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The transformation of the chemical industry to renewable energy and feedstock supply requires new paradigms for the

design of flexible plants, (bio-)catalysts, and functional materials. Recent breakthroughs in machine learning (ML) provide

unique opportunities, but only joint interdisciplinary research between the ML and chemical engineering (CE) commun-

ities will unfold the full potential. We identify six challenges that will open new methods for CE and formulate new types

of problems for ML: (1) optimal decision making, (2) introducing and enforcing physics in ML, (3) information and

knowledge representation, (4) heterogeneity of data, (5) safety and trust in ML applications, and (6) creativity. Under the

umbrella of these challenges, we discuss perspectives for future interdisciplinary research that will enable the transfor-

mation of CE.
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1 Introduction

The chemical industry must convert to using renewable
energy and feedstock supply, otherwise chemical production
might become the largest driver of global oil consumption
by 2030 [1–4]. However, renewable resources fluctuate over
time and space, requiring dynamic operation and a new
paradigm for identifying new process routes and the design
of flexible plants [3]. At the same time, the chemical compa-
nies are facing increased competition and must ensure
optimal operation and short development cycles for new
processes. Facilitating this radical change poses difficulties
as conventional methods for process synthesis and opera-
tion may not be sufficient. To make optimal decisions in
complex environments, models are conventionally devel-
oped based on mechanistic understanding and optimized.
However, the development of physicochemical models is
expensive, and many phenomena cannot be fully described
by computationally tractable models.

Machine learning (ML) has the potential to overcome the
limitations of mechanistic modeling as ML methods can
learn complex behaviors, the model development is cheaper,
and it can be advantageous for optimization [5, 6]. Chemi-
cal engineering (CE) already experienced two big waves of
ML applications between the 1980s and 2008, i.e., expert
systems and (shallow) artificial neural networks (ANNs)
(c.f. [7, 8]). These waves had limited impact due to several
reasons [7]: i) lack of data, of data accessibility, of computa-
tion power, and of programming environments/paradigms,
ii) competing successful emerging technologies for CE, in

particular, mechanistic modeling, optimization, and model
predictive control.
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Today, we have cheap and powerful computing, easy-to-
use programming environments (e.g., Python & Tensor-
Flow), and a large open-source community in ML. At the
same time, ML has seen a surge in automatic feature learn-
ing by deep ANNs [9, 10]. This development together with
advances in hardware – most importantly GPU computing
– led to breakthrough results in image recognition [11],
especially when based on convolutional neural networks
(CNNs) [7], and in game playing [12–14] and generally to a
technology push in ML [15].

CE currently undergoes a transformation towards digiti-
zation and full automation of industry and research. This
leads to an ever-increasing availability of data and the need
for automated optimal decision-making based on data,
allowing for more sustainable process operations [16]. We
thus have a technology push and industry pull situation,
where ML opens up new possibilities to overcome pressing
challenges in CE [7]. In this perspective, we first review ML
methods already established in CE (Sect. 2). Then, we iden-
tify six emerging ML challenges with great potentials in CE
(Sect. 3).

2 Established Machine Learning Methods
in Chemical Engineering

ML is a subclass of artificial intelligence (AI). ML has roots
in computer science and mathematics and gives computers
the ability to learn from data without being explicitly pro-
grammed. ML is broadly classified into supervised learning
and unsupervised learning [17]. Other types of ML are rein-
forcement learning (RL) as well as hybrids such as semi-
supervised learning.

First applications of classical AI in CE were proposed in
the 1980s with the advent of expert systems, e.g., for thermo-
physical properties [18] and catalyst design [19]. They did
not achieve breakthroughs mainly because implementation,
training, and maintenance were costly and time-consuming
[7] (c.f. Sect. 1). As ML theory, computer hardware, and pro-
gramming languages advanced, ML was applied to experi-
mental and simulated data to extract information, recognize
patterns, and make predictions [20]. Overall, ML methods
for process monitoring, fault detection, and soft sensing are
mostly mature and commercially available in CE.

2.1 Unsupervised Learning

Unsupervised learning describes the collection of tech-
niques that investigate ‘‘unlabeled data’’, i.e., data with no
explicit input-output connection. The main purpose is to
find hidden structure in data, e.g., for clustering, feature
extraction, compression, or anomaly detection. Unsuper-
vised learning is popular and attractive from a practical
point of view as input-output connections are oftentimes
unavailable in applications.

In CE, process monitoring and fault detection have seen
many applications over the past decades leading to com-
mercial tools and industrial applications. Process monitor-
ing is mainly based on classical principal component analy-
sis (PCA) [21], while some researchers investigated
independent component analysis for non-Gaussian process-
es [22] and kernel density estimation for applications with
unknown distributions, e.g., for data smoothing [23].
Further advances are monitoring platforms, e.g., using
self-organizing maps for a wastewater treatment plant [24]
and Gaussian mixture models for the Tennessee Eastman
process [25]. Fault detection is another common application
of unsupervised learning to process data. In the previous
literature, variations of PCA have been used frequently for
fault detection [26–28]. Furthermore, other advanced
methods have been applied to distinguish between normal
and faulty batches (e.g., support vector data description
[29] and k-means clustering [30]). Today, first fault detec-
tion tools are commercially available for the process indus-
try.

2.2 Supervised Learning

Supervised learning methods train a model on labeled data
with an explicit input-output structure and learn functions
mapping an input to an output. Regression is a supervised
ML tool that is part of the standard repertoire in process
systems engineering (PSE) and has long been used for mod-
eling and subsequent optimal design of processes. Regard-
ing soft sensor applications, i.e., online prediction of process
qualities, a large variety of different methods has been used,
including partial least squares [31–33], principal compo-
nent regression [34, 35], support vector machines (SVM)
[36], ANNs [37], and Gaussian process (GP) regression
[38–40]. Applications of these include complex large-scale
processes such as air separation units [32], injection-mold-
ing [35], reverse osmosis of seawater [33], and further
chemical production processes [37, 38, 41].

Supervised learning has long been used for dynamic sys-
tems in operations and control. A wide range of models is
applied to describe dynamic processes based on data in dis-
crete-time and continuous-time approaches [42]. There are
state-space models, Hammerstein-Wiener models, scale-
bridging surrogate models, linear autoregressive integrated
moving average (ARIMAX), and nonlinear ARIMAX
(NARMAX) [43]. Identification of these models is well
established. However, they are limited to Markovian sys-
tems, where the current state completely describes the
system, i.e., effects of hysteresis cannot be described. In ML,
recurrent neural networks (RNN) have been introduced to
include non-Markovian effects. For example, [44] use an
RNN to learn the policy for operating a batch bioprocess. In
cases where large data sets are present and long-term
dependencies are relevant, training of standard RNNs suf-
fers from vanishing gradients and gated recurrent neural
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networks like long-short-term memory
(LSTM) architectures are suitable [45].

3 Emerging Machine Learning
Challenges in Chemical
Engineering

Beyond the previously summarized topics
deeply rooted in data mining and ana-
lytics, we identify six emerging challenges
of ML with a large potential for CE [46].

3.1 Optimal Decision Making

Optimal decision making is a prominent
topic in CE, for process synthesis, control, as well as solvent,
catalyst, or adsorbent selection. All these decisions need to
be made based on existing information which can be in the
form of data and mechanistic knowledge, e.g., models. As
shown in Fig. 1, optimal decision making based on data can
be done by training of data-driven or hybrid models and
subsequent optimization with embedded data-driven mod-
els [5, 6].

Within PSE, various data-driven models have been used
for regression and subsequent process optimization. As
illustrated in Fig. 2, the complexity of applied data-driven
models ranges from linear approximations to deep ANNs.
For a long time, the literature focused on linear models to
approximate simulation and experimental data [47]. Since
the 1990s, shallow ANNs have been used extensively.
Shallow ANNs can theoretically approximate any nonlinear,
smooth function given a sufficient number of neurons to
any given positive accuracy on a training data set [48]. In
many PSE applications, ANNs are fitted to complete pro-
cesses (black-box approach, e.g., [49]), or ANNs are com-
bined with mechanistic model equations (hybrid modeling
approach, e.g., [50–52]). Subsequently, the obtained process
models can be optimized, e.g., to identify process design
[53]. Today, the re-emergence of ML is mostly driven by
deep ANNs and big data [15]. The deep ANNs are believed
to become more important in PSE because abundant data

becomes available, e.g., through smart manufacturing, high
throughput experiments, and simulation studies [16]. How-
ever, applications of deep ANNs are still limited in process
design in PSE [8].

While optimization of problems with linear models can
be solved globally on a large scale, e.g., for structural opti-
mization [47], linear models cannot learn high-dimensional
nonlinear problems accurately. On the other hand, the con-
sideration of more complex data-driven models like ANNs
and GPs, which could reflect high dimensional nonlinear
problems better, has long been limited to local or stochastic
solution approaches [51–55]. Although some tailor-made
data-driven models can be solved using state-of-the-art
global solvers, these are also limited to low-dimensional
problems [56, 57]. A few researchers in CE and ML have
developed tailored optimization approaches for problems
with ML models embedded. Mistry et al. [58] proposed a
tailored algorithm for problems with gradient boosted trees
embedded. Grimstad and coworkers proposed an algorithm
for the optimization of piecewise polynomial functions [59]
and spline functions [60]. Some previous works also used
general-purpose global solvers to solve optimization prob-
lems with complex surrogate models embedded [54, 55] but
observed computational burdens. Recently, Schweidtmann
and Mitsos [6] proposed an efficient reduced-space opti-
mization formulation for global optimization of deep

ANNs. Notably, ANNs with rectified lin-
ear unit (ReLU) activations have recently
been reformulated as mixed-integer line-
ar programs (MILPs) [61–63]. In the
MILP formulations, binary variables are
introduced to divide the domain of the
piecewise linear ReLU activation func-
tions into two linear sub-domains. Simi-
larly, tree models can be reformulated as
MILPs [58, 64, 65]. However, the number
of integer variables and constraints
grows linearly with the model complexity
(e.g., number of nodes in the ANN).
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Figure 1. Illustration of the data-driven modeling and optimization approach [5, 6].

Figure 2. Overview of data-driven models embedded in optimization problems in CE:
linear [47], convex region linear surrogate model [57], nonlinear basis functions, e.g.,
ALAMO [56], piecewise polynomial function [59], spline function [60], Gaussian process
[54, 55], support vector machine, ensemble tree model (e.g., random forest, gradient
boosted trees [58, 64]), ANNs with ReLU activation [61–63], and other ANNs with more
complex activation functions [6, 54]. Note that the models are ordered by their esti-
mated ability to learn complex dependencies.
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Overall, optimal decision-making based on data has
already seen some work on optimal process synthesis and
optimal process operation. However, there are still severe
limitations in integrating learning and optimization frame-
works that exhibit complex ML models.

Promising future research in optimal decision making
includes ML-assisted/embedded optimization and ML-
assisted control. In both areas, the complexity of real-life
processes and the inclusion of non-Markovian effects prom-
ises to discover insufficiencies of ML methods, to nurture
new developments, and to open promising new avenues of
research in both fields. This area has excellent synergy
potential with the other five.

3.2 Introducing and Enforcing Physics in Machine
Learning

The physicality of ML models is a frequently called-for
development in CE. Across many disciplines, supervised
learning is directly applied in a black-box approach. How-
ever, black-box approaches have severe drawbacks in inter-
pretability, extrapolation, data demand, and reliability.
These drawbacks can limit applications of ML and lead to
fatal errors when being applied in industry without neces-
sary checks. On the other hand, mechanistic, physicochemi-
cal models can provide structural knowledge that can be
combined with data-driven models.

The combination of mechanistic and data-driven models
is called hybrid (semi-parametric) modeling. It promises
advantages such as better interpretability, enhanced extrap-
olation properties, and higher prediction accuracy [66–68].
Fig. 3 illustrates the enhanced extrapolation properties of
hybrid models. In the illustrative example, some training
data points are distributed on low-dimensional manifolds
that are illustrated by dashed lines. In this case, a standard
black-box approach (e.g., an ANN with two inputs and one
output) should not be evaluated outside the manifolds of
the training data points. In the illustrative case, a mechanis-

tic model structure g(f1(x1)f2(x2)) is known a priori where f1

and f2 are unknown functions and g is a known mechanistic
model. This allows to build a hybrid model that can be eval-
uated outside the initial training data manifold because each
black-box model has only one single input and is thus eval-
uated within its training data range. Consequently, the
hybrid model structure avoids extrapolation of the black-
box model parts. Hybrid modeling has numerous applica-
tions in CE and biotechnology since the early 1990s, e.g., in
process [69, 70] and reactor modeling [71], polymerization
[72], crystallization, distillation, drying processes [73], and
process control [74, 75]. Also, many empirical constitutive
equations in CE can be interpreted as simple data-driven
parts in a hybrid model. Hybrid modeling has strong
theoretical foundations within the CE community and is
believed to gain importance within and beyond CE: Fiedler
and Schuppert [76] and Kahrs and Marquardt [50] pro-
vided fundamental insight into the identification of hybrid
models and extrapolation properties. Furthermore, Kahrs
and Marquardt [77] developed methods for determining a
valid input domain for hybrid models.

The ML community has identified the need for the incor-
poration of a priori knowledge for many applications. For
instance, researchers in the ML community incorporate
prior knowledge as a penalty term in the training and thus
enforce physics-informed ANN [78]. A few works also aim
to extract physical knowledge from data or data-driven
models. Symbolic regression was used to identify physical
laws from kinematic data [79]. Interestingly, advanced opti-
mization formulations for symbolic regression have been
developed [80] and applied in CE [81].

Overall, CE has a tremendous record in physicochemical
modeling and formulating predictive models. Exploiting
these capabilities for hybrid modeling is promising to en-
sure interpretability, extrapolation, reliability, and trust of
ML models. At the same time, CE has a strong foothold in
(global) optimization of constrained mixed-integer non-
linear problems. Bringing these concepts to the training of
hybrid ML methods should reap further profit.

www.cit-journal.com ª 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH Chem. Ing. Tech. 2021, 93, No. 12, 1–12

Figure 3. Comparison of hybrid model structure and black-box modeling approach assuming data on a low-dimensional mani-
fold. The dashed lines represent the manifold of the training data points. The mechanistic model g is known a priori. The figure
is adapted from a lecture of Andreas Schuppert on hybrid modeling.
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Hybrid models that combine data-driven and mechanis-
tic models can avoid extrapolation (c.f. earlier discussion on
Fig. 3) and are essential for many CE applications. Further-
more, they improve the explainability of ML models, which
matches a current trend in the ML community. In other
words, hybrid models are often more explainable compared
to a black-box model. For example, intermediate variables
in hybrid models commonly have a physical meaning that
can facilitate explainability of the predictions. In addition,
there is a smooth transition between hybrid modeling and
physically motivated ML model architectures. Including
physical knowledge into the ML architectures has the
potential to enhance generalization and explainability of
ML models. For this, CE can build on results from the early
1990s that are today mostly not recognized by the ML com-
munity. Most of the previous hybrid modeling efforts can
be understood as a top-down approach where a hybrid
modeling structure is dictated by the physical and chemical
understanding of the system. However, we know from the
analogy to expert systems that this top-down approach
requires system expertise and leads to high maintenance.
Deep learning is successful because it allows for bottom-up
(or end-to-end) data utilization. Using the structural infor-
mation contained in process flowsheets will generate new
training schemes for hybrid models and at the same time
ensure increased physicality.

3.3 Information and Knowledge Representation

The significant surge of ML applications in social media
platforms, online shopping, and video-on-demand services
heavily relies on vast amounts of structured data. In CE,
however, only a tiny fraction of knowledge and information
is accessible for ML methods while the majority is only
available in analog or non-standardized digital form.
Currently, ML techniques commonly process data from
computations, sensors, and measurements. However,
molecular data, process flow charts, P&IDs, publications,
lab books, etc. are not often accessible to standard ML tech-
niques. This is a major hurdle for finding and exploiting
more complex relationships by ML techniques.

Information extraction is the process of (semi-)auto-
mated retrieval of structured information from unstruc-
tured data sources [82]. For example, natural language
processing (NLP) algorithms can recognize entities in
unstructured text and extract their relations [83]. Although
transformer-based language models have recently demon-
strated great advances in NLP [84], automated named
entity recognition and relation extraction are still challeng-
ing tasks require future research. In addition, figures and
tables provide valuable information. Extracting information
from tables is domain-independent and there exist multi-
ples tools for this task [85]. However, the extraction of
information from figures is often domain-specific and
requires joint research efforts [86].

Semantic web technologies connect knowledge and data
by using graphs as a unified data model [87]. In particular,
knowledge graphs combine data with ontologies, i.e.,
semantic data models [88]. Currently, there exist only a few
chemical engineering ontologies (e.g., ONTOCAPE [89])
and knowledge graphs (e.g., the J-Park Simulator [90]).

In the future, finding new representations for information
and knowledge of CE will allow for further analysis, new
information and knowledge, and subsequent use, e.g., for
optimal decision making. This crosscutting field is hence of
great importance to the overall success of ML in CE. In the
future, CE data will be extracted from scientific literature
and other CE data sources. Moreover, we believe that it will
be structured through ontologies and will be saved in
knowledge graphs. Using knowledge graph embeddings or
other representations allows for automated learning of
information [91]. At the same time, the ML methods that
work on these specialized knowledge representations need
to be tailored to the applications requiring research in both
ML and CE. Handling and representing this highly hetero-
geneous, noisy, and sometimes scarce data is challenging
and a key issue that should be addressed in the future; it
opens huge potentials in CE but requires both ML know-
how and domain-specific insight from CE.

3.4 Heterogeneity of Data

Heterogeneity of data in CE has many sources (e.g., lab
books, measurements, property data, molecular simulations,
publications, simulation files), and processing heteroge-
neous data is a major hurdle in CE. Heterogeneity in CE
stems, e.g., from (1) multiple scales in time and space (e.g.,
ms to months in control and scheduling, or nm to m in
pore diffusion and pressure swing adsorption), (2) a variety
of data sources, which need to be combined to understand
chemical processes (e.g., process data, alarms, property data,
equipment specifications), (3) highly different data frequen-
cies (e.g., continuous measurement data appears once per
ms, while quality data is gathered every other hour or day).
All of this is exacerbated by the frequent high dimensional-
ity of data sets [20].

Unsupervised machine learning has emerged in CE for
treating high-dimensional problems and perform dimen-
sionality reduction in CE. Recently, an outlier detection
algorithm identified strategic molecules for circular supply
chains within the ‘‘network of organic chemistry’’ [92, 93]
with roughly one million reactions [94]. Breaking down the
dimensionality makes huge networks accessible to reaction
pathway optimization methods [95–97]. Furthermore, PCA
is for example applied [98] to design features from a set of
molecular descriptors for solvent selection.

Considering increasingly high-dimensional data sets,
manifold learning has become ever more important.
Among others, Aimin et al. [99, 100] use manifold learning
as the basis for soft-sensor developments for a fermentation
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process and a debutanizer column. To tackle highly differ-
ent data frequencies or data, which is erroneous or incom-
plete, [20] suggest using semi-supervised learning. It can be
employed in case of a mismatch between input and output
data, e.g., when a data basis consists of labeled and unla-
beled data. A small amount of labeled data can be aug-
mented by larger unlabeled data sets [101]. First prelimi-
nary applications in CE use semi-supervised learning to
predict missing data for a soft sensor in penicillin produc-
tion [102].

To describe heterogeneous data, specialized representa-
tions of CE information and knowledge are required. For a
long time, researchers have designed manual features to
describe data. For example, molecules can be described
through molecular counts or group contribution methods
[103, 104]. However, this manual feature design requires
expert knowledge and can lead to a model bias. A promis-
ing solution is end-to-end learning, where gradient-based
learning is applied on a complete system from the informa-
tion representation to the output [15]. This has led to
breakthrough results in many complex applications includ-
ing self-driving cars [105] and speech recognition [106].
Recently, molecules and crystals have been represented as
graphs and processed by specialized ML algorithms for
end-to-end learning [107, 108]. Graph neural networks
(GNNs) directly operate on graph structure and have
shown promising results for predicting structure-property
relationships [109, 110]. Through graph convolutions,
GNNs can learn optimal molecular representations and
map these representations to the physicochemical proper-
ties. As illustrated in Fig. 4, the end-to-end learning
approach eliminates the need for manual feature selection.
Recent work applied GNNs to predict of quantitative struc-
ture-activity and property relationships, e.g., octanol solu-
bility, aqueous solubility, melting point, and toxicity
[110, 111]. Further, Xie and Grossman [112] represent crys-
tal structures by a crystal graph that encodes atomic infor-
mation and bonding interactions for the prediction of target
properties. In addition to these applications, GNNs have
also been extended to recognize higher-order features from

graphs [113]. There have also been some first efforts to rep-
resent reaction networks [94, 114] and flowsheets [115, 116]
as graphs and apply ML to this data. Venkatasubramanian
[7] identified information representation as promising
building blocks to further advance the field of CE.

In the future, data of different length and time scales will
be combined through ML. For example, simulation and
experimental data will be integrated. Beyond this heteroge-
neity in continuous data, completely different types of data
sources will also be integrated. We also expect advanced
novel training procedures to construct ML models based on
heterogeneous data. For example, recent work predicts
experimental procedures from chemical reactions using a
transformer language model [117]. Regarding the introduc-
tion of data from various scales in space, we expect new
modeling paradigms, which automatically rank and subse-
quently filter the influence of phenomena at multiple scales.
The targeted analysis of scientific publications regarding,
e.g., thermodynamic information, will allow for the use of
historic data in new applications. We envision an automatic
identification of similar data sets among a database and
subsequent domain adaptation. This necessitates advances
in transfer learning and domain adaption. Vice versa, there
is a lot of heuristic knowledge in CE on small-scale phe-
nomena, which have tremendous effects at larger scales,
e.g., capillary forces and their ramifications for membranes
and filters. Formalizing this knowledge and turning it into
modeling paradigms for multiscale problems should also be
beneficial.

3.5 Safety and Trust in Machine Learning
Applications

In CE, a failure could amount to a runaway reaction causing
damage to equipment. Safety and trust in ML applications
are related to the call for the introduction of physical laws
into ML techniques but goes well beyond. It is well-known
that the extrapolation capacity of data-driven models over
their initial training domain is limited [77, 99, 118]. Thus,

the development of models describing the valid-
ity domain of data-driven models are desired
[77, 99, 118]. However, when training data-
driven models on industry data, defining and
modeling the validity domain is a major issue
[99]. Similar issues can arise when applying
GNNs to molecular property prediction
[119, 120] or when applying RL to control pro-
cesses [44, 121]. Overcoming this hurdle is a
relevant issue where ML and chemical engineer-
ing together can generate considerable added
value in terms of research and which would pave
the way for new applications.

RL is well-known for its application in game
playing, where an agent automatically deter-
mines actions that maximize an expected reward
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Figure 4. Illustration of the concept of end-to-end learning in comparison to
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[122]. RL has seen some first and promising applications in
chemical engineering for control [44, 121] and scheduling
[8]. However, all these initial attempts were purely simula-
tion-based because RL is trial-and-error-based, meaning
that experiments can fail. Finally, the field of ML is getting
more interested in ‘‘explainability’’ and ‘‘interpretability’’.
The usage of black-box models has proven to be a trust
issue and more transparent architectures are coming into
focus.

In the future, research needs to focus on the safety and
trustworthiness of ML methods going beyond just ensuring
physicality of ML models. To ensure safety in CE applica-
tions, the interpretability of decisions, the provable robust-
ness of models, and the quantification of uncertainty are
crucial avenues for future research. In process automation
and control, causality- and control-based approaches ensure
safety. Integrating these with the promising advances in RL
could generate novel methods of use for multiple fields.
Similarly, there has been a lot of work on uncertainty quan-
tification both for physicochemical models in CE and for
data-driven ML models. These should be brought together
for proper descriptions of uncertainty in hybrid models
and, of course, for sound design and operation of CE appli-
cations under uncertainty.

3.6 Creativity

Creativity is a feature that ML has become quite famous for.
Some examples are generating new texts, new sounds, and
new images [123]. In CE, a lot of effort using non-ML tech-
niques is currently going into inverse problems, e.g., finding
a new catalyst or a novel solvent for a given application
[124]. Also, deriving new process structures or new control
structures is a desired goal. In ML, matrix completion is a
semi-supervised technique that generated a lot of attention
by its large-scale application for the ‘‘Netflix problem’’
[125]. Here, predictions are made for non-rated movies
based on a large (and sparse) matrix of viewers and ratings.
Recently, this technique has been applied to the prediction
of activity coefficients for component mixtures, which were
never experimentally investigated [126].

Further progress came with generative adversarial net-
works (GANs), which are deep neural network architectures
consisting of two nets competing against one another (‘‘ad-
versarial’’) [127]. GANs quickly proved to be highly capable
at creative tasks such as creating new works of art. Another
type of promising generative models are variational auto-
encoders (VAE) [128], which are also used for data genera-
tion (image, sound, text) and missing data imputation.

Overall, CE is a field where novel process designs, prod-
ucts, and materials can currently only be found or discov-
ered by experimental trial and error or by human design.
Supporting this with creative techniques from ML might
allow for discoveries as of yet unimaginable and research in
this direction is hence highly desirable.

In the future, we expect ML methods to solve creative
tasks from the thermodynamic phenomena scale up to
whole flowsheets and enterprises. Regarding the former,
thermodynamic properties for never-measured systems will
be inferred by matrix completion techniques.

So far, ML’s recent advances on creativity have mainly
been appropriately applied on images, texts, and sounds.
Transferring these to molecules, control structures, and
flowsheets is highly promising as a lot of manual work can
be automated and potentially a huge new set of candidate
solutions will be found by these techniques. These candidate
solutions will also be of great help regarding optimal deci-
sion-making. Given the novelty of the applications, further
advances in ML methods can be expected regarding train-
ing techniques, structuring of data, and metrics for the
sensibility of outputs.

4 Conclusion and Outlook

We identified six challenges for interdisciplinary research
that will open up new methods for CE and formulate new
types of problems for ML: optimal decision making, intro-
ducing and enforcing physics in ML, information and
knowledge representation, heterogeneity of data, safety and
trust in ML applications, and creativity.

The German Research Foundation recently established
the Priority Program ‘‘Machine Learning in Chemical Engi-
neering: Knowledge meets data.’’ (SPP 2331). The first batch
of projects is expected to start in the fall of 2021. With this
Priority Program, researchers from ML and CE will jointly
work to tackle these emerging challenges. In the meantime,
other initiatives have begun researching at the interface of
CE and ML. These initiatives promise exciting new research
directions in the next few years and will undoubtedly aid in
educating a new generation of engineers fluent in methods
from both worlds.

The authors gratefully acknowledge the DFG for estab-
lishing the Priority Programme SPP 2331 ‘‘Machine
learning in chemical engineering. Knowledge meets data:
Interpretability, Extrapolation, Reliability, Trust’’. AMS is
supported by the TU Delft AI Labs Programme. MK
acknowledges support by the Carl-Zeiss Foundation,
by the German Research Foundation (DFG) award
KL 2698/2-1, and by the Federal Ministry of Science and
Education (BMBF) awards 01IS18051A and 031B0770E.

Chem. Ing. Tech. 2021, 93, No. 12, 1–12 ª 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH www.cit-journal.com

Review Article 7
Chemie
Ingenieur
Technik

These are not the final page numbers! ((



Artur M. Schweidtmann is
an assistant professor for
chemical engineering at
Delft Technical University
and co-director of the
KDAI Lab, which is part of
the TU Delft AI Labs Pro-
gramme. He received his
Master of Science from
RWTH University in 2017
and defended his Ph.D.
from RWTH in 2021, both
in chemical Engineering.

During his studies, he spent the academic year 2013/
2014 at Carnegie Mellon University as a visiting
student via DAAD ISAP program. He performed his
Master thesis at the University of Cambridge. His
research focuses on the combination of artificial intelli-
gence and chemical engineering.

Erik Esche is a postdoctoral
researcher with Prof. Jens-
Uwe Repke at TU Berlin.
He leads the group’s work
on development and appli-
cation of methods for
mathematical optimization
and machine learning for
operation and design of
chemical processes. His
research focuses on un-
certainty in models and
measurements and their

consequence for the reliable operation of chemical
processes.

Asja Fischer is full profes-
sor (W3) for mathematics
at Ruhr-Universität
Bochum, Bochum. She
received her Master of
Science in Cognitive
Science from the University
of Osnabrück in 2009 and
her Ph.D. in Computers
Science in 2014 from Uni-
versity of Copenhagen. Her
research focusses on the
theory and application of

machine learning with a focus on deep learning and
probabilistic models.

Marius Kloft is full pro-
fessor (W3) for computer
science at Technische Uni-
versität Kaiserslautern.
Previously, he was an assis-
tant professor at HU Berlin
(2014–2017) and a post-
doctoral fellow at Courant
Institute of Mathematical
Sciences, New York. He
earned his PhD at UC Ber-
keley and TU Berlin (2011).
He is interested in theory

and algorithms of statistical machine learning, espe-
cially unsupervised deep learning, and its applications
in chemical process engineering. In 2014, he was
awarded the Google Most Influential Papers award.

Jens-Uwe Repke is full
professor (W3) for Process
Dynamics and Operations
at Technische Universität
Berlin. He received his
Dipl.-Ing. in 1996 and his
Dr.-Ing. in 2002, both from
the Technische Universität
Berlin. From 2010 to 2016
his has been a full professor
for Thermal Separation
Technologies at TU Berg-
akademie. His research

focuses on optimal process design and operation.

Sebastian Sager is full
professor (W3) for algo-
rithmic optimization at
Otto-von-Guericke Uni-
versität Magdeburg. He
received his Diploma
(2001), PhD (2006), and
habilitation (2012) from
Universität Heidelberg, all
in mathematics. His re-
search focuses on mixed-
integer nonlinear optimiza-
tion of complex processes

and applications in renewable energy, mobility, and
clinical decision support.

www.cit-journal.com ª 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH Chem. Ing. Tech. 2021, 93, No. 12, 1–12

8 Review Article
Chemie
Ingenieur
Technik

’’ These are not the final page numbers!



Alexander Mitsos is a full
professor (W3) for chemi-
cal engineering at RWTH
Aachen University and the
director of IEK-10 Energy
Systems Engineering at
Forschungszentrum Jülich.
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