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We consider wave propagation problems that are modeled in the frequency-domain, and 
that need to be solved simultaneously for multiple frequencies within a fixed range. For 
this, a single shift-and-invert preconditioner at a so-called seed frequency is applied. The 
choice of the seed is crucial for the performance of preconditioned multi-shift GMRES and 
is closely related to the parameter choice for the Complex Shifted Laplace preconditioner. 
Based on a classical GMRES convergence bound, we present an analytic formula for the op-
timal seed parameter that purely depends on the original frequency range. The new insight 
is exploited in a two-level preconditioning strategy: A shifted Neumann preconditioner 
with minimized spectral radius is additionally applied to multi-shift GMRES. Moreover, we 
present a reformulation of the multi-shift problem to a matrix equation solved with, for 
instance, global GMRES. Here, our analysis allows for rotation of the spectrum of the lin-
ear operator. Numerical experiments for the time-harmonic visco-elastic wave equation 
demonstrate the performance of the new preconditioners.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider the efficient iterative solution of a sequence of ns > 1 shifted systems of the form,

(K − skM)xk = b, for k = 1, ...,ns, (1)

where the matrices K and M depend on the specific problem discretization, and {sk}ns
k=1 is a sequence of shifts. Problems of 

the form (1) arise, for instance, in oscillatory hydraulic tomography [34] and lattice quantum chromodynamic [18]. Moreover, 
the extension of acoustic Helmholtz problems [12,16,35,41] to a multi-frequency setting results in the framework (1). The 
focus of the present work, however, lies on situations where the discretization matrices K and M stem from a discretization 
of the time-harmonic elastic wave equation [13]. Depending on the specific choice of boundary conditions, the structure of 
the matrices varies, and the shifts sk are either equal to the (angular) wave frequencies [6,41] or to the squared (angular) 
wave frequencies [2,30]. For both situations, we will consider viscous damping by substituting sk �→ (1 − εi)sk , where ε > 0
is the damping parameter and i ≡ √−1, cf. [2,6,30,41].

Throughout this document we put emphasis on the case when the set of shifts 
{

s1, ..., sns

}
in (1) is distinct, and multiple 

frequencies are considered, i.e. ns > 1. Without loss of generality, we assume the frequencies to be ordered, and, in particu-
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lar, s1 = mink{sk} =: smin and sns = maxk{sk} =: smax to be the extreme frequencies. A large area of application where the fast 
solution of (1) at multiple frequencies is required is the so-called Full-Waveform Inversion modeled in frequency-domain; 
cf. [24,27,28,43].

If the matrices in (1) are large and sparse, Krylov subspace methods are the common choice for the iterative numerical 
solution of (1). When re-formulating problem (1) to problems with shifted identity, Krylov methods can be particularly effi-
cient, and variants of almost all popular Krylov methods have been derived for this type of problems (such as GMRES(k) [18], 
FOM(k) [32], BiCGStab(�) [17] and IDR(s) [6,42] among others). It is, however, difficult to apply a preconditioner and, at 
the same time, preserve the shifted structure: Most recently, polynomial preconditioners [1], flexible preconditioners [34], 
nested methods [6], and multi-preconditioned methods [4] have successfully been developed. Alternative approaches to 
solve sequences of linear systems such as (1) are the reformulation as a matrix equation [9], and the usage of information 
of previous solves called recycling [37,38].

In most cases, a single preconditioner of the form,

P(τ ) := (K − τM), with seed shift τ ∈ C, (2)

is applied where the choice of τ ∈ C for a given set {s1, ..., sns } is crucial for the convergence behavior of the overall 
algorithm, as has been pointed out in [4,9,34]. The present paper addresses the following:

1. We present an optimal choice for the seed parameter τ in (2) when a single shift-and-invert preconditioner is applied 
to (1). Our proposed choice is based on spectral analysis and the minimization of a classical GMRES convergence bound 
that also holds in the multi-shift framework.

2. Once a preconditioner of the form (2) is applied, the spectra are known to be bounded by circles which gives rise to 
the efficient application of a shifted Neumann preconditioner [1] as a second-level preconditioner. Our choice for τ
minimizes its spectral radius.

3. The spectral analysis of the multi-shift framework is exploited for an equivalent matrix equation formulation of (1)
studied in [9]. A simple post-rotation of the block spectrum yields a second-level preconditioner for the matrix equation 
and significantly speeds up convergence of global GMRES [20].

We point out that the analysis of an efficient seed parameter τ is fundamentally different from the single-frequency case 
studied in [41] since there is no trivial solution that needs to be excluded from the optimization. Moreover, note that we 
can not include directly frequency-dependent Sommerfeld boundary conditions in the preconditioner (2), as recommended 
in [23]. When (2) is applied inexactly using a multi-grid algorithm [29] or deflation [21], the choice of τ is usually combined 
with damping such that the multi-grid solver works well, cf. [12,19] for an analysis in the Helmholtz case. We do not 
consider this aspect in this paper but note that the MSSS preconditioner developed in [9] allows to apply the inverse of (2)
fast, even for large frequencies [8]. We conclude with numerical examples obtained from a finite element discretization of 
the time-harmonic visco-elastic wave equation at multiple wave frequencies.

2. The time-harmonic elastic wave equation at multiple frequencies

The aim of this work is the efficient iterative solution of the elastic wave equation in a frequency-domain formulation. 
The displacement vector u(t, x) at time t and with spatial component x satisfies the elastic wave equation,

ρü = ∇·σ(u) + s, in (0, T ] × �, � ⊂ Rd, d ∈ {2,3}, (3)

with inhomogeneous material density ρ = ρ(x), stress tensor σ [13], and source term s [25]. We consider the following set 
of boundary conditions,

ρu̇ = σ(u)n for x ∈ ∂�a and σ(u)n = 0 for x ∈ ∂�r, on ∂� = ∂�a ∪· ∂�r, (4)

where the condition on ∂�r models reflection of waves, and the first-order Sommerfeld radiation condition on ∂�a is one 
way to model absorption [15]. For the time-harmonic ansatz u(t, x) = û(x)e−iωt substituted into (3)–(4) we obtain:

−ω2ρû − ∇·σ(û) = ŝ, in �, (5a)

iωρ B(cp, cs) û + σ(û)n = 0, on ∂�a, (5b)

σ(û)n = 0, on ∂�r . (5c)

Note that, in the frequency-domain formulation (5a)–(5c), the Sommerfeld condition yields a term that is proportional to 
the frequency. For the definition of B(cp, cs) in (5b) we refer to [2,9]. Note that choosing ŝ = δ(x − xs) in (5a) yields a 
frequency-independent right-hand side. The solution corresponding to a general right-hand side can then be recovered by 
superposition with Green’s function, cf. [25]. In [9] a detailed derivation of a finite element discretization of (5a)–(5c) is 
presented that yields linear systems of the form,
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(K + iωkC − ω2
k M)ûk = ŝ, k = 1, ...,ns, (6)

with K being a stiffness matrix, M being a mass matrix and C includes Sommerfeld boundary conditions. The angular 
frequencies ωk appear quadratic in (6). Therefore, we apply a linearization [36] that results in block-systems of doubled 
dimensions,([

iC K
I 0

]
− ωk

[
M 0
0 I

])[
ωkûk

ûk

]
=

[
ŝ
0

]
, k = 1, ...,ns. (7)

Let ε > 0. We formally add viscous damping to (6) by introducing the set of complex frequencies ω̂k := (1 − εi)ωk . 
The damped problem then reads, (K + iω̂kC − ω̂2

k M)ûk = b, for k = 1, ..., ns , where the ansatz u(t, x) = û(x)e−iω̂t =
û(x)e−iωte−εωt now includes a damping term. When damping is added to the problem, spectral properties change and, 
in particular, the bounding circles that we describe in Section 4 do no longer touch the origin. The systems (7) are of the 
form (1), see Problem 2.1.

We also consider different types of absorbing boundary conditions on ∂�a : The case of purely non-mixed boundary 
conditions in (4) trivially yields C ≡ 0 in (6) and we, again, obtain a problem of the form (1). Absorption can also be 
modeled by introducing a ‘sponge layer’ [30] or using perfectly matched layers (PML) [10]. The frequency-independent PML 
derived in [14] yields a term C(ω0). In general, however, including PML boundary conditions yields a nonlinear term C(ω)

that is not considered in the present framework.
We summarize the above derivations by the following two problem statements.

Problem 2.1. Consider the discretized time-harmonic elastic wave equation (5a)–(5c) with Sommerfeld radiation 
boundary conditions [2,9] on ∂�a �= ∅, and multiple angular frequencies ωk ≡ 2π fk ,

(K + iωkC − ω2
k M)ûk = ŝ, k = 1, ...,ns, {K , C, M} ∈ CN×N ,

where the matrices K and C are symmetric positive semi-definite, and M is symmetric positive definite. The lin-
earization (7) yields a shifted problem of the form (1) with, in particular, block matrices,

K :=
[

iC K
I 0

]
∈ C2N×2N , M :=

[
M 0
0 I

]
∈ C2N×2N , shifts sk := ωk, (8)

and right-hand side vector b := [ŝ, 0]T .

Remark 2.2. In reformulation (7), dimensions are doubled compared to the original problem size in (6). For the precondi-
tioner (2), however, the following decomposition holds,

P(τ )−1 = (K − τM)−1 =
([

iC K
I 0

]
− τ

[
M 0
0 I

])−1

=
[

I τ I
0 I

][
I 0
0 (K + iτC − τ 2M)−1

][
0 I
I −iC + τ M

]
,

(9)

where the (inexact) inversion is required only at the original problem size.

Problem 2.3. Consider the discretized time-harmonic elastic wave equation (5a)–(5c) with frequency-independent 
PML [14] or ‘sponge layer’ [30] boundary conditions replacing (5b), and angular frequencies ωk ,

(K − ω2
k M)ûk = ŝ, k = 1, ...,ns,

where K is symmetric positive semi-definite, and M is symmetric positive definite. The problem is, trivially, of the 
form (1) for K := K , M := M and shifts sk := ω2

k equal to the squared angular frequencies.

Remark 2.4. For ε > 0, the damped problem corresponding to Problem 2.1 and Problem 2.3, respectively, is given by the 
substitution,

(K − ŝkM)x̂k = b, where ŝk := (1 − εi)sk for k = 1, ...,ns. (10)

In our following notation, we indicate quantities related to the damped problem with a hat.
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3. The shift-and-invert preconditioner for multi-shift GMRES

In this section, we briefly review the multi-shift GMRES method introduced in [18]. Throughout this paper we always 
consider the case when multi-shift GMRES is right-preconditioned by a preconditioner of the form (2). When applying a 
(scaled) shift-and-invert preconditioner as a right preconditioner to systems (1) the resulting preconditioned systems are 
shifted linear systems. Moreover, the shift parameter (sometimes called seed frequency) gives some freedom. Recall that we 
consider a sequence of problems of the form (1),

(K − skM)xk = b, for k = 1, ...,ns,

where the matrices K, M are defined in Problem 2.1 or Problem 2.3, respectively. For τ ∈ C \ {0}, we define the 
shift-and-invert preconditioner P(τ ) = (K − τM) as in (2). Right preconditioning of (1) with the scaled preconditioner 
Pk := 1/(1 − ηk)(K− τM) = 1/(1 − ηk)P(τ ) yields the equivalence,

(K − skM)P−1
k yk = b ⇔ (K(K − τM)−1 − ηk I)yk = b, (11)

where ηk := sk/(sk − τ ). Note that the latter is a (preconditioned) shifted linear system with (possibly complex) shifts ηk
and system matrix KP(τ )−1. Note further that the back-substitution xk =P−1

k yk = (1 −ηk)(K−τM)−1yk can be computed 
efficiently for k = 1, ..., ns . A similar equivalence as (11) that yields shifted systems with base matrix M(K−τM)−1 is used 
in [34].

Remark 3.1. It is well-known that Krylov subspaces are shift-invariant, i.e. for A := K(K− τM)−1 it holds,

Km(A,b) ≡ span{b,Ab, ...,Am−1b} = Km(A− ηI,b) ∀η ∈ C,∀m ∈ N. (12)

As a consequence, the shifted Arnoldi relation holds,

(A− ηI)Vm = Vm+1(Hm − ηI),

where the columns of Vm are an orthonormal basis of Km(A, b) that are computed by the Arnoldi method only once for 
all shifted systems, cf. Algorithm 1. Note that the equivalence (12) still holds if right-hand sides of the form β ·b where β is 
a function that scales the amplitude of the point source in (3), and that can be frequency-dependent, cf. [18].

Algorithm 1 Multi-shift GMRES with right preconditioning for (11), cf. [18].

1: Set r(0) = b, β = ∥∥r(0)
∥∥ , v1 = r(0)/β � Initialization with zero initial guess

2: for j = 1 to m do
3: Apply w = (K− τM)−1v j � Apply preconditioner (2) (cf. Section 4)
4: Compute w = Kw � Steps 3–4 together apply the matrix A =K(K− τM)−1

5: for i = 1 to j do � Arnoldi method
6: hi, j = wHvi

7: w = w − hi, j vi

8: end for
9: Set h j+1, j = ‖w‖ and v j+1 = w/h j+1, j

10: Set Hm = [hi, j ] j=1,...,m
i=1,...,m+1 and Vm = [v1, ..., vm] � Orthogonal basis of Km(A, b), A :=K(K− τM)−1

11: end for
12: for k = 1 to ns do
13: Solve yk = argminy

∥∥ βe1 − (Hm − ηkI)y
∥∥ � Solve shifted Hessenberg least squares problems

14: Compute xk = (1 − ηk)(K− τM)−1 Vmyk � Back-substitution
15: end for

In [41] the authors analyze spectral properties of the shifted Laplace preconditioner in the single-frequency case, i.e. 
ns = 1, and exploit their analysis within preconditioned GMRES [33]. One of the results of [41] is the fact that the precon-
ditioned spectrum (11) lies within a circle of radius R and center c. Both are, in the single frequency case, a function of 
s1 and τ (denoted by z1 and z2 in [41], respectively). Moreover, the authors of [41] show that in the absence of viscous 
damping the circles touch the origin, i.e. R = |c|. We state the following convergence bound for the GMRES residual norm 
that is in the absence of damping (compare Remark 2.4) of little practical use.

Theorem 3.2 (Classical convergence bound for GMRES, [32]). Let the eigenvalues of the preconditioned matrix be enclosed by a circle 
with radius R and center c. Then the GMRES-residual norm after j iterations 

∥∥r( j)
∥∥ satisfies,∥∥r( j)

∥∥∥∥r(0)
∥∥ ≤ c2(X)

(
R

|c|
) j

, where r(0) = b if x0 = 0 initially,

and where X is the matrix of eigenvectors of the preconditioned matrix K(K− τM)−1 which we assume to be diagonalizable, and 
c2(X) denotes its condition number in the 2-norm.
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Note that similar GMRES bounds exist that include the distance of the field of values of A to the origin. In particular 
in [22], the field of value for acoustic wave problems is studied and is shown to enclose the origin. The advantage of the 
bound in Theorem 3.2 is that we can analytically describe the area described by the circle (c, R), and that it describes the 
asymptotic convergence behavior of GMRES. The bound in Theorem 3.2 can be extended to the preconditioned multi-shift 
variant presented in Algorithm 1 in a straight-forward way. That is because in multi-shift GMRES without restart, optimality 
for the shifted residuals automatically holds for all individual systems.

Corollary 3.3 (Convergence bound for multi-shift GMRES, [18,32]). An extension of the bound described in Theorem 3.2 to the (precon-
ditioned) multi-shift GMRES-residual norms computed by Algorithm 1 is given by,∥∥∥r( j)

k

∥∥∥∥∥r(0)
∥∥ ≤ c2(X)

(
Rk

|ck|
) j

, k = 1, ...,ns, j ≤ m, (13)

where the spectrum of the k-th shifted system after preconditioning is assumed to be enclosed by a circle of radius Rk and center 
point ck, respectively. As in Theorem 3.2 we denote by |ck| the distance of the center point ck to the origin in the complex plane.

The following section gives detailed explanations on the suitable choice of the bounding circles (ck, Rk) in terms of the 
seed frequency τ . In particular, we will derive explicit formulas for these quantities, and make use of the fact that |ck| > Rk
when viscous damping is added such that the bound in Corollary 3.3 can be exploited.

4. Spectral analysis and optimal seed shift parameter τ ∗

We describe the main result of this paper: The efficiency of the preconditioner in (11) highly depends on the choice of 
the seed parameter τ ∈ C. The following theorem provides insight how to choose this parameter such that the bound of 
Corollary 3.3 is minimized. The result yields an explicit formula for τ in terms of the considered frequency range [smin, smax], 
and the damping parameter ε ≥ 0 as introduced in Remark 2.4.

Theorem 4.1 (Optimal seed frequency for preconditioned shifted GMRES). Let {sk}ns
k=1 ⊆ [smin, smax] ⊂ R>0 . Consider the sequence of 

problems (K− skM)xk = b with a right preconditioner Pk := 1/(1 − ηk)(K− τM),

(K − skM)P−1
k yk = b, xk = P−1

k yk, for k = 1, ...,ns. (14)

For ηk = sk/(sk − τ ), problem (14) is equivalent to,

(K(K − τM)−1 − ηk I)yk = b, k = 1, ...,ns, (15)

where P(τ ) = (K − τM) is the shift-and-invert preconditioner at seed frequency τ ∈ C \ {0}, and the matrices K and M and 
shifts {sk}ns

k=1 are defined in Problem 2.1 and Problem 2.3, respectively. The following statements give guidance on choosing the seed 
parameter τ in an optimal sense according to the bound in Corollary 3.3:

(i) For λ from the spectrum of KM−1, λ ∈ �[KM−1], it holds �(λ) ≥ 0.
(ii) Let τ = �(τ ) + i�(τ ). The preconditioned spectra of (15) are enclosed by circles of radii Rk and center points ck,

ck =
(

1

2
− sk(sk − �(τ ))

(sk − �(τ ))2 + �(τ )2

)
+ i

( �(τ )

2�(τ )
− sk�(τ )

(sk − �(τ ))2 + �(τ )2

)
, Rk = 1

2

√
1 +

(�(τ )

�(τ )

)2

=: R(τ ).

The preconditioned spectra of (15) with viscous damping ŝk := (1 − εi)sk are enclosed by circles of radii R̂k = R(τ ) and center 
points ĉk ,

ĉk =
(

1

2
− (1 + ε2)sk

2 + (ε�(τ ) − �(τ ))sk

(sk − �(τ ))2 + (εsk + �(τ ))2

)
+ i

( �(τ )

2�(τ )
− (�(τ ) + ε�(τ ))sk

(sk − �(τ ))2 + (εsk + �(τ ))2

)
.

(iii) The set of points {ĉk}ns
k=1 ⊂ C described in statement (ii) lie on a circle with center c and radius R given by,

c = i

(
ε|τ |2

2�(τ )(�(τ ) + ε�(τ ))

)
, R =

√
|τ |2(ε2 + 1)

4(�(τ ) + ε�(τ ))2
.

Note that in the undamped case, ε = 0, also the imaginary part of c equals zero and, therefore, the center point is equal to the 
origin and R = R(τ ).
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(iv) Consider the preconditioner P(τ ∗) = (K− τ ∗M) in (15). The seed frequency,

τ ∗(ε) = argmin
τ∈C−

max
k=1,..,ns

(
R(τ )

|ĉk|
)

= 2sminsmax

smin + smax
− i

√[
ε2(smin + smax)2 + (smax − smin)

2
]

sminsmax

smin + smax
, (16)

where smin := mink{sk} and smax := maxk{sk}, minimizes the GMRES-bound in Corollary 3.3 over the set C− := {z ∈ C |
�(z) < 0} and is, therefore, an optimal choice in Algorithm 1.

Proof. We prove this theorem ‘step-by-step’.

(i) For K, M as in Problem 2.3 the statement trivially holds since λ ∈ R. With the assumption on K , C and M in Prob-
lem 2.1 we know that all eigenvalues μ� of the quadratic eigenvalue problem,

(K + μ�C + μ2
� M)v� = 0, � = 1, ...,2N,

are stable, i.e. �(μ�) ≤ 0, cf. [Table 1.1][39]. Eigenpairs (λ�, v�) of KM−1v� = λ�v� are then given by λ� := −iμ� with 
corresponding eigenvectors v� :=M[−iμ�v�, v�]T as the following calculation shows:[

iC K
I 0

][
M−1 0

0 I

]
v� = λ�v� ⇔

[
iC K
I 0

][−iμ�v�

v�

]
= −iμ�

[
M 0
0 I

][−iμ�v�

v�

]

⇔
[
μ�C v� + K v�

−iμ�v�

]
=

[−μ2
� M v�

−iμ�v�

]
.

The definition of λ� together with �(μ�) ≤ 0 imply that �(λ�) ≥ 0 for Problem 2.1.
(ii) Consider the system matrix of (15),

(K(K − τM)−1 − ηk I) = KM−1(KM−1 − τ I)−1 − ηk I, with ηk = sk

sk − τ
.

The latter is a Möbius transformation with complex shift, hence the spectrum satisfies the mapping,

�[KM−1] � λ �→ λ

λ − τ
− sk

sk − τ
.

Since �(λ) ≥ 0, it is well-known [41] that for sk ≡ 0 the Möbius transformation maps the spectrum within a circle of 
radius R =

∣∣∣ τ
τ−τ̄

∣∣∣ and center c0 = −τ̄
τ−τ̄ . In the shifted case, it holds:

R̂k ≡ R(τ ) =
∣∣∣∣ τ

τ − τ̄

∣∣∣∣ = 1

2

√
1 +

(�(τ )

�(τ )

)2

, (17)

ĉk = −τ̄

τ − τ̄
− ŝk

ŝk − τ
= −�(τ ) + i�(τ )

2i�(τ )
− sk − iεsk

(sk − �(τ )) − i(εsk + �(τ ))

=
(

1

2
− (1 + ε2)sk

2 + (ε�(τ ) − �(τ ))sk

(sk − �(τ ))2 + (εsk + �(τ ))2

)
+ i

( �(τ )

2�(τ )
− (�(τ ) + ε�(τ ))sk

(sk − �(τ ))2 + (εsk + �(τ ))2

)
, (18)

where we again write τ = �(τ ) + i�(τ ). The case ε = 0 yields the corresponding result for ck in the absence of viscous 
damping. Note that the radii (17) are independent of k and that �(τ ) �= 0 is guaranteed by the set C− .

(iii) We prove this fact by first constructing a center point c. To this purpose, we use two points ĉk that are opposite to 
each other with real part zero,

�(ĉk) = 0 ⇔ s1/2
k = ±|τ |(ε2 + 1)−1,

where we note that negative frequencies sk are not considered. Substituting s1/2
k into the imaginary part of (18) and 

computing the middle point yields,

c = i

(
ε|τ |2

2�(τ )(�(τ ) + ε�(τ ))

)
with �(c) = 0. (19)

We use Maple to show that every point ĉk has a constant distance from c. This distance is the radius R,

R = ∣∣ ĉk − c
∣∣ = |τ |√(ε2 + 1)

2|�(τ ) + ε�(τ )| , independent of sk. (20)
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Fig. 1. Left: Convergence bound and optimal seed frequency τ ∗ according to (16). Along the dashed line the function is differentiable. Right: Preconditioned 
spectra and surrounding circles for positive damping ε = 0.7 added to Problem 2.1. Here, we use ns = 20 frequencies equally spaced within the interval 
[1, 9] Hz. The imaginary parts that belong to the extreme frequencies are equal as imposed in (21), but not equal to zero. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

(iv) In part (iii) of this proof, we have shown that the center points ĉk (18) of the preconditioned spectra lie on a circle 
with center c (19) and radius R (20). Therefore, an alternative parametrization of the distance to the origin |ĉk| is given 
by,

|ĉk|2 = R2 + �(c)2 + 2�(c)R sin(ϕk) = R2 − �(c)2 + 2�(c)�(ĉk),

where the imaginary part of ĉk is given explicitly by (18), and ϕk is the corresponding phase angle, cf. Fig. 1 (right). 
The expression for the GMRES bound in Corollary 3.3 can, hence, be simplified,

τ ∗(ε) = argmin
τ∈C

max
k=1,..,ns

(
R(τ )

|ĉk|
)

= argmin
τ∈C

max
k=1,..,ns

(
R(τ )2

|ĉk|2
)

= argmin
τ∈C

max
k=1,..,ns

(
R2

R2 + �(c)2 + 2�(c)R sin(ϕk)

)

(∗)= argmin
τ∈C

max
k∈{1,ns}

(
R2

R2 − �(c)2 + 2�(c)�(ĉk)

)
(∗∗)= {

τ ∈ C
∣∣�(ĉ1) = �(ĉns )

}
, (21)

where in step (∗) we use that sin(ϕk) obtains its minimum in the open interval ϕk ∈ (−π
2 , 3π

2 ) at one of the extreme 
frequencies (the case sin(ϕk) = −1 corresponds to the negative frequency −|τ |(ε2 + 1)−1 in part (iii)). In step (∗∗)

we use that the minimum of the maximum of two functions occurs when the two functions are equal. Setting the 
imaginary parts equal (21) yields:

smin

(smin − �(τ ∗))2 + (εsmin + �(τ ∗))2
= smax

(smax − �(τ ∗))2 + (εsmax + �(τ ∗))2

⇒ �(τ ∗)2 + �(τ ∗)2 = sminsmax(1 + ε2).

We next express τ ∗ = s∗eiϕ∗
in polar coordinates, with length given by s∗ = √

sminsmax(1 + ε2). Expressing the objective 
function J := R2[R2 − �(c)2 + 2�(c)�(ĉk)]−1 in terms of (s, ϕ), we can use Maple1 to solve ∂J (s∗,ϕ)

∂ϕ = 0 for the unique 
minimum in C− ,

ϕ∗ = ϕ∗(smin, smax, ε) = arctan

⎛
⎝−

√
ε2(smin + smax)2 + (smax − smin)2

4sminsmax

⎞
⎠ . (22)

The conversion to Cartesian coordinates completes the proof. �

1 We added corresponding Maple [v 18.02] scripts to our public repository [5].
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Fig. 2. Left: Imaginary part of τ ∗ scaled by smax for different intervals [smin, smax] and varying damping parameter ε . Right: GMRES-bound (13) at τ ∗ as a 
function of the ratio smax/smin and ε . Note that in (16) the real part of τ ∗ is independent of ε and is, therefore, not plotted here.

Remark 4.2. Note that for ε = 0, the ratio (16) equals to 1, cf. [41]. In this limit case, the optimal seed frequency yields,

τ ∗(0) = 2sminsmax

smin + smax
− i

|smax − smin|√sminsmax

smin + smax
= √

sminsmax exp

(
i arctan

(
−|smax − smin|

2
√

sminsmax

))
, (23)

which is a function of the geometric mean of the extreme frequencies, and their distance.

Remark 4.3. For smin = smax ≡ s, we get τ ∗(ε) = s
√

1 + ε2ei arctan(−ε) = (1 − εi)s = ŝ, and τ ∗(0) = s.

Remark 4.4. The fact that τ ∗(ε) ∈ C− has the physical interpretation of damping and yields a preconditioner P(τ ∗) =
(K− τ ∗M) that can be applied efficiently, for instance by means of a coarse grid correction [8].

We illustrate the results of Theorem 4.1 in Fig. 1: The left figure demonstrates the optimality of τ ∗ as stated in (16). 
Moreover, we plot the angle along which we have optimized in (22) as a dashed line. In the right figure, we show the 
corresponding preconditioned spectrum with bounding circles for a surrogate problem. This distribution of the circles corre-
sponds to the case when τ minimizes the bound (16). Since the radii of all preconditioned spectra have the same magnitude, 
we see that the two extreme frequencies are expected to converge slowest because the respective distances to the origin is 
smallest which yields a worst case for the bound in Corollary 3.3.

As a result of Theorem 4.1, we see that the GMRES-bound in Corollary 3.3 and the location of the optimal seed frequency 
(16) are explicit functions of the damping parameter ε and the extreme frequencies [smin, smax]. This is both illustrated in 
Fig. 2. The optimization of the seed parameter is obtained based on the damped problem. Because of continuity in Fig. 2
(left), we note that τ ∗ smoothly depends on the damping factor ε which motivates the choice for the seed parameter in 
Remark 4.2 in the limit case ε → 0.

Theorem 4.1 does not give information about the actual value of the multi-shift GMRES bound (13) other than Rk/|ck| ≡ 1
when ε = 0. In the following corollary we show that when τ ∗ is chosen according to (16), the bound Rk/|ck| evaluated at τ ∗
is a function of the damping parameter ε > 0 and the ratio ρ := smax/smin only.

Corollary 4.5. Let ε > 0, and τ ∗ = τ ∗(ε, smin, smax) as in (16) for a frequency interval [smin, smax]. Then there exists a function 
f (ε, smax/smin) such that,

Rk(τ
∗)

|ck(ε, τ ∗)| = f (ε,ρ), where ρ := smax/smin, (24)

i.e. the bound in (13) depends only on the damping parameter ε and the ratio of the interval boundaries ρ . The quantities Rk and ck

are,

Rk(τ
∗) = R(τ ∗) = 1

2

√
1 +

(�(τ ∗)
�(τ ∗)

)2

and

ck(ε, τ ∗) ε>0= ĉk(τ
∗) =

(
1

2
− (1 + ε2)s2

k + (ε�(τ ∗) − �(τ ∗))sk

(sk − �(τ ∗))2 + (εsk + �(τ ∗))2

)
+ i

( �(τ ∗)
2�(τ ∗)

− (�(τ ∗) + ε�(τ ∗))sk

(sk − �(τ ∗))2 + (εsk + �(τ ))2

)
,

according to Theorem 4.1(ii).
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Fig. 3. Number of iterations j such that the relative residual norm is bounded by {1e-4, 1e-6, 1e-8}. The residual rk is associated with the (angular) 
wave frequency sk ∈ [smin, smax] with fixed ratio ρ = smax/smin = 2, and c2(X) set to 1 in (13).

Proof. We show that

R(τ ∗(ε, smin, smax))

|ck(ε, τ ∗(ε, smin, smax))| = R(τ ∗(ε,d·smin,d·smax))

|ck(ε, τ ∗(ε,d·smin,d·smax))| , k ∈ {1,ns}

for any scalar d. First, note that

τ ∗(ε, s, t) = 2st

s + t
− i

√[
ε2(s + t)2 + (t − s)2

]
st

s + t
,

is a homogeneous function of degree 1 with respect to the second and third argument, i.e., τ ∗(ε, dsmin, dsmax) = d ·
τ ∗(ε, smin, smax). Therefore, the real and imaginary part of τ ∗ scale with d in the same way. This implies,

R(d τ ∗) = 1

2

√
1 +

(
d �(τ ∗)
d �(τ ∗)

)2

= R(τ ∗),

and, moreover,

�(c1(ε,dτ ∗)) = 1

2
− d2(1 + ε2)s2

1 + d2(ε�(τ ∗) − �(τ ∗))s1

d2(s1 − �(τ ∗))2 + d2(εs1 + �(τ ∗))2
= �(c1(ε, τ ∗)),

�(c1(ε,dτ ∗)) = d�(τ ∗)
2d�(τ ∗)

− d2(�(τ ∗) + ε�(τ ∗))s1

d2(s1 − �(τ ∗))2 + d2(εs1 + �(τ ∗))2
= �(c1(ε, τ ∗)),

and, in the same way, cns (ε, dτ ∗) = cns (ε, τ ∗), where we associate smin with s1 (k = 1), and smax with sns (k = ns), cf. (21)
in Theorem 4.1(iv). Thus, s1 and sns scale with d as the interval boundaries do. �

The bound (24) is plotted as a function of the damping parameter ε and the ration ρ = smax/smin in Fig. 2 (right). If 
ρ is kept constant, the GMRES bound implies an a priori known maximum iteration number for a fixed relative residual 
tolerance, cf. Fig. 3. The numerical Experiment 6.4 exploits the insight of Corollary 4.5 when splitting a frequency interval 
[smin, smax] into subintervals in a balanced way.

5. Areas of application within a two-level preconditioning framework

We present two examples in which the insight of the previous section is exploited for the design of efficient two-level 
preconditioners: In Section 5.1 we make use of the spectral bounds of Theorem 4.1 in order to choose the parameter of 
the shifted Neumann polynomial preconditioner [1] such that its spectral radius is minimal. In Section 5.2 we present a 
reformulation of the multi-frequency problem (1) as a matrix equation, cf. [7,9]. Here, the convergence behavior depends 
on the union of the spectra of all considered frequencies and, hence, a suitable rotation of the bounding circles yields an 
efficient second-level preconditioner for global GMRES [20].
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5.1. Shifted Neumann preconditioning techniques

For a set of frequencies {sk}ns
k=1 and viscous damping parameter ε > 0, the preconditioned shifted problems (15) at an 

optimal seed frequency τ ∗ given explicitly by (16) read,

(A− ηk I)yk = b, with A := K(K − τ ∗M)−1 and ηk := ŝk

ŝk − τ ∗ = (1 − εi)sk

(1 − εi)sk − τ ∗ .

For sk = 0, the spectrum of the matrix A is bounded by a circle of radius R and center c0 as stated in part (ii) of Theo-
rem 4.1,

R = 1

2

√
1 +

(�(τ ∗)
�(τ ∗)

)2

and c0 = τ̄ ∗

τ̄ ∗ − τ ∗ = 1

2
+ i

�(τ ∗)
2�(τ ∗)

.

We consider a Neumann preconditioner [32, Chapter 12.3] of degree n as an approximation to the inverse of A,

A−1 ≈
n∑

i=0

(I − ξA)i =: pn(A), with parameter ξ = 1

c0
= τ̄ ∗ − τ ∗

τ̄ ∗ , (25)

and its representation as pn(A) = ∑n
i=0 γiAi . Shift-invariance, cf. Remark 3.1, can be preserved by the Neumann precondi-

tioner if the following holds,

(A− ηk I)pn,k(A) = Apn(A) − η̃k I, (26)

where pn,k(A) = ∑n
i=0 γi,kAi is a polynomial preconditioner of degree n for the k-th shifted matrix (A − ηk I). Substitution 

yields,

n∑
i=0

γi,kAi+1 −
n∑

i=0

ηkγi,kAi −
n∑

i=0

γiAi+1 + η̃k I = 0. (27)

The latter (27) is a difference equation and can be solved backwards [1]:

γn,k = γn,

γi−1,k = γi−1 + ηkγi,k, for i = n, ...,1,

η̃k = ηkγ0,k.

As a result, we solve the shifted systems on the right-hand side in (26) with Algorithm 1 using the Neumann preconditioner 
(25) of degree n. An alternative polynomial preconditioner for shifted systems is derived in [44].

Remark 5.1. Note that pn(A) = c0A−1, as n → ∞, converges to the scaled inverse of A. From (26) we conclude that 
pn,k(A) = (c0 − η̃k)(A − ηk I)−1, n → ∞, and, hence, pn,k is a polynomial preconditioner of degree n for the k-th shifted 
problem (A − ηk I).

5.2. Matrix equation formulation with a spectral scaling strategy

An alternative approach to efficiently solve multi-frequency wave problems is to rewrite the discretized problem as a 
matrix equation A(X) = B , where the block unknown X is the stacked numerical solution at different frequencies [9] and A
is a linear operator of the form, A(X) = ∑ J

j=1 A jXBT
j = C, where J = 2 in (28). Consider, for instance, Problem 2.3 and the 

reformulation,

A(X) := K X − MX�2 = B, where �:= diag(ω1, ...,ωns ), B := ŝ1T, (28)

and where the unknown is X := [û1, ..., ̂uns ]. The spectrum of the operator A is equal to the spectrum of the block diagonal 
matrix of the corresponding vectorized problem,⎡

⎢⎣
(K − ω2

1 M)

. . .

(K − ω2
ns

M)

⎤
⎥⎦

⎛
⎜⎝

û1
...

ûns

⎞
⎟⎠ =

⎛
⎜⎝

ŝ
...

ŝ

⎞
⎟⎠ ,

and, hence, the spectrum of A equals the union of the spectra of the shifted systems in Problem 2.3. Consider the iterative 
solution of (28) with a global Krylov method such as global GMRES [20]. The analysis of Section 4 can be used in order to 
improve the convergence of global GMRES for the matrix equation (28). Therefore, we define the preconditioners,
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Fig. 4. Left: Block spectrum of the linear operator (28) with shift-and-invert preconditioner (29a) that is equivalent to the multi-shift approach. Right: Block 
spectrum after additional rotation with (29b). We use a surrogate problem with ns = 5 frequencies equally spaced within fk ∈ [1,9] Hz.

P−1
1 (Y) := (K − τ 2M)−1Y�, where � := diag

(
1 − η1, ...,1 − ηns

)
, (29a)

P−1
2 (Y) := YR, where R := diag

(
1, e−i(φ2−φ1), ..., e−i(φns −φns−1)

)
, (29b)

where φk is the angular component of ĉk in Theorem 4.1(ii), and ηk := ω2
k /(ω2

k −τ ) as in (11). Because of the correspondence 
of the spectrum of the matrix operator with the shifted systems, the above preconditioners have the following interpretation 
that are illustrated in Fig. 4: The application of P−1

1 as a right preconditioner in global GMRES is equivalent to (14) and the 
left-hand side in (11) and yields a spectrum that is equal to the union of the circles described in Theorem 4.1. For the fast 
convergence this spectrum is not favorable. Therefore, we apply P−1

2 as a second-level preconditioner that yields a rotation 
of the spectrum to the right half plane.

Note that the preconditioners (29a) and (29b) commute, i.e. (A ◦ P−1
1 ) ◦ P−1

2 = (A ◦ P−1
2 ) ◦ P−1

1 . For global GMRES, this 
allows to apply P1 inexactly and, trivially, apply P2 exactly. We refer the reader to [3, Chapter 5.4] where the described 
rotation strategy is applied to global GMRES (and global IDR(s)) in the situation of inexact solves for P1.

Remark 5.2. In the next section we also consider the case when Problem 2.1 is reformulated as the matrix equation A(X) :=
K X + iCX� − K X�2 = B , cf. Experiment 6.3.

6. Numerical experiments

We present numerical examples for a finite element discretization2 of the time-harmonic elastic wave equation (5a)–(5c)
in 2D. The problem setting shown in Fig. 5 (left) is an inhomogeneous wedge problem inspired by the acoustic analogue 
proposed in [26] which has been used for the demonstration of spectral analysis of Helmholtz problems in [41]. The compu-
tational domain is � = [0, 600] ×[0, 1000] meter. Whenever Problem 2.1 is solved, we place a point source at (300, 0) meter 
and prescribe absorbing Sommerfeld conditions on the upper boundary, cf. Fig. 5 (middle). Generally speaking, Problem 2.3
is easier to solve numerically. In our numerical examples we consider Problem 2.3 with a point source at the center of �
and consider reflecting walls on the entire boundary, cf. Fig. 5 (right).

Experiment 6.1 (Proof-of-concept). We numerically demonstrate the key findings of Theorem 4.1. In particular, we show that 
τ ∗(ε, ωmin, ωmax) is independent of the number of frequencies within [ωmin, ωmax]. Moreover, we show mesh-independence of τ ∗
and demonstrate the direct connection between the bounding circles described in Theorem 4.1 (ii) and the convergence behavior of 
multi-shift GMRES applied to Problem 2.1.

The experiments reported in Table 1 are performed at fixed frequency range and for a fixed damping parameter. The 
shift-and-invert preconditioner is applied to multi-shift GMRES at the optimal seed frequency corresponding to (16). We 
consider ns equidistantly-spaced frequencies. The results show the expected result that more frequencies within the same 
interval can be solved at no extra iterations, and at low extra computational costs. When repeating some of the experiments 
on a finer mesh we conclude mesh-independence of the optimal seed parameter, cf. Table 2.

2 For the finite element discretization we use the Python package nutils (http://nutils.org).

http://nutils.org
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Fig. 5. Numerical set-up: Material density ρ in [kg/m2] (left), and numerical solution of Problem 2.1 at ε = 0 (middle) and Problem 2.3 with damping 
ε = 0.05 (right) at different frequencies. See [9] for a detailed description of the test problem.

Table 1
Multi-shift GMRES using the optimal seed parameter τ ∗ according to The-
orem 4.1, and fixed damping ε = 0.05. Discretization size of hx = hz = 5m
implies N = 48, 642 dofs.

ωmin/2π [Hz] ωmax/2π [Hz] ns # iterations CPU time [s]

1 5
5 106 45.6

10 106 48.7
20 106 47.3

1 10
5 251 205.1

10 252 223.7
20 252 243.5

Table 2
Setting as in Table 1 and discretization size half compared to Table 1.

ωmin/2π [Hz] ωmax/2π [Hz] ns # iterations CPU time [s]

1 5 10 103 189.4
1 10 10 246 770.10

We next demonstrate the close relation between the spectral bounds derived in Theorem 4.1 and the convergence behav-
ior of multi-shift GMRES preconditioned with a shift-and-invert preconditioner at optimal seed frequency τ ∗ . We, therefore, 
consider the same multi-frequency setting at two different seed frequencies. Fig. 6 shows the respective convergence curves 
next to the bounding circles described in Theorem 4.1. When comparing the two choices for τ , we note that the circles 
corresponding to the optimal τ are further away from the origin which yields a smaller bound in Corollary 3.3. Moreover, 
the outlier in Fig. 6a motivates the min-max criterion chosen for the optimization in (16). Note that, in general, the bounds 
in Corollary 3.3 only hold when multi-shift GMRES is not restarted, cf. [18].

Experiment 6.2 (Shifted Neumann preconditioner). In this numerical experiment we study the effect of the shifted Neumann precondi-
tioner (25) on the convergence behavior of multi-shift GMRES within the two-level preconditioning technique described in Section 5.1.

A major drawback of GMRES (and its multi-shift variant) is the increasing computational work and memory requirement 
when the number of iterations grows. This can be overcome by restarting Algorithm 1, cf. [18]. If the matrix–vector op-
eration is relatively cheap, polynomial preconditioners [40] are an important alternative. If a Neumann polynomial (25) of 
degree n is applied, the number of matrix–vector products per iteration is n + 1. The experiment in Table 3 shows that GM-
RES iteration numbers and computation times can be reduced by approximately a factor of 4 compared to the case without 
shifted Neumann preconditioner (n = 0).

In Fig. 7 we compare convergence for different values of the seed frequency, and Neumann preconditioners of degree 
n = 0 (only shift-and-invert) and n = 5. We observe that the seed parameter τ ∗ that minimizes the bound in Corollary 3.3
yields an iteration number close to the optimum. Moreover, we note in Fig. 7a that in the case of large damping the bound 
in Corollary 3.3 is more descriptive and the choice of τ has a larger influence on the convergence of multi-shift GMRES. For 
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Fig. 6. Relation between convergence of multi-shift GMRES and spectral bounds of Theorem 4.1. Here, we chose ε = 0.7 which yields a value for the 
multi-shift GMRES bound of 0.812 at τ = (0.3 − 0.7i)ωmax which is significantly larger than 0.659 obtained at the optimum.

Table 3
Multi-shift GMRES without restarting using optimal seed parameter τ ∗ according to Theorem 4.1, 
ε = 0.05, and a Neumann polynomial preconditioner (25) of degree n. We consider ns = 10 fre-
quencies in Problem 2.1 equally spaced within the interval ωk/2π = [1, 10] Hz. The problem size is 
N = 48, 642 dofs.

n = 10 5 4 3 2 1 0

# iterations 45 64 94 80 121 150 252
CPU time [s] 52.10 46.88 64.69 47.39 73.21 89.74 213.18

small damping (ε = 0.05) on the other hand, the parameter choice in the Neumann preconditioner at degree n = 5 gains 
importance and iteration numbers can be reduced up to a factor of 2, cf. Fig. 7b.
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Fig. 7. Optimality of the shifted Neumann preconditioner. Left: Without preconditioner. Right: Neumann polynomial preconditioner at n = 5. The optimal 
seed parameter τ ∗ is marked with a cross, and compared against values of τ with varying imaginary part. All values are scaled by ωmax. In the present 
experiment, the frequency range is fixed at fk ∈ [1,5] Hz with ns = 5 and 12, 322 dofs.

Table 4
Solution of (28) with global GMRES: The preconditioners P1 and P2 are as defined 
in (29a) and (29b), respectively. Damping is introduced via ω2

k �→ (1 − iε)ω2
k , with 

ε = 0.1 in this table. The considered problem has 48, 642 dofs, and global GMRES 
is restarted after 200 iterations.

Frequency range ns A(P−1
1 (X)) = B A(P−1

1 (P−1
2 (X))) = B

C = 0

fk ∈ [1,3] Hz 5 220.2 (301 iter.) 93.8 (164 iter.)
fk ∈ [1,3] Hz 15 2296.9 (702 iter.) 203.2 (171 iter.)
fk ∈ [6,9] Hz 5 1356.5 (983 iter.) 22.2 (66 iter.)
fk ∈ [6,9] Hz 15 no convergence 53.8 (65 iter.)

C �= 0

fk ∈ [1,3] Hz 5 94.9 (203 iter.) 24.8 (72 iter.)
fk ∈ [1,3] Hz 15 502.1 (300 iter.) 66.0 (76 iter.)
fk ∈ [6,9] Hz 5 499.4 (566 iter.) 18.5 (54 iter.)
fk ∈ [6,9] Hz 15 1827.2 (627 iter.) 42.8 (53 iter.)

Experiment 6.3 (Matrix equation (28) with spectral rotation). In this experiment we use global GMRES [20] to solve the matrix equa-
tion (28) preconditioned by (29a). The experiment demonstrates the benefit of spectral rotation (29b) as a second-level preconditioner 
for the matrix equation approach described in Section 5.2.

We solve Problem 2.3 reformulated as a matrix equation (28) using global GMRES [20]. As explained in Section 5.2 the 
block preconditioner P1 (29a) yields the spectral situation of Theorem 4.1 in a matrix equation framework. When C = 0
the eigenvalues of the preconditioned linear operator lie on the bounding circles described in Theorem 4.1(ii), see Fig. 4. In 
Table 4 we evaluate the effect of the rotation P2 (29b) for two different frequency ranges and for different total number 
of frequencies ns = {5, 15}. The comparison shows clearly the benefit of rotating the spectrum. This becomes more evident 
when the number of frequencies is increased from 5 to 15. Since all circles are rotated on top of each other, the clustering 
of the spectrum is the same in both cases and we observe an almost equal iteration number for global GMRES. Moreover, 
we consider the case where Sommerfeld boundary conditions are present and the matrix equation in Remark 5.2 is solved. 
The effects with respect to P2 are similar. For an extensive comparison study with the shifted systems approach we refer 
the reader to [7].

Experiment 6.4 (An interval splitting strategy). We consider an interval I = [ωmin, ωmax] of equidistantly spaced frequencies, and 
assume np > 1 available parallel processors. This experiment investigates a strategy for splitting I into np subintervals based on the 
choice for τ ∗ according to (16) for each subinterval such that a balanced load in agreement with Corollary 4.5 is achieved.
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Fig. 8. Effect of interval splitting when I = 2π [1, 9] Hz and ε = 0.5 for np = {2, 3, 4}. We investigate the splitting point for the first out of np subintervals. 
From left to right, the splitting strategy is applied ‘recursively’ to the np − 1 remaining subintervals.

Table 5
Multi-shift GMRES without restarting using different seed parameters τ and no damping (ε = 0). We consider ns = 10
frequencies equally spaced within the interval ωk/2π = [5, 10] Hz. The problem size is 48, 642 dofs.

Seed shift τ ∗ = (0.66 − 0.26i)ωmax τ = (0.7 − 0.3i)ωmax τ = (1 − 0.5i)ωmax τ = minτ meank(R/|ck|)
# iterations 226 201 295 300
CPU time [s] 139.5 109.3 247.6 257.6

For fixed damping parameter ε > 0, the optimal seed frequency in (16) is a function of the frequency range of the 
original problem only, i.e. τ ∗ = τ (ε, ωmin, ωmax). Consider first the case where np = 2 CPUs are present and the interval 
of frequencies can be split into two parts, I = [ωmin, ωmax] = [ωmin, ωmid] ∪ [ωmid, ωmax] with seed parameter chosen 
optimally according to (16) for both subintervals. In Fig. 8a this splitting point ωmid is varied, and the largest iteration 
number (marked by crosses) and the larger bound (13) at the respective optimum for the two subintervals is reported. 
We conclude that the best splitting point is when the boundary ratios are equal, i.e. ωmid/ωmin = ωmax/ωmid, which is 
obtained at the geometric mean at ωmid = 3 Hz in Fig. 8a. In the subsequent experiments in Fig. 8b and 8c, we report the 
upper interval boundary of the first subinterval and apply the previously derived splitting strategy inductively to the np − 1
remaining subintervals. In conclusion, a splitting equidistantly on a logarithmic scale yields best results, and in the present 
test case the number of iterations can be reduced by this strategy from 43 (at np = 1) to 14 (at np = 4).

Experiment 6.5 (The undamped (ε ≡ 0) case). In this experiment we study the quality of τ ∗(0) as in (23) for the case when no viscous 
damping is present, cf. Remark 4.2. This choice is compared to choices found in different literatures.

The optimality of τ ∗ in (16) is derived for positive damping parameter ε > 0 because only then the circles that bound 
the preconditioned spectra do not touch the origin, i.e. |ck| > Rk in (13). The graph in Fig. 2 (left), however, shows a smooth 
dependence of τ ∗(ε, smin, smax) on ε and, in particular, yield an optimal value in the case of ε = 0 stated in Remark 4.2. 
In Table 5 we compare the seed parameter τ ∗(0) with two choices found in the literature: τ = (1 − 0.5i)ωmax in [41]
and the hand-optimized value τ = (0.7 − 0.3i)ωmax used in [7,9]. Moreover, we use an alternative optimization criteria for 
minimizing the bound in Corollary 3.3 as a third comparison value. The results in Table 5 show that optimality in terms 
of GMRES iteration numbers is lost but, on the other hand, comparable results to the established choices in literature are 
obtained.

7. Conclusions

We have derived an optimal seed parameter τ ∗ for the shift-and-invert preconditioner P(τ ∗) = (K − τ ∗M) applied to 
a sequence of shifted systems. For a given set of frequencies sk ∈ [smin, smax] the optimal seed is an explicit function of 
the extreme frequencies, and the viscous damping parameter ε , cf. (16) in Theorem 4.1. The optimality of the parameter 
is derived with respect to a well-known GMRES convergence bound that has been extended to the multi-shift setting, 
and in the presence of viscous damping, i.e. ε > 0. Our numerical experiments, however, prove the usefulness even for 
the case without damping (Experiment 6.5). Comparisons with shift-and-invert preconditioners with parameter different 
from τ ∗ show a slower convergence behavior of multi-shift GMRES and, therefore, numerically prove optimality of τ ∗ (see 
Experiment 6.1 and Experiment 6.2).

The spectral analysis that has been carried out for the derivation of τ ∗ gives valuable insight that we exploit within two 
applications: In Section 5.1, a shifted Neumann preconditioner is derived that has minimum spectral radius. The numerical 
examples in Experiment 6.2 show that an increase of the degree of the Neumann polynomial leads to a significant reduction 
of GMRES iteration numbers and, hence, of memory requirements. Moreover, numerical tests have shown that the Neumann 
preconditioner based on τ ∗ yields fast convergence especially in the case of a small damping parameter (cf. Experiment 6.2). 
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In Section 5.2, we apply global GMRES to a matrix equation reformulation of the shifted problem. Then, the bounding 
circles of the shifted spectra can be rotated which yields a more favorable spectrum for the matrix equation approach, cf. 
Experiment 6.3.

We have also considered the situation when more than one CPU is present, and a sequence of shifted problems within 
a fixed interval [smin, smax] can be split into subintervals that are solved simultaneously on each available CPU. In Ex-
periment 6.4 we give strong numerical evidence that an optimal interval splitting strategy is to split equidistantly on a 
logarithmic scale, see also the theoretical result in Corollary 4.5. With respect to future work, we would like to point out 
that multi-shift GMRES with a shift-and-invert preconditioner (as in Algorithm 1) fits the more general framework of ra-
tional Krylov methods [31]. The fact that we apply a single shift-and-invert preconditioner corresponds to the situation 
where a rational Krylov space with denominator degree equals to one is chosen. The recent RKFIT algorithm [11] provides 
a strategy for pole selection in rational Krylov methods and can, thus, be used for comparison. Moreover, the presented 
interval splitting strategy based on Corollary 4.5 yields (optimal) seed parameters for each subinterval and can be ex-
ploited in the framework of multi-preconditioned GMRES for shifted systems [4]. Throughout the entire paper, we have 
assumed that the shift-and-invert preconditioner (2) is applied exactly. When inexact solves for (2) are considered such 
as MSSS-preconditioners [9], multigrid methods [30] or an incomplete LU factorization [3, Chapter 5.4], the bounding cir-
cles described in Theorem 4.1 do not hold anymore. In [3, Chapter 5.4], it is shown that even when inexact solves for the 
shift-and-invert preconditioner are applied, a suitable rotation as described in Subsection 5.2 results in a more favorable 
spectrum and an improved convergence of global GMRES (and global IDR(s)). In [3, Chapter 5.4], the rotation is based on 
the angle of the largest eigenvalue in magnitude belonging to each frequency with the real axis. In our follow-up paper [8], 
we show that for large-scale 3D elastic problems, the shift-and-invert preconditioner (2) at seed frequency τ ∗ ∈ C− can be 
applied to full accuracy and at linear computational complexity due to the damping in (16).

Supplementary material

An interactive visualization using Bokeh (http://bokeh .pydata .org/) demonstrates the findings of Theo-
rem 4.1. The visualization is purely browser-based and can be obtained from:

http://www.manuelbaumann.de/opt_tau

and is authored by: Manuel Baumann.
The numerical experiments in Section 6 are available from the author’s github repository [5].
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