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Revealing Time-Varying Joint Impedance
With Kernel-Based Regression and

Nonparametric Decomposition
Mark van de Ruit , Gaia Cavallo, Student Member, IEEE, John Lataire , Member, IEEE,

Frans C. T. van der Helm, Winfred Mugge, Jan-Willem van Wingerden , and Alfred C. Schouten

Abstract— During movements, humans continuously regulate
their joint impedance to minimize control effort and optimize
performance. Joint impedance describes the relationship between
a joint’s position and torque acting around the joint. Joint
impedance varies with joint angle and muscle activation and
differs from trial-to-trial due to inherent variability in the human
control system. In this paper, a dedicated time-varying system
identification (SI) framework is developed involving a parametric,
kernel-based regression, and nonparametric, “skirt decomposi-
tion,” SI method to monitor the time-varying joint impedance
during a force task. Identification was performed on single
trials and the estimators included little a priori assumptions
regarding the underlying time-varying joint mechanics. During
the experiments, six (human) participants used flexion of the
wrist to apply a slow sinusoidal torque to the handle of a robotic
manipulator, while receiving small position perturbations. Both
methods revealed that the sinusoidal change in joint torque by
activation of the wrist flexor muscles resulted in a sinusoidal
time-varying joint stiffness and resonance frequency. A third-
order differential equation allowed the parametric kernel-based
estimator to explain on average 76% of the variance (range
52%–90%). The nonparametric skirt decomposition method
could explain on average 84% of the variance (range 66%–91%).
This paper presents a novel framework for identification of time-
varying joint impedance by making use of linear time-varying
models based on a single trial of data.

Index Terms— Human motor control, joint impedance, system
identification (SI), time-varying systems.
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I. INTRODUCTION

HUMANS are able to perform skillful movements despite
challenging environmental circumstances or the pres-

ence of external disturbances. Information provided by the
body’s internal sensors (proprioceptors) and actions executed
by the body’s actuators (muscles) are used to achieve this.
Hereby, humans can adapt the dynamics of their joints by
regulating their intrinsic and reflexive joint properties [1].
Ensuring adequate task performance at all times, the con-
troller of the human body, i.e., the central nervous sys-
tem, follows the principles of optimality and control effort
minimization [2].

System identification (SI) can be used to quantify proper-
ties of the human joints during posture and movement. For
example, joint impedance, describing the joint’s resistance to
external disturbances, may be determined by relating joint
position and torques in response to a mechanical perturba-
tion [1], [3]–[9]. However, joint impedance is affected by
many physiological and mechanical factors such as muscular
fatigue [10], joint angle and muscle activation level [7].
Therefore, time-invariant SI techniques are only applicable
when the system remains in a fixed operation point, i.e., there
are only small changes in joint angle or muscle activation.
When this is not the case, time-varying SI techniques allow
studying changing joint impedance across time, e.g., as a
function of joint angle or muscle activation level.

There are many SI techniques for time-varying systems
that have been employed to investigate various engineering
challenges like a metal’s electrical impedance changing as
a result of pit corrosion [11], varying mechanical loads to
bridges and buildings [12], [13], or aeroelastic flutter during
flight [14]. In all cases, the system dynamics can be described
using a model which is either parametric or nonparametric in
its dynamics and time variation. Both parametric and nonpara-
metric models may be used to obtain a time-varying frequency
response function (TV-FRF) that provides a description of
the time-varying system dynamics. For parametric models,
systems are typically described by using differential equations
with time-varying coefficients. The differential equations can
be expressed in the time or frequency domain to define the
assumed model structure [15], [16]. The time-varying coef-
ficients are expressed using time-dependent basis functions,
which may be, e.g., wavelets, sines, and cosines, or Legendre
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polynomials. Alternatively, time-varying autoregressive mov-
ing average (ARMA) models have been successfully applied
to estimate TV-FRFs [17].

An example of a nonparametric SI tool to provide a time-
dependent spectral representation of a nonstationary signal is
the short-time Fourier transform (STFT) [18]. In the STFT,
a linear representation of the signals is constructed within a
short, fixed-length time window. Subsequently, the TV-FRF
is created by sliding the window over time. Other nonpara-
metric tools to analyze nonstationary signals include wavelets
and Cohen’s class of distributions [18]. These methods have
been successfully used to extract time-varying system proper-
ties [19], [20]. The advantage of nonparametric models over
parametric models is that they require very little to no a priori
assumptions on the model structure and order [21].

Both parametric and nonparametric models have been used
to describe time-varying joint impedance [20]–[29]. A second-
order mass-spring-damper system is often assumed to rep-
resent joint dynamics. Therefore, a second-order parametric
model based on linear differential equations has often been
used to describe the joint properties [22]–[24]. For example,
a parametric ARMA model has been used to describe elbow
stiffness during cyclic movements [25]. Nonparametric models
have also been used to describe the joint properties in both the
time [4], [26]–[30] and frequency domain [31].

A challenge in estimating time-varying joint properties is
the poor signal-to-noise (SNR) ratios of human physiological
(−20 dB) and mechanical signals (20–30 dB) [32]. These
noise levels are (too) high for accurate identification of joint
properties. Therefore, a good model of joint properties can
only be obtained by averaging repetitive measurements of the
same time-varying behavior before the model is estimated,
a process called ensemble averaging. As the noise is typically
random the SNR is improved by averaging. When study-
ing the time-varying behaviors, there are various downsides
to the need for ensemble averaging. First, it may conceal
important adaptations in motor control and interesting trial-
to-trial variability [33], [34] of the joint properties and motor
performance. Second, as more data are required while the
experimental time is limited participants may suffer from
muscular fatigue and lapses in attention that will affect the
behavior. Therefore, there is an increased need for SI methods
that allow for the estimation of joint properties based on
a single trial of data, the feasibility of which has been
demonstrated previously [17], [35], [36].

The aim of this paper is to validate one parametric and
one nonparametric linear time-varying (LTV) SI technique
for identifying time-varying joint impedance of the human
wrist. This will be done based on single-trial data recorded
from a postural task during which participants exert a time-
varying flexion torque. The presented methods provide a novel
framework for LTV methods to assess time-varying human
joint properties with limited experimental constraints.

In Sections II and III, the SI methods employed to study
joint impedance are outlined. Section IV describes a sim-
ulation study, used to demonstrate the validity of the pre-
sented SI methods when identifying known time-varying joint
impedance. Following the simulation study, an experimental

study was performed which is described in Section V. Finally,
in Section VI, the results are interpreted and discussed.

II. SKIRT DECOMPOSITION METHOD

In this section, we introduce a nonparametric estimator
to identify continuous-time linear time-varying systems. The
estimator allows identifying an unknown time-varying system
based on the response to a periodic multisine perturbation
signal [37].

A. Background

The behavior of a time-varying system G is considered
linear with respect to its arbitrary input u(t) and response
output y(t). The latter can be computed as

y(t) = G{u(t)} ≡
∫ ∞
−∞

g(t, τ )u(τ )dτ (1)

where g(t, τ ) is the time-varying impulse response function of
G. This means that g(t, τ ) is the response of the system at time
t to an impulse applied at time τ . The Fourier transform of
the time-varying impulse response function defines the system
function or time-varying FRF G( jω, t) [38]

G( jω, t) =
∞∫

0

g(t, t − τ )e− jωτ dτ . (2)

The system function G( jω, t) relates the Fourier transform of
the perturbation signal U( jω) to the output signal y(t) as

y(t) = 1

2π

∞∫

−∞
G( jω, t)U( jω)e jωtdω. (3)

For the convenience of the identification procedure elaborated
further down, we write the system function G( jω, t) as a
series expansion

G( jω, t) =
∞∑

p=0

G p( jω)bp(t) (4)

with {bp(t)}∞p=0 representing a complete set of basis functions.
These basis function are used to represent the time variation
across a series of linear time-invariant (LTI) systems G p . By
inserting (4) into (3), the system behavior is described by

y(t) =
∞∑

p=0

G p{u(t)}bp(t) ∀t ∈ [0, T ] (5)

where G p{u(t)} is the response of an LTI system G p to an
input u(t) applied during a time window of length T .

B. Identification Procedure

The goal is to extract a nonparametric estimate of the FRFs
of the LTI systems G p( jω) for a given (or chosen) set of basis
functions. The strategy consists of applying a sparse multisine
as excitation signal. The multisine perturbation is defined as

u(t) =
∑

ke∈Kexc

Ake cos(ωke t + φke ). (6)
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Thus, the multisine signal is a sum of cosines, with:

1) angular frequencies ωke = 2πke/Tms , where Tms is the
length (in seconds) of the multisine signal;

2) Kexc ⊂ N a sparse set of excited frequency bins, chosen
sufficiently separated to ensure the identifiability of the
model (as elaborated in [37]);

3) amplitudes Ake , which, in concordance with Kexc, deter-
mine the spectral content of the perturbation; and

4) phases φke , which are chosen randomly, uniformly dis-
tributed in [0, 2π[.

Considering that a multisine is used as an excitation signal,
the system (5) can be rewritten in terms of the discrete Fourier
transforms (DFTs) of the perturbation signal, output signal and
basis functions [denoted U(k), Y (k), and Bp(k), respectively]

Y (k)= 1

N

Np∑
p=0

∑
ke∈Kexc

G p( jωke )U(ke)Bp(k−ke)+ TY ( jωk)

(7)

where the sum in (5) has been truncated to the first Np

terms, where Np is the order of the time variation. TY ( jωk)
captures the transient effects, which are due to the difference
between the initial and end conditions of the system. It is
assumed that the applied input DFT U(k) is known, and that
the measurements Ym(k) of the output DFT spectrum are
available, corrupted by an additive output noise V (k)

Ym(k) = Y (k)+ V (k). (8)

In (7), the output DFT spectrum Y (k) of the system model
is linear in the FRFs G p( jωke), for p = 0, . . . , Np and
ke ∈ Kexc. Thus, these FRFs can be extracted from the
measured output by a linear least squares algorithm. This
results in a maximum likelihood estimator under some weak
assumptions (Assumption 7 in [37]) on the measurement noise
V (k) (which should be uncorrelated over the frequencies)
and for an implementation in a sliding frequency domain
window, as explained in Appendix A. Note that G p is only
estimated at a discrete set of frequencies (known as the excited
frequencies of the multisine). For this reason, this estimate is
called “nonparametric.”

The sparsity of the multisine is important to obtain a well-
posed problem. Namely, in (7), the number of unknowns
equals Np ·Nexc (where Nexc is the cardinality of Kexc, i.e., the
number of excited frequencies). A necessary condition for the
problem to have a unique solution is that Np ·N exc is smaller
than the number of data points (which equals the number
of bins in the frequency band of interest). This is illustrated
in Fig. 1, for Np = 7. The black dots give the output spectrum
Y (k) in a limited frequency band, which comprises three
excited frequencies (vertical arrows). Due to the time-varying
character of the system, the output spectrum consists of skirt-
shaped contributions around the excited frequencies. These
“skirts” are modeled in (7) as linear combinations of terms of
the form G p( jωke)U(ke)Bp(k−ke). Hence, the sparsity of the
set of excited frequencies is important to enable distinguishing
the individual terms.

Fig. 1. The black dots give the output spectrum of a time-varying system,
excited by a sparse multisine. This output spectrum is decomposed into:
1) excited frequencies (vertical arrows); 2) skirt shaped contributions (gray
full lines); and 3) discrete spectral contributions (gray circles) which are due
to the periodic nature of the applied time variation.

III. KERNEL-BASED REGRESSION METHOD

In this section, we introduce a parametric estimator to
identify the continuous-time linear time-varying systems. The
estimator is adopted as suggested in [39].

The system’s input and output signals, u(t) and y(t), are
assumed to satisfy a linear differential equation of the form

y(t) = −
Na∑

n=1

an(t)
dn y(t)

dtn
+

Nb∑
n=0

bn(t)
dnu(t)

dtn
(9)

where an(t) and bn(t) are the time-varying coefficients which
are smooth functions of t . These coefficients are estimated via
kernel-based regression (KBR). In essence, the estimator is
defined as the following minimizer:

ân, b̂n = argmin
an, bn

∑
k∈Kint

|E(k, an, bn)|2
σ̂ 2

E (k, an, bn)
+ R(an, bn) (10)

where E is the DFT of the equation error [i.e., the difference
between the left- and right-hand sides of (9)], evaluated in
Kint, and an and bn are vectorised versions of an(t) and bn(t)
in t = 0, Ts , . . . , (N − 1)Ts . Kint represents the bins of the
frequency band of interest and σ̂ 2

E is (an estimate of) the noise
variance of E . R(an, bn) is a quadratic regularization term,
to impose the smoothness of the estimates. This is elaborated
in more detail in Appendix B, and in Lataire et al. [39].

IV. SIMULATION STUDY

In this section, a simulation study is described to confirm the
validity of the SI methods with a known time-varying stiffness.

A. Modeling Human Joint Dynamics

A time-varying wrist stiffness is simulated using a model
describing endpoint dynamics of a joint interacting with
an 1-DOF robotic manipulator. The dynamics of the joint,
when only small rotations are applied, can be represented
by a simple second-order IBK model Hi(s) together with
the viscoelasticity of the interaction between manipulator
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Fig. 2. System of the human wrist. The manipulator provides a multisine
position input u(t) to the human wrist of which the dynamics are represented
by Hwrist(jω). The measured torque output y(t) is assumed to contain
measurement noise v(t).

and human Hc(s) [1]

Hi(s) = 1

I s2 + bs + k
(11)

Hc(s) = bcs + kc (12)

in which s is the Laplace variable and equals j2π f
( f represents the frequency) when evaluated on the imaginary
axis. Hi(s) represents the intrinsic and reflexive joint dynamics
where I is the limb inertia, b is the joint viscosity, and
k is the static joint stiffness. Hc(s) represents the contact
dynamics, a simple spring-damper system where bc is the
contact viscosity and kc is the contact stiffness.

The overall system representing the mechanical joint
impedance from joint angle [u(t)-and taken equivalent to the
angle of the handle of the manipulator] to joint torque [y(t)]
is then

Hwrist(s) = Hc(s)

1+ Hc(s)Hi(s)

= I s3 + (bcb + kc I )s2 + (bck + kcb)s + kkc

I s2 + (b + bc)s + (k + kc)
(13)

The system considered is shown in Fig. 2.

B. Model Implementation

The system as presented in Fig. 2 was implemented in
MATLAB 2017b-Simulink 9.0 (The MathWorks, Inc., Natick,
MA, USA). Output noise v(t) was added as a 15-Hz low-pass
filtered (second-order Butterworth) Gaussian white noise. The
amplitude of the noise was scaled such to result in the desired
SNR.

C. Simulation Parameters

The system, representing a human wrist joint, was simulated
for 50 s ( fs = 2500 Hz), with a time-varying joint stiffness
(k) between ∼4.7 and 6.5 Nm/rad. Limb inertia (I ) and
joint viscosity (b) were considered time-invariant and taken as
3 gm2 and 0.035 Nms/rad, respectively. Contact dynamics
was also considered time invariant (bc = 10 Nms/rad,
kc = 100 Nm/rad).

First, to demonstrate the attributes of the used algorithms,
a time-varying joint stiffness using a square wave with a
period of 10, 20, and 30 s was simulated at three noise levels
(SNR: Inf, 10 or 5 dB). A square wave allows revealing
how well the instantaneous changes in joint dynamics can be
followed by the algorithms. For each noise condition, two trials

were simulated with the same input signal but different noise
realization: one to perform an estimation of joint dynamics
and the other for validation.

Second, joint stiffness was varied sinusoidally with a period
of 20 s (0.05 Hz) and two trials were simulated, one for
estimation and one for validation, for each of the three studied
noise levels.

D. Perturbation Signal Design

Random-phase multisine perturbations were used as the
input signal to the simulations. Each multisine perturba-
tion signal had a period of 10 s with excited frequencies
0.1–19.3 Hz and a spacing of 0.8 Hz between the excited
frequencies. The perturbation signal was designed such that
the rotation of the wrist had a root-mean-square (rms) value
of ≈1.1° (0.02 rad). A perturbation signal with a bandwidth
limited to 20 Hz is able to reveal all relevant wrist joint
dynamics [40]. The magnitude of each excited frequency was
constant up to 6 Hz and decreased at higher frequencies (slope
of −20 dB/decade).

E. Data Analysis

Before applying the KBR and the skirt decomposition iden-
tification algorithms, the data were decimated in the frequency
domain to a sampling frequency of ∼44 Hz. Subsequently,
the data of the first and last 5 s of each trial was discarded
as it was only used for initialization and did not contain a
perturbation. Finally, data are only shown in the time interval
[0, 30] s. The estimate in the intervals [−5, 0] s and [30, 35] s
is unreliable because of initial transient effects.

Skirt Decomposition: For the skirt decomposition method,
the basis functions bp(t) used in this paper are the following:

b0(t) = 1

b1(t) = 2t/T−1

bp(t) = cos (ωp/2t), p> 1, peven

bp(t) = sin(ω(p−1)/2t), p > 1, p odd. (14)

Considering Bp(k) = DFT{bp(t)}, the individual terms
G p( jωke)U(ke)Bp(k − ke) from (7) can be recognized
in Fig. 1:

1) The vertical arrows (excited frequencies) are terms with
p = 0. Since b0 is a constant, see (14), B0(k − ke) is
only different from 0 when k = ke in (7).

2) The gray full lines are terms with p = 1. With b1
being a ramp, B1(k−ke) is an (approximate) hyperbolic
function, centered around the excited frequency bin ke.

3) The gray circles are terms for p > 1. (Co)sines have
discrete Fourier transforms, which allow to capture
individual bins of the output spectrum, at both sides of
each excited frequency.

Since b0 is a constant, and bp(t) for p > 0 is zero mean in
the measured time window (T), G0 represents the best LTI
approximation of the system, as defined in [41] and [42].
(Co)sines are included as basis functions in (14) to account
for the periodic nature of the imposed time variation.
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The order of the time variation was set to Np = 7. This
is motivated by the observation that, in about six unexcited
bins around the excited frequency (namely three to its left and
three to its right), the output spectrum has a value which is
significantly higher than the noise. By using Np = 7, we have
a total of six goniometric basis functions (14), which allow to
capture these six bins.

Kernel-Based Regression: In this paper, for the KBR
method, outlined in Section III, the regularization term R
uses a kernel matrix K obtained from the squared exponential
kernel

K (t, t ′) = γ e
−(t−t ′)2

σ2 , t, t ′ = 0, Ts, . . . , (N − 1)Ts (15)

in which σ determines the smoothness of the estimated time-
varying coefficients. The hyperparameter γ represents the
inverse of the amount of regularization applied, defining a
bias versus variance tradeoff of the estimated coefficients. The
hyperparameters γ and σ together determine the complexity
of the estimated model.

The assumed model structure has a third-order numerator
and second-order denominator, based on the assumed system
of joint impedance (13). Therefore, the parameter Na was
chosen as 2 and Nb as 3. We define the frozen transfer function
of the time-varying system as

Hwrist(s, t∗) = b3(t∗)s3 + b2(t∗)s2 + b1(t∗)s + b0(t∗)
a2(t∗)s2 + a1(t∗)s + a0(t∗)

(16)

When evaluated in t∗, the function Hwrist(s, t∗) is the transfer
function of the LTI system, obtained by fixing the time-
varying parameters to their values at time instant t∗, i.e., an(t∗)
and bn(t∗).

The hyperparameter σ was chosen based on the periodicity
of the time-varying stiffness as σ ≈ 20 s in case of the pres-
ence of noise. This is to comply with the experimental study
and demonstrate how σ affects the estimates with different
noise levels and speed of the dynamics. For the noiseless case,
σ was reduced to ∼8 s. This increases the flexibility of the
estimator and, thus, reduces the bias (this is important to show
the correctness of the estimator). In addition, γ was chosen
based on the variance of the data in presence of noise as the
estimate was insensitive to the precise value of γ in a wide
range. When no noise was present in the simulation, γ was
set to 25.000.

Quality of the Estimators: The quality of the estimators was
determined in the time domain using the variance-accounted-
for (VAF). The VAF was calculated according to

VAF = 1− var(y(t)− ŷ(t))

var(y(t))
(17)

where y(t) is the simulated torque and ŷ(t) is the esti-
mated output torque based on the identified model of joint
impedance. Three VAF values were calculated:

1) VAFself : where ŷ(t) is calculated and compared to y(t)
that was used to estimate the joint impedance model
(including output noise).

2) VAFoptim: where ŷ(t) is calculated and compared
to a simulated output torque y(t) without output

Fig. 3. Joint stiffness estimates obtained using the KBR and skirt method
from simulation data. Simulations were run including a time-varying joint
stiffness following a square wave with different periods (10, 20, and 30 s)
both without (SNR = Inf dB) and with (SNR = 5 or 10 dB) output noise.
The skirt decomposition method can estimate the sharp transitions in stiffness
for the square waves with longer periodicity but the estimates are sensitive
to noise. The estimates of joint stiffness using the KBR are less sensitive to
noise but are smooth, i.e., cannot estimate rapid transitions in joint stiffness,
because of the adopted values for the hyperparameters.

noise-representing the highest achievable VAF when
using noisy data to estimate the joint impedance model.

3) VAFval: where ŷ(t) is calculated and compared to a
simulated output torque y(t) with output noise but a
different noise realization (the second “validation” trial
simulated).

In addition, the true simulated joint stiffness and estimated
joint stiffness, extracted as the magnitude of the FRF at
the lowest frequency, were compared. The root-mean-square
error (RMSE) between simulated (ki ) and estimated (k̂i ) joint
stiffness was calculated using the following equation:

RMSEk =

√√√√√
N∑

i=1
(ki − k̂i)

2

N
(18)

where the difference in simulated and estimated joint stiffness
is summed for all time points i in the time series of length N .
For this paper, the difference between system function or TV-
FRF (2) and frozen FRF as extracted from (9), are neglected.

F. Results

Figs. 3 and 4 present the estimated joint stiffness as a
function of time in comparison to the known true stiffness as
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Fig. 4. Joint stiffness estimates obtained using the KBR and skirt method
from simulation data. Simulations were run including a time-varying joint
stiffness both without (SNR = Inf dB) and with (SNR = 5 or 10 dB)
output noise. Both the KBR and skirt method allow obtaining a good estimate
of joint stiffness despite the presence of 10 dB output noise, but the skirt
decomposition method performs not so well with 5 dB noise.

imposed in the simulation. When the joint stiffness is varied
using a square wave, the skirt method is able to estimate
joint stiffness well in case the variation is slow (20 or 30 s)
and noise levels are low (>10 dB). The KBR method also
performs better for slower time-varying conditions, but is
unable to track the step transitions in stiffness. This is reflected
in Table I, presenting VAF and RMSEk. Hence, whereas
VAFval is higher and RMSEk lower for the KBR method
in presence of noise, the skirt method better estimates the
time-varying joint stiffness when no noise is present (smaller
RMSEk).

For the sinusoidally time-varying joint stiffness (Fig. 4), the
true and estimated stiffness closely match for both analysis
methods when there is no noise. Identification of the joint
stiffness from a simulation trial with an SNR of 10 dB
still allows extracting the sinusoidal periodicity, but with a
mismatch to the true stiffness. The estimate of joint stiffness
by the skirt method is more affected by the presence of
noise than the KBR method (lower VAFval and RMSEk).
Table I shows that based on the VAF on the estimation data
(with noise) both methods provide a good model for the data
(VAFself > 96%). When validating the model, VAF is still
high (VAFval > 94%). The KBR method achieves a higher
VAF (VAFval = 96.7%) on the validation set then the skirt
method (VAFval = 94.9%). Both methods provide an excellent
estimate of the true FRF despite the noise as evident from the
VAF on a trial without noise (VAFoptim > 98%). The KBR
method (VAFoptim = 99.9%) outperforms the skirt method
(VAFoptim = 98.2%).

V. EXPERIMENTAL STUDY

This section describes how the experimental study was
performed.

A. Subjects

Six healthy participants (two men, 33 ± 4.2 years; four
women, 28 ± 4.1 years) with no self-reported history of
neurological or orthopedic arm problems, participated in the
experiment. All participants were right handed. The study was
approved by the human research ethics committee of Delft
University of Technology, and all participants provided written
informed consent before participating.

B. Experimental Setup

A torque-controlled wrist manipulator applied angular posi-
tion perturbations to the wrist of the right arm [43]. The
manipulators’ handle is actuated by an electric motor (Bau-
muller DSM-130N) via a lever which ensures the motor axis is
aligned with the axis of rotation of an average wrist. A torque
sensor, consisting of strain gages, was mounted halfway the
lever to measure the torque applied by the participant. The
core of the haptic controller is its velocity servo, which has a
bandwidth of ∼50 Hz.

Every participant was comfortably seated in front of the
manipulator and asked to grab the handle with the right hand.
To ensure a firm and time-invariant grip, Velcro was used
to strap participants to the handle and the lower arm was
immobilized. During the perturbations, the participants were
asked to apply a prescribed time-varying torque. A screen in
direct line of sight of the participant provided a target line,
representing the torque that had to be exerted, and a cursor that
was indicative for the exerted torque (0.6-Hz low-pass filtered).
Participants were instructed to trace the target line with the
cursor throughout each trial. Fig. 5 provides a schematic of
the experimental setup. During all trials, the torque on the
handle and position of the handle were measured, sampled at
2500 Hz and stored.

C. Measurement Protocol

The participants completed 12 trials, six trials each for
two different tasks. Before the trials, the maximum voluntary
torque (MVT) was determined. The first task required the
voluntary modulation of flexion torque. Participants had to
vary their exerted flexion torque between 5% and 20% MVT
according to a sinusoidal pattern (with a period of 20 s,
frequency of 0.05 Hz). Participants were instructed to track
a target line presented on the screen while ignoring the
continuous multisine angular perturbation on the handle of
the manipulator. The torque variations due to the perturbation
were much smaller than the requested voluntary modulation.
Each trial lasted 50 s, including 5 s at the start and end of
each trial without perturbation. The second task was a time-
invariant condition, without bias force, where participants were
instructed to keep their wrist relaxed while angular perturba-
tions were applied. For both tasks, the same perturbation signal
was used as during the simulation study with the rotation of
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TABLE I

VAFS AND RMSEk FOR SIMULATION DATA

Fig. 5. Experimental setup used to measure time-varying joint impedance.
The right arm of the participant was fixated, with the flexion-extension
axis of the wrist aligned with the axis of rotation of the handle of the
manipulator. Multisine position perturbations were imposed on the handle
while the participant had to track a sinusoidal torque pattern. Feedback on
torque exerted and target torque level was provided on a monitor directly in
front of the participant.

the wrist restricted to 0.02 rad and excited frequencies between
0.1 and 19.3 Hz (Section IV-D and Fig. 6(a)).

D. Data Analysis

The same data preprocessing was performed as for the
simulation study: part of the data were discarded and the
remaining data were decimated.

Fig. 6. Details of perturbation signal and raw data recorded. (a) Position
perturbation signal in frequency and time domain. Perturbation signal is
built of 10 s periods, containing only frequencies between 0.1 and 19.3 Hz
(�f = 0.8 Hz). (b) Raw position and torque data recorded during a single trial.
The shaded areas are data not analyzed to avoid modeling artifacts or transient
effects. The voluntary exerted sinusoidal time-varying torque (white line)
was removed prior to analysis, as it only served to obtain time-varying joint
impedance.

The exerted time-varying voluntary torque was applied to
ensure time-varying joint properties, but is not relevant for
the estimator. Therefore, before performing SI, the 0.05 Hz
time-varying voluntary exerted torque was removed by fit-
ting and subtracting a low-frequency signal composed of a
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constant, a linear function and four goniometric functions
[cos (ωt), sin (ωt), cos (2ωt), sin (2ωt)], where ω is the lowest
frequency fitting the analyzed time window (T ), i.e., 1/T ,
and in this paper, 1/40 = 0.025 Hz [Fig. 6(b)—white solid
line].

For the skirt decomposition and KBR method, the same
model structure and parameters were used as during the
simulation study. The order of the time variation for the skirt
method was set to Np = 7 and the hyperparameter σ for the
KBR method was set to ∼20 s, with γ based on the variance
of the data.

Quality of the Estimators: The quality of the estimators was
assessed using the VAF (17). VAF was determined twice:

1) VAFself : where the estimated torque ŷ(t) is calculated
and compared to the measured output torque y(t) that
was used to estimate the joint impedance model.

2) VAFval: where the estimated torque ŷ(t) is calculated
and compared to the measured output torque y(t) of the
five trials not used for estimation of the joint impedance
model.

Before determining the VAF, frequencies below 0.8 Hz were
removed as these frequencies are dominated by trial-to-trial
variability in voluntary motor control and have little contribu-
tion to joint dynamics.

E. Comparison With Other Techniques

The two proposed identification methods for joint
impedance were compared with two other methods pre-
viously presented. Both methods are ensemble averaging
methods, requiring multiple repetitions of the same time-
varying behavior. The first is a method proposed by
Ludvig and Perreault [44] who used a nonparametric estima-
tor in the time domain to successfully identify joint impedance
averaging across short data segments (SDS) and multiple
(but a reduced number of) realizations [27]. We implemented
this method ourselves. The second method is one designed
by Guarin and Kearney [45] (scripts available online) who
combine ensemble and deterministic approaches to estimate
TV joint impedance.

For a fair comparison of the methods, those presented in
this paper and those by Guarin and Ludvig, five of the six
collected trials are used as an input for estimating the joint
impedance model and the sixth trial is used for validation.
Before analysis, data were decimated to 100 Hz to limit
the computational burden. For the SDS method, we used a
window length of 100 samples (1 s), i.e., this is the time
window over which the joint impedance is considered time-
invariant, and a maximum lag of the impulse response function
of 40 ms.

F. Results

Position and torque data are presented in Fig. 6(b). The posi-
tion data are equivalent to the imposed perturbation. Torque
data show the torque exerted by the participant, expressed as a
percentage of their maximum voluntary torque level, on top of
the rapid torque changes as resulting from the applied position
perturbation.

Fig. 7. Results obtained using the skirt decomposition method. (a) Measured
(dots) output spectrum, fitted (red line) output spectrum and their difference
(residuals – crosses). The green line indicates the noise floor. (b) Estimated
system function, as defined in (2) with the estimated Gp. (c) System function
for all trials recorded for a single participant in the condition where voluntary
torque was sinusoidally varied between 5% and 20% of maximum voluntary
torque. Color scale same as in (b).

Skirt Decomposition Method
Fig. 7 presents the results obtained when using the skirt

decomposition method on the experimental data. The mea-
sured and fitted output spectrum were well matched at, and
close to, the excited frequencies [Fig. 7(a)]. The green dashed
line gives the estimated noise floor.

The corresponding system function shows a sinusoidally
varying joint stiffness and resonance frequency analog to
the sinusoidal exerted voluntary torque [Fig. 7(b)]. This is
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TABLE II

VAFS FOR EXPERIMENTAL DATA

highlighted in its 2-D representation [Fig. 7(c)–top left].
Fig. 7(c) shows the system function of all six trials recorded
for this participant. All trials demonstrate a sinusoidal-like
change in joint stiffness and resonance frequency, however
with marked inter-trial variability. Altogether, VAFself for the
nonparametric skirt decomposition method for all trials and all
participants was on average 84.3% ± 4.6% [(mean ± standard
deviation (SD)] (range for individual participants: 66%–91%)
(Table II). The estimated model for joint impedance estimated
on a single trial was validated on the other five trials. On aver-
age, this resulted in a VAFval of 66.1% ± 6.0% (mean ± SD)
(range for individual participants: 40%–83%).

Analysis of the task without bias force, i.e., no time-varying
behavior, confirmed the time-invariant joint dynamics with
a similar resonance frequency across the full-time window.
Moreover, VAFself and VAFval were >93% for all trials of all
participants.

KBR Identification
Fig. 8 presents the results obtained when using KBR iden-

tification with the recorded data. The frozen FRF [Fig. 8(a)]
demonstrates a sinusoidally varying joint stiffness and reso-
nance frequency, for all trials performed by this participant
[Fig. 8(b)]. The VAFself for the parametric KBR identification
method on the trials performed by the first participant was on
average 76.4% ± 7.3% (mean ± SD) (range for individual
participants: 52%–90%) (Table II). The estimated model for
joint impedance estimated on a single trial was validated on
the other five trials. On average, this resulted in a VAFval of
75.8%± 7.3% (mean ± SD) (range for individual participants:
51%–89%).

Analysis of the task without bias force, i.e., no time-
varying behavior, confirmed time-invariant joint dynamics with
a similar resonance frequency across the full-time window.
Moreover, VAFself and VAFval were >97% for all trials of all
participants.

Comparison With Other Techniques
Table II presents the VAF for all participants when ensemble

data was used in five trials for estimating the joint impedance
model, and the sixth trial was used for validation. In addition
to the KBR and skirt method, the results are presented for

Fig. 8. Results obtained using the kernel-based method. (a) Estimated frozen
FRF, using kernel-based regression. (b) Frozen FRF for all trials recorded in
a single participant in the condition where voluntary torque was sinusoidally
varied between 5% and 20% of maximum voluntary torque. Color scale same
as in (a).

the SDS and Guarin method. On average, the KBR method
provides the best results (VAFval = 76.8%±7.2%) closely fol-
lowed by the SDS, skirt and Guarin method (SDS: VAFval =
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75.5% ± 7.2%; skirt: VAFval = 75.3% ± 5.4%; Guarin:
VAFval = 74.6% ± 7.2%).

VI. DISCUSSION

In this section, results from the simulation and experimental
study will be discussed in light of the new identification
procedures to quantify joint impedance.

A. Parametric and Nonparametric Identification of Joint
Impedance

This paper demonstrates that it is possible to obtain a
good model fit based on a single trial of data, in line with
some other recent studies [35], [36]. Both the KBR method
and skirt decomposition method revealed a sinusoidal time-
varying resonance frequency and joint stiffness. The time-
varying system dynamics of the human wrist resembled the
time-varying simulated joint stiffness or instructed joint torque.
Both algorithms require little a priori information about the
expected time variations. The minimal information provided
to the estimator about time-varying behavior contrasts the
commonly employed linear parameter varying (LPV) models.
LPV models require a measured time-dependent schedul-
ing function that induces the change of the model parame-
ters [35], [46]. There are no assumptions about the order of
the system dynamics, or a scheduling variable, in the skirt
decomposition method, but it assumes that the time variations
can be described by a set of smooth basis functions. For the
KBR method, the order of the system dynamics is set a priori
and the hyperparameter σ determines the smoothness of the
time variation.

The performance of the KBR method depends on the choice
of the model order and on the values for the hyperparameters
σ and γ . Although a second-order joint impedance model
has been used often in the literature, in this paper, a third-
order model (three zeros, two poles) was used. The choice
for a third-order model structure was based on the joint
dynamics (modeled as a second-order mass-spring-damper
system) and the grip dynamics to capture the interaction
between the joint and the manipulator [1]. A third-order
model may better capture the musculoskeletal structure for
joints where multiple muscles act around (a joint agonist-
antagonist muscle pairs) [47]. Fixed values were used for the
hyperparameters in the presence of noise. Lataire et al. [39]
developed an optimization procedure to determine the opti-
mal values for the hyperparameters by minimizing a leave-
two-out-cross validation criterion (LTO-CV) [48]. However,
this criterion proved to be fairly insensitive to the value of
the hyperparameters, as soon as they are in an acceptable
range. Hyperparameter σ was chosen in accordance with
our expectations; σ ≈ 20s, which is of the same order of
magnitude as the period of the exerted time variation. This
value ensures that the resulting estimate is smooth, effectively
suppressing noise contributions. The hyperparameter γ was
chosen near the global minima of the LTO-CV evaluated for
all the trials, as our results were insensitive to the exact value
of γ .

The nonparametric skirt decomposition method does not
require an a priori defined model order and thereby has more
flexibility to capture the dynamics, albeit smooth, as dictated
by the basis functions used. The method needs a multisine
perturbation signal that includes sufficient excited frequencies
to quantify the system dynamics and at the same time leaves
appropriate space between excited frequencies to capture
the time variations in the skirts. When measuring humans,
the frequency resolution is limited as the measurement time
in humans is restricted, e.g., to prevent fatigue. This is critical
at the lowest frequencies up to ∼5 Hz, where the human
has the ability to modulate his/her joint impedance. Hence,
up to 5 Hz, ideally, there are many excited frequencies that
allow proper identification of joint impedance but at the
same time, sufficient unexcited frequencies are required to
capture time-varying behavior. The nonparametric nature of
the skirt method provides more freedom at the cost of a greater
variance, especially below the resonance frequency.

For both methods, a well-defined LTV model could be
constructed using only a single trial of 30 s of data (VAFval >
70%). Up to ∼90% of the data could be explained using
either the KBR method or the skirt based method (on the
estimation data set). An explanation for the high VAFs (>85%)
in some and low VAFs (<70%) in others may be found in
the sensitivity of the methods to the smoothness of the time
variation, i.e., data sets from participants that were better at
smoothly following a sinusoidally time-varying torque resulted
in higher VAFs. The skirt method suffers less from this as
no a priori model structure is applied. However, the lower
VAFs on validation data compared to estimation data (drop
by ∼10%–20%), not seen for the KBR method, may indicate
overfitting. It is noteworthy that validation based on single-
trial data may not only reflect modeling errors but will also
be negatively affected due to inherent human trial-to-trial
variability. This is reflected in the results of the trials without
bias force, i.e., participants are fully relaxed, which result in
a higher VAF as the human does not intervene. Moreover,
the trials without bias force demonstrate that the methods do
not have any a priori assumptions on time variance since they
fit time-invariant data well.

In the present paper, the comparison with ensemble-
based methods of Ludvig and Perreault [4] (SDS) and
Guarin and Kearney [45] (Guarin) revealed minimal differ-
ences. However, both the SDS and Guarin method were
developed with a pseudorandom perturbation signal and for
identification of fast time-varying behavior (0.5 Hz), which
is different from a multisine perturbation and slow time-
varying behavior (0.05 Hz) as applied in this paper. Therefore,
the only conclusion to draw from the comparison is that each
algorithm can perform well, but that the choice for a specific
time-varying system identification technique is driven by the
research aim and experimental possibilities.

B. Limitations of the Methods

A potential limitation of the methods is the speed of time
variation that can be successfully identified. The 0.05-Hz time-
varying torque that was used is slower than most relevant
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time-varying human behavior (∼1–2 Hz, e.g., human walking).
The simulations of the time-varying stiffness according to a
square wave demonstrate that the skirt decomposition method
is unable to capture rapid time-variations in the presence of
noise using the current design of the multisine perturbation sig-
nal. It will require optimization of the multisine perturbation
signal to provide greater space between excited frequencies.
Considering the limited bandwidth of human joints this may
be difficult.

Likewise, the KBR does not seem to perform well for
estimating rapid transitions in joint stiffness. However, this
is inherent to the use of the radial basis function kernel and
the choice of the values for the hyperparameters, optimized to
capture the 0.05 Hz expected time-variance in joint stiffness.
Hence, this results in smoothing of any rapid changes in joint
stiffness and minimizes the effects of noise on the estimate
(visible in Fig. 3)-which benefits the estimate compared to
the skirt decomposition method (Table I). To some extent,
the hyperparameters dictate the time-variance that can be
captured. Preliminary simulations have demonstrated that the
KBR method can identify rapid time-variations by optimizing
its hyperparameters or choosing a different basis function.
However, this will result in a model of higher complexity,
and therefore higher uncertainty as there is a greater risk of
modeling noise. Future work will have to establish the exact
possibilities and constraints of both methods for identifying
time-varying joint impedance.

C. Time-Varying Human Joint Impedance

Observing a time-varying joint stiffness and resonance fre-
quency when varying the level of torque is in line with earlier
reports [7], [9], [49]. An increasing resonance frequency,
accompanied with an increase in joint stiffness, was reported
for the ankle joint when generating a torque by pushing
the foot down (i.e., plantarflexion) [9]. The KBR method
demonstrates a similar sinusoidal pattern in joint stiffness.
Impedance is high when torque is high, and vice versa. For
the skirt method, this distinction is less clear. This may be
partly attributed to the frequency resolution inherent to the
nonparametric skirt method.

The KBR method [Fig. 8(b)] also reveals a change in the
size of the peak at the resonance frequency. This peak is
larger for higher levels of torque, which may be attributed to
the underlying mechanisms that allow humans to successfully
complete the requested motor task. Humans can adapt the
mechanical behavior of their joints by regulating intrinsic and
reflexive joint properties [1], [50]. Intrinsic properties can
be tuned by cocontracting, i.e., activating different muscles
that act in opposite directions around a joint at the same
time results in increased joint impedance. This is primarily
expressed in a change in intrinsic stiffness, which has a
greater sensitivity for muscle activation than intrinsic vis-
cosity [7], [49]. Whereas intrinsic properties are primarily
tuned feedforward, an adaptation of reflex properties involves
feedback pathways with an inherent time delay resulting in
phase lags [51]. An increase in voluntary torque level up to
20% MVT has been demonstrated to raise the contribution of

both the intrinsic and reflexive stiffness [7], [35]. As a result
of the larger reflexive contribution and involved time delay,
oscillatory behavior at the resonance frequency is increased.
Whereas this is one explanation for the increased resonance
peak when the voluntary torque is increased to 20% MVT,
it may also simply reflect the changing muscle viscoelastic
properties with increasing levels of muscle activation. The
currently employed identification technique does not yet allow
for separation of intrinsic and reflexive contributions to the
motor behavior but this is work in progress. This could, for
example, be done by fitting a parametric model to the TV-
FRFs so to extract these detailed parameters that determine
joint impedance [1].

VII. CONCLUSION

This paper presents a novel framework for the identification
of time-varying joint impedance by making use of two differ-
ent LTV SI methods. Both the parametric KBR method and
the nonparametric skirt method allow identification of joint
impedance over time using a single trial of data. Despite the
low SNR of the recorded signals in the biomedical domain,
there is the possibility to successfully quantify changes in
joint impedance over time based on limited data. In the
future, this may allow gaining valuable new insights into how
humans control their limbs and learn new tasks. The successful
application of SI methods, unknown in the biomedical domain,
demonstrates that cross domain collaborations are important to
make full use of all that the field of SI has to offer in studying
human control behavior.

APPENDIX

A. Skirt Decomposition Method

This appendix summarizes the algorithm for the skirt
decomposition method, which is proposed in [37]. The model
in (7) is approximated in a frequency band comprising three
successive excited frequencies, denoted k−e , ke, and k+e , as

Ym(k)≈ 1

N

Np∑
p=0

∑
k′∈{k−e ,ke,k

+
e }

G p( jωk′)U(k ′) . . .

Bp(k − k ′)+ IY ( jωk) (A.1)

expressed in the frequencies k = k−e −�ke , . . . , k+e +�ke with

IY (k) =
Nr∑

n=0

rnkn (A.2)

a polynomial in k, which captures TY ( jωk) and the fact that
only a limited number of terms from (7) are included in (A.1),
�ke is the distance (in bins) between two excited frequencies.
By solving (A.1) for G p( jωk′) and rn in least squares sense,
for all keεKexc, the LTI blocks G p are effectively estimated
nonparametrically (i.e., at the excited frequencies only) in a
sliding frequency band. Note that (A.1) is linear in all the
unknowns [G p( jωk′) and rn].
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B. Kernel-Based Regression Method

This appendix summarizes the algorithm for the KBR
method, which is proposed in [39]. The estimate is defined
as

ân, b̂n = argmin
an, bn

∑
k∈Kint

|E(k, an, bn)|2
σ̂ 2

E (k, an, bn)
. . .

+
Na∑

n=1

ăT
n K−1ăn+

Nb∑
n=0

b̆T
n K−1b̆n (B.1)

with

E(k, an, bn) = DFT

⎧⎨
⎩y −

Nb∑
n=0

bnu(n)+
Na∑

n=1

an y(n)

⎫⎬
⎭

k

an = ◦an + ăn, bn =
◦
bn + b̆n (B.2)

where an and bn are vectorised versions of an(t) and bn(t) in
t = 0, Ts, . . . , (N − 1)Ts , u(n) and y(n) are the sampled and
vectorised nth derivatives of u(t) and y(t). The parameters an

and bn are decomposed into
◦
an and

◦
bn (which are constant

vectors to which no regularization is applied) and ăn and b̆n

(which are the time-varying and regularized to impose their
smoothness). The latter is done by including the sums of
ăT

n K−1ăn and b̆T
n K−1b̆n . The kernel matrix K is semipositive

definite and symmetric, and imposes structure on the estimated
parameters.

σ 2
E is the variance of E . Explicit expressions for E and

σ 2
E , based on the sampled signals u(t) and y(t) are available

in [39].
Note that (B.2) is a nonquadratic (and in general non-

convex) problem, due to the division by σ̂ 2
E . This is

solved via an iterative convex relaxation, where σ̂ 2
E is ini-

tialized to 1 and, for the mth iteration, is computed as
σ̂ 2

E,m(k) ← σ̂ 2
E (k, ân,m−1, b̂n,m−1), with ân,m−1, b̂n,m−1 the

estimates obtained at the (m−1)th iteration. This algorithm is
outlined in [39, Sec. 6.2]. The computation of σ̂ 2

E also requires
an estimate of the noise variance on the measured spectra,
which is computed via the method presented in [52].

Note that this estimator does not require the explicit com-
putation of K−1. This allows for the use of (close to) singular
kernel matrices.
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