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Abstract
The fields of music, health, and technology have seen significant interactions in recent years in developing music tech-
nology for health care and well-being. In an effort to strengthen the collaboration between the involved disciplines, the
workshop “Music, Computing, and Health” was held to discuss best practices and state-of-the-art at the intersection of
these areas with researchers from music psychology and neuroscience, music therapy, music information retrieval, music
technology, medical technology (medtech), and robotics. Following the discussions at the workshop, this article provides
an overview of the different methods of the involved disciplines and their potential contributions to developing music
technology for health and well-being. Furthermore, the article summarizes the state of the art in music technology that can
be applied in various health scenarios and provides a perspective on challenges and opportunities for developing music
technology that (1) supports person-centered care and evidence-based treatments, and (2) contributes to developing
standardized, large-scale research on music-based interventions in an interdisciplinary manner. The article provides a
resource for those seeking to engage in interdisciplinary research using music-based computational methods to develop
technology for health care, and aims to inspire future research directions by evaluating the state of the art with respect to
the challenges facing each field.

Keywords
Music psychology, music information retrieval (MIR), music therapy, music neuroscience, music technology, MedTech,
health care, well-being, interdisciplinarity
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1. Introduction

Music is increasingly thought of as beneficial for health,

however the scientific research supporting this claim is not

yet entirely robust. Furthermore, our society is calling for

more standardized, cost-effective methods in medicine,

leading to a surge of interest in e-health and computer-

based interventions. Although music lends itself exqui-

sitely to technological applications, and great strides are

being made in the computational analysis of music that

may facilitate an enormous range of computerized (but

personalized) interventions, relatively little research has

focused specifically on the potential of music technologies

for health applications. Meanwhile, there is a shift to person-

centered care, prevention, and emphasizing resources,

strengths, and self-management of patients. Therapies using

music and arts-based interventions are characterized by per-

sonalized methods focusing on the strengths and capabilities

of patients, having the potential to motivate patients, change

behavior, stimulate adaptability, and reduce symptoms. Such

interventions are therefore expected to play a key role in the

future of health and well-being.

In order to explore how state-of-the-art technology,

machine learning, and computing may be used to develop

novel, music-based applications for health care, the Lorentz

workshop1 “Music, Computing, and Health” was convened

in March 2019, bringing together researchers interested in

the applications of music technology for health care. The

workshop was attended by participants from the fields of

music information retrieval (MIR), music psychology and

neuroscience, and music therapy, along with neighboring

areas such as robotics and human computer interaction

(HCI). These different fields use the term “music tech-

nology” with different nuances. For instance, in computer

science, music technology is seen as “a technical discipline,

analogous to computer graphics, that encompasses many

aspects of the computer’s use in applications related to

music” (Keislar, 2011). In music therapy, it is “the activa-

tion, playing, creation, amplification, and/or transcription of

music through electronic and/or digital means” (Hahna et al.,

2012, p. 456). In the context of this interdisciplinary work-

shop, and the current roadmap article that resulted from it,

we use the term music technology as the umbrella term for

software and hardware devices supporting digital means to

analyze, process, generate, perform, edit, and interact with

music, while we specifically focus on how these digital

means support the many aspects of using music in therapeu-

tic interventions. This encompasses, for instance, supporting

the creation, playing, and recording of music; enabling feed-

back mechanisms through the use of sound and music;

employing musical interfaces for musical expression and

creation; and analyzing musical data produced within music

therapy sessions. We focus on MIR as a research field for

developing computational methods that enable novel music

technology to be employed in the music therapy context.

The three main contributions of this article are, first, to

discuss how these fields may interact in order to develop

music technology for health care settings; second, to

describe the state of the art in using music technology in

music therapy; and, finally, to provide suggestions regarding

possible future directions for interdisciplinary research in the

use of music technology for health and well-being. The

remainder of the Introduction introduces the involved dis-

ciplines, discusses important aspects regarding their interac-

tion for developing music technology (Section 1.2), and

summarizes affordances of music that underpin the various

therapeutic applications of music technology in health
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(Section 1.3). Section 2 of the paper paper provides a

detailed overview of different use cases of music technology

in health settings, and Section 3 covers general considera-

tions and the road(map) ahead.

1.1 Introduction to the Different Disciplines

Music therapy, MIR, and music psychology and neu-

roscience are distinct fields that each afford valuable

interdisciplinary research relevant to applications for

health care and well-being. Specifically, MIR focuses on

the development of efficient and effective methods and

technology for extracting useful information from music

data, while music psychology and neuroscience focus on

advancing our understanding of the cognitive, perceptual

and neural processes that underpin the perception, cre-

ation, and appreciation of music. Understanding these

processes may play an important role in explaining the

effect of music interventions used in music therapy with

clinical populations. Before describing potential interdis-

ciplinary collaborations between these fields for develop-

ing music technology for health care and well-being, we

first briefly describe the constituent fields, emphasizing

their distinct, but complementary, perspectives and

approaches.

1.1.1. Music Therapy. Music therapy is the clinical and

evidence-informed use of music interventions to accomplish

individualized goals within a therapeutic relationship

(American Music Therapy Association, 2014). Music ther-

apy is applied in a wide spectrum of inpatient, outpatient,

and community health care contexts, and in education. Inter-

ventions are conducted by professionals who are trained and

licensed as a music therapist. Interventions involve a ther-

apeutic process developed between the patient (or client)

and therapist through the use of personally tailored music

experiences (Bradt & Dileo, 2014; De Witte et al., 2019).

These experiences are accomplished through shared music

listening or shared music playing, using methods such as

composition, improvisation, or songwriting (Leubner &

Hinterberger, 2017). Music-therapeutic interventions can

be subdivided into the two broad categories of active and

receptive interventions (Magee et al., 2017; Wheeler, 2015).

In active interventions, the patient is involved with the

music-making process. In receptive interventions, the

patient listens to live or recorded music, and responds

silently, verbally, or in another modality (Bruscia, 1998;

Wheeler, 2015). Live music is used most frequently,

co-created between the patient and the therapist, optimizing

opportunities for spontaneity and play. Recorded music is

also used when authentic recreations of the music are diffi-

cult (e.g., when music is ethnically or culturally specific), or

in receptive music therapy methods, such as guided imagery

and music (GIM; Grocke & Moe, 2015).

Music therapists work with people across the entire life-

span, from neonates to the elderly, and typically as part of an

interdisciplinary team. The populations served include

developmental and neuroatypical disorders, medical, beha-

vioral health, palliative, forensic, and other at-risk popula-

tions in crisis or trauma. There has been a recent trend in

music therapy to incorporate music technology in music

therapy to incorporate music technology, which can be used

across all of the music-therapeutic methods to facilitate

patient/therapist interactions, to support data collection/anal-

ysis of these interactions, to create new opportunities for

treatment, and more (Magee, 2014c, 2018). There is a rich

body of research supporting the efficacy of music therapy

across a range of medical, psychiatric, and subclinical popu-

lations, with theory drawing from medicine, neuroscience,

psychology, and music (e.g., Aalbers et al., 2017; Bradt

et al., 2016; Magee et al., 2017). In this article we speak

of music interventions when it comes to the use of music as

an intervention offered by any kind of health care profes-

sional (e.g., medical professional, social worker, physical

therapist), and of music therapy when the music intervention

is offered by a trained and qualified music therapist.

1.1.2. Music Information Retrieval. Computational approaches

to the study of music emerged in the 1950s, and the broad

range of methods in developing music technology today is

reflected by the numerous research communities at the

intersection of music and computer science, most notably

MIR, computational and digital musicology, sound and

music computing (SMC), and new interfaces for musical

expression (NIME). Although there is significant overlap

between these areas, we explicitly discuss MIR here.

MIR draws from research disciplines such as signal

processing, information retrieval, machine learning, HCI,

digital libraries, musicology, music cognition, and psy-

choacoustics, focusing on a wide range of computer-

based music analysis, processing, and retrieval topics. The

computational analysis of musical structures within and

across musical pieces has formed a major research focus

in MIR, taking digitized symbolic representations into

account, which include any kind of score representation

with an explicit encoding of musical events (such as

notes), as well as digitized audio representations (digital

representations of sound waves). Developing methods to

rigorously evaluate computational analyses, concepts,

models, interfaces, and algorithms in MIR constitutes a

second major effort in this field. Both the computational

analysis of musical structures and the evaluation strate-

gies on measuring the outcomes of computational models

in specific contexts can serve as promising starting points

for employing computation in music in several scenarios

of health and well-being.

Computational music analysis (e.g., Anagnostopoulou &

Buteau, 2010; Meredith, 2016) aims at extracting and describ-

ing musical structures such as melodies (Van Kranenburg

et al., 2013), motives, patterns and segments (Conklin,

2010; Janssen et al., 2017; Lartillot, 2005; Meredith et al.,

2002), chords, harmonies, and tonality (Chew, 2014), or

Agres et al. 3



rhythms and meter (Volk, 2008), employing and extending

techniques originating in disciplines such as linguistics, infor-

mation theory, geometry, algebra, and machine learning. The

automatic extraction of musical structures from audio signals

(Müller, 2015) complements methods in the symbolic

domain. An audio waveform provides a detailed encoding

of a specific performance of a piece, including any temporal,

dynamic, and tonal micro-deviations present. Besides tech-

niques from digital signal processing, an increasing number of

MIR approaches employ machine learning techniques in both

the symbolic and audio domain, such as deep learning (see

Müller et al., 2019, for an overview of audio-related MIR).

Using computational techniques to allow users to inter-

act with music in different contexts, such as those for music

recommendation, listening, and creation (Knees et al.,

2019), constitutes another important research focus of

MIR, which is crucial for developing music technology in

the health and well-being context. Designing interactive

music technologies that can support therapeutic interven-

tions ties into research in the field of HCI, and requires

additional considerations from the music therapeutic per-

spective, such as patients’ needs and the therapeutic goals

(see Section 2.2).

While the application of MIR technology has expanded

beyond the original retrieval and recommendation domains to

areas such as education, gaming, and automatic music com-

position, the application within the health context has been

considered as one of the future challenges of MIR (Serra et al.,

2013; Future of Music-IR Research Panel at ISMIR 2017).2

1.1.3. Music Psychology and Neuroscience. Humans—musi-

cians, and non-musicians alike—have a natural tendency

to react to music, produce it, and enjoy it. Across groups

and cultures, from childhood to older age, people experi-

ence music on a daily basis by passive or active listening,

playing an instrument, singing, and dancing. Understand-

ing the cognitive and brain mechanisms supporting these

widespread abilities, and more generally of musicality, is

the main goal of music psychology and of the neuros-

ciences of music (Deutsch, 2012; Peretz & Zatorre, 2003;

Tan et al., 2018). Knowledge about these mechanisms is

acquired using a variety of methods coming mostly from

experimental psychology, cognitive neuroscience, and

computational modelling. Musical abilities are examined

in well-controlled behavioral experiments in the lab, using

behavioral methods, psychophysiological methods (e.g.,

electro-encephalogram (EEG) or electromyogram (EMG)),

neuroimaging techniques (functional magnetic resonance

imaging (fMRI), or positron emission tomography (PET)-

scan), and brain stimulation (e.g., transcranial magnetic

stimulation, or TMS). Ultimately, the findings from music

psychology and neuroscience contribute to our understand-

ing of the roots of musicality, and show the relevance of

both innate (e.g., genetic) and environmental factors in

shaping our musical brain (Zatorre, 2013). Example areas

of interest in this area are pitch and rhythm perception,

emotion and reward evoked by music listening, music per-

formance, and music-specific disorders (e.g., acquired and

congenital amusia, cf. Stewart et al., 2009).

Musical training and performance provide an ideal

human model for examining the brain effects of multisen-

sory stimulation and learning. These multisensory experi-

ences engage our sensory, motor, and cognitive systems,

implicating a wide array of brain structures. The idea that

music stimulates plasticity in neuronal networks subserving

more general functions (Herholz & Zatorre, 2012; Zatorre,

2013) is particularly relevant when devising targeted

music-based health interventions for the purpose of reha-

bilitation in various neurological diseases, such as stroke,

dementia, and Parkinson’s disease (PD) (cf. Särkämö,

2018; Sihvonen et al., 2017). Rather than focusing on ther-

apeutic processes and complex clinical presentations,

music-based interventions based on experimental findings

in music psychology and neuroscience use validated, and

sometimes standardized, procedures and measurements,

and highly-controlled protocols aimed at identifying the

intervention’s underlying mechanisms. Many of these

interventions have been evaluated through controlled stud-

ies focused on the neuronal networks underlying any ben-

eficial effects (e.g., reward, plasticity of sensorimotor

systems, arousal, affect regulation; for a recent review, see

Sihvonen et al., 2017). Music has been argued to enhance

well-being throughout the life span by activating multiple

brain networks, showing high potential for supporting or

aiding in the recovery of brain function (e.g., Särkämö

et al., 2008), and by providing reward value (Salimpoor

et al., 2015). Increasing understanding of the brain net-

works supporting music perception and performance

allows theory-driven music interventions to be tested in

clinical settings (Dalla Bella, 2016, 2018). A more promi-

nent focus on evidence-based procedures also creates a

different set of affordances to apply music technologies

in health interventions, for instance by using gaming

approaches that can be used independently of a therapist,

or by using MIR technologies to automatically select

appropriate music for a particular patient.

1.2. Interactions Between the Disciplines For
Developing Music Technology for Health Care and
Well-Being

Compared with collaborative research within a single disci-

pline, interdisciplinary collaborations and interactions incur an

extra overhead in terms of time and resources, due to the need

to develop a common language and share theoretical con-

structs and methodologies. Interdisciplinary research, while

often of higher impact in the long term, is therefore slower

to develop (Leahey et al., 2017). One thing that can catalyze

collaboration is explicit discussion of how the different disci-

plines might work together, what each may bring to the table,
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and which gaps must be bridged across fields. In the following

subsections, these ideas are explored in more detail.

1.2.1 Potential Ways of Working Together and Finding Shared
Goals. The combination of these different disciplines for

developing music technology for health care and well-

being requires bridging several gaps. Reciprocal relation-

ships between the different disciplines may emerge based

on their shared goals.

Cross-disciplinary approaches (i.e., when the methods

from one domain are used to answer a question from

another domain, but not addressing shared questions) may

often be well suited for these purposes, and may be highly

effective. For successful interdisciplinary collaboration, a

shared problem space should be identified (i.e., specific

questions that all the disciplines involved consider to be

worth pursuing). The obstacles to collaboration between

disciplines lie not only in their differences with respect to

approach and methodology, but also in the need to establish

a shared terminology. Although the overarching aim—cre-

ating applications that support patients or general well-

ness—binds the domains together, substantial effort is

still necessary to create research initiatives that satisfy or

at least do not reject the various disciplines’ more specific

goals. Figure 1 depicts the (non-exhaustive) multidisciplin-

ary space relevant to the current topic.

1.2.2. Reductionism and Reproducibility Versus the Holistic
Approach of Music Therapy. There are significant gaps

between the approaches common for the different research

areas. The tensions between disciplines with different levels

of analysis have been described by Wilson (1977) and rely to

some extent on the use of different methods and approaches

to construct knowledge. One notable difference is that music

therapy aims to employ a holistic approach in which the

therapeutic use of music is central to the goal of stimulating

social, linguistic, and affective dimensions. Music therapy

not only examines functional outcomes such as measurable

behaviors and physiological indicators of health and well-

being, but also extensively relies on subjective, first-person

accounts by patients and subjective second-person accounts

by a significant other or the therapists, which often require

self-reporting (e.g., pain, mood, and psychological distress).

Music therapy offered by a trained music therapist is char-

acterized by the presence of a therapeutic process and the use

of personal music experiences (Bradt & Dileo, 2014; Gold

et al., 2011), focusing on how best to benefit the patient. This

may lead to a certain amount of skepticism towards

Figure 1. Multidisciplinary space relevant for developing music technology for health, with notable topics and methods from music
therapy, MIR, and music psychology & neuroscience (in color), as highlighted in the current article. These terms are non-exhaustive, but
rather display some of the concepts discussed in this article. The colored clouds encompass the concepts and approaches of the fields in
bold font, and these fields naturally contain some overlap. Other potentially relevant fields not discussed in depth here are represented
in the larger gray cloud.
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experimental research—because experiments in fundamen-

tal research studies are seen not as directly or immediately

benefiting the involved patients themselves but as poten-

tially benefiting future patients. Conversely, the holistic per-

spective is often seen by experimental researchers as lacking

methodological rigor or the ability to produce evidence that

compares to medical standards. Fundamental research into

the underlying mechanisms involves developing specific

hypotheses, models, and methods to examine music percep-

tion, cognition, and behavior, typically in a controlled envi-

ronment. Hypothesis testing involves reducing the number

of variables present in natural (or “ecological”) contexts, in

order to produce generalizable findings. Applied research in

this area tends to focus specifically on effectiveness and

generalizability (cf. Sihvonen et al., 2017). This approach

has the advantage of being theory-driven, and based on the

collection of quantitative data in clinical populations. Quan-

titative data is obtained by testing large samples of patients

in randomized controlled trials (RCTs), employing standar-

dized outcome measures spanning from behavioral tests to

brain measurements (e.g., fMRI, EEG). RCTs usually

include a (preferably active) control non-music condition,

which allows pinpointing of the benefits selectively associ-

ated with music perception or music activities (e.g., Särkämo

et al., 2008, 2014; for a review, see Särkämo, 2018).

Reductionism in empirical sciences might be seen as a

limitation from a holistic perspective, as it over-simplifies

complex phenomena. Although holistic methods may pre-

clude strong conclusions, they offer specific hypotheses that

can be tested. Moreover, some studies find that methodolo-

gical differences (such as not having an active control group)

may lead to inflated results (for an example from education,

see Sala & Gobet, 2020). Developments in signal process-

ing, machine learning, and big data provide tools to find

regularities in complex data, which can be collected in more

ecologically valid contexts. For example, the design and

development of digital technologies has specific targets, and

drastically reduces the multimodal complexity of the inter-

action between humans, and between humans and their envi-

ronment. Simultaneously, new digital tools introduce

variables with unpredictable outcomes with implications in

the domain of health. Further, as smart phones and physio-

logical sensors become ubiquitous, there are increasing

opportunities to collect data from natural contexts, contribut-

ing to the integration between the above-mentioned disci-

plines. The need for varying levels of evidence is an ongoing

discussion (e.g., Cheever et al., 2018) and collaborations

between these fields require strategies to ensure that differ-

ent levels of inquiry can be addressed while taking into

account the limitations of the translations. Overall, the inte-

gration of different approaches would be for reductive, con-

trolled experiments to aim for maximal clinical relevance,

while clinicians would aim to use only methods that are

supported by RCTs. The use of music technology may help

to bridge this gap by quantifying and analyzing data from

naturalistic settings.

1.3. Affordances of Music for Therapeutic Use

Music has certain characteristics and affordances that

underpin various therapeutic applications in health care:

for example, emotion regulation, motivation, perceptual

entrainment and motor coordination, and social interaction.

The potential to influence these processes should be con-

sidered when developing music technologies.

1.3.1. Emotion Regulation. Music and emotion are intrinsi-

cally connected (Meyer, 1956). The ability of music to

induce affect and support emotion regulation in listeners

has been the subject of extensive empirical investigation

(Moore, 2013; Thoma et al., 2012; Van Goethem & Slo-

boda, 2011), and many approaches have used technology to

leverage music to mediate affective states. For example,

machine learning models for emotion and tension detection

in music have become quite sophisticated (Herremans &

Chew, 2016; Phuong et al., 2019; Yang & Chen, 2012),

enabling specialized music recommendation (Han et al.,

2010), playlist generation (Kabani et al., 2015), and affec-

tive automatic music generation (Scirea et al., 2017) to

guide the listener to a target emotional state, or allow lis-

teners to self-regulate their emotions using neurofeedback

(Ehrlich et al., 2019; Ramirez et al., 2015; see Sections

2.3.1 and 2.4.3. Additionally, music is known to be capable

of reducing stress (and induce calming states) in listeners

(Chanda & Levitin, 2013; Gillen et al., 2008; Juslin &

Västfjäll, 2008; Koelsch, 2015). The ability of music-

assisted relaxation techniques to significantly decrease

patients’ physiological arousal and improve stress reduc-

tion was confirmed in a meta-review by Pelletier (2004),

and by more recent meta-analyses of randomized con-

trolled trials (RCTs) focusing on the effects of music inter-

ventions and music therapy stress-related outcomes (De

Witte et al., 2019, 2020).

1.3.2. Motivation and Adherence. Patients’ compliance and

adherence to prescribed therapies—for example, exercise

adherence (Forkan et al., 2006; Fritz et al., 2007)—is a

notoriously difficult issue that can lead to less-successful

patient outcomes. Motivational benefits may be enhanced

through the use of personally preferred music, activating

general reward mechanisms (Salimpoor et al., 2011;

Zatorre, 2015). A recent review by Ziv and Lidor (2011)

reports that adding music to therapy programs can posi-

tively impact patients’ exercise capacity and motivation,

improve adherence and overall function in those suffering

from neurological diseases, and even lead to improved life

satisfaction in elderly individuals. For example, there is

evidence that musical feedback systems for exercising

(e.g., the Jymmin’ system) provide a sense of musical

agency that reduces perceived exertion (Fritz et al.,

2013). Even between music therapy sessions, adherence

to at-home training exercises might be higher through

music-based technologies such as serious games (see
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Section 2.4.1). Moreover, music therapy may benefit

patients with mental health problems that lack motivation

for other therapies (Gold et al., 2013). The decreased drop-

out rate seen for music therapy compared to treatment as

usual may also reflect increased motivation (Gold et al.,

2013).

1.3.3. Perceptual Entrainment and Motor Coordination. One of

the most salient aspects of music is its often-regular temporal

structure, leading to the perception of an underlying beat or

pulse. This beat allows the coupling of perceptual processes

to the rhythmic structure of the music, by what is referred to

as perceptual entrainment (cf. Large & Jones, 1999). This

process, thought to drive attentional fluctuations (e.g., Nobre

& Van Eden, 2018), can be captured with electrophysiolo-

gical methods such as EEG (Fujioka et al., 2012; Nozaradan

et al., 2011). Phase-locking of perceptual processes with this

pulse facilitates a variety of entrained periodic movements

(or motor entrainment) via auditory-motor coupling, from

small finger movements to whole-body involvement seen

in walking and dancing (see Section 2.2.2 for more on the

analyses of data). Perceptual entrainment to a musical beat

thus generates temporal expectancies which foster the align-

ment of movements to the anticipated event times. This tight

link between musical rhythm and movement is supported by

a compelling body of evidence in music cognition and cog-

nitive neuroscience (Grahn & Brett, 2007; Janata et al.,

2012; Zatorre et al., 2007). Perceptual entrainment and

auditory-motor coupling are core mechanisms underlying a

range of responses to music, such as its beneficial effects in

rehabilitation of motor disorders (e.g., Dalla Bella et al.,

2015; Nombela et al., 2013), which is leveraged in some

musical serious games for rehabilitation (see Section 2.4.1)

and in technology focusing on rhythmic gait training (Magee

et al., 2017).

In a therapeutic context, entrainment is also used as a

means towards attunement between patient and therapist,

allowing them to engage in a more connected process, such

as through interpersonal synchronization during improvisa-

tion therapy, as described in Section 2.2.3. Having a com-

mon rhythm is thought of as a highly rewarding activity in

various social contexts (McNeil, 1995); it provides a sense

of togetherness or intimacy (Himberg et al., 2018; Noy

et al., 2015) and has been proposed to play a major role

in bonding (Tarr et al., 2014).

1.3.4. Social Interaction and Group Therapy. Although music-

making can be highly individual, it is predominantly a

social activity, triggering social effects and behaviors.

Music arguably emerged from social interaction, has been

proposed to be a communicative action (Cross, 2014), and

plays a role in bonding (Schulkin & Raglan, 2014; Tarr

et al., 2014). Music is an essential developmental tool in

learning to relate to others and expressing one’s internal

emotional state (Geretsegger et al., 2015; Koelsch, 2015;

Magee & Bowen, 2008), and we engage in music-making

through rituals with others across the lifespan. Listening to

music in the presence of others may strengthen the stress-

reducing effect of the music intervention, which is believed

to be caused by increased emotional well-being (Juslin

et al., 2008), and increased feelings of social cohesion

(Boer & Abubakar, 2014; Linnemann et al., 2016; Pearce

et al., 2015). The aforementioned aspect of rhythmic

entrainment, allowing people to synchronize their move-

ments with each other, can also evoke positive feelings of

togetherness and bonding, and decrease stress levels (Tarr

et al., 2014). Virtual partners have been used to study social

interaction in the visual (Dumas et al., 2014) and musical

(Fairhurst et al., 2013, 2019) domains, and have provided

insights into the ideal degrees of self-other merging for

successful performance (Fairhurst et al., 2019). These stud-

ies in the field of neuroscience suggest potential technolo-

gical applications that can be used in the therapeutic

domain, such as aiming to increase feelings of cooperation

and merging with others. Music technologies may create

opportunities for groups of individuals to engage in virtual

music therapy who cannot, for example, be in the same

physical location, or who would not normally be able to

participate in musical activities due to motor constraints

(e.g., through new, enabling interfaces as discussed in Sec-

tion 2.4.2.)

2. Various Use Cases of Music Technology
in Health Settings

2.1. Overview of Health Settings and the Purpose of
Clinical Treatments

This section provides a short overview on the different set-

tings and therapeutically oriented experiences in which

music technology can be employed. This subsequently

structures the overview on the different scenarios of devel-

oping music technology for health care and well-being dis-

cussed in Section 2.2 on Data Analysis. Music interventions

and music therapy are applied in health care, education, and

community settings to address clinical goals in functional

domains (Wheeler, 2015) (see Figure 2). Music therapy is

offered by a trained and qualified music therapist only,

whereas music interventions are broader and are offered

by both music therapists and other professionals. Music

interventions for health and well-being may have several

distinctly different functions. Depending on the problem

or symptom that needs addressing (e.g., pain management,

communication disorders, motor function), as well as what

is possible for a specific group of patients or users, music-

based activities may serve the function of (a) stimulation,

(b) supporting functional training, or (c) being part of a

broader rehabilitation program (also depicted in Figure 2).

This categorization is not entirely comprehensive. Stimula-

tion can be thought of as an activity that may not necessarily

have a specific clinical goal and is often aimed at general

enhancement of well-being or cognitive function through
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sensory stimulation, physical activity, or cognitive and

social activities to address understimulation (Croom,

2015). Functional training relates to guided practice on a

set of standard tasks, for an individual or in a group,

intended to increase functioning in a specific area (Ripollés

et al., 2016). Finally, in rehabilitation models, individually-

tailored goals are identified and a personal plan is made to

attain these goals, with an emphasis on reducing symptoms,

promoting psychological development, and increasing

everyday quality of life (Aalbers et al., 2017; De Witte

et al., 2019). Notable functional domains where music can

be used to address specific goals include motor activity or

movement, cognition, communication, social skills, emo-

tion and sensory regulation (including pain), as well as

creative expression and spirituality.

The care setting and the patient’s needs will direct the

type of clinical activity: that is, not all people need rehabi-

litation unless they have active health problems, some may

only need generalized training, and others may only need

stimulation to maintain their current level of functioning.

Musical activities can be varied to accommodate the level

of need across each of these functional domains, and argu-

ably, music technology can be incorporated into all of these

scenarios as well.

In the following sections, we discuss various scenarios

and use cases on how technology is currently used to

enhance music therapy, or how music technologies are oth-

erwise used for health and well-being, namely through

applying computational data analysis methods for thera-

peutic goals, through providing support technologies for

therapy sessions with the therapist, to provide support tech-

nologies for at-home-training in between therapy sessions,

and for health and well-being outside the context of music

therapy. While technologies that are developed do not

necessarily apply to only one clinical setting (i.e., during

therapy vs. in between sessions or independently), we pri-

marily focus on the practical ways in which these technol-

ogies are used.

2.2. Data Analysis

Technology can assist in music (therapy) research and

practice by measuring patient behaviors during interven-

tions, as well as providing measurable outcomes and diag-

nostics. In this section we discuss different types of

signals that are relevant to music therapy for which tech-

nologies may assist in their collection and analysis,

namely biomarkers (Section 2.2.1) and kinematic data

(Section 2.2.2), identifying meaningful moments from the

therapeutic process in support of the therapists’ own

awareness and record-keeping (Section 2.2.3), and the

analysis and visualization of musical structures created

by a patient or patient/therapist dyad (Section 2.2.4).

2.2.1. Biomarkers. In recent years, various biomarkers (bio-

logical markers) have been used in music (therapy)

research to gain more insight into the biological responses

to different kinds of music stimuli. A biomarker can be

defined as an objectively measured index of a biological

process that is quantifiable, precise, and reproducible. A

biomarker can be used as an indicator of normal biological

processes, pathogenic processes, or (pharmacologic)

responses to a therapeutic intervention (Biomarkers Defi-

nitions Working Group, 2001). Biomarkers are seen as a

measure with a more objective value compared to ques-

tionnaires/interviews, and are therefore particularly useful

for diagnosing or determining the stage of a disease, or

predicting a clinical response to treatment. While the term

is generally used in medical settings to refer to a naturally

occurring molecule, gene, or biological characteristic by

which a particular pathological or physiological process,

disease, etc., can be identified, in music therapy this defi-

nition is often extended. In music therapy, the term often

refers to any biological measure that can be taken to

improve our understanding of the therapeutic process, such

as brain imaging, psychophysiological, and hormone mea-

sures (fMRI/fNIRS, EEG, ECG, impedance cardiography,

skin conductance response, respiratory measures, cortisol,

adrenaline; see Fancourt et al., 2014; De Witte et al., 2019;

Fachner et al., 2019). As such, music therapy research more

Figure 2. A visualization of the contexts, purposes, and domains
in which music technology may be applied to support health and
well-being: Clinical and non-clinical contexts are the broadest,
most general level to consider, followed by the purpose of the
music intervention, and at the most specific level are the func-
tional domains addressed in clinical treatments. Treatments
(including the appropriate choice for technology for health) are
determined by the functional domain that needs to be addressed,
and every treatment has a specific purpose, and takes place within
a broader context of health care or wellness. Taken together, the
context, purpose, and functional domain helps to determine the
type(s) of therapy required.
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often uses such biomarkers to study underlying mechan-

isms than to assess clinical endpoints, as is more common

in other areas of clinical research. Novel computational

technologies may be able to assist in finding meaningful

patterns in these measures while potentially relating them

to self-report measures, or musical aspects of the therapy,

or both. Dealing with rich, multimodal data is particularly

suited to analysis approaches that focus on finding patterns

and identifying informative parts of the data that may clar-

ify any effects on biomarkers that may be seen after or

during music therapy.

2.2.2 Kinematic Analyses. Relevant outcome measures in

music-based interventions often come from kinematic anal-

yses of behavior. Data recorded via motion-capture technol-

ogies (optics sensors, inertial measurement units (IMUs),

accelerometers, and so forth; see Section 2.3.1) allow for the

extraction of spatial and temporal motion features such as

position, velocity and acceleration, movement smoothness,

and joint angles. These measures play a critical role in asses-

sing the efficacy of a music-based treatment on upper and

lower extremity movements in patients with movement

disorders resulting from, for example, stroke (Rodriguez-

Fornells et al., 2012; Scholz et al., 2016) or neurodegenera-

tive diseases such as PD (Ghai et al., 2018; Spaulding et al.,

2013; Thaut et al., 1996).

Kinematic measures are particularly relevant, as they

can drive dedicated music interventions exploiting innova-

tive technological solutions. This approach has been

recently applied with the purpose of individualizing rhyth-

mic stimulation in the rehabilitation of motor disorders, for

example in PD. It is well known that presenting a rhythmic

stimulus such as a metronome or a musical excerpt with a

salient beat has an immediate effect on patients’ gait kine-

matics, by increasing walking speed and stride length. This

beneficial effect can be extended after several sessions of

training with rhythmic stimuli (for reviews, Dalla Bella

et al., 2015; Nombela et al., 2013). Although positive

effects of a rhythmic auditory stimulus have been demon-

strated (Arias & Cudeiro, 2010; McIntosh et al., 1997),

individuals’ responses to rhythmic stimuli vary consider-

ably; some patients show a clear benefit, while others may

even experience deleterious effects of the stimulation

(Dalla Bella et al., 2017, 2018). Thus, individualization

of a treatment appears to be necessary in order to guarantee

maximum effects of an intervention and overcome its

potential deleterious effects. Mobile technologies coupled

with sensors (e.g., IMUs) capable of monitoring patients’

motor behaviors provide an ideal opportunity for imple-

menting individualized rhythmic stimulation (Dalla Bella,

2018). The adaptation of music features (e.g., the music’s

beat) to movement kinematics (step time) in real time can

be used to assist patients in synchronizing footsteps to the

beat. Achieving step-to-beat synchronization via mobile

technologies would allow targeting neuronal networks

underlying audio-motor coupling, which are thought to

play a compensatory role in rhythm-based interventions

(Dalla Bella et al., 2015; Nombela et al., 2013; Schaefer,

2014). This idea has been implemented in different tech-

nological solutions building on bidirectional coupling

(WalkMate: Hove et al., 2012; DJogger: Moens et al.,

2014), leading to mutual coordination, where the cues are

dynamic and two systems (the rhythmic cue and the user)

adapt to each other. This functionality is particularly

appealing as it makes predictions about the conditions in

which spontaneous synchronization of gait is more likely

(Dotov et al., 2019). As such, it is expected to encourage

spontaneous step-to-beat synchronization, while taking

patients’ individual motor skills into account. Development

of other technological solutions for rhythmic and sensori-

motor training, inspired by serious games for health, is also

underway (Bégel et al., 2018; Dauvergne et al., 2018).

Given increasing availability of different kinds of sensors

that register movement, immediate future directions specif-

ically focus on benchmarking sensors for their sensitivity in

measuring temporal and spatial precision, and potentially

aligning these inputs with music delivery. To further create

systems that can make use of kinematic measures, the first

concerns are whether they are fast enough, precise enough

and synchronized to the extent that auditory-motor cou-

pling can successfully emerge.

2.2.3. Identification of Meaningful Moments Using Techniques
from Information Theory and Automatic Pattern Discovery. A

novel suggestion for the evaluation of therapeutic interven-

tions is to develop approaches to automatically identify

moments within therapy sessions that mark noticeable and

significant change in a patient’s behavior (Fachner et al.,

2019). Defining “moments of interest” (MOIs) during

music therapy sessions is a non-trivial task for various

reasons. As a first step, therapists need to specify how they

identify such moments in recordings of therapy sessions,

and annotate a collection of such recordings. This requires

a solid definition and operationalization of an MOI from a

clinical perspective, including an examination of (1) when

music therapists observe MOIs during therapy and which

musical features might be related; (2) whether music thera-

pists agree on where an MOI occurs; (3) whether observed

MOIs match patient reports (e.g., MOIs identified by thera-

pists correspond with patients’ feedback); and (4) whether

therapists’ annotations of MOIs relate to functional

improvements in behavioral/neural states, and are able to

predict clinical outcomes.

It remains to be explored whether an operationalization

of MOIs (in terms of when a significant moment of change

occurs and whether it relates to a change in musical fea-

tures) can be achieved through discussion and agreement

between therapists alone, or whether the use of machine

learning models to extract those factors from a large corpus

of expert annotations can help. Without sufficient agree-

ment between therapists about what constitutes an MOI,
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computational models would have to be tuned to individual

therapists or raters.

To develop computational methods to support the auto-

matic detection of MOIs, a database of MOIs must be

compiled from clinical observations, focusing on particular

pathologies for initial method development. If a suffi-

ciently large collection of therapists’ annotations of ses-

sions is gathered, deep learning models could derive

potential characteristics of MOIs. Video resources with

detected MOIs may provide orientation when exploring

recordings of therapy sessions as a resource for practice

and theory development, as well as for including patient

perspectives on MOIs.

In order to then investigate whether therapists’ reports

on MOIs are associated with systematic changes in musi-

cal structure, it is necessary to adapt computational

approaches, such as change-point detection in time series

(Eckley et al., 2011), information theory (to identify

moments with high “Information Content,” or surprise;

e.g., Pearce & Wiggins, 2012), and automatic pattern

detection methods, to examine where distributions over

certain measured variables change significantly. These

variables may relate to musical sound (e.g., event density,

regularity, sound level, structural salience), interaction

dynamics, and/or physiological measures (e.g., heart or

breathing rate).

In contexts where music therapists work with symbolic

encodings, such as with MIDI-data produced during musi-

cal improvisations (Foubert et al., 2017), methods for

detecting MOIs can be used for produced musical note

events. Potential avenues include the identification of

emerging temporal regularities in the musical material

(Volk, 2008) and moments of interpersonal synchroniza-

tion during improvisations, such as a shared pulse (Foubert

et al., 2017) achieved through perceptual entrainment (see

Section 1.3.3), the description of repetitiveness in the musi-

cal interaction through automatic discovery of repeated

melodic, rhythmic and/or harmonic patterns (Conklin,

2010; Melkonian et al., 2019; Meredith, 2015; Ren et al.,

2018), and the application of information theoretic mea-

sures to the musical score (e.g., Abdallah & Plumbley,

2009; Agres et al., 2017; Pearce & Wiggins, 2012).

2.2.4. Analysis/Visualization of Musical Structures. The previ-

ous subsections explore data that may be collected from the

user/patient and from the music created by the patient (or

patient–therapist dyad). In this subsection we discuss meth-

ods from MIR to visualize the data to gain insights into the

efficacy of interventions, in order to gain a clearer picture

of the current state/progress of the patient, and guide future

research and interventions.

Typically, visualizations display the development of

musical parameters over time. Whereas a majority of

MIR approaches has focused on the analysis of audio

signals, visualizations can be obtained from other time

series as well, such as MIDI and motion data. Arguably

the most widely used visualization in the audio domain

emerges from a spectrogram, which displays the magni-

tude of a signal in a set of frequency bins over time,

which can for instance, be used to focus on a clear

representation of the main melody in a signal (see Fig-

ure 3 for an example). Derived from a spectrogram, a

chromagram displays the energy of each of the 12 notes

of the Western equal-tempered tonal system per time

point, which is often used to estimate the sequence of

Figure 3. (a) Musical score of a short excerpt of a soprano singer performing an aria from the opera Der Freischütz by Carl Maria von
Weber; (b) Log-frequency spectrogram of a recorded performance of the excerpt; (c) Extracted F0-trajectory of the singing part.
Adapted from Müller, 2015, Section 8.2 (Adapted by permission).
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chords or modalities (see Figure 4 for an example).

Other visualizations are based on the detection of

changes in a signal, for instance regarding timbre, tonal

characteristics, or energy level, which have been

considered to visualize the development of tempo-

related processes over time (see Figure 5 for an exam-

ple), and the organization of a piece of music into the

structural units of a composition (see Figure 6 for an

Figure 5. Excerpt (corresponding to measures 26 to 36) of an orchestra recording conducted by Ormandy of Brahms’ Hungarian
Dance No. 5: (a) Score in a piano reduced version; (b) Visualization of a time-tempo representation. Considering an eight-note pulse
level, the excerpt starts with a tempo of 180 BPM (measures 26–28, seconds 35–39), then abruptly changes to 280 BPM (measures
29–32, seconds 39–41), and continues with 150 BPM (measures 33–36, seconds 41–49). Adapted from Müller, 2015, Chapter 6
(Adapted by permission).

Figure 4. Chord recognition task illustrated by the first measures of the Beatles song “Let It Be”: (a) Score of the first four measures;
(b) Visualization of a waveform of a recorded performance of these measures; (c) Visualization of a time-chroma representation; (d)
Chord recognition result (idealized). Adapted from Müller, 2015, Chapter 5 (Adapted by permission).
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example). Research on the detection of repeated melodic

and rhythmic patterns within music has also led to

visualization approaches that focus on such patterns

(e.g., Nikrang et al., 2014), yet, due to the typically

enormous amount of repetition in musical material, this

is not a solved problem. Visualizations of fine- and

large-scale tonal structures in musical pieces (Sapp,

2005) as well as interactive systems for tonal visualiza-

tion during musical performances (Chew & Francois,

2005) have been developed for symbolic music data.

Symbolic representations of musical works (e.g., in

MusicXML, Lilypond, or MIDI format) afford further

possibilities for automatically generating visualizations

(and sonifications) of musical structure, such as detailed

representations of the motivic and thematic structure of

a piece (see Figure 7).

Visualizations that are useful for therapists and patients

need to be developed collaboratively. The aforementioned

examples from MIR on visualizing musical structures such

as chords, melodies, or repeated patterns can serve as start-

ing points for potential adaptations to therapeutic scenarios,

such as supporting the automatic detecting of MOIs. Pre-

vious examples of visualizations in other interdisciplinary

contexts may provide useful directions. For instance,

Zalkow et al. (2017) used chroma-based visualizations to

explore the narrative in Wagner’s operas in collaboration

with musicologists, and visualizations derived from MIR

analyses have been incorporated in music education tools,

such as Yousician.3

In therapeutic contexts, visualizations can be computed

from a collection of recordings of therapy sessions, which

could inform the reflection of the therapist on the effects of

Figure 7. A visualization of the output automatically generated by a point-set pattern discovery algorithm, COSIATEC (Meredith,
2015), for the fugue from J. S. Bach’s Prelude and Fugue in C major, BWV 846, from The Well-Tempered Clavier, Book 1.

Figure 6. Self-similarity matrix and annotated musical structure of a recording of Brahms’ Hungarian Dance No. 5. Labels denote
recurring segments (e.g., A2 denotes a re-occurrence of segment A1), colored boxes within the self-similarity matrix indicate the
corresponding similarity in the audio signal detected between recurring segments, such as the green boxes showing high similarity
between segments B1, B2, B3, and B4. Adapted from Müller, 2015, Chapter 4 (Adapted by permission).
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an intervention, as discussed in the previous subsection.

Visualizations may also provide useful visual feedback in

real time during therapy sessions, as real-time visualization

of musical structure has been used to augment artistic per-

formances (Schedl et al., 2016). Whether such real-time

visualizations provide a meaningful addition to therapeutic

interventions, or if they rather disturb or disrupt the imme-

diate interaction between therapist and patient, is a crucial

question to be addressed. Defining specific use cases has to

take into account the limitations of the existing MIR

approaches, hopefully with the goal to attenuate these

through collaborative development.

2.2.5. Data Analysis: Summary and Future Directions. Taken

together, there are a range of data types that are suitable for

the kinds of analytical approaches that are common in MIR

but applied to a lesser degree in music psychology and neu-

roscience, and very rarely in music therapy. Within the MIR

community, biomarkers and their relation to perceiving var-

ious aspects of music have attracted attention recently (Can-

tisani et al., 2019; Stober et al., 2014). A collaboration

between MIR, music cognition, and music therapy would

provide a highly promising area for research and application

development. Using biomarkers to provide insight into, for

example, affective responses to music (Koelstra et al., 2011)

would also have a high potential as an additional perspective

to discover MOIs in therapy sessions. Furthermore, there are

many ways these methods could also include behavioral

measures such as kinematic and self-report measures. A

major challenge facing the automatic identification of MOIs

is to achieve a detailed understanding of how clinically

observed MOIs correlate with computable structural descrip-

tions of musical excerpts and the musical actions of patients

and therapists during a session. Another challenge is to

understand how MOIs (particularly MOIs that can be auto-

matically detected) can be used to guide the diagnosis, mon-

itoring and treatment of patients. For the visualization of

data, a major challenge is to develop computational tools

for automatically analyzing, visualizing, and sonifying both

digital music data and digital recordings of therapeutic ses-

sions. Although these tools may help therapists understand

their data and make clinical decisions, the technology must

be sufficiently robust, fast, and easy to use for therapists to

be able to beneficially integrate them into their daily work-

flow. Regarding the limitations of current MIR approaches,

it is worth pointing out that the examination of synchroniza-

tion between performers has been analyzed in a range of

studies in music psychology and empirical musicology (Kel-

ler, 2014; Volpe et al., 2016), although the visualization of

synchronization—which may be of value when analyzing

therapy sessions—has only been approached recently

(Maestre et al., 2017), and remains largely an open subject

in MIR.

Overall, therapists and technologists need to work

together to develop computational tools for automatically

analyzing, visualizing, and sonifying both digital music

data and digital recordings of therapeutic sessions. They

need to determine which techniques are most suitable for

enhancing therapists’ effectiveness and efficiency in ana-

lyzing interventions and making clinical decisions. As

organized datasets will be required for most of the above

use cases, the first steps require solidifying the definition

and design of case studies, and the collection of the

required data for collaborative system development.

2.3. Providing Support for Music Therapy Sessions
with Therapist

Technology can assist music therapy sessions in a multi-

tude of ways: enabling a patient with motor impairments to

become an active agent in music-making through devices;

acting as a “co-therapist” by providing musical loops

within sessions and thus freeing the therapist to engage in

more interactive live musical dialogues with the patient;

providing music as a basis for movement exercises; and

more. Primarily, the decision whether or not to use tech-

nology lies in empowering and enabling the patient to reach

therapeutic goals. As discussed in Section 1.3.3, therapy

sessions are examples of social interactions undergoing

processes of attunement between affects and behaviors of

therapists and patients. Therapists usually assess the

patients’ behavioral responses and adjust their strategies

accordingly. However, some of these responses might be

invisible or difficult to interpret, which might be addressed

by new measuring technologies or real-time feedback. The

aim of using technology in such a setting is to increase, or

at the very least not decrease this attunement; technology

should not get in the way. In the following subsections we

discuss the types of device, technologies or interfaces that

are or can be used, and specific functionality that can be

used to increase the quality of information received in the

moment, namely providing real-time feedback.

2.3.1. Devices, Technologies, and Interfaces for Supporting
Therapy Sessions. In applied settings involving people with

clinical needs, music technologies can be loosely grouped

into devices for creating music (e.g., electronic instru-

ments, sonified wearable devices), devices for recording/

listening to music, software for analyzing the music co-

created in improvisations (e.g., audio software; MIDI Tool-

box, see Eerola et al., 2004; Sonic Visualizer, see Cannam

et al., 2010), and devices to target specific functions (such

as brain–computer interfaces (BCIs) which target emotion

mediation, and Serious Games to target specific cognitive

or motor functions; Krout, 2014; Hadley et al., 2014). In

addition to standard musical instruments and musical inter-

faces that can be used, there are various new devices that

are created specifically for use in music therapy. Music--

creating devices include self-contained music-creating

devices (e.g., Theremin;4 MIDIcreator, see Kirk et al.,

1994; tablets; Soundbeam5) and music software, usually

combined with assistive devices or specialist controllers
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that can be used for improvisation, composition and

sequencing (e.g., MIDIgrid, see Kirk et al., 1994; Ableton

Live;6 Switch Ensemble;7 AUMI8). This is distinct from

apps developed for music generation that could also be

adapted for therapeutic applications (see Section 2.4.3).

Numerous other technologies have been developed or

adapted to address specific clinical goals, for example, a

pacifier that plays music when sucked to stimulate non-

nutritive sucking in premature infants (Standley & Whip-

ple, 2003), and the use of piezoelectric sensors combined

with MIDI converters to engage and stimulate consistent

motor performance within improvisation as part of motor

rehabilitation after stroke (Ramsey, 2011).

The technology of optical motion capture delivers highly

accurate measurements of body position and movement that

can be ideal for tracking music-induced movement (Burger

et al., 2013) but often relies on the existence of an extended,

costly, and barely transportable laboratory setup. Less

expensive, commercially available motion capture devices

such as the Microsoft Kinect9 and Leap Motion10 sensors

have been explored for their suitability for music-based solu-

tions for health care (e.g., Agres et al., 2019; Beveridge et al.,

2018; Agres & Herremans, 2017), although these devices

offer less accuracy. Inertia-based motion capture provides

an alternative, in which passive reflectors on the body are

replaced by active body movement sensors (for a compari-

son of both technologies in a musical context, refer to Sol-

berg & Jensenius, 2016). Whereas high-end inertia systems

still come at a high cost, there are also low-cost alternatives

available, which might be sufficient for many therapeutic

applications where high accuracy of motion registration is

not required. In particular, if it is only the movements of

particular limbs that are the focus of the therapeutic inter-

vention, single inertia-based accelerometers may be suffi-

cient. It further remains to be explored what possibilities

may emerge when using the sensors that are available in

commercially available mobile phones.

Music-based BCIs, where a measured brain signal is

being used as input to control a device or computer system,

may offer an opportunity to support therapeutic processes

addressing mental health, such as the treatment of depres-

sion (Ramirez et al., 2015) or self-regulation of emotions

more generally (Ehrlich et al., 2019), or cases where the

motivity of patients is severely impaired. EEG is the most

commonly applied technology for recording brain signals.

A variety of processing approaches and setups have been

considered for BCIs (Lotte, 2014), and more specifically

for brain–computer music interfaces (Miranda et al., 2011),

but the complexity to set up meaningful interactions with

the recorded signals remains a challenge. Alternatives that

do not require movement being measured may lie in more

focused measurements of, for instance, pupil oscillations

(Duchowski et al., 2018).

2.3.2 Feedback Mechanisms and Sonification. When creating

sounds on traditional instruments, one typically receives

immediate auditory feedback of the performance, as one

can directly hear what one is playing. This feedback, pro-

vided in a modality other than the visual or proprioceptive

(which are the most common ways in which we receive

information about our movements), adds an information

stream that supports motor learning (Effenberg et al.,

2016; Sigrist et al., 2015). This mechanism is at the foun-

dation of many uses of music in motor rehabilitation that

use sounded instruments (cf. Schneider et al., 2010), and

has also been used in reverse, by visualizing sound, to assist

auditory perception in speech therapy (Schaefer et al.,

2016). However this additional perceptual modality can

of course also be harnessed when using technological

devices, which afford a much larger range of sounds that

may be produced. One way in which implicit or latent

processes can be made more explicit is by translating them

to the sound domain as a feedback signal meant either for

the therapist or the patient, already referred to previously

for visualizations in Section 2.2.4. Of course, feedback may

also be provided in the auditory domain, by translating into

sound (or sonifying) a particular signal that is not auditory,

such as (most often) some aspect of a movement (location,

acceleration, smoothness, etc.). Once a specific state or

activity is identified as desirable, its presence or absence

may be signaled by creating a sound that does not derail the

therapeutic process, but serves as an indication of where

attention should be directed. Thus, a sonification can serve

simply as an extra perceptual input to either amplify dimen-

sions that are otherwise difficult to perceive, or give an

additional indication of quality of performance and take

on the role of a reward during practice or rehabilitation.

In this way, an online monitoring system is devised not

unlike the identification of meaningful moments described

above, but devised beforehand, potentially specifically for

an individual patient. Examples of sonified feedback being

offered during movement rehabilitation after stroke are, for

instance, provided by Scholz et al. (2016), where the loca-

tion of an arm movement was translated to pitch height,

offering an extra awareness of reach distance, or Kirk et al.

(2016), who use percussion feedback sounds on bespoke

instruments, allowing stroke patients to rehabilitate by

drumming along to their own preferred music. These soni-

fications can also be extended to create new musical instru-

ments, as described in the subsection “New Instruments for

Musical Participation,” where the goal is to create music

rather than to contribute to the rehabilitation process

through direct feedback.

2.3.3. Providing Support for Music Therapy Sessions with
Therapist: Summary and Future Directions. Taken together,

there are various devices and technologies that can support

music therapy sessions, making use of various input signals

that range from standard manual manipulation of electronic

instruments to a range of adapted, sometimes completely

bespoke, instruments that allow patients to use any remain-

ing ability to partake in musical activities. Numerous
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factors influence the choice of technologies that are used in

therapy, most commonly the efficiency of the technology in

meeting the range of needs that are frequently encountered

in clinical settings. Other factors influencing the technol-

ogy adopted include the cost of technology, its portability

and ease of use, its consistency in performance and hardi-

ness in surviving wear and tear, and whether therapists have

the skills and knowledge in how to use technology and

clear clinical indicators for its use in practice.

Future directions in the development of technology to be

used during therapy sessions should take these factors into

account, by focusing on practical aspects but also on ver-

satility of the application. For instance, options could be

included for users with different abilities by allowing dif-

ferent ways in which input is delivered to an instrument

(varying from a button to a suck-switch to gaze direction to

infrared motion detection, for example). By including mul-

tiple potential uses in an early stage of designing and devel-

oping new instruments, they can be opened up to a wider

range of users. Also, more research on the influence of

real-time feedback on learning paradigms will allow

evidence-based application of this feature, to ensure opti-

mal conditions for learning and/or re-gaining function.

2.4. At-Home Training In Between Music Therapy
Sessions

In addition to approaches and applications specifically devel-

oped for music therapy or therapists’ use with patients, sev-

eral music-based systems, games, and tools exist that allow

patients to support their health and well-being outside of

strictly clinical settings. Moreover, many of the systems used

during therapy may, with some small adjustments, also be

used in between sessions, if sometimes with a little help. Here,

within the subsections of this part of the article, we discuss

several technologies that are often intended to be used without

a music therapist being present, but are still meant to be a part

of a treatment program—that is, they are to be used toward

specific, personalized clinical goals, often on the recommen-

dation of a music therapist or other medical professional. We

will focus specifically on serious games, go further into the

adjusted instruments already mentioned above, and discuss

music generation systems. While specially tailored instru-

ments can of course be used as part of a therapy session, they

are more often used in between sessions, with a more general

goal of enabling musical expression, rather than focusing on a

specific clinical goal. These kinds of applications not only

allow more independence in musical activities but also pro-

vide an excellent means for patients to be able to practice

specific skills in between music therapy sessions.

2.4.1. Serious Games. The term “Serious games” denotes

games that have primary purposes other than entertain-

ment, such as education, advertisement, training, simula-

tion, or collecting data for scientific research (so-called

games with a purpose). Serious games in the health context

are used to train patients’ skills for rehabilitation, such as

home-based training skills for PD patients (Dauvergne

et al., 2018), treatment of traumatic brain injury

(Martı́nez-Pernı́a et al., 2017), or training for patients with

dementia (McCallum & Boletsis, 2013). Serious games

offer rewards and different levels of challenges that help

engage patients in the rehabilitation process and help

increase motivation during the exercises. Moreover, serious

games can be used to control training and to measure

patients’ performances. Serious games for at-home scenar-

ios can enable interactions between patients and family

members, facilitating the improvements seen in rehabilita-

tions when interaction with partners is involved (Takagi

et al., 2019). In general, serious games for at-home training

can complement therapy sessions with clinicians, continu-

ing the rehabilitation process in between sessions with the

therapist (especially if the game is introduced during a

session but intended for practice in between sessions). Of

course, many serious games also exist for subclinical prob-

lems (i.e., not in the context of a specific diagnosis or

treatment), intended to be used outside of a personalized

therapy program, which we will address briefly in Section

2.5.4.

Music within these serious games can play many differ-

ent roles in the rehabilitation process, depending on the

context within which the games are used. Part of this relates

directly to the features of music discussed above, such as

emotional effects, reward and motivation, rhythmic

entrainment and social interaction. However, in gaming

settings, music (or sound) is also often used to direct atten-

tion to a specific game element. These different elements

may all be used in serious games (together or in isolation).

While games themselves already have strong motivational

elements, music may enhance this aspect. The rhythmic

structure of music also lends itself for training rhythmic

skills in various contexts, such as PD, dyslexia, and Atten-

tion Deficit Hyperactivity Disorder (ADHD) (see Bégel

et al., 2017; for an overview). With specific regard to rhyth-

mic entrainment and motor rehabilitation, a large number

of game interfaces exist that register movement, based on

various sensors (see earlier Section 2.2.2). The majority of

these are directed at exercising, but newer games focus

specifically on increasing temporal skills in healthy or clin-

ical groups (e.g., Bégel et al., 2018; Dauvergne et al.,

2018). As music can play an important role in these exer-

cise games, it does not take much adaptation to conceptua-

lize their use in movement rehabilitation. Some examples

of musical games for movement rehabilitation developed

outside of commercially available systems have been

reported, such as the Music Glove (Friedman et al.,

2011), for which tailored rehabilitation games have been

designed. More recently, specific serious games have also

been designed that use music-based motion capture sys-

tems for motor strengthening and rehabilitation (Agres &

Herremans, 2017; Agres et al., 2019; Beveridge et al.,

2018).
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The attentional aspects also offer various ways of pro-

moting clinical goals; for instance, several different mental

disorders feature poor attentional focus, such that serious

games can be used to monitor focus and refocus patients

when they lose attention, with the help of music. Music’s

inherent alternations between expected and unexpected

moments in the musical structure offer the potential to

maintain attention. While a range of musical serious games

have been developed for music education (cf. Mandanici

et al., 2018), games that are directly targeted at specific

clinical problems, and that specifically use musical aspects

as a main way to target these problems, are still relatively

sparse.

2.4.2. New Instruments for Musical Participation. Several

adaptive digital musical instruments (ADMI) have been

developed that are generally intended for people with

motor disabilities. As noted above, some of these instru-

ments may be used during music therapy, but several are

also meant to offer opportunities for musical expression

without a clearly formulated clinical goal. In many cases,

this entails creating a controller or other means of indi-

cating one’s intentions, and connecting this controller to a

musical output.

Different approaches for building ADMI have been

taken for different degrees of motor disabilities. Solutions

for people with partial motor disabilities (e.g., people with

cerebral palsy without fine control but maintaining partial

control of the upper limbs) have included a variety of

motion sensors. Such sensors capture body movement and

map it to music output. Sensors used in ADMI include

ultrasonic distance sensors, pressure sensing foam (Kirk

et al., 1994; Swingler, 1998), and a variety of touch sensors

(Bhat, 2010). Other systems based on low-cost web camera

systems are widely used (Lamont et al., 2000; Oliveros

et al., 2011; Stoykov & Corcos, 2006; Winkler, 1997). In

such systems, the screen is typically separated into distinct

areas and when a movement is detected in a particular area,

an event is triggered. All of the interfaces mentioned above

are designed for people who retain a degree of limb move-

ment. For people without adequate control of limb move-

ments, interfaces have been developed based on breath

control, or small head or tongue movements, such as the

Magic Flute.11

In very severe cases of motor disabilities, in which a

patient is not able to move or communicate verbally due

to complete paralysis of nearly all voluntary muscles in the

body except the muscles which control the eyes (Bauer

et al., 1979; Smith & Delargy, 2005), eye-tracking technol-

ogy might be the only alternative. Vamvakousis and

Ramirez (2012) proposed the EyeHarp,12 an interface in

which only gaze is used as input and that allows interaction

and expressiveness on a level similar to that afforded by

traditional musical instruments. The EyeHarp allows the

control of chords, arpeggios, melody, and loudness using

only the gaze as input. Evaluations of the EyeHarp show

that it supports expressive performance from both the per-

former and audience’s perspective (Vamvakousis &

Ramirez, 2016).

In cases in which no motor control whatsoever is pre-

served (including eye movement), musical playing using a

BCI may be the only possibility. There have been several

BCIs proposed for music performance (Miranda & Castet,

2014), for example, Vamvakousis and Ramirez (Ramirez

et al., 2015; Vamvakousis & Ramirez, 2013, 2014, 2015)

proposed BCIs based on motor imagery, event-related

potentials (ERPs), and emotion estimation. In addition,

there have been many proposed brain-activity sonification

applications in which brain activity is mapped to sound

(e.g., Gomez & Ramirez, 2011; Schmele & Gomez, 2014),

however these applications do not decode the intention of

the user and simply produce output based on an arbitrary

brain-activity-to-sound mapping.

Additional overviews of ADMI have been provided by

Larsen et al. (2016) and Frid (2018). Further developments

in this area may focus on increasing treatment possibilities

for a diverse group of users, and evaluating these applica-

tions in terms of their user experience. In addition, there is a

need to better understand the effects of using these instru-

ments, especially when they are used towards clinical goals

or as part of a treatment protocol.

2.4.3. Music Generation and Recommendation for Therapy.
Another direction for bespoke music creation that some-

times aids clinical goals and sometimes is used to stimulate

expressivity as part of the therapeutic process, but outside

of therapy sessions, is automatic music generation. Music

generation systems compose music through a machine

learning model, or ruleset, with minimal human input. The

field of automatic music generation has matured signifi-

cantly in recent years, and includes systems for melody

generation, harmonization, interactive improvisation, nar-

rative music for games and films, and others (Herremans

et al., 2017). With the current advances in technology come

opportunities for the field of health care.

Improvisation is an important tool for music therapists

(Wigram, 2004). One type of music generation software

focuses on interactive improvisation systems, an example

of which is the “The Continuator” (Pachet, 2003). These

systems can play together with an improvising user by learn-

ing from what has just been played. In the near future, there

is an opportunity for music generation systems to be custo-

mized to therapy sessions. In this case, there are a number of

requirements specific to music therapy. First, a one-on-one

improvisation session requires highly structured music gen-

eration, as the generation models not only need to keep a

steady music structure but also to interact with what is being

played in real time; enforcing long-term structure in gener-

ated music is an issue addressed by Herremans and Chew

(2017), among others. Second, such systems can guide the

listener towards a particular emotional state; for instance,

Ehrlich et al. (2019) offer a system whereby automatically
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generated music influences the listener’s affective state

(arousal and valence) in a closed-loop BCI system using

EEG as neurofeedback. Third, such systems would need to

be highly customizable by the therapist through a number of

input parameters such as tempo, structure, emotional state

evolution, and complexity level. Finally, instead of having

the therapist control the music generation, in the future, we

may conceive of a machine learning model that can learn

how to tailor the music generation to patients so as to achieve

an optimal therapeutic outcome. An interactive music gen-

eration system might not only be useful during therapy ses-

sions, but might serve to let the patient continue his/her

improvisation therapy at home without a therapist, or

between therapy sessions. Aside from improvisation sys-

tems, there are other potential applications of music gener-

ation for music therapy, such as guiding the emotions of a

patient, for instance in case of depression or stress. Systems

for automatic music generation with controllable affect, such

as those by Scirea et al. (2017) and Ehrlich et al. (2019), are

able to steer the emotional state of a listener.

In addition to generating music with controllable affect,

we could equally leverage existing musical pieces through

playlist generation (music recommendation). For instance,

Hirve et al. (2016)’s system, which was trained on a large

database of digital recordings for biomedical research,

recommends music based on the emotion predicted through

a face detection model. A similar system by Dureha (2014)

creates both mood-uplifting as well as mood-stabilizing

playlists. Music recommendation for therapeutic purposes

can extend beyond mood mediation, however. Zhao et al.

(2010) have taken the first steps towards a system that

recommends music based on sleep quality as measured

by EEG; and Brimmer (2019) has devised a system for

automatic personalized playlist generation for dementia

patients, based on bio-sensor feedback. Ample opportuni-

ties exist for developing technology to augment situations

in which the patient may benefit from listening to specific

types of music or individually-tailored playlists.

2.4.4. At-home-training in between Music Therapy Sessions:
Summary and Future Directions. Given the demonstrable ben-

efit of continued practice in rehabilitation processes, there

is a clear need for ways for patients to be able to engage in

these exercises in between rehabilitation sessions. Music

technologies provide excellent opportunities to facilitate

this, as described above; many music technologies can be

operated alone or at least without a music therapist present,

but still contain the therapeutic elements that are part of an

individual’s rehabilitation plan working towards specific

clinical goals. The previously mentioned factors that feed

into the choice of technology for a specific user and a

specific clinical goal still hold here, the practical aspects

of use and adaptability to a specific user are of primary

importance in choosing to use a specific technology. Addi-

tionally, when a system or application is used as part of a

therapeutic program designed for a specific patient, the

application has to be even easier to use while alone, or

require minimal assistance. This is a drawback of using

complicated methods, such as research-grade EEG sys-

tems, which require some expertise to administer. That

said, some more widely accessible, commercially available

systems, such as the Muse13 EEG headset,13 are bridging

this training/accessibility gap. Moreover, the application

should not easily allow use in any other way than intended,

given that the user is not receiving any direct feedback

other than on the aspects that are being measured by the

application. This might be remedied in the future by adding

more sensors to ensure correct use, and signal specific signs

of use that may be maladaptive, such as penalizing any-

thing that would deter from attaining clinical goals (as for

instance a wrong movement in a movement game or in

manipulating an instrument). Finally, it is important that

if such an application is made a part of a therapeutic pro-

gram, that its effects are supported by scientific evidence.

2.5. Technology for Health and Well-Being Outside
the Context of Music Therapy

Many of the previously mentioned applications can also be

used outside a specific therapeutic program, just based on

the user’s own initiative. Often, these applications will

address complaints that are subclinical, such as to regulate

sleep or mood. Many commercial music services, apps,

etc., claim to assist listeners’ emotional states or ability

to focus (e.g., Brain.fm,14 Relax Melodies,15 Enophone16)

using music, and technology is increasingly being devel-

oped for individuals to use at home. The ensuing subsec-

tions describe technology that allows individuals to train or

improve their wellness outside of traditional clinical con-

texts, but rather on the user’s own initiative.

2.5.1. Music Technology That is Used By Health Professionals
Other Than Music Therapists. Various pieces of medical tech-

nology (medtech) are being developed for use with clinical

populations that require some training to administer, but do

not require a music therapist for their use. For example, the

previously mentioned BCI systems have been developed

for emotion regulation in listeners (Ehrlich et al., 2019;

Ramirez et al., 2015); these kinds of medtech require some-

one with a basic knowledge of setting up EEG caps, but no

specialized knowledge of music or music therapy. In addi-

tion, motion-capture systems for motor rehabilitation that

incorporate music may be used with the help of physical or

occupational therapists (see for example Agres & Herre-

mans, 2017).

Other approaches use less-specialized technology. One

such program uses iPods to deliver compiled playlists with

personalized music from a dementia sufferer’s youth. This

music listening program can be administered by nurses,

carers or activity-coordinators; the music is played through

an inexpensive mp3 player with headphones (Vinoo et al.,

2017). This approach is attractive in part due to its easy
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accessibility; however, more robust research is needed to

examine the outcomes of this activity, especially the poten-

tial risks and burdens given the level of dependency of the

population. These are only a few examples of how modern

medtech approaches or audio systems may allow some

therapeutic aspects of music to reach patients who do not

have access to a certified music therapist.

2.5.2. Robotics and HCI. Another direction of medical tech-

nologies that are used outside of music therapy, but can

contain musical elements, are robots. By combining the

rapidly progressing technologies in Robotics, Artificial

Intelligence, Conversational Agents, and Connectivity,

social robots are entering society. In education, for exam-

ple, such robots can take different roles: teacher (or assis-

tant teacher), peer, or novice (Bagga et al., 2019; Belpaeme

et al., 2018). In therapeutic settings, research focuses more

on the roles of coach or companion, sometimes in long-

term health care processes (Neerincx et al., 2019; Robinson

et al., 2019). Particularly for Autism Spectrum Disorders

(ASD) treatment, research has shown promising results:

robots can help therapists connect to people with ASD and

support their learning of social skills (Pennisi et al., 2016).

As an active companion in the joint performance of, or

listening to music, the robots provide an interesting poten-

tial to advance music-based autism therapy (e.g., see Hoff-

man et al., 2016; Taheri et al., 2016).

Increasingly, robots will incorporate knowledge on the

social, cognitive, affective and physical processes of

human behavior, e.g., for harmonizing social and affective

processes in educative child-robot sessions (Burger et al.,

2017; Kaptein et al., 2016). A recent episodic memory

model includes the role of music in the “ecphoric

processing” (i.e., recording and retrieving) and “emotional

appraisal” of situations (Dudzik et al., 2018). Based on such

a model, a robot can be engaged in a social setting, and play

the specific music that activates the memories of people

with dementia in a desirable way. This way, the robot can

help caregivers in providing a rich set of beneficial music-

based activities for these people, through dyadic human–

robot activities and robot-assisted group activities (De Kok

et al., 2018; Psychoula, 2016). These robots learn over time

to better adjust the music to the personal preferences and

situation of the person involved. In general, the combina-

tion of social robots, music, and health care provides new

opportunities for personalized situated therapies. A robot

may have, for example, sensors to monitor the patient’s

state and progress, a knowledge base to guide the patient’s

therapeutic actions with music towards his or her personal

goals, communication capabilities to inform and request

the therapist, and methods to learn from the observed

(interim) therapy outcomes. In this way, robots can aug-

ment therapists’ skills and, at the same time, reduce their

workload. Current examples that demonstrate these ideas

are robots that guide music-mediated activities to reminisce

(e.g., people with dementia), to mitigate traumatic events

(e.g., children with cancer), to rehabilitate (e.g., patients

recovering from a fracture), or to socialize (e.g., persons

with ASD).

2.5.3. New Music Interfaces for Musical Expression and
Creation. The instruments described in Section 2.4.2. can

often also be used outside of the context of therapy. In other

words, the use of the instruments will serve various, often

non-clinical goals. In general, even when an explicit clin-

ical goal is not defined, such as improving function in a

specific domain, being able to engage with musical instru-

ments is still thought to have possible therapeutic effects.

These could be the same reasons that people engage with

traditional instruments, or music technology that is not

adapted. More specifically, these instruments might be

used to modulate mood or emotion, to increase the capacity

for sustained attention, or to provide some sort of self-

expression. If instruments can be used in social settings,

these activities may facilitate interpersonal interaction and

attunement, or simply provide a pleasurable way to spend

time together. At least one community is researching the

development of new interfaces for musical expression, with

the international Conference on New Interfaces for Musical

Expression (NIME) presenting an annual conference on the

topic. While the instruments that can be used outside of a

therapy program are largely the same as those used as part

of therapy, the criteria for independent use for subclinical

goals is less stringent, as these activities do not necessarily

work towards a specific goal.

2.5.4. Music Technology Used by Individuals at Home. While

many of the previously discussed technologies may be used

as part of therapeutic programs, they may also apply to

different situations for non-clinical outcomes, such as

recreation, general well-being or elevating mood, or support-

ing motor control with musical tasks. Especially the previ-

ously mentioned music-based serious games fall into this

category, where the targeted skill to improve are often not

specified explicitly but described in broad terms, often also

lacking scientific evidence of their effectiveness. A notable

exception is a serious game focusing on improving rhythmic

skills (Bégel et al., 2018) that has preliminarily been demon-

strated to have the intended effect. Importantly, while there

are several commercial games that specifically build on

musical skills to facilitate game play (e.g., Guitar Hero17,

Rock Band18, Rhythm Heaven Fever19, Taiko no Tatsu-

jin20), none of these games explicitly target clinical or sub-

clinical domains. However, musical games are increasingly

used for music education goals. The popular app VoxTrain21

is intended to help users understand their own voice and

improve their singing through interactive breathing and

tone-control exercises. Another well-used app, Yousician3,

offers various ways to learn a musical instrument, such as the

guitar, at home through lessons and “serious games.”

Mazaam22 is an engaging and animated app for children that

can increase their understanding of music and claims to
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improve their cognitive and/or motor skills through a range

of music games and lessons. Another set of applications,

intended to stimulate exercise in the elderly by creating

novel instruments that can be played individually or

together, was described in terms of the design process by

Özcan et al. (2019), similarly to the Jymmin’ application

mentioned previously (Fritz et al., 2013). As the above

examples of music technology are generally not used in the

context of a rehabilitation program but rather at the initiative

of individual users, many are not developed in an evidence-

based manner, and their effects on health are not scientifi-

cally supported (although in the case of Jymmin’, a

significant reduction of perceived effort is reported; see Fritz

et al., 2013). The commercial success of these applications,

however, demonstrates that users enjoy them and thus pro-

vide a means to improve people’s quality of life across the

life span outside clinical environments. Important next steps

include the systematic evaluation of the impact of these

applications, in terms of near- and far-transfer of abilities.

More specifically, even though it is clear that using music

tech or games can increase the skills closely related to that

particular application (e.g., reaction time or pitch perception,

considered near transfer), the effects on wider cognitive or

even motor domains (far transfer) need more investigation.

2.5.5. Technology for Health and Well-being Outside the
Context of Music Therapy: Summary and Future Directions. In

this rapidly developing field of technologies for functional

goals outside the context of music therapy, more and more

options are available for health professionals other than

music therapists, as well as individuals who seek to address

subclinical issues without the involvement of a clinician of

any kind. New technologies incorporating music are being

developed that can be incorporated into settings where

music is used by therapists who do not have specialized

music therapy training (e.g., sessions led by physical thera-

pists, occupational therapists, etc.), and a music therapist is

not available. Important considerations for these applica-

tions are to keep in mind that they need to be self-

contained, easily adaptable, and do not require musical

expertise to run.

While music-based activities are often portrayed to have

significant potential for carry-over effects (e.g., increasing

cognitive or motor skills more broadly than only for game

play), their effects need to be better understood and system-

atically evaluated. This will also clarify the extent to which it

is useful for health professionals outside of music therapy to

use these techniques. In cases such as robots increasingly

being used in health settings, the challenge is how to integrate

what we know about music in order to support reaching clin-

ical goals. As such, we see two opposite directions, namely

adapting specific music tech to users without music therapy

expertise, but also adapting pre-existing medtech (that was

not initially intended as a music-based tool) for the affor-

dances of music previously described in the Introduction in

Section 1.3.

3. General Considerations and the
Road(Map) Ahead

3.1. Considerations for Developing Music Technology
and Technology-Based Interventions From the
Perspective of Music Therapy

Following the overview in Section 2 of various use cases of

music technology in health care settings, this final section

presents a number of general considerations for developing

music technology from the perspective of music therapy

and music-based interventions. The development of tech-

nology for music-therapeutic settings across the life span,

from preterm babies through children, adolescents, adults

and elders, needs to primarily consider patient needs, but

equally the technology’s ease of use so as to ensure mini-

mal disruption of the therapeutic flow in a session (for

reviews see Magee et al., 2011; Dalla Bella, 2020). This

concern is even more relevant if technology is supposed to

assist patients in a home environment (e.g., Dotov et al.,

2019), or is used to “export” protocols which are usually

implemented in clinical settings to more ecological/home

environments.

When working with children and adults in clinical set-

tings, the patient’s specific health or educational needs

direct the clinical goals. These goals, in turn, guide inter-

ventions that may often include digital or electronic tech-

nologies for creating or accessing music. However, in

addition to the primary clinical goals discussed in Section

2.1. (e.g., motor, communication, etc.), the patient’s addi-

tional needs have to be considered (e.g., sensory, cognitive,

social). The complex combination of patient or user needs

influences which technology is appropriate to use, and how

the technology might be used to meet these goals (Magee,

2014c; Magee & Burland, 2008).

To give an example of this patient-centric approach, a

primary goal when working in educational and rehabilita-

tion settings is often to demonstrate cause and effect in

musical actions (e.g., agency is gained over musical out-

comes through awareness that the user or patient has con-

trol over the sound). This is specifically the case with

individuals who cannot speak, where cause and effect form

a vital component of training an individual to use an aug-

mentative and alternative communication aid, but also in

learning settings, where new associations need to be

formed. Demonstrating cause and effect requires taking

into account potentially impaired motor responses, possible

hypersensitivity to tactile stimuli, and obstacles that pre-

vent physically manipulating an object (e.g., playing a tra-

ditional musical instrument, see Section 2.5.3). Here,

assistive technology, such as non-tactile sensors linked to

music software or mobile devices (e.g., smartphones), can

address the patient’s sensory needs, provide auditory feed-

back to potentially minimal movements, and create the

learned association between manipulation and feedback

(e.g., Dalla Bella et al., 2018; Dotov et al., 2019). Another
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consideration is whether any cognitive impairments that

compromise learning cause and effect are present, particu-

larly in the absence of somatosensory feedback (which is

typical with a sensor activated through movement rather

than touch, cf. Magee, 2014a).

In sum, the choice of technology should be guided by

motor performance (i.e., whether purposeful, active move-

ment is involved), cognitive ability (attention, learning,

memory, executive functioning), sensory function (visual,

tactile, auditory), and psychosocial elements (e.g., the

patient’s culture and generation, and what this might mean

for motivation to use technology). Insights from Human-

Computer Interaction (HCI) should also be considered (dis-

cussed in Section 3.2). Eventually, assessing patients’ spared

or impaired musical and cognitive abilities, as well as psy-

chosocial elements, may play a critical role in developing

personalized protocols integrated in innovative technologi-

cal solutions or music-based interventions (e.g., Dalla Bella

et al., 2018). In the future, it would be desirable to develop

programming environments that allow therapists themselves

to adapt or develop software tools according to their needs.

This will require the realization of several steps (from devel-

oping research code in MIR to developing user-adaptable

programming environments for music therapists), as has

been shown for other fields, such as for the collaboration

between MIR and digital music archives, which requires a

so-called five-layer value chain from a research layer via

several steps to an end user layer (De Valk et al., 2017).

3.2. How People Interact With Technology and HCI
Considerations

When developing music technology for health care and well-

being, it is relevant to consider more broadly how humans

interact with technology, as examined within the domain of

HCI. As discussed by Hughes (1994), social development

shapes and is shaped by technology. In this sense, one must

be careful that the development of music technology, espe-

cially for therapeutic applications, is not driven solely

through engineering research objectives, or somehow inter-

feres with people’s preferred modes of interacting with

music. For instance, the use of adaptive devices that are

touch sensitive (requiring minimal movement or pressure)

have enabled people with profound physical disabilities to

become active agents in music performance, composition,

and improvisation (Magee & Burland, 2008), and to benefit

from personalized music interventions (Dalla Bella, 2020) as

discussed in Sections 2.3.1, 2.4.2, and 2.4.3. In addition,

adaptive multimodal user interfaces can also be designed

and useful for people who cannot understand written instruc-

tions, for example those with cognitive deficits such as

alexia/dyslexia or dementia (Neerincx et al., 2009; Peeters

et al., 2016). In general, universal accessibility methods and

guidelines have been developed to provide inclusive tech-

nology and services, including user groups with social, cog-

nitive, emotional, or physical deviations from the

mainstream (Persson et al., 2015), and technology can be

helpful to motivate engagement in the therapeutic process

(Magee, 2014c), as discussed in Section 2.4.1. Such technol-

ogy is becoming increasingly personalized, possibly mani-

fested as a social actor that mediates and supports the social,

cognitive, affective and physical processes in the clinical

practice (e.g., Orji & Moffatt, 2018; Neerincx et al., 2019).

When the goal is to develop new technologies for use in

music therapy, studies that take interaction design into con-

sideration provide a valuable means to take engineering

objectives, knowledge of relevant underlying mechanisms,

as well as the therapeutic goals into account. Recently, the

affective dimension of interaction has been increasingly con-

sidered within the field of HCI (e.g., Picard, 2000; for an

overview of HCI, see Benyon, 2019), which seems well

aligned with the fundamental goals of music therapy. The

challenge is to design music technologies that support ther-

apeutic interventions to successfully modulate arousal and

affect. Examples along these lines are systems that support

personalized music listening for emotion regulation (see dis-

cussion in Section 1.3.1) and pleasant reminiscing of people

with dementia (Psychoula, 2016).

An extended body of work on music technology that

contributes to what is commonly termed “affective

computing” within the fields of sound and music comput-

ing (SMC) and new interfaces for musical expression

(NIME) (Brown et al., 2017; El-Shimy & Cooperstock,

2016; Kiefer et al., 2008) suggests that developing music

technology for therapeutic interventions should include a

combination of the following: (a) signal processing and

machine learning expertise from MIR, (b) expertise in

SMC and NIME that facilitates the consideration of the

patient experiences into technology development, and (c)

expertise in affective computing that provides models for

(automatic) sensing, reasoning about, and predicting of

emotions. The most successful approaches for developing

therapeutic music technologies place the technology user at

the center of the development team (Magee, 2014b). This

ensures that developments are user driven, will meet the

goals set by the user themselves, can meet complex needs

across affective, motor, sensory, and cognitive domains,

and optimize adoption of technology in therapeutic pro-

grams and adherence to intervention.

3.3. Overview of General Considerations

In the current article, we have sketched out the relatively

novel direction of research into music technology in health

care settings, focusing specifically on three research

domains: music therapy, MIR, and music psychology and

neuroscience. Various functional domains were considered,

such as cognitive, motor, or communication skills, as well as

the purposes and clinical goals that may be adopted, ranging

from offering generalized stimulation, to training a specific

skill, to constructing an individualized rehabilitation pro-

gram (see Figure 2). Next, various examples and future
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directions were offered for ways in which expertise from the

different domains could be integrated to produce useful new

applications, while also discussing several applications that

are currently available. After discussing several ways in

which the analysis approaches from MIR might have valu-

able contributions to the treatment of diverse data types

relevant to music therapy research and practice, we consid-

ered technologies to be used during music therapy sessions,

in between sessions but still part of a therapist’s treatment

program, or outside of music therapy altogether. Clearly

these last three categories are not discrete, as many applica-

tions that can be used independently can also be used in a

music therapy session. One important consideration of these

different ways in which technology is used is the level of

evidence that is desirable or even required to support effec-

tiveness, as this differs across fields.

When it comes to broad steps forward, the differences

between disciplines become apparent. Within music ther-

apy research, there is a strong need for research into the

effectiveness of different aspects of the therapy, quantify-

ing therapeutic progress and novel ways of evaluating ther-

apeutic processes, as well as developing technology tools

that are sensitive to users with complex needs. The

approach from music psychology and neuroscience is

slightly different, as the main ways in which new technol-

ogies are used is to implement interventions that are theory-

driven and based on empirical findings from the lab that

aim to uncover underlying mechanisms of musical func-

tions and apply these findings in technology and interven-

tion design. For MIR research, the first priority is to

establish datasets that allow multiple means of entering this

interdisciplinary field, from integrating physiological and

behavioral measures with musical elements in order to find

meaningful patterns, to having annotated therapy sessions

from which the nature of these meaningful patterns may be

established.

How can the envisioned interdisciplinary research con-

tribute to establishing evidence-based treatment? Two

important themes emerge from the discussion above. The

first is individualization of treatment, which allows patients

to receive music-based interventions that are not only

adapted to their specific medical situation, but also their

preferences. In many medical settings, attention is primar-

ily focused on this theme of individualization, to adjust the

treatment to specific biomarkers or (combinations of)

symptoms that are experienced. However, music allows

an even more personal approach, which is especially rele-

vant when it comes to harnessing the potential for emotion

regulation, social interaction, or creating motivation. The

second emerging theme relates to advances in our ability to

quantify what happens during a therapy session, where

combining information from, for example, biomarkers with

automatically computed analyses of, for example, musical

structures produced in improvisations could strengthen

efforts to measure what has been going on in a therapy

session. The first theme of individualization suggests

exploratory research approaches. However, given the sec-

ond theme, technology innovations should be flexible

enough to allow for this individualization, and need to be

tested for efficacy in well-controlled trials, which, in com-

bination with the investigation of underlying mechanisms,

will provide evidence-based treatment.

Based on the perspectives discussed above, a number of

concrete examples can be imagined that exhibit how inter-

disciplinary approaches yield improved practices and effi-

cacy. An example of how music therapy may benefit from

technology is the analysis of recordings of music therapy

sessions using MIR tools, with the goal to automatically

annotate sessions in terms of certain musical performance

parameters, such as rhythmic regularity or synchronization

between the therapist and patient. An analysis of such

recordings offers a valuable extension of MIR datasets to

material beyond commercial music recordings, and for

music therapy, new accurate MIR analysis tools may offer

objective measures of musical interactions and valuable

tools to evaluate the success of a therapeutic intervention.

Another example is how clinical expertise can readily

form the basis of (neuro-) psychological hypotheses con-

cerning the mechanisms underlying therapeutic success,

which can be tested experimentally (an example of this in

the field of neuropsychological rehabilitation can be found in

Wilson et al., 2017). The findings from such efforts can

potentially lead to the identification of specific musical fea-

tures that can be used as clinical indicators during interven-

tions, or other predictors of therapeutic success. This may

feed into the adaptation of interventions or treatment

approaches, which in turn need to be clinically evaluated.

Thus, a rich knowledge base would be harnessed to improve

not only clinical effectiveness but also scientific progress, in

terms of our understanding of music and music processing.

A more general consideration concerns the developing

role of technology in society. Technology acts increasingly

as a social actor, which has and builds knowledge about its

interlocutor (sensing, reasoning, and acting). In the future,

it can assist music therapists and coaches, help to advance

self-training, “therapy at home,” and other aims. Due to its

situated sensing (via implicit and explicit sensing), a rich

set of data will be collected, which can further advance

theories and methods. Practical aspects are also important,

however. Specifically, the technological tools developed

need to be affordable, usable, and robust enough for thera-

pists to be able to beneficially integrate them into their

daily workflow, to help them understand their data and

make clinical decisions. More specific examples, consid-

erations, challenges and best practices are summarized at

the end of the article.

To conclude, the array of music technologies that may

be used for well-being and health is vast and promising, but

there are still various challenges to address. One concern is

bridging the gaps between disciplines, while other issues

such as accessibility and practical applicability should also

be kept in mind. Many steps have already been taken to
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create a better interaction between the disciplines, how-

ever, as demonstrated by various small-scale collabora-

tions. These interactions open up possibilities for the next

(bigger) steps by creating opportunities for a wider range of

customized and more effective music technologies for

health.

Action editor

Jean-Julien Aucouturier, Centre National de la Recherche Scien-

tifique, STMS UMR 9912.
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The road ahead: Relevant
considerations and guidelines for future
directions

Examples of Potential Interdisciplinary
Collaboration

� Using MIR tools and techniques (e.g., pattern
analysis, music recommendation, etc.) to
develop bespoke applications for patients of
music therapists.

� Assembling music databases for use in specific
clinical contexts (e.g., emotion regulation,
rhythmic entrainment, etc.), and making them
accessible (i.e., open access, where possible);

� Building large patient-baseddatasets, such as anno-
tated therapy-session recordings (video, audio,
and/or symbolic encodings, such as MIDI) and data
on the efficacy of interventions, that allow for the
training of computational models (e.g., for auto-
matic identification or prediction of MOIs).

� Facilitating the threshold for technology use by
developing “middleware” scripting and pro-
gramming environments that allow therapists
themselves to develop software tools for their
own use, without requiring extensive training.

Challenges

� Developing technology that is adaptable for
individual patient’s needs (who have varying
abilities across functional domains—cognitive,
emotional, physical, etc.).

� Adapting or developing MIR tools that can pro-
duce useful analysis or real-time feedback of live
musical interactions (most MIR tools are not
tailored to live contexts).

� Supporting the implementation of music tech-
nology in clinical practice and handling potential
malfunction when employed without expert
supervision.

� Bridging differences in terminology, tools, and
approaches across fields (e.g., patient-centered
care vs. generalizable results) for successful
collaboration;

� Objectively evaluating efficacy of treatments and
interventions is not trivial, and may need novel
methods or standards of clinical data (for instance

without randomized double blind testing,which is
extremely difficult to achieve in this domain).

� There is always a trade-off between creating the
perfect application for one person, and creating
an application that is not entirely tailored, but
basedonprinciples known toberelated tounder-
lying mechanisms of the clinical problem that is
targeted. The most suitable level of personaliza-
tion vs generalizability, dictated by specific situa-
tions, will thus need to be assessed carefully.

Best practices

� Combining holistic and controlled settings:
using clinical observations from music therapy
to generate hypotheses for controlled experi-
ments or clinical trials.

� Creating complete, multifaceted applications:
collecting input from experts as well as patients
in designing new technologies or clinical
protocols.

� Inter- and cross-disciplinary scientific interac-
tion: (1) establishment of regular, international
events that foster discussion and exchange of
knowledge and ideas between the various dis-
ciplines; (2) periodic publication of collections
of research articles in this interdisciplinary area
as special issues in appropriate journals.

� Organizing skills-exchange forums: providing
hands-on technology & computing skills training,
clinical/therapeutic skills training, and experi-
mental methods training across disciplines.

� Related to the level of personalization, the ease
of use of new technologies for patients should
always be prioritized, considering physical/men-
tal limitations to maximize the opportunity for
clinical implementation.

� Given the varying levels to which clinicians and
patients may be accustomed to using these
technologies, software tools must be highly
robust, predictable, and accessible via interfaces
that end users can quickly learn to use reliably.
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Notes

1. The Lorentz Center website for the Music, Computing, and

Health workshop may be found here: https://www.lorentzcen

ter.nl/music-computing-and-health.html.

2. Future of Music-IR Research Panel, 18th International Soci-

ety for Music Information Retrieval Conference (ISMIR,

2017), Suzhou, China, https://ismir2017.ismir.net/panels/

index.html

3. http://www.yousician.com

4. https://en.wikipedia.org/wiki/Theremin

5. https://www.soundbeam.co.uk

6. https://www.ableton.com

7. https://www.switchensemble.com

8. http://aumiapp.com

9. Information on the original Microsoft Kinect device can be

found here https://microsoft.com/en-us/research/project/

kinect-for-windows-sdk-beta, while the newer version is

described here https://microsoft.com/en-us/research/video/

project-kinect-for-azure-depth-sensor-technology

10. Information on the Leap Motion device may be found here:

https://ultraleap.com

11. https://mybreathmymusic.com/en/magic-flute

12. https://www.theeyeharp.org

13. For information on the Muse headband and accompanying

software, see https://choosemuse.com

14. https://www.brain.fm

15. https://www.relaxmelodies.com

16. https://enophone.com

17. Information on Guitar Hero: https://en.wikipedia.org/wiki/

Guitar_Hero

18. https://www.rockband4.com

19. Information on Rhythm Heaven Fever (also known as “Beat

the Beat”: https://en.wikipedia.org/wiki/Rhythm_Heaven_

Fever

20. https://www.nintendo.com/games/detail/taiko-no-tatsujin-

drum-n-fun-switch

21. https://voxtrain.com

22. https://mazaam.com/en

4. References

Aalbers, S., Fusar-Poli, L., Freeman, R. E., Spreen, M., Ket, J. C.

F., Vink, A. C., Maratos, A., Crawford, M., Chen, X. J., &

Gold, C. (2017). Music therapy for depression. Cochrane

Database of Systematic Reviews, 11, CD004517. https://doi:

10.1002/14651858.CD004517.pub3

Abdallah, S. A., & Plumbley, M. D. (2009). Information

dynamics: Patterns of expectation and surprise in the percep-

tion of music. Connection Science, 21(2), 89–117. https://doi.

org/10.1080/09540090902733756

Agres, K., & Herremans, D. (2017). Music and motion-detection:

A game prototype for rehabilitation and strengthening in the

elderly. In Institute of Electrical and Electronics Engineers

(Ed.), International Conference on Orange Technologies

2017 (pp. 95–98). Singapore. https://doi.org/10.1109/icot.

2017.8336097

Agres, K., Herremans, D., Bigo, L., & Conklin, D. (2017). Har-

monic structure predicts the enjoyment of uplifting trance

music. Frontiers in Psychology, 7, 1999. https://doi.org/

10.3389/fpsyg.2016.01999

Agres, K., Lui, S., & Herremans, D. (2019). A novel music-based

game with motion capture to support cognitive and motor

function in the elderly. In: Institute of Electrical and Electro-

nics Engineers, Conference on Games (CoG) 2019 (pp. 1–4).

London, UK.

American Music Therapy Association. (2014, January 23). Setting

the record straight: What music therapy is and is not. www.

musictherapy.org/amta_press_release_on_music_therapy_-_

jan_2014/

Anagnostopoulou, C., & Buteau, C. (2010). Can computational

music analysis be both musical and computational? [Special

Issue]. Journal of Mathematics and Music, 4(2), 75–83.

https://doi.org/10.1080/17459737.2010.520455

Arias, P., & Cudeiro, J. (2010). Effect of rhythmic auditory sti-

mulation on gait in Parkinsonian patients with and without

freezing of gait. PLoS ONE, 5(3), Article e9675. https://doi.

org/10.1371/journal.pone.0009675

Bagga, S., Maurer, B., Miller, T., Quinlan, L., Silvestri, L., Wells,

D., Winqvist, R., Zolatas, M., & Demiris, Y. (2019, July 3-5).

InstruMentor: An interactive robot for musical instrument

tutoring. In K. Althoefer, J. Konstantinova, & K. Zhang

(Eds.), Towards autonomous robotic systems [conference]

(pp. 303–315). Routledge. https://doi.org/10.1007/978-3-030-

23807-0_25

Agres et al. 23

https://orcid.org/0000-0002-8859-3730
https://orcid.org/0000-0002-8859-3730
https://orcid.org/0000-0002-8859-3730
https://www.lorentzcenter.nl/music-computing-and-health.html
https://www.lorentzcenter.nl/music-computing-and-health.html
https://ismir2017.ismir.net/panels/index.html
https://ismir2017.ismir.net/panels/index.html
http://www.yousician.com
https://en.wikipedia.org/wiki/Theremin
https://www.soundbeam.co.uk
https://www.ableton.com
https://www.switchensemble.com
http://aumiapp.com
https://microsoft.com/en-us/research/project/kinect-for-windows-sdk-beta
https://microsoft.com/en-us/research/project/kinect-for-windows-sdk-beta
https://microsoft.com/en-us/research/video/project-kinect-for-azure-depth-sensor
https://microsoft.com/en-us/research/video/project-kinect-for-azure-depth-sensor
https://ultraleap.com
https://mybreathmymusic.com/en/magic-flute
https://www.theeyeharp.org
https://choosemuse.com
https://www.brain.fm
https://www.relaxmelodies.com
https://enophone.com
https://en.wikipedia.org/wiki/Guitar
https://en.wikipedia.org/wiki/Guitar
https://www.rockband4.com
https://en.wikipedia.org/wiki/Rhythm_Heaven_Fever
https://en.wikipedia.org/wiki/Rhythm_Heaven_Fever
https://www.nintendo.com/games/detail/taiko
https://voxtrain.com
https://mazaam.com/en
https://doi:10.1002/14651858.CD004517.pub3
https://doi:10.1002/14651858.CD004517.pub3
https://doi.org/10.1080/09540090902733756
https://doi.org/10.1080/09540090902733756
https://doi.org/10.1109/icot.2017.8336097
https://doi.org/10.1109/icot.2017.8336097
https://doi.org/10.3389/fpsyg.2016.01999
https://doi.org/10.3389/fpsyg.2016.01999
http://www.musictherapy.org/amta_press_release_on_music_therapy_-_jan_2014/
http://www.musictherapy.org/amta_press_release_on_music_therapy_-_jan_2014/
http://www.musictherapy.org/amta_press_release_on_music_therapy_-_jan_2014/
https://doi.org/10.1080/17459737.2010.520455
https://doi.org/10.1371/journal.pone.0009675
https://doi.org/10.1371/journal.pone.0009675
https://doi.org/10.1007/978-3-030-23807-0_25
https://doi.org/10.1007/978-3-030-23807-0_25


Bauer, G., Gerstenbrand, F., & Rumpl, E. (1979). Varieties of the

locked-in syndrome. Journal of Neurology, 221, 77–91. http://

dx.doi.org/10.1007/BF00313105
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Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to

music: The need to consider underlying mechanisms. Beha-

vioral and Brain Sciences, 31(5), 559–575. https://doi.org/10.

1017/s0140525x08005293

Kabani, H., Khan, S., Khan, O., & Tadvi, S. (2015). Emotion

based music player. International Journal of Engineering

Research and General Science, 3(1), 2091–2730.

Kaptein, F., Broekens, J., Hindriks, K. V., & Neerincx, M. (2016).

Caaf: A cognitive affective agent programming framework. In

International Conference on Intelligent Virtual Agents (pp.

317–330). Springer. https://doi.org/10.1007/978-3-319-

47665-0_28

Keislar, D. A. (2011) Historical View of Computer Music Tech-

nology. In R. T. Dean (Ed.) The Oxford Handbook of Com-

puter Music. Oxford University Press. https://doi.org/10.1093/

oxfordhb/9780199792030.001.0001

Keller, P. E. (2014). Ensemble performance: Interpersonal align-

ment of musical expression. In F. Dorottya, R. Timmers, & E.

Schubert (Eds.), Expressiveness in music performance:

Empirical approaches across styles and cultures (pp.

260–282). Oxford University Press. https://doi.org/10.1093/

acprof:oso/9780199659647.003.0015

Kiefer, C., Collins, N., & Fitzpatrick, G. (2008). HCI methodol-

ogy for evaluating musical controllers: A case study. In A.

Camurri, G. Volpe, & S. Serafin (Eds.), Proceedings of the

2008 International Conference on New Interfaces for Musical

Expression (pp. 87–90). NIME.

Kirk, P., Grierson, M., Bodak, R., Ward, N., Brander, F., Kelly, K.,

Newman, N., & Stewart, L. (2016, May 7–12). Motivating

stroke rehabilitation through music: A feasibility study

using digital musical instruments in the home [Conference

paper]. Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems, San Jose, CA, pp. 1781–1785.

http://dx.doi.org/10.1145/2858036.2858376

Kirk, R., Abbotson, M., Abbotson, R., Hunt, A., & Cleaton, A.

(1994). Computer music in the service of music therapy: The

MIDIGRID and MIDICREATOR systems. Medical Engineer-

ing and Physics, 16, 253–258. https://doi.org/10.1016/1350-

4533(94)90046-9

Knees, P., Schedl, M., & Fiebrink, R. (2019, March 17–20). Intel-

ligent music interfaces for listening and creation. In 24th Inter-

national Conference on Intelligent User Interfaces:

Companion (pp. 135–136). https://doi.org/10.1145/33

08557.3313110

Koelsch, S. (2015). Music-evoked emotions: Principles, brain

correlates, and implications for therapy. Annals of the New

York Academy of Sciences, 1337(1), 193–201. https://doi.

org/10.1111/nyas.12684

Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A.,

Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2011). Deap: A

database for emotion analysis; Using physiological signals.

IEEE Transactions on Affective Computing, 3(1), 18–31.

https://doi.org/10.1109/t-affc.2011.15

Krout, R. (2014). Music technology used in therapeutic and health

settings definitions of devices and resources. In W. L. Magee

(Ed.), Music technology in therapeutic and health settings (pp.

45–62). Jessica Kingsley Publishers. https://doi.org/10.1093/

mtp/miv023

Lamont, A., Knox, R., Chau, T., Hamdani, Y., Schwellnus, H., &

Tam, C. (2000). Converting movements to music: New musi-

cal exploration opportunities for children in rehabilitation. In

Proceedings of the 29th Annual Conference of the Canadian

Association for Music Therapy, 26–31. https://doi.org/10.

1002/oti.227

Large, E. W., & Jones, M. R. (1999). The dynamics of attending:

How people track time-varying events. Psychological Review,

106, 119–159. https://doi.org/10.1037//0033-295x.106.1.119

Larsen, J. V., Overholt, D., & Moeslund, T. B. (2016). The pros-

pects of musical instruments for people with physical disabil-

ities. In Proceedings of the International Conference on New

Instruments for Musical Expression (pp. 327–331). http://

www.nime.org/proceedings/2016/nime2016_paper0064.pdf

Lartillot, O. (2005). Multi-dimensional motivic pattern extraction

founded on adaptive redundancy filtering. Journal of New

Music Research, 34(4), 375–393. https://doi.org/10.1080/

09298210600578246

Leahey, E., Beckman, C. M., & Stanko, T. L. (2017). Prominent

but less productive: The impact of interdisciplinarity on scien-

tists’ research. Administrative Science Quarterly, 62(1),

105–139. https://doi.org/10.1177/0001839216665364

Leubner, D., & Hinterberger, T. (2017). Reviewing the effective-

ness of music interventions in treating depression. Frontiers in

Psychology, 8, 1109. https://doi.org/10.3389/fpsyg.2017.

01109

Linnemann, A., Strahler, J., & Nater, U. M. (2016). The stress–

reducing effect of music listening varies depending on the

social context. Psychoneuroendocrinology, 72, 97–105.

https://doi.org/10.1016/j.psyneuen.2016.06.003

Agres et al. 27

https://doi.org/10.1007/s00779-015-0897-1
https://doi.org/10.1007/s00779-015-0897-1
https://doi.org/10.1371/journal.pone.0032600
https://doi.org/10.1371/journal.pone.0032600
https://doi.org/10.1037/a0024208
https://doi.org/10.1037/a0024208
https://doi.org/10.1080/09298215.2017.1316292
https://doi.org/10.1080/09298215.2017.1316292
https://doi.org/10.1037/a0013505
https://doi.org/10.1037/a0013505
https://doi.org/10.1017/s0140525x08005293
https://doi.org/10.1017/s0140525x08005293
https://doi.org/10.1007/978-3-319-47665-0_28
https://doi.org/10.1007/978-3-319-47665-0_28
https://doi.org/10.1093/oxfordhb/9780199792030.001.0001
https://doi.org/10.1093/oxfordhb/9780199792030.001.0001
https://doi.org/10.1093/acprof:oso/9780199659647.003.0015
https://doi.org/10.1093/acprof:oso/9780199659647.003.0015
http://dx.doi.org/10.1145/2858036.2858376
https://doi.org/10.1016/1350-4533&lpar;94&rpar;90046-9
https://doi.org/10.1016/1350-4533&lpar;94&rpar;90046-9
https://doi.org/10.1145/3308557.3313110
https://doi.org/10.1145/3308557.3313110
https://doi.org/10.1111/nyas.12684
https://doi.org/10.1111/nyas.12684
https://doi.org/10.1109/t-affc.2011.15
https://doi.org/10.1093/mtp/miv023
https://doi.org/10.1093/mtp/miv023
https://doi.org/10.1002/oti.227
https://doi.org/10.1002/oti.227
https://doi.org/10.1037//0033-295x.106.1.119
http://www.nime.org/proceedings/2016/nime2016_paper0064.pdf
http://www.nime.org/proceedings/2016/nime2016_paper0064.pdf
https://doi.org/10.1080/09298210600578246
https://doi.org/10.1080/09298210600578246
https://doi.org/10.1177/0001839216665364
https://doi.org/10.3389/fpsyg.2017.01109
https://doi.org/10.3389/fpsyg.2017.01109
https://doi.org/10.1016/j.psyneuen.2016.06.003


Lotte, F. (2014). A tutorial on EEG signal-processing techniques

for mental-state recognition in brain–computer interfaces. In

E. Miranda & J. Castet (Eds.), Guide to brain-computer music

interfacing (pp. 133–161). Springer. https://doi.org/10.1007/

978-1-4471-6584-2_7

Maestre, E., Papiotis, P., Marchini, M., Llimona, Q., Mayor, O.,

Perez, A., & Wanderley, M. M. (2017). Enriched multimodal

representations of music performances: Online access and

visualization. IEEE Multimedia, 24(1), 24–34. https://doi.

org/10.1109/mmul.2017.3

Magee, W. L. (2014a). Indications and contra-indications for

using music technology with clinical populations: When to use

and when not to use. In W. L. Magee (Ed.), Music technology

in therapeutic and health settings (pp. 83–107). Jessica Kings-

ley Publishers. https://doi.org/10.1093/mtp/miv023

Magee, W. L. (2014b). Models for collaborations when using

music technology in music therapy. In W. L. Magee (Ed.),

Music technology in therapeutic and health settings (pp.

361–386). Jessica Kingsley Publishers.

Magee, W. L. (Ed.). (2014c). Music technology in therapeutic and

health settings. Jessica Kingsley Publishers.

Magee, W. L. (2018). Developing theory for using music tech-

nologies in music therapy. Nordic Journal of Music Therapy,

27(5), 334–336. https://doi.org/10.1080/08098131.2018.

1481450

Magee, W. L., Bertolami, M., Kubicek, L., LaJoie, M., Martino,

L., Sankowski, A., Townsend, J., Whitehead-Pleaux, A., &

Zigo, J. (2011). Using music technology in music therapy with

populations across the life span in medical and educational

programs. Music and Medicine, 3(3), 146–153.

Magee, W. L., & Bowen, C. (2008). Using music in leisure to

enhance social relationships with patients with complex dis-

abilities. NeuroRehabilitation, 23(4), 305–311.

Magee, W. L., & Burland, K. (2008). An exploratory study of the

use of electronic music technologies in clinical music therapy.

Nordic Journal of Music Therapy, 17(2), 124–141. https://doi.

org/10.1080/08098130809478204

Magee, W. L., Clark, I., Tamplin, J., & Bradt, J. (2017). Music

interventions for acquired brain injury. Cochrane Database of

Systematic Reviews, 1, CD006787. https://doi.org/10.1002/

14651858.CD006787.pub3
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