be adja-
cent to P ′

1 in B̄ ′. So every leaf that is shortest distance 6 away from P1 in B̄ must
be adjacent to P ′

1 in B̄ ′. Note that P ′
1 can be adjacent to at most two chains. These

chains must be distinct in B̄ ′, since u′ is contained in B̄ ′. This implies that in B̄ , P1

can be shortest distance 6 away from at most two end-leaves of distinct chains.

It follows that each main side of B̄ (and B̄ ′) may contain at most two pendant level-1
blobs. Either B̄ or B̄ ′ must contain a pendant level-1 blob.

1. B̄ has a pendant level-1 blob P1: Since N contains no parallel edges, and since
leaves cannot be adjacent to pendant level-1 blobs, P1 must be adjacent to a pen-
dant level-2 blob P2 in B̄ . By Claim 9 (i v), P1 can be adjacent to at most one pen-
dant level-2 blob in B̄ . This implies that p1 must be adjacent to u. In N ′, the
corresponding pendant blobs P ′

1 and P ′
2 are adjacent by Claim 9 (i i i ). Then we

have that

d N (P1,u)−d N (P2,u) ≤ 4−5 =−1.

Observe that d N ′
(P ′

1, p ′
1) = 4 and d N ′

(P ′
2, p ′

1) = 4 since l (P ′
1) = 2 and l (P ′

2) = 1. This
implies that

d N ′
(P ′

1,u′)−d N ′
(P ′

2,u′) ≥ d N ′
(P ′

1, p ′
1)+d N ′

(p ′
1,u′)−d N ′

(P ′
2, p ′

1)−d N ′
(p ′

1,u′)
= 4−4

= 0,

which is a contradiction to Claim 8.

2. B̄ ′′′ has a pendant level-1 blob P ′′′
1: If l (B ′) = 1, then we are done by symmetry via

case 1. So suppose that l (B ′) = 2, and suppose in addition that B̄ contains no
pendant level-1 blobs. This implies that B̄ ′ contains no pendant level-2 blobs. We
claim that B̄ ′ also contains no pendant level-1 blobs other than P ′

1. Suppose for
a contradiction that it did, so that B̄ ′ contains another pendant level-1 blob P ′

2.
Because B̄ ′ contains no pendant level-2 blobs, and since leaves cannot be adjacent
to pendant level-1 blobs by Claim 9, we must have that p ′

1 and p ′
2 are adjacent to

the same pole, or that they must both be adjacent to u′. In any case, we must
have d N ′

(P ′
1,P ′

2) = 8. But l (P1) = l (P2) = 2, and therefore d N (P1,P2) ≥ 9, which is a
contradiction. So P ′

1 is the only pendant blob in B̄ ′.
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We now consider two possible cases: either p ′
1 is or is not adjacent to u′. Either

way, at least one main side of B ′ that does not contain p ′
1 must contain a chain of

leaves, as otherwise B ′ contains parallel edges, or B ′ is a level-2 blob with only two
cut-edges incident to it.

(a) p ′′′
1 is adjacent to u′′′: One of the main sides of B̄ ′ must contain a chain, since N ′

does not contain parallel edges. So there must exist a leaf l that is shortest
distance 6 away from P ′

1. Then

d N ′
(P ′

1,u′)−d N ′
(l ,u′) ≤ 4−3 = 1.

On the other hand, in B̄ , the leaf l is adjacent to P1; then d N (P1, p1) = 4
and d N (l , p1) = 2. It follows that

d N (P1,u)−d N (l ,u) ≥ d N (P1, p1)+d N (p1,u)−d N (l , p1)−d N (p1,u)

= 2,

which contradicts Claim 8.

(b) p ′′′
1 is not adjacent to u′′′: Observe that B̄ ′ has five sides: two sides s′1, s′2 which

have p ′
1 as one of their boundary vertices; two sides s′3, s′4 which have u′ as

one of their boundary vertices; and one side s′5 that has neither p ′
1 nor u′ as a

boundary vertex. By Claim 9 (i ) and (v), the sides s′1 and s′2 are empty, and at
most two of the three remaining sides of B̄ ′ may contain chains. In particular,
at least one of these remaining three sides must contain a chain. We first
show that s′5 must be empty. Suppose not, and let (a,k) denote the chain
contained in s′5. Note that both end-leaves of (a,k) are shortest distance 6
away from P ′

1, and so by Claim 9 (v), this chain must be of length k = 1. Since
either s′3 or s′4 must be empty,

d N ′
(a1,u′)−d N ′

(P ′
1,u′) = 3−5 =−2.

In B̄ , the blob P1 and the leaf a1 must be adjacent. The vertex u must be
adjacent to the neighbour of a1, since B̄ contains no other pendant blobs. So
we have

d N (a1,u)−d N (P1,u) ≤ 2−5 =−3,

which contradicts Claim 8. So s′5 is empty.

Now suppose that s′3 and s′4 contain the chains (b,`) and (c,m), respectively,
where at least one of ` ≥ 1 or m ≥ 1 holds. If ` = 1 and m = 0, then B̄ ′, to-
gether with the edge incident to u′ is an alt-path structure of a binary tree on
two leaves. This contradicts our choice of N ′. By symmetry, the case m = 1
and `= 0 is also not possible. So we may assume that `≥ 1 and m ≥ 1. Sup-
pose the chains are arranged such that

d N ′
(b1,u′) = d N ′

(c1,u′) = 2.

If ` > 1 or m > 1, then d N ′
(b`,cm) = 5, whereas d N (b`,cm) = 4. This contra-

dicts the fact that N and N ′ realize the same shortest distance matrix. So we
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must have `= m = 1. But then B̄ ′, together with the edge incident to u′ is an
alt-path structure of a binary tree on two leaves. This contradicts our choice
of N ′.

B IS A LEVEL-2 BLOB IN N :
Our only remaining case is if B and B ′ are both level-2 blobs. The proofs of Claims 10-12
are given in the next section.

Claim 10. Two pendant level-2 blobs cannot be adjacent to one another in B̄ and in B̄ ′.

An immediate consequence of Claim 10 is that distinct pendant level-1 blobs in B̄
or B̄ ′ must be distance at least 10 apart. In particular, they cannot be adjacent by Claim 9
and they cannot be shortest distance-8 apart, since two pendant level-2 blobs are short-
est distance at least 9 apart. The following claim dictates the placement of pendant blobs
and leaves in B̄ .

Claim 11. A pendant level-2 blob may not be adjacent to both a pendant level-1 blob and
a leaf simultaneously in B̄ and in B̄ ′.

Pendant level-1 blobs may be adjacent to at most one pendant level-2 blob by Claim 9.
Pendant level-2 blobs cannot be adjacent to other pendant level-2 blobs by Claim 10.
Pendant level-1 blobs cannot be adjacent to a leaf by Claim 11. So the main side of B̄
(and B̄ ′) that contains u (u′) contains at most two pendant level-1 blobs; the other two
main sides of B̄ (and B̄ ′) contain at most one pendant level-1 blob.

Claim 12. B̄ and B̄ ′ contain at most one pendant level-1 blob.

We have now arrived at the two final cases for this proof. In summary, the current
setting is as follows. Both B̄ and B̄ ′ are level-2 blobs, and they both contain at most one
pendant level-1 blob. In fact, this implies that B̄ and B̄ ′ also contain at most one pendant
level-2 blob. We split into the cases for when B̄ does not, or does contain a pendant level-
2 blob.

1. B̄ contains no pendant level-2 blob: By assumption, B̄ must contain a pendant
level-1 blob P1. Let s denote the main side of B containing P1. Note that s may
contain at most one chain. Indeed, P1 cannot be adjacent to a chain of leaves by
Claim 9 (i ), so p1 must be adjacent to a pole of B̄ ; if p1 is adjacent to u, then s can
contain a chain of leaves (a,k) such that an end-spine vertex of (a,k) is adjacent
to u. The other two main sides of B̄ may contain at most one chain of leaves each.
So in total, B̄ may contain at most three chains.

For each chain contained in B̄ , we have that one end-leaf of a chain is shortest
distance-6 from P1. This means that each chain contained in B̄ must be adjacent
to P ′

1 in B̄ ′. But P ′
1 may be adjacent to at most two chains. So B̄ may contain up

to two chains. This also implies that B̄ ′ only contains leaves on the main side that
contains p ′

1. Since B̄ ′ contains no parallel edges, we must then have that u′ lies on
a main side that does not contain p ′

1.

Note that B̄ must contain at least one chain, as otherwise B would be a level-2
blob incident only to two cut-edges. We now split into subcases depending on the
location of u.
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(a) u is adjacent to p1: Then d N (P1,u) = 4. Since u′ is not on the same main side
as that containing P ′

1, we have d N ′
(P ′

1,u′) ≥ 6. Now there exists a leaf l such

that d N ′
(l ,u′) = 3. Noting that d N (l ,u) ≥ 2, we have

d N (P1,u)−d N (l ,u) ≤ 2

and
d N ′

(P ′
1,u′)−d N ′

(l ,u′) ≥ 3,

which contradicts Claim 8.

(b) u is not adjacent to p1: We let s, s1, s2 denote the three main sides of B̄ such
that s contains p1, s1 contains u, and s2 contains neither p1 nor u. We claim
first that s2 contains no chains. Suppose for a contradiction that it did con-
tain some chain (a,k). Note first that a1 and ak are both shortest distance
6 from P1; this implies that P ′

1 is adjacent to both a1 and ak in B̄ ′, implying
that a1 and ak are in different chains in B̄ ′. But this is not possible, so we
require k = 1. Note also that since B̄ contains at most two chains, u must be
adjacent to a pole; this implies that d N (P1,u) = 5 and d N (a1,u) = 3. However
in B ′, we have d N ′

(P ′
1,u′) ≥ 6 and dN ′ (a1,u′) = 3, which contradicts Claim 8

as
d N (P1,u)−d N (a1,u) = 5−3 = 2

whereas
d N ′

(P ′
1,u′)−d N ′

(a1,u′) ≥ 6−3 = 3.

So the main side s2 contains no chains; this leaves only s1 to contain chains.

The main side s1 may contain two chains, (b,`) and (c,m), such that `,m ≥ 0
and d N (b1,u) = d N (c1,u) = 2, whenever ` > 0 and m > 0, respectively. We
require `+m ≥ 3, as otherwise B̄ with the edge incident to u is an alt-path
structure that can be obtained from a binary tree on two leaves. We fall into
two subcases depending on the value of `.

i. `=== 0: Then m ≥ 3, and so

d N (P1,c1) = 7,

whereas
d N ′

(P ′
1,c1) = 8,

which contradicts the fact that N and N ′ realize the same shortest dis-
tance matrix.

ii. ` 6 6 6=== 0: By symmetry, we may assume m 6= 0. Now,

d N (b1,c1) = 4,

whereas
d N ′

(b1,c1) = 5,

since `+m ≥ 3. This contradicts the fact that N and N ′ realize the same
shortest distance matrix.
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2. B̄ contains one level-2 blob: If B̄ did not contain a pendant level-1 blob, then
we are done by applying the arguments from the previous case to B̄ ′. So suppose
that B̄ contains a pendant level-1 blob P1 and a pendant level-2 blob P2. We first
show that P1 and P2 cannot be adjacent in B̄ . Suppose that they were adjacent.
Then the vertex on B̄ that is shortest distance-2 from p1 must be a pole of B̄ or u.
Indeed, it cannot be a neighbour of some leaf l ; this would mean that d N (P1, l ) = 6,
implying that P ′

1 must be adjacent to l . But this is not possible by Claim 11. In
particular, it cannot be a connection since B̄ contains only the pendant blobs P1

and P2.

Now, if u was adjacent to p2, then this would mean that the two main sides of B̄
would be empty, resulting in parallel edges in B̄ . So u must either be adjacent to p1

or u must be contained in one of the two other main sides of B̄ . Either way, we have

d N (P1,u)−d N (P2,u) ≤−1.

In B̄ ′, we have d N ′
(P ′

1, p ′
1) = d N ′

(P ′
2, p ′

1) = 4. So

d N ′
(P ′

1,u′)−d N ′
(P ′

2,u′) ≥ 0,

which contradicts Claim 8. So we may assume that P1 and P2 are not adjacent in B̄ .
We split into cases depending on the position of u in B̄ .

(a) u is on the same main side as p1: Then u must be adjacent to p1, since P1

cannot be adjacent to a chain by Claim 9, and since P1 is not adjacent to the
only pendant level-2 blob in B̄ . Then d N (P1,u) = 4 and d N (P2,u) ≥ 5. We
split into subcases depending on the position of u′ in B̄ ′.

i. u′′′ is on the same main side as p ′′′
2: Then u′ must be adjacent to p ′

2. So

we have d N ′
(P ′

2,u′) = 4 and d N ′
(P ′

1,u′) ≥ 5, which contradicts Claim 8.

ii. u′′′ is not on the same main side as p ′′′
2: If u′ is adjacent to an end-spine

vertex of some chain, then there exists a leaf l such that d N ′
(l ,u′) = 2. We

also have d N ′
(P ′

1,u′) ≥ 5. But in B̄ , we have d N (l ,u) ≥ 2. This contradicts
Claim 8, as

d N (P1,u)−d N (l ,u) ≤ 4−2 = 2,

whereas
d N ′

(P ′
1,u′)−d N ′

(l ,u′) ≥ 5−2 = 3.

So u′ cannot be adjacent to an end-spine vertex of some chain, which
means that d N ′

(P ′
2,u′) = 5. But d N (P2,u) ≥ 5, and so

d N (P1,u)−d N (P2,u) ≤ 4−5 =−1,

whereas
d N ′

(P ′
1,u′)−d N ′

(P ′
2,u′) ≥ 0,

which contradicts Claim 8.

(b) u is not on the same main side as p1: We may assume that u′ is not on the
same main side as p ′

2 by symmetry (apply the previous case to B̄ ′).
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i. u and p2 are not on the same main side: We let su , s1, s2 denote the three
main sides of B̄ such that su contains u and si contains pi for i = 1,2.
Note that su may contain up to two chains: denote these chains as (a,k)
and (b,`) where d N (a1,u) = d N (b1,u) = 2, if k > 0 and `> 0, respectively.
If k > 0 and`> 0, then d N (P2, a) ≥ 7 and d N (P2,b) ≥ 7. Since d N (P1, ak ) =
d N (P1,b`) = 6, the pendant blob P ′

1 must be adjacent to the two chains a
and b in B̄ ′. Depending on the placement of u′, at least one, and at most
two of the chain endpoints a1,b1 are shortest distance 6 away from P ′

2.
But this contradicts that N and N ′ realize the same shortest distance ma-
trix. Therefore, su contains at most one chain; this means that d N (P1,u) =
5. We also have d N (P2,u) ≥ 6.
The same argument can be used in the case when u′ and p ′

1 are not on
the same main side of B̄ ′. In that case, the main side of B̄ ′ containing u′
contains at most one chain. We now split into subcases depending on
the position of u′.
A. u′′′ and p ′′′

1 are not on the same main side of B̄ ′′′: Then, the main side
of B̄ ′ that contains u′ contains at most one chain. In particular, this
means that u′ must be adjacent to a pole in B̄ ′. So d N ′

(P ′
2,u′) = 5.

Furthermore, d N ′
(P ′

1,u′) ≥ 6. But this contradicts Claim 8.

B. u′′′ and p ′′′
1 are on the same main side of B̄ ′′′: Consider the generator

side s′ of B ′ that contains u′ and a pole of B̄ ′ as its boundary ver-
tices. We claim that s′ is empty. If not, then s′ contains a chain (a,k)
such that d N ′

(a1,u′) = 2. But then d N ′
(P ′

2, ak ) = 6, meaning that ak

must be adjacent to P2 in B . This further implies that d N (P1, a1) = 6,
which leads to a contradiction as a1 is clearly not adjacent to P ′

1 in B ′

(we have d N ′
(P ′

1, a1) ≥ 7). Thus s′ must be empty. But then

d N (P1,u)−d N (P2,u) ≤ 5−6 =−1,

whereas

d N ′
(P ′

1,u′)−d N ′
(P ′

2,u′) ≥ 5−5 = 0,

which contradicts Claim 8.

ii. u and p2 are on the same main side of B̄ : We may assume also that u′
and p ′

1 are on the same main side of B̄ ′. Consider the main side s of B̄
that does not contain p1 nor p2. We claim that s is empty. Suppose not,
and suppose that s contains a chain (a,k). In B̄ ′, we require P ′

1 to be
adjacent to both a1 and to ak . For this to be possible, since (a,k) must
also be a chain in B̄ ′, we require k = 1. Note that in B̄ ′, the leaf a1 is
contained in the side with boundary vertices p ′

1 and u′. If it had been
contained in the other side of B̄ ′ with p ′

1 as its boundary vertex, then P2

must be adjacent to a1 in B , which is clearly not the case. Observe that a
shortest path from P1 to u contains the same pole contained in a shortest
path from a1 to u. Noting that the shortest distance from P1 to this pole,
and the shortest distance from a1 to this pole are 4 and 2, respectively, it
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follows that

d N (P1,u)−d N (a1,u) = 4−2 = 2,

whereas

d N ′
(P ′

1,u′)−d N ′
(a1,u′) = 6−2 = 4,

which contradicts Claim 8. So s is empty, and we may assume that the
main side of B̄ ′ that does not have p ′

1 nor p ′
2 is empty.

If all three other sides of B are empty, then B contains an alt-path struc-
ture formed by a binary tree on two leaves, and we get a contradiction
on the choice of N . In particular, the three sides must contain at least
two leaves. Let s1, s2, s3 denote the sides of B that has p2 but not u, p2

and u, and u but not p2 as its boundary vertices, respectively. Similarly
let s′1, s′2, s′3 denote the sides of B ′ that has p ′

1 but not u′, p ′
1 and u′, and u

but not p ′
1 as its boundary vertices, respectively. It is easy to see that

a chain contained in s1 must be contained in s′1; a chain contained in s2

must be contained in s′3; a chain contained in s3 must be contained in s′2.

A. the side s1 is non-empty: Let (a,k) denote the chain contained in s1,
such that d N (a1,P2) = d N (ak ,P1) = 6. We claim that s2 and s3 must
both be empty. If s2 is non-empty, then it contains a chain (b,`),
such that d N (b1,P2) = 6. So the chains (a,k) and (b,`) are adja-
cent. In B̄ ′, the chain (b,`) is contained in the side s′3. But then (a,k)
and (b,`) cannot be adjacent in N ′, which contradicts the fact that N
and N ′ satisfy the same shortest distance matrix. So s2 must be
empty. By applying the same argument to B ′, we see that s′2 must
also be empty; therefore, the side s3 must be empty. So s2 and s3

must both be empty.
We require k ≥ 2, as otherwise B contains an alt-path structure ob-
tained from a tree on two leaves. But then

d N (a1,u)−d N (ak ,u) = 3−4 =−1,

whereas

d N ′
(a1,u′)−d N ′

(ak ,u′) = 4−3 = 1,

since a1 is adjacent to P2 in B̄ and ak is adjacent to P ′
1 in B̄ ′. This

contradicts Claim 8.

B. the side s1 is empty: Let (b,`) and (c,m) denote the chains con-
tained in s2 and s3, respectively, such that d N (P2,b1) = 6 and d N (b`,cm) =
4, whenever `> 0 and m > 0, respectively. Note that `+m ≥ 2, as oth-
erwise B̄ together with the edge incident to u is an alt-path structure
formed by a binary tree on two leaves. In particular, at least one of `
or m must be non-zero. By symmetry, we may assume without loss
of generality that m > 0. Then in B̄ ′, the blob P ′

1 is adjacent to c1.
This means that

d N ′
(P ′

2,c1) = 7.
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In B̄ , there are three paths from c1 to P2. One uses the empty main
side and is of length 8. The second uses the main side with p1 and
is of length 9. These two paths cannot be altered by deleting leaves.
The third path contains the spine of the chain (b,`), and is of length`+
m +6. Since m ≥ 1, we only obtain d N (P2,c1) = 7 if and only if m = 1
and `= 0. But this is not possible, since we require `+m ≥ 2. So the
networks N and N ′ cannot satisfy the same shortest distance matrix,
which is a contradiction.

Therefore we reach a contradiction for the case when B and B ′ are both level-2 blobs.

The following corollary follows immediately from Corollary 14 and Theorem 29.

Corollary 15. A level-2 network is reconstructible if and only if it does not contain an
alt-path structure.

7.6. PROOF OF CLAIMS FROM SECTION 7.5.2:

T O prove these claims, we will use the following observation.

Observation 20. Let P1 be a pendant level-1 blob contained in B̄. Suppose that p ′
2p ′

1p ′
3p ′

4
is a path in B̄ ′, such that each p ′

i is a connection for a pendant blob P ′
i for i ∈ [4]. Sup-

pose also that l (P ′
1) = l (P ′

3) = 1 and l (P ′
2) = l (P ′

4) = 2. A vertex p on the blob B̄ such
that d N (p1, p) = 2 must either be u or a pole of B̄ .

Proof. Suppose for a contradiction that p is either a neighbour of a leaf or a connection
of some pendant blob. Suppose first that p is a neighbour of a leaf l . Then d N (P1, l ) =
6. Since N and N ′ have the same shortest distance matrix, this means that P ′

1 must
be adjacent to l in B̄ ′. But this is not possible as P ′

1 is already adjacent to P ′
2 and P ′

3.
So suppose that p is a connection of a pendant blob P5. Suppose first that l (P5) = 1.
Then d N (P1,P5) = 8. Since l (P ′

1) = l (P ′
5) = 2, such a distance can be realized in N ′ if and

only if p ′
1 = p ′

5. But this is impossible as B ′ is a level-2 blob. Finally suppose that l (P5) = 2.
Then since d N (P1,P5) = 9, the corresponding blob P ′

5 must be adjacent to P ′
2 or to P ′

4,
which is not possible as pendant level-1 blobs cannot be adjacent to one another by
Claim 9.

Claim 3. Two pendant level-2 blobs cannot be adjacent to one another in B̄ (and in B̄ ′).

Proof. Suppose for a contradiction that B̄ contains two adjacent pendant level-2 blobs P1

and P2 on the main side s. Then B ′ contains two corresponding pendant level-1 blobs P ′
1

and P ′
2 on the same leaves. We split into cases depending on the locations of p ′

1 and p ′
2

in B ′.

1. p ′′′
1 and p ′′′

2 are on the same main side s ′′′ of B ′′′: Since the shortest distance be-
tween p ′

1 and p ′
2 must be exactly 3, there must be at least two vertices on the same

main side in the path Q ′ between p ′
1 and p ′

2. This path Q ′ may contain u′ as a
vertex; we split into cases again.
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(a) u′′′ is a vertex of Q ′′′: Observe first that if both P ′
1 and P ′

2 are adjacent to level-2

blobs P ′
3 and P ′

4 respectively, then d N ′
(P ′

3,P ′
4) ≥ 10. However, the counter-

parts of these blobs in B̄ must be adjacent to P1 and P2. Since P1 and P2 are
adjacent, this implies that d N (P3,P4) = 9, which contradicts the fact that N
and N ′ satisfy the same shortest distance matrix. Therefore only one of P ′

1
or P ′

2 can be adjacent to a pendant level-2 blob. Note that at least one of P ′
1

or P ′
2 must be adjacent to a pendant level-2 blob, such that its connection is

on the path Q ′. So without loss of generality, suppose that P ′
1 is adjacent to a

pendant level-2 blob P ′
3, such that p ′

3 is a vertex in Q ′. At this point, we have
that P3,P1 and P1,P2 are adjacent in B̄ .

We claim that P ′
3 cannot be adjacent to a leaf or to pendant blobs other than P ′

1

in B̄ ′. Firstly, if P ′
3 was adjacent to a leaf l , then d N ′

(P ′
1, l ) ∈ {5,6}. The dis-

tance d N ′
(P ′

1, l ) = 5 is impossible as l (B) = 2; if d N ′
(P ′

1, l ) = 6, then P1 must
be adjacent to l in B̄ . But this is impossible as P1 is already adjacent to P2

and P3. This is a contradiction. The blob P ′
3 cannot be adjacent to a pendant

level-1 blob other than P ′
1, as this would contradict Claim 9. Finally, we claim

that P ′
3 cannot be adjacent to a pendant level-2 blob P ′

4. Since this would

mean that d N ′
(P ′

1,P ′
4) = 9, we must in B̄ that either P2 or P3 is adjacent to P4.

The former is not possible as P ′
2 is not adjacent to P ′

4 in B ′; the latter is not
possible as two pendant level-1 blobs cannot be adjacent by Claim 9. So P ′

3
cannot be adjacent to a leaf or to pendant blobs in B̄ ′.
By Claim 9, the connection p ′

1 must be adjacent to a pole of B ′. Since P ′
2

cannot be adjacent to a leaf or to a pendant level-1 blob by Claim 9, and it
also cannot be adjacent to any pendant level-2 blobs by assumption, p ′

2 must
also be adjacent to the other pole of B ′ and to u′. Since p ′

3 must be adjacent
to u′, it follows that the main side s′ is the path p ′

1p ′
3u′p ′

2.

Now B ′ must contain another leaf on one of the other two main sides since
they cannot contain parallel edges. We claim that such a leaf cannot exist,
thereby reaching a contradiction. Let l denote such a leaf that is on one of
these two main sides, whose neighbour (if l is not in a pendant blob) / con-
nection (if l is in a pendant blob) is shortest distance-2 to p ′

1. Suppose first
that l is not in a pendant blob. Then

d N ′
(P ′

1, l ) = 6,

and so P1 must be adjacent to l in B̄ , which is not possible as P1 is already
adjacent to P2 and to P3. So now suppose that l is contained in a pendant
level-1 blob. Then

d N ′
(P ′

1, l ) = 8.

But the level of the corresponding pendant blob in B̄ is 2, and since l (P1) = 2,
we must have that d N (P ′

1, l ) ≥ 9, which contradicts the fact that N and N ′
have the same shortest distance matrix. Finally, if l is contained in a pendant
level-2 blob P ′

4, then

d N ′
(P ′

1, l ) = 9.
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This means that in B̄ , the corresponding blob P4 must be adjacent either
to P2 or P3. The former is not possible as P ′

2 is not adjacent to P ′
4 in B̄ ′;

the latter is not possible as two pendant level-1 blobs cannot be adjacent by
Claim 9.

(b) u′′′ is not a vertex of Q ′′′: Let p ′
3 and p ′

4 denote the neighbours of p ′
1 and p ′

2 in
this path Q ′, respectively. Since l (P ′

1) = l (P ′
2) = 1, the vertices p ′

3 and p ′
4 must

be connections of pendant level-2 blobs P ′
3 and P ′

4, respectively. At this point,
we have that P3,P1; P1,P2; P2,P4 are adjacent in B . Now suppose that there
is another vertex p ′

5 that is a neighbour of p ′
3 that is not p ′

4 in B ′. By Obser-
vation 20, the vertex p ′

5 cannot be a neighbour of a leaf nor a connection of
some pendant blob. By nature of B ′, p ′

5 must be the vertex u′, but this would
contradict our assumption that the path Q ′ does not include u′. Therefore p ′

3
must be adjacent to p ′

4. Thus, P ′
1,P ′

3; P ′
3,P ′

4; and P ′
4,P ′

2 are adjacent in B ′.
By Claim 9, since pendant level-1 blobs may not be adjacent to leaves and
they may be adjacent to at most one pendant level-2 blob, either p ′

1 or p ′
2

must be adjacent to a pole of B ′. Suppose without loss of generality that p ′
1

is adjacent to a pole of B ′. Consider the two main sides of B ′ that are not s′.
Since N contains no parallel edges, one of the two main sides must contain a
vertex. In particular, there must exist a vertex that is distance-2 away from p ′

1.
By Observation 20, such a vertex cannot be a neighbour of a leaf nor a con-
nection of a pendant blob in B̄ ′. Then such a vertex must be u′. By invoking
Observation 20 again, for both p ′

1 and p ′
2, it is easy to see that these two main

sides cannot contain any leaves in B̄ ′. So B̄ and B̄ ′ must contain only the
eight leaves of these four pendant blobs on the same main sides, with the
vertices u and u′ on a different main side, respectively. But we find that

d N (P1,u)−d N ′
(P ′

1,u′) = 7−5 = 2,

whereas
d N (P3,u)−d N ′

(P ′
3,u′) = 5−7 =−2,

which contradicts Claim 8.

2. p ′′′
1 and p ′′′

2 are incident to different main sides of B ′′′: Let s′1, s′2 denote the main
sides of B̄ ′ that contains p ′

1, p ′
2, respectively. Let s′3 denote the third main side

of B̄ ′. The vertex u′ is contained either in s′1, s′2, or in s′3. The first two cases are
equivalent by symmetry, so we split into two cases.

(a) u′′′ is in s ′′′1: If P ′
1 and P ′

2 are both not adjacent to a pendant level-2 blob,

then d N ′
(P ′

1,P ′
2) = 8 and we reach a contradiction as we have d N (P1,P2) =

9. Therefore P ′
1 or P ′

2 must be adjacent to a pendant level-2 blob on this
distance-8 path. If P ′

1 and P ′
2 are both adjacent to level-2 blob P ′

3 and P ′
4,

respectively, then d N ′
(P ′

3,P ′
4) ≥ 10. But since P3,P1; P1,P2; and P2,P4 would

be adjacent in B̄ , we must have d N (P3,P4) = 9, which contradicts the fact
that N and N ′ satisfy the same shortest distance matrix. Therefore, exactly
one of P ′

1 or P ′
2 must be adjacent to a pendant level-2 blob.
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i. P ′′′
1 is adjacent to a pendant level-2 blob P ′′′

3: Note that p ′
1 is adjacent

to u′ and to p ′
3. In particular, P ′

1 must be adjacent to u′ to make sure that
the shortest path between P ′

1 and P ′
2 is of length 9. Then we have

d N ′
(P ′

1,u′)−d N ′
(P ′

3,u′) = 4−6 =−2.

But in B̄ , we have that d N (P1, p1) = d N (P3, p1) = 4. This implies that

d N (P1,u)−d N (P3,u) ≥ d N (P1, p1)+d N (p1,u)−d N (P3, p1)−d N (p1,u)

= 0,

which contradicts Claim 8.

ii. P ′′′
2 is adjacent to a pendant level-2 blob P ′′′

4: Observe that p ′
4 must be

placed on s′2 such that d N ′
(p ′

1, p ′
4) = 2. Then we have that

d N ′
(P ′

4,u′)−d(P ′
1,u′) = 7−4 = 3.

In B̄ , P2 must be adjacent to both P1 and P4 Then d N (P1, p1) = 4, whereas d N (P4, p1) =
5. We have that

d N (P4,u)−d N (P1,u) ≤ 1,

which contradicts Claim 8.

(b) u′′′ is in s ′′′3: Then to ensure that the leaves of P ′
1 and the leaves of P ′

2 are short-
est distance-9 apart, we require P ′

1 and P ′
2 to be adjacent to level-2 blobs P ′

3
and P ′

4, respectively. But then

d N ′
(P ′

3,P ′
4) ≥ 10.

In B̄ , the pendant blobs P3,P1; P1,P2; and P2,P4 are adjacent. So we have

d N (P3,P4) = 9,

which contradicts Claim 8.

This covers all cases for whenever two level-2 blobs are adjacent. In all cases, we were
able to find a contradiction with regards to the inter-taxa distances or to Claim 8.

Claim 4. A pendant level-2 blob may not be adjacent to both a pendant level-1 blob and
a leaf simultaneously in B̄ (and in B̄ ′).

Proof. Suppose that a pendant level-1 blob P1 is adjacent to a pendant level-2 blob P2,
and some leaf l is adjacent to P2 in B̄ . To realize these distances in B̄ ′, we must have
that P ′

1 and P ′
2, the pendant level-2 and the level-1 blobs that correspond to P1 and P2

must be adjacent, and that l must be adjacent to P ′
1. Since level-1 blobs may be adjacent

to at most one level-2 blob, in both B and B ′, P1 and P ′
2 must be adjacent to a pole or u

or u′. We now split into cases depending on the position of u in B̄ .
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B ′

P ′
1

l

P ′
3P ′

2

B

P1 P2P3

(a) Case 1. (a)

B ′

P ′
1 P ′

2P ′
3 P ′

4

B

P3 P4P1 P2

(b) Case 1. (b)

B ′

P ′
3

P ′
2

P ′
1

B

P1 P2P3

(c) Case 2. (a) i.

B ′

P ′
1

P ′
4P ′

2

B

P2 P4P1

(d) Case 2. (a) ii.

B ′

P ′
1P ′

3

P ′
4P ′

2

B

P3 P4P1 P2

(e) Case 2. (b)

Figure 7.9: The different cases from the proof of Claim 10. Pendant blobs are indicated by filled and unfilled
leaves with the label Pi for some i . The filled vertices indicate a pendant level-2 blob of the form (2,0,0,0),
whereas unfilled vertices indicate a pendant level-1 blob on two leaves.
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1. u is adjacent to p1: We have

d N (P1,u)−d N (P2,u) = 4−6 =−2.

In B̄ ′, we have d N ′
(P ′

1, p ′
1) = d N ′

(P ′
2, p ′

1) = 4. It follows that

d N ′
(P ′

1,u′)−d N ′
(P ′

2,u′) ≥ 0,

which contradicts Claim 8.

2. u is not adjacent to p1: Let v be a vertex in B̄ such that d N (p1, v) = 2 and v is not
the neighbour of l . We claim that v is either a pole or equal to u.

Note that p1 must be adjacent to a pole since P1 can be adjacent to at most one
pendant level-2 blob, and P1 cannot be adjacent to leaves or other pendant level-1
blobs by Claim 9. The shortest path from p1 to v must contain this pole. Suppose
for a contradiction that v is either a neighbour of a leaf or that v is a connection of
some pendant blob. If v is a neighbour of a leaf l ′, then

d N (P1, l ) = 6,

meaning that P ′
1 must be adjacent to l ′ in B̄ ′. But this is impossible since P ′

1 is
adjacent to P ′

2 and l . Secondly, if v is a connection of a pendant level-1 blob P3,
then

d N (P1,P3) = 8,

but this is impossible since two pendant level-1 blobs must have shortest distance
at least 10 by Claim 10. Finally, if v is a connection of a pendant level-2 blob P4,
then

d N (P1,P4) = 9,

which means that the corresponding pendant level-1 blob must be adjacent either
to P ′

2 or l in B̄ ′. But both of these are forbidden by Claim 9. Therefore v must be a
pole or u.

But this means that if u was not placed in the main side of B̄ that did not con-
tain p1, then B̄ would have parallel edges. So u must be contained in one of these
two main sides. This means that

d N (P1,u)−d N (P2,u) = 5−7 =−2.

In B ′, as in the previous case, we have that

d N ′
(P ′

1,u′)−d N ′
(P ′

2,u′) ≥ 0,

which clearly contradicts Claim 8

These cover all possibilities for a pendant level-2 blob to be adjacent to a pendant level-1
blob and to a leaf. In all cases, we reach a contradiction.

Claim 5. B̄ (and B̄ ′) contain at most one pendant level-1 blob.
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Proof. Suppose for a contradiction that B̄ contained two pendant level-1 blobs P1 and P2.
We know that they must be shortest distance at least 10 apart. Since d N (P1, p1) = d N (P2, p2) =
3, we require that d N (p1, p2) ≥ 4.

1. p1 and p2 are contained in the same main side s of B̄ : Consider the path from p1

to p2 that contains only the vertices of the main side s. Since we require d N (p1, p2) ≥
4, we need at least three vertices in this path excluding p1 and p2. By Claims 9
and 11, these three vertices must be two connections p3, p4 of pendant level-2
blobs and the vertex u. In particular, p1 and p2 must be adjacent to p3 and p4,
and p3 and p4 must be adjacent to u. It follows from Claim 9 that s contains only
these five vertices.

Now consider the two main sides s1 and s2 of B that is not s. If these main sides are
both empty, then d N (P1,P2) = 9, which contradicts the fact that d N (P1,P2) ≥ 10.
So they must both contain vertices. Let vi denote the vertex in si such that d N (vi , p1) =
2, for i = 1,2. Firstly, if v1 is a neighbour of some leaf l , then d N (P1, l ) = 6, meaning
that l must be adjacent to P ′

1 in N ′. But this would imply that P ′
1 is adjacent to a

leaf l and a pendant level-2 blob P ′
3 in B̄ ′, which contradicts Claim 11. Secondly,

if v1 is a connection of a pendant level-1 blob P5, then d N (P1,P5) = 8. But two
pendant level-1 blobs must be shortest distance at least 10 apart. So v1 must be
a connection of a pendant level-2 blob. Similarly, v2 must be a connection of a
pendant level-2 blob. But this implies that B̄ ′ contains four pendant level-1 blobs.

The main side of B̄ ′ with u′ contains exactly two pendant level-1 blobs; the other
two main sides of B̄ ′ contains exactly one pendant level-1 blob each. Consider
these two latter main sides. By Claims 9, 10, and 11 these two main sides may con-
tain an additional pendant level-2 blob each, but no other leaves. This means that
the pendant level-1 blobs in these two main sides are shortest distance at most 9 to
one another, which is a contradiction. Therefore, the vertices vi for i = 1,2 cannot
be neighbours of leaves / connections of pendant blobs, meaning that B̄ contains
parallel edges, which is a contradiction.

2. p1 and p2 are not contained in the same main side of B̄ : Let s1 and s2 denote the
main sides of B̄ that contain p1 and p2, respectively. If s1 and s2 do not contain the
vertex u, then d N (P1,P2) ≤ 9 and we are done.

So suppose without loss of generality that s1 contains the vertex u. Since we re-
quire d N (p1, p2) ≥ 4, considering the path between P1 and P2 that uses only the
edges from s1 and s2, without using the vertex u, we see that P1 and P2 must be
adjacent to pendant level-2 blobs P3,P4, respectively. In particular, this path con-
tains the subpath p1p3v p4p2 for some pole v of B̄ . Therefore p1 must be adjacent
to u in B̄ . Then,

d N (P1,u)−d N (P3,u) = 4−6 =−2.

In B̄ ′, we have d N ′
(P ′

1, p ′
1) = d N ′

(P ′
3, p ′

1) = 4. It follows that

d N ′
(P ′

1,u′)−d N ′
(P ′

3,u′) ≥ 0,

which is a contradiction.
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This covers all cases for when B̄ contains more than one pendant level-1 blob, which all
result in a contradiction. Therefore the claim follows.

7.7. DISCUSSION

T HE results of this chapter build on, and answer three open problems presented in
the paper by van Iersel et al. [1]. We have shown that networks with a leaf on each

generator side are reconstructible from their shortest distance matrix (Theorem 26). We
have shown that level-2 networks are reconstructible from their sl-distance matrix (The-
orem 28). We have characterized the level-2 networks that are not reconstructible from
their shortest distances (Theorem 29).

Previously, it was known from [1] that level-2 networks were reconstructible from
their multisets of distances, the full collection of lengths of all inter-taxa distances to-
gether with their multiplicities. An algorithm based on this result was recently presented
and implemented in the Bachelor Thesis of Riche Mol [12], where a major bottleneck
originated from having to adjust the large multisets of distances upon identifying and
reducing a particular pendant structure. As a result, the theoretical running time of the
algorithm is exponential in the number of leaves in the network (though it is polynomial
in the size of the input, the multisets of distances). The results presented in this chapter
point to a possibility of an alternative algorithm for constructing level-2 networks from
their sl-distance matrix; since updating the sl-distance matrix can be done much quicker
than for multisets of distances, we wonder if this could culminate in a polynomial-time
algorithm with respect to the number of leaves in the network. It would be of great in-
terest to see the speed-up both theoretically and in practice.

In this chapter, we have excluded all blobs incident to exactly two cut-edges. One of
the consequences of excluding such blobs is that we never obtain pendant level-2 blobs
of the form (1,0,0,0) in our networks. Conditions for identifying and reducing such pen-
dant blobs from level-2 networks are outlined in Lemmas 5.9 and 5.10 of [1]. In fact, such
pendant blobs can be inferred from only the shortest distance matrix. This means that
Theorem 28, which says that level-2 networks are reconstructible from their sl-distance
matrix, holds in general when this restriction is not imposed. On the other hand, allow-
ing for such blobs introduces a new level of complexity within alt-path structures. Call
a level-2 blob with two cut-edges a macaron, and consider an alt-path structure G ob-
tained from some tree T , and replace every cut-edge in G by a path of arbitrary many
macarons. Call this graph G ′. Let H denote a similar alt-path structure to G , and let us
replace the same cut-edges by paths consisting of the same number of macarons (where
by the same cut-edge, we mean the cut-edge that induces the same split). Call this re-
sulting graph H ′. It is easy to see that G ′ and H ′ realise the same shortest distance matrix.
The converse is not immediately obvious. In other words, it is not clear whether exclud-
ing these ‘macaron-added’ alt-path structures from level-2 networks guarantee recon-
structibility from their shortest distances. Nevertheless, we make the following conjec-
ture.

Conjecture 7. A level-2 network is reconstructible, within the class of level-2 networks,
from its shortest distance matrix if and only if after suppressing macarons and degree-2
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vertices, it does not contain an alt-path structure.

A potential shortcoming of our findings lies in the fact that the networks we consider
are unweighted. In phylogenetic analysis, weighted edges are often used to indicate the
extent on how two species may differ from one another - to depict the passage of time,
or to indicate the amount of genetic divergence between two species. The major issue
that arises from weighted edges is that the foundational structures such as cherries and
chains can no longer be characterized by their distances. In the rooted weighted variant
of the problem, this is overcome by simulating a ‘relative root’ by imposing ultrametric
conditions and through the use of outgroups [10]. This makes it possible to locate cher-
ries and the rooted analogue of chains (reticulated cherries), even when the network is
weighted. While these techniques do not translate over to the unrooted setting, some
additional conditions will almost certainly be required to obtain results for the weighted
variant of the problem.

Weighted unrooted networks have been considered before. For level-1 networks (or
for the more general cactus graphs), it was shown recently that while there may exist
multiple level-1 networks that realize the same shortest distance matrix, there is a unique
optimal edge-weighted network whose sum of edge weights is minimal [7]. It was also
noted that this is not the case for edge weighted, level-2 networks by considering an
example presented in [13]. It could thus be of interest to ask whether if we consider
optimality in terms of the multisets of distances instead, then is there a unique optimal
level-2 network?
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8
CONCLUSION

In this thesis, we have investigated reconstructibility of phylogenetic networks and have
introduced, and studied properties of orchard networks.

A concerning characteristic of many network inference methods is that optimal solutions
are often non-unique [1, 2]. As stated in Chapter 1, this is what makes encoding results
interesting and of value to the literature; they ensure a unique solution within the con-
finements of the network class. Moreover, they often give ideas for polynomial-time algo-
rithms for inferring networks. These algorithms have the appealing property that they are
guaranteed to return the correct solution if sufficient data is available.

The original aim of investigating the class of orchard networks was to solve the NETWORK

CONTAINMENT problem. We were able to use cherry-picking sequences, which charac-
terize orchard networks, to solve NETWORK CONTAINMENT for the class of tree-child net-
works, which are strictly contained in the class of orchard networks. Also, we were able
to uncover a multitude of fascinating results about orchard networks. Furthermore, we
showed that the class is biologically relevant in that they are the networks wherein only
horizontal edges are added to some base tree.

8.1. PRACTICAL RELEVANCE OF AND THEORETICAL ADVANCE-
MENT BY RECONSTRUCTIBILITY RESULTS

W E wish to comment on the practical relevance of and the theoretical advancement
by the results presented here, as well as any extra steps that must be taken before

they can be used.

8.1.1. HEURISTICS

For results related to reconstructibility, the next major challenge is to account for non-
perfect data.

203
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SUBNETWORKS

In Chapter 3, we showed that directed level-k binary tree-child networks are recon-
structible from their reticulate-edge-deleted subnetworks. The algorithm that we have
provided assumes to have perfect data. To make this more robust, one could consider
the following problem.

Problem 1
Given a set S of tree-child networks on the same set of taxa, find a level-k tree-child
network that displays the maximum number of networks in S.

This line of building a heuristic is not uncommon for reconstructibility problems
with subnetworks as building blocks. LEV1ATHAN is a heuristic for building level-1 net-
works from a set of triplets (trees on three vertices) [3]; TriLoNet builds level-1 networks
from a set of level-1 trinets (networks on three vertices) [4]; TRIL2NET builds a level-2
network from a set of level-2 trinets [5]. All three algorithms output the unique solution
should one exist; otherwise, the heuristic aims to generate a network that is consistent
with as much of the networks in the input set as possible. Heuristics are used here be-
cause the problem of finding a network that is consistent with the maximal number of
input networks is NP-hard (Theorem 2.17 of [6]).

Problem 1 is motivated by these factors. While network building heuristics from
smaller subnetworks have been proposed, there is currently not much known on con-
structing networks by combining simpler networks of the same taxa. So-called con-
sensus trees / networks can be constructed in polynomial-time [7, 8], though in some
instances, they will lead to outputs consisting of highly unresolved vertices. These con-
sensus methods aim to find a tree or a network that agrees with all or most input trees
/ networks. An FPT algorithm for TREE-CHILD NETWORK HYBRIDIZATION, the problem
of finding a tree-child network with minimal reticulation number that displays all in-
put tree-child networks, has been showcased in [9]. There, cherry-picking sequences
are employed to reduce all input networks, and the output sequence corresponds to the
tree-child network that displays them. Yet, a practical heuristic still has not surfaced
for building networks from a set of input networks on the same leafsets – therefore, any
finding in this area would be highly beneficial to the further exploration of phylogenetic
networks. Such a scenario can arise in practice, for instance, if certain genes evolve on
gene networks rather than on gene trees.

DISTANCES

A similar question can be asked to construct heuristics for distance-based methods,
based on the results presented in Chapter 7. Let A,B be same-sized matrices. Then
the L∞ distance between the matrices is the value

L∞(A,B) = maxi , j |Ai , j −Bi , j |.

In Chapter 7, we gave three encoding results for distance-based reconstructibility. We
now pose a general problem that can then be adjusted to cater to the three different
situations.
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Problem 2
Given a distance matrix D, find an undirected network N with induced distance ma-
trix D(N ) that minimizes L∞∞∞(D,D(N )).

The problem was originally posed as the numerical taxonomy problem, for finding
a weighted directed tree for which the Lk distance is minimized between the induced
distance matrix and the given input matrix [10, 11]. For k = 1 and k = 2, the problem
was shown to be NP-complete [12] whereas for k = ∞, the problem was shown to be
polynomial-time solvable, for ultrametric trees [13] as well as for additive metrics [11].
This means, in particular, that the more general problem that we consider for networks
is also NP-complete if we were to use the L1 or the L2 norm; thus we follow suit and pose
the same problem for networks using the L∞ norm. We may define three subproblems
for each of the three results of Chapter 7.

Subproblem 1
Given a distance matrix D, find an undirected network N with induced shortest dis-
tance matrix D(N ) that minimizes L∞∞∞(D,D(N )).

Subproblem 2
Given a pair of distance matrices (Dm ,Dl ), find an undirected level-2 network N
with shortest distance matrix Dm (N ) and longest distance matrix Dl (N ) that mini-
mizes L∞∞∞(Dm ,Dm (N ))+++L∞∞∞(Dl ,Dl (N )).

Subproblem 3
Given a distance matrix D, find an undirected level-k network N with shortest dis-
tance matrix D(N ) that minimizes L∞∞∞(D,D(N )).

Ideally we wish for the heuristic to be consistent, in the sense that, if a distance matrix
is realizable by a network in a class that we have encoding results for, then we should
get the unique network as output. Distance-based network construction methods such
as NeighbourNet, as well as most distance-based tree construction methods satisfy the
consistency property [14, 15].

For each algorithm, one can also try to calculate how much the distance matrices
can deviate, but still provide a unique solution. This is the so-called ‘safety radius’ of
a distance-based algorithm, and they have been investigated rather thoroughly for tree
construction algorithms (for an overview, see [16]). Formally speaking, the safety radius
of an algorithm is the maximum value r such that, if L∞(D,Dm(N )) < rµ(N ), where µ(N )
is the length of the shortest edge in N , the algorithm outputs the network N for input D.
In this thesis we have considered unweighted networks, so that µ(N ) = 1.

8.1.2. DISTANCE METRICS
Another interesting observation is that encodings naturally induce a distance metric on
the set of networks that are encoded by a particular building block. The distance be-
tween two networks within a class is done by taking the symmetric difference between
their encodings. Since they uniquely encode the network class, no two networks have
the same building blocks, thereby ensuring that the separation condition is satisfied (dis-
tinct networks have a positive distance between them). Until now, we have seen ances-
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tral profiles [17, 18], triplets, trees, softwired clusters [19], trinets [20], and cherry-picking
sequences [21] used to define distance metrics in this manner. For the reticulate-edge-
deleted subnetwork encoding result of Chapter 3, we can naturally use the symmetric
difference of the two sets of subnetworks as the distance metric. For the distance encod-
ing results of Chapter 7, we may use any distance metric on matrices. In particular, we
may use the L∞ distance as the distance metric.

DIAMETER BOUNDS

When distance metrics are involved, it is quite natural to investigate diameter bounds
within network classes [17, 18, 22, 23]. A diameter of a network class with respect to some
distance metric is the maximum distance between two networks in the class. Finding the
diameter in a closed form as done in [17] gives a way of normalizing the distance metric,
so that every network within the class is distance at most 1 from every other network.

Problem 3
What is the diameter of the reticulate-edge-deleted subnetwork distance metric for
the class of binary tree-child networks?

8.1.3. MODEL-BASED METHODS
Another area where encoding results have shown to be fruitful is in proving identifia-
bility and distinguishability results under various model-based methods. Model-based
methods construct phylogenetic networks directly from multiple sequence alignments,
and include those such as pseudo-likelihood models [24], the network multispecies co-
alescent model (NMSC model) [25, 26], and Markov models [27]. In particular within
Markov models and the NMSC model, combinatorial results on 4-leaf subnetworks have
been used.

Within a Markov model, we assume a time-reversible transition of states on the edges,
and some inheritance probability on the reticulation edges [27]. The transition matrices
follow a certain model of DNA evolution, such as JC69, K2P, or K3P. The inheritance prob-
ability gives the proportion of sites that are inherited from each parent of a reticulation
vertex. A root distribution is also specified. Given an n-leaf network with a transition
matrix for each edge and an inheritance probability for each reticulation, one obtains a
probability distribution on the kn possible site patterns on the leaves of the network, for
a k-state alignment (typically 4 for the DNA bases, or 2 for morphological data. See [28]
or [29] for this calculation).

Within NMSC models, one is interested in computing the probability of observing a
particular gene tree topology inside a given network. Reticulation edges are again given
an inheritance probability; each edge is weighted, and the probability of lineages coa-
lescing (going backwards in time) can be computed, while accounting for incomplete
lineage sorting. Longer branch lengths give ample opportunity for species to coalesce
along a certain edge. Under the NMSC model, the gene tree can be taken on any num-
ber of leaves; most often, quartets (trees on four leaves) are taken. There are two reasons
why. The first reason is for scalability. The number of undirected trees explodes for in-
creasing taxa size [30]. The second reason is for information. Quartets are the smallest
undirected trees that are informative. For each size-four subset of the taxa, the prob-
ability of observing each of the three possible quartet gene trees within the network is
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calculated. The tuple containing the three probabilities is called the quartet concordance
factor (qCF), and it represents the proportion of the genome for which the true network
displays the gene trees [31]. It was shown in [24] that the qCFs can be computed from
semi-directed networks (networks where only the reticulate edges have directions). Fur-
thermore for level-1 networks, the qCFs can be computed from the network induced by
four leaves [26]. The qCFs can be estimated from the input sequence alignment. The
network that induces qCFs that are closest to the observed qCFs is inferred.

In both Markov and NMSC models, combinatorial results, in tandem with results
from algebraic geometry, have been used in proving generic identifiability for certain
level-1 networks [26, 27, 29]. Identifiability essentially means that the network topology
and possibly the numerical parameters of the network – such as branch lengths, inher-
itance probabilities, and transition rates – can be inferred uniquely from the observed
sequence alignment. In both Markov models and the NMSC model, the identifiability
results can therefore be seen as encoding results where the building blocks are the prob-
ability distributions on the kn site patterns and the qCFs, respectively.

Within the Markov setting, it was shown that distinguishability results can be inferred
from distinguishability results on the four-leaf subnetworks [29]. Algebraic results on
the four-leaf subnetworks were used to show the distinguishability between larger net-
works. For the NMSC model, combinatorial results on four-leaf subnetworks allowed for
the identification of cycle sizes as well as the cycle partition of the leaf-set, which were
key ingredients in showing distinguishability of distinct networks within the class [26].
Although these proofs do not directly use any previously existing encoding results, they
do show that encoding results, like the ones in Chapter 3, and the used proof techniques,
have the potential to be useful for establishing identifiability results under various mod-
els. "

8.2. FUTURE DIRECTIONS FOR ENCODING RESULTS
In Chapter 3, we considered the MLLSs as building block; in Chapter 6, we considered
µ-representations as building block; in Chapter 7, we considered shortest distances, and
shortest and longest distances as building blocks. Needless to say, there are more build-
ing blocks that can be considered when trying to encode a certain network class.

8.2.1. OTHER BUILDING BLOCKS
When considering building blocks, one often looks for the minimum amount of infor-
mation that is needed to entirely capture a network class. This motivates researchers to
first consider datatypes of lower complexity, such as subnetworks on fewer vertices or
fewer edges.

SUBNETWORKS

Subnetworks such as trees, triplets, quartets, trinets, quarnets are often targeted as build-
ing blocks as methods for constructing them from sequences are rather well-established
compared to their more complex counterparties. The number of networks on fewer taxa
is limited, which gives a much more lenient network space to work with. While such
building blocks are used in direct network inference methods [3–5], they are also used
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to identify introgression, such as in the ABBA-BABA test [32], and also for hybridization,
such as in HyDe [33]. They use directed networks on four species – which consist of
three ingroups and one outgroup – to detect reticulate events, or more precisely, to see
whether trees or networks are more suitable in representing their histories.

Another interesting open question is whether networks from certain classes (other
than level-2) can be reconstructed from their level-1 subnetworks. Trees, which are level-
0 networks have been an integral first step in pushing the network construction literature
(e.g., through the HYBRIDIZATION NETWORK problem). Furthermore, non-binary regu-
lar networks [34] and binary level-1 networks that are 4-outward [19]1 are known to be
encoded by their induced trees. Therefore, it makes sense to work with slightly more in-
formation, and see whether more general network classes are encoded by their induced
level-1 networks.

Problem 4
Which network classes are encoded by their induced p-leaf level-k subnetworks?

WEIGHTED EDGES

One of the largest factors that we did not consider in this thesis are branch lengths. Typi-
cally, edges are weighted to depict the amount of genetic divergence between two events,
or to depict the passage of time (especially if the molecular clock hypothesis is assumed).
In the reconstructibility context, edge lengths could provide the additional information
that is needed to distinguish between two networks. However, it has been shown that
even considering inputs whose networks have weighted edges is sometimes not enough
[2]. In the same paper, they also showed that a way to resolve this was to consider canon-
ical forms of networks, by contracting some edges.

DISTANCE MATRICES

As for distance matrices, we have considered the shortest and the longest distance ma-
trices induced by networks in this thesis. Other distances that have been considered in
the directed network literature include multisets of distances [35], sets of distances [36],
tree-average distances (where the incoming edges of every reticulation have inheritance
probabilities, so that different inter-taxa paths can be averaged) [37]. The tree-average
distances can be seen as the expected value of the inter-taxa distances seen in the dis-
played trees. This information can be obtained in practice by considering several gene
trees for the taxa in consideration. The set of distances can be motivated by consider-
ing the NELP (no equally long paths) property as suggested in [2]. There it was shown
that directed weighted canonical networks satisfying the NELP property are uniquely
determined by the trees they display2. The inter-leaf distance of two leaves in a net-
work equipped with the NELP property must all be distinct; to obtain sets of distances
in practice, one can for example take inter-taxa distances on different blocks of the se-
quence alignment. The most commonly used in literature is still the shortest distances;

1A directed network is 4-outwards if the underlying undirected network does not have a cycle of length less
than 5.

2A canonical network is a network that contains no vertices with indegree greater than 0 and outdegree 1. For
more details, see [2].
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though we have suggested a possible biological motivation for considering the multi-
sets of distances in Chapter 7, the link is still rather tenuous. That said, under the NELP
property, multisets can be regarded as the set of distances where the multiplicities are
all one. Note that this is not exactly the same as having a set of distances because in a
set, the multiplicities are unknown. For open problems regarding distance matrices, we
refer the reader to Section 7.7 or to Section 8.1.1.

CLUSTERS AND SPLITS

In tree building literature, it is often customary to come across building blocks such as
clusters and splits (see, for example, [30] for an overview). Both data types provide infor-
mation on how certain subsets of the taxa are separated by edges in the tree or network;
clusters are defined for directed graphs and splits can be seen as the undirected analogy.
Biologically, they are both used to indicate clades or monophyletics groups, by grouping
them into subsets of the full taxa. Clusters are known to encode directed trees [38, The-
orem 9.2], softwired clusters (clusters of trees displayed by the network) encode level-1
networks that are 4-outwards [19], and splits encode undirected trees [39].

While splits do not encode undirected networks in general (see Figure 7.1), we saw
in Chapter 7, in particular in Theorem 27, that they can be recovered for an undirected
level-2 network from the shortest distances. This opens up the discussion for clusters
or splits of network classes that can be obtained from certain building blocks. What
information about the network itself, which perhaps may not be sufficient to encode the
network, can be recognized from the building blocks being considered? This measures
some form of strength of building blocks, with regards to how much information they
capture over different network classes.

FORBIDDEN SHAPES THAT ARE HIGHLY UNLIKELY

In this thesis, we have considered only sets of input data that are assumed to be displayed
/ realized by the output network. However, as studied in [40], there may arise situations
where we wish to exclude some subnetworks / information from the output network.
Such an exclusion can be motivated by the knowledge of evolutionary scenarios that are
known to be highly unlikely. Therefore, it would be interesting in future if the results of
this thesis can be extended to consider certain forbidden input sets of data.

8.2.2. RELEVANCE TO THE RECONSTRUCTION CONJECTURE
Recognizing certain aspects of phylogenetic networks, as mentioned in the previous
paragraph, comes up in the reconstruction problem in graph theory. In fact, encoding
problems in phylogenetics can be seen as a variant of the reconstruction problem. The
problem, set by Kelly and Ulam in 1941, asks whether undirected graphs are determined
(encoded) uniquely by their subgraphs [41, 42]. The original problem considered the
multiset of subgraphs that could be obtained from deleting vertices, called the deck of
the graph3. A variant of the problem also considers the multiset of subnetworks that can
be obtained by deleting edges, called the edge-deck of the graph [43] (see [42, Section 2]
for a review of edge-reconstruction in graphs). This is somewhat, but not totally alike

3Each graph in a deck is called a card – the association here is that graphs can be uniquely determined by their
deck of cards.
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what we have considered in Chapter 3, with the differences including directed edges,
labelled leaves, deleting only reticulation edges, and deleting a reticulation edge from
each level-k blob.

Other subnetwork building blocks can also be categorized as a variant of this recon-
struction problem. In particular, van Iersel and Moulton have considered the recon-
structibility problem with leaf-deleted subnetworks as building blocks, i.e., those ob-
tained by deleting a single leaf from a network, which have shown to encode undirected
trees, undirected binary networks with at least one nontrivial cut-edge, and undirected
binary level-4 networks [44]. The set of all such subnetworks were called the X -deck
of a network, and they make up a subset of the full deck of a leaf-labelled network. It
was shown in the same paper that any undirected network that is reconstructible from
its X -deck is also reconstructible from its edge-deck; they further also showed that any
undirected binary network with a size 2 chain is reconstructible from its edge-deck. Tra-
ditionally, edge-decks allow for any edge to be deleted; it may be interesting to also
consider the reconstructibility problem for blob-edge-decks, which are multisets of net-
works obtained by deleting a single edge that belongs to some blob in the network, and
suppressing its endpoints. We do not delete any cut edges, and so this ensures that ev-
ery graph in the blob-edge-deck is a network. One can just as easily define tree-decks,
triplet-decks, quartet-decks, or more generally Y -decks for some building block Y . Per-
haps this connection to the unsolved problem in graph theory makes the encoding prob-
lem mathematically relevant and interesting.

8.2.3. CONNECTING DIFFERENT ENCODINGS OF THE SAME NETWORK CLASS

A network class is not limited to a single encoding. As an example, undirected trees
are encoded by their induced distance matrix, splits, and induced quartets [38]. In the
same text, the authors explore ways to convert quartet systems to and from split systems
of undirected trees, as well as from quartet systems to induced distance matrices (see
Chapter 8 of [38]). It makes intuitive sense that one should be able to move between
different encodings of the same network class. After all, we could simply infer the net-
work first, and then obtain the clusters or splits thereafter. Nevertheless, their method is
direct and makes no use of the trees as an intermediate step, illustrating the point that
some encodings are equivalent under certain network classes. This gives us the following
question.

Problem 5
Find possible encodings for a given network class. Can every encoding be inferred
from the other encodings?

8.2.4. ENCODINGS AND ORCHARDS

The recursive nature of orchard networks, in terms of repeatedly reducing substruc-
tures, make it an attractive network class to tackle. Effectively, this often translates to
asking what datatypes provide information for identifying cherries and reticulated cher-
ries within networks; thereafter, the network is constructed in a recursive manner, by
reducing the parts of the building block that corresponds to the cherry or the reticulated
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cherry. This partially explains why encoding results for tree-child networks and more
recently, for the more general class of orchard networks have been explored in great de-
tail [17–19, 35, 45–47].

For non-orchard networks, it is not always the case that they contain a cherry or a
reticulated cherry. Narrowing the scope slightly, stack-free networks necessarily con-
tain either a cherry, a reticulated cherry, or a double-reticulated cherry. Therefore, being
able to reduce the third structure will be key in developing encoding results for networks
beyond orchards. Therefore, the difficulty of extending these recursive results lies in
reducing double-reticulated cherries. Within binary networks, double-reticulated cher-
ries refer to the substructure formed by three tree vertices t1, t2, t3, two reticulation ver-
tices r1,r2, and two leaves l1, l2 such that the network contains edges t1r1, t2r1, t2r2, t3r2,
r1l1 and r2l2 (see Figure 3.17). These were briefly mentioned in the Discussion section
of Chapter 3. The difficulty appears when attempting to reattach the deleted reticula-
tion edge, because there can be multiple places where the edge can be reattached. A
wrong reattachment could potentially yield the wrong network. Perhaps another trap
awaits the researcher in ensuring that networks after such a reduction remains within
the considered network class.

Problem 6
Can we find encoding results for network classes that are more general than orchard
networks?

But for now, we remain in the class of orchard networks and discuss what the future
holds for them.

8.3. ORCHARD NETWORKS

A S orchards were discovered independently by [48] and [46] just recently, there is still
much that is unknown about the class. Apart from the results of Chapters 4 and 5,

there are currently a few results in circulation. It is known that binary stack-free orchard
networks are encoded by their ancestral profiles (or µ-representations; see Chapter 6
for more) [46, 47]. It is also known that binary orchard networks are encoded by their
trinets [49]. In terms of distance matrices, directed unweighted binary orchard networks
are encoded by their multisets of distances (Theorem 3.4 of [35]). Recently, a distance
metric on the class of directed binary orchards was defined on basis of obtaining a cer-
tain agreement subnetwork from the two networks [21]. It was shown that the problem is
NP-hard in general, though for two trees, the problem is solvable in quadratic time. Last
but not least, cherry picking sequences (which are closely related to orchard networks)
have been used to produce promising results in tackling the HYBRIDIZATION NUMBER

problem for temporal tree-child networks and tree-child networks [50–52].

8.3.1. FORBIDDEN STRUCTURES
A key point of orchards is that they strictly contain the ever so prominent class of tree-
child networks, while being strictly contained in the class of tree-based networks. Much
is known about the latter two network classes; for example, a characterization of tree-
child networks and tree-based networks based on some ‘forbidden structures’ is known
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[53, 54]. For orchards, this is yet to be found. As commented in Section 4.8, crowns are
forbidden within orchard networks. This notion lead to the acyclic cherry cover char-
acterization in Chapter 5 – yet, a concrete forbidden structure characterization remains
elusive.

Problem 7
What are the forbidden structures of orchard networks?

8.3.2. ENUMERATION PROBLEM
Another interesting question is on the enumeration of the orchard network class. The
enumeration problem for the class of binary tree-child networks has received much at-

tention [55–58]; The number of tree-child networks on n vertices reaches 2
5
4 n log(n)+O(n)

asymptotically [55]. This begs the question – just how much larger is the class of or-
chard networks? Every network class is asymptotically small compared to the full space
of phylogenetic networks; just how small, or how the network classes compare to each
other is something that can be answered by enumeration results. Apart from this being
an enticing problem in mathematics, there is another reason to consider enumeration
problems. Within a Bayesian framework, in particular through a Markov Chain Monte
Carlo Metropolis-Hastings algorithm, for a given prior distribution, a specified phylo-
genetic network space is traversed via rearrangement moves to obtain a network with a
higher likelihood for the given input [30, 59]. Enumeration results therefore can possibly
offer insight into how long the traversal should take to reach convergence (i.e., when a
good approximation of the posterior distribution of the network has been obtained).

Problem 8
Find the number of distinct orchard networks on p vertices. Alternatively, find the
number of distinct orchard networks on n leaves and k reticulations.

8.3.3. UNDIRECTED ORCHARD NETWORKS
Directed orchard networks are defined on the basis of recursively reducing cherries and
reticulated cherries until the network has a single leaf. In this section, we comment
briefly on how we can extend this notion to undirected networks. Biologically, undi-
rected orchard networks can be seen as those with a base tree, which can be rooted,
such that all reticulation edges are horizontal.

To give a definition that works directly on the undirected network, we first define
undirected analogues of cherries and reticulated cherries. Two leaves form a cherry if
they share a common neighbour, or if they are adjacent. To reduce cherries from net-
works, we delete one of the leaves and suppress the resulting degree-2 vertex, or in the
case that the network contains a single edge between two leaves, simply remove one of
the leaves. Two leaves x and y form a reticulated cherry if x and y have neighbours p
and q , respectively, where pq is an edge that is not a cut-edge in N . In particular, this
edge pq can be seen as the reticulation edge analogue for undirected networks. To re-
duce reticulated cherries from undirected networks, we delete this edge pq and suppress
the resulting degree-2 vertices. Undirected orchard networks are defined as those that
can be reduced to a single leaf by some sequence of cherry and reticulated cherry reduc-
tions.
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1 2 3 4

5

6

7

Figure 8.1: An undirected orchard network with the cherry-picking sequence
(3,4)(4,5)(4,5)(4,5)(5,1)(1,2)(2,3)(3,6)(3,6)(3,6)(6,7). At the start, there are two reticulated cherries that
can be picked: (1,2) or (3,4). Upon picking (1,2), the pair (3,4) is no longer a reticulated cherry. The resulting
network does not contain any reducible pairs, and thus cannot be picking in this order.

KEY DIFFERENCE FROM THE DIRECTED VARIANT

Though the underlying thesis of orchard networks - that networks may be reduced via
a sequence of leaf-pair structures - are the same for directed and undirected networks,
there are major differences between them. The way reticulated cherries can be reduced
is completely different. Reticulated cherries in a directed network can only be picked
in one way, with the leaf below the reticulation as the first coordinate. However, such
a rule does not apply for reticulated cherries in undirected networks, where reticulated
cherries may be picked via either (x, y) or (y, x).

We showed for directed orchard networks that they may be reduced in any order
(Chapter 4, Theorem 9). Unfortunately, this is not true for undirected networks, even
for binary networks (see Figure 8.1). This presents a rather concerning issue – this could
mean that the problem of deciding whether an undirected network is orchard could be
NP-hard.

The reason why this occurs is because unlike directed binary orchards, not every
reducible pair (cherry or reticulated cherry) remains a reducible pair in the reduced net-
work. That is, given a reducible pair (x, y) in a directed orchard network N , all reducible
pairs remain a reducible pair in the network N (x, y). This is not the case if N is an undi-
rected orchard network. As an example, the reticulated cherry (3,4) in the network N of
Figure 8.1 is not a reticulated cherry in N (1,2).

Problem 9
Can it be decided in polynomial-time whether an undirected binary network is or-
chard?

THE ROOTABILITY PROBLEM

Huber et al. studied the problem of rooting an undirected network [60]; there, it was
posed as an open problem whether it is possible to find a rooting of an undirected net-
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work such that the directed network is orchard in polynomial-time. Here, a rooting
refers to subdividing an edge of the undirected network with the root vertex, selecting
the reticulation vertices, and directing the edges of the network to obtain a directed net-
work. It was shown that the question of deciding whether an undirected network has a
tree-based rooting is NP-complete (Theorem 6 of [60]). A direct consequence of solving
Problem 9 is that a polynomial-time algorithm for deciding whether an undirected bi-
nary network is orchard immediately gives a polynomial-time algorithm for the orchard
rootability problem. The two problems are equivalent, as given an undirected orchard
network, we can find an orchard rooting for it by building a directed network from the
cherry-picking sequence (using the (1a, 2a) construction of Section 4.2.2). Indeed, the
reduction of each reticulated cherry specifies the reticulation vertex for that pair de-
pending on how the first and second coordinate is chosen. On the other hand, given
an orchard rooting of an undirected network, one can find a cherry-picking sequence
that reduces the directed version of the network in linear time by using the results of
Chapter 4. It is easy to see that this sequence must also reduce the undirected network
as well.

Another enticing aspect of this connection to the orchard rootability problem is that
if Problem 9 can be solved, then it gives a line of attack for tackling the tree-child rootabil-
ity problem, for which the computational complexity is also not known [60]. We may use
the fact that the class of directed tree-child networks are properly contained within the
class of directed orchard networks, and that we may reduce directed tree-child networks
using tree-child sequences.

THE UNDIRECTED NETWORK CONTAINMENT PROBLEM

The undirected variant of the TREE CONTAINMENT problem has been shown (like the
directed variant) to be NP-hard [61]. If parallels can be drawn from directed orchards to
undirected orchards, perhaps results on undirected containment can also be shown in
terms of cherry-picking sequences. Since we consider only binary networks in this case,
we say that an undirected network N contains another undirected network N ′ on the
same taxa set if N ′ can be obtained from N by deleting edges and suppressing degree-2
vertices. We conjecture the following.

Conjecture 8. Let N , N ′ be undirected orchard networks on the same taxa set. If a cherry-
picking sequence that reduces N also reduces N ′, then N ′ is contained in N .

CONNECTION TO DISTANCES

In Chapter 7, we studied the reconstructibility problem of level-k networks with respect
to their distance matrices. Is it possible that orchard networks are characterized by some
induced distance matrix? Assuming we have the multisets of distances of an orchard net-
work, we may use the results of Chapter 7 to see that cherries and chains may be identi-
fied; cherries can naturally be reduced, the question is a bit more involved for reticulated
cherries. Reticulated cherries can be identified by looking for leaves that are distance-
3 away with multiple paths between them. However, because we do not know which
reticulated cherries can be reduced first – see Problem 8 – we cannot simply pick reticu-
lated cherries in any order, which may render the typical inductive proof ineffective. We
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also do not know how to adjust the distances of leaves that do not involve x or y when
reducing a reticulated cherry (x, y).

Problem 10
Are undirected orchard networks encoded by their multisets of distances?

8.4. FINAL REMARKS

A LTHOUGH there is still a lot to be done, we have laid some of the theoretical founda-
tions for methods that are guaranteed to generate the correct phylogenetic network

if sufficient data is available. We focussed on data consisting of subnetworks with fewer
reticulations, distances, or the number of distinct paths to leaves, and we have men-
tioned many other interesting building blocks.

We have also investigated first theoretical results on orchard networks. Its HGT-
consistent time labelling characterization makes it a suitable network class to consider
biologically, depending on the dataset and expected reticulate processes, all the while
having computationally interesting characteristics. There is no doubt that these will be
investigated further in future works.

REFERENCES
[1] K. T. Huber, L. van Iersel, V. Moulton, and T. Wu, How much information is needed

to infer reticulate evolutionary histories? Systematic biology 64, 102 (2014).

[2] F. Pardi and C. Scornavacca, Reconstructible phylogenetic networks: do not distin-
guish the indistinguishable, PLoS computational biology 11, e1004135 (2015).

[3] K. T. Huber, L. Van Iersel, S. Kelk, and R. Suchecki, A practical algorithm for recon-
structing level-1 phylogenetic networks, IEEE/ACM Transactions on Computational
Biology and Bioinformatics 8, 635 (2010).

[4] J. Oldman, T. Wu, L. van Iersel, and V. Moulton, Trilonet: piecing together small net-
works to reconstruct reticulate evolutionary histories, Molecular biology and evolu-
tion 33, 2151 (2016).

[5] S. Kole, Constructing level-2 phylogenetic networks from trinets, Master’s thesis,
Technische Universiteit Delft, the Netherlands (2020).

[6] D. Bryant, Building trees, hunting for trees, and comparing trees: theory and methods
in phylogenetic analysis, Ph.D. thesis, University of Canterbury (1997).

[7] J. Jansson, C. Shen, and W.-K. Sung, Improved algorithms for constructing consensus
trees, Journal of the ACM (JACM) 63, 1 (2016).

[8] N. Tahiri, M. Willems, and V. Makarenkov, A new fast method for inferring multiple
consensus trees using k-medoids, BMC evolutionary biology 18, 1 (2018).



8

216 REFERENCES

[9] R. Janssen, M. Jones, and Y. Murakami, Combining networks using cherry pick-
ing sequences, in International Conference on Algorithms for Computational Biology
(Springer, 2020) pp. 77–92.

[10] P. H. Sneath and R. R. Sokal, Numerical taxonomy, Nature 193, 855 (1962).

[11] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup, On the approx-
imability of numerical taxonomy (fitting distances by tree metrics), SIAM Journal on
Computing 28, 1073 (1998).

[12] W. H. Day, Computational complexity of inferring phylogenies from dissimilarity
matrices, Bulletin of mathematical biology 49, 461 (1987).

[13] M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolu-
tionary trees, Algorithmica 13, 155 (1995).

[14] D. Bryant, V. Moulton, and A. Spillner, Consistency of the neighbor-net algorithm,
Algorithms for Molecular Biology 2, 8 (2007).

[15] F. Pardi and O. Gascuel, Distance-based methods in phylogenetics, in Encyclopedia
of Evolutionary Biology (Elsevier, 2016) pp. 458–465, 1st ed.

[16] O. Gascuel, F. Pardi, and J. Truszkowski, Distance-based phylogeny reconstruction:
Safety and edge radius, Encyclopedia of Algorithms , 567 (2016).

[17] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente, A distance metric for a class of
tree-sibling phylogenetic networks, Bioinformatics 24, 1481 (2008).

[18] G. Cardona, F. Rossello, and G. Valiente, Comparison of tree-child phylogenetic net-
works, IEEE/ACM Transactions on Computational Biology and Bioinformatics 6,
552 (2009).

[19] P. Gambette and K. T. Huber, On encodings of phylogenetic networks of bounded
level, Journal of mathematical biology 65, 157 (2012).

[20] V. Moulton, J. Oldman, and T. Wu, A cubic-time algorithm for computing the trinet
distance between level-1 networks, Information Processing Letters 123, 36 (2017).

[21] K. Landry, A. Teodocio, M. Lafond, and O. Tremblay-Savard, Novel phylogenetic net-
work distances based on cherry picking, in International Conference on Algorithms
for Computational Biology (Springer, 2021) pp. 57–81.

[22] J. Klawitter, Spaces of phylogenetic networks, Ph.D. thesis, University of Auckland
(2020).

[23] R. Janssen, Rearranging Phylogenetic Networks, Ph.D. thesis, Delft University of
Technology (2021).

[24] C. Solís-Lemus and C. Ané, Inferring phylogenetic networks with maximum pseudo-
likelihood under incomplete lineage sorting, PLoS genetics 12, e1005896 (2016).



REFERENCES

8

217

[25] C. Meng and L. S. Kubatko, Detecting hybrid speciation in the presence of incom-
plete lineage sorting using gene tree incongruence: a model, Theoretical population
biology 75, 35 (2009).

[26] H. Baños, Identifying species network features from gene tree quartets under the co-
alescent model, Bulletin of mathematical biology 81, 494 (2019).

[27] E. Gross, L. van Iersel, R. Janssen, M. Jones, C. Long, and Y. Murakami, Distinguish-
ing level-1 phylogenetic networks on the basis of data generated by markov processes,
Journal of Mathematical Biology 83, 1 (2021).

[28] L. Nakhleh, Evolutionary phylogenetic networks: models and issues, in Problem solv-
ing handbook in computational biology and bioinformatics (Springer, 2010) pp.
125–158.

[29] E. Gross and C. Long, Distinguishing phylogenetic networks, SIAM Journal on Ap-
plied Algebra and Geometry 2, 72 (2018).

[30] D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic networks: concepts, algo-
rithms and applications (Cambridge University Press, 2010).

[31] D. A. Baum, Concordance trees, concordance factors, and the exploration of reticulate
genealogy, Taxon 56, 417 (2007).

[32] E. Y. Durand, N. Patterson, D. Reich, and M. Slatkin, Testing for ancient admix-
ture between closely related populations, Molecular biology and evolution 28, 2239
(2011).

[33] P. D. Blischak, J. Chifman, A. D. Wolfe, and L. S. Kubatko, Hyde: a python package
for genome-scale hybridization detection, Systematic Biology 67, 821 (2018).

[34] S. J. Willson, Regular networks can be uniquely constructed from their trees,
IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 785
(2011).

[35] M. Bordewich and C. Semple, Determining phylogenetic networks from inter-taxa
distances, Journal of Mathematical Biology 73, 283 (2016).

[36] M. Bordewich and N. Tokac, An algorithm for reconstructing ultrametric tree-child
networks from inter-taxa distances, Discrete applied mathematics 213, 47 (2016).

[37] S. J. Willson, Tree-average distances on certain phylogenetic networks have their
weights uniquely determined, Algorithms for Molecular Biology 7, 13 (2012).

[38] A. Dress, K. T. Huber, J. Koolen, V. Moulton, and A. Spillner, Basic phylogenetic com-
binatorics (Cambridge University Press, 2012).

[39] P. Buneman, The recovery of trees from measures of dissimilarity, Mathematics in the
archaeological and historical sciences (1971).



8

218 REFERENCES

[40] Y.-J. He, T. N. Huynh, J. Jansson, and W.-K. Sung, Inferring phylogenetic relation-
ships avoiding forbidden rooted triplets, Journal of Bioinformatics and Computa-
tional Biology 4, 59 (2006).

[41] P. V. O’Neil, Ulam’s conjecture and graph reconstructions, The American Mathemat-
ical Monthly 77, 35 (1970).

[42] J. A. Bondy and R. L. Hemminger, Graph reconstruction–a survey, Journal of Graph
Theory 1, 227 (1977).

[43] F. Harary, On the reconstruction of a graph from a collection of subgraphs, in The-
ory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963) (Publ. House
Czechoslovak Acad. Sci. Prague, 1964) pp. 47–52.

[44] L. Van Iersel and V. Moulton, Leaf-reconstructibility of phylogenetic networks, SIAM
Journal on Discrete Mathematics 32, 2047 (2018).

[45] L. van Iersel and V. Moulton, Trinets encode tree-child and level-2 phylogenetic net-
works, Journal of Mathematical Biology 68, 1707 (2014).
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