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Abstract—Recent years have seen a surge of interest in
distributed residential batteries for households with renewable
generation. Yet, assuring battery assets are profitable for their
owners requires a complex optimisation of the battery asset and
additional revenue sources, such as novel ways to access wholesale
energy markets. In this paper, we propose a framework in which
wholesale market bids are placed on forward energy markets
by an aggregator of distributed residential batteries that are
controlled in real time by a novel Home Energy Management
System (HEMS) control algorithm to meet the market commit-
ments, while maximising local self-consumption. The proposed
framework consists of three stages. In the first stage, an optimal
day-ahead or intra-day scheduling of the aggregated storage
assets is computed centrally. For the second stage, a bidding
strategy is developed for wholesale energy markets. Finally, in the
third stage, a novel HEMS real-time control algorithm based on a
smart contract allows coordination of residential batteries to meet
the market commitments and maximise self-consumption of local
production. Using a case study provided by a large UK-based
energy demonstrator, we apply the framework to an aggregator
with 70 residential batteries. Experimental analysis is done using
real per minute data for demand and production. Results indicate
that the proposed approach increases the aggregator’s revenues
by 35% compared to a case without residential flexibility, and
increases the self-consumption rate of the households by a factor
of two. The robustness of the results to uncertainty, forecast
errors and to communication latency is also demonstrated.

Index Terms—Batteries, Blockchain, distributed generation,
smart contract, smart grids.

NOMENCLATURE

Symbols
C Battery nominal capacity (Wh)
E Energy quantity during the time interval corre-

sponding to the superscript
Emax

B Maximum energy quantity that the considered bat-
tery can provide/consume during a given time
interval

Et
c Agreed contractual export for the aggregator’s fleet

within time interval t
εRE State variable representing sgn(REt,k)

ηd Discharging efficiency of the considered battery
ηc Charging efficiency of the considered battery
Ns Number of PMS cycles within two consecutive

times tj
πe Wholesale market export price
πi Retail market import price
PBk Power of the battery of household k
RE Remaining Energy export required, either by the

whole fleet (A) or by a household (k)
S Battery operation state indicator, 0 if the battery

must match residual demand, 1 otherwise
s Time between two consecutive real time actions of

the PMS
tj Time steps for the MPC optimisation at a house-

hold battery level. Corresponds also to the time at
which MPC optimisation are run

tsc Time at which coordination with the Smart Con-
tract happens

ts Time interval for PMS operations (≈ 200µs)
wk

e Percentage of the whole fleet export energy re-
quested to household k

wk
i Percentage of the whole fleet import energy re-

quested to household k

Subscripts and Superscripts

A Virtual aggregated battery considered in phase 1 and 2
of the proposed framework

B Battery
C Charge
D Discharge
d Demand of the fleet or household, depending on the

superscript
e Export
i Import
k kth household
l Time steps for the MPC optimisation at a household

battery level. Corresponds to tj
p Production from the renewable generation asset
t Quantity computed over market time interval t (30



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2021.3121444, IEEE
Transactions on Sustainable Energy

2

minutes in most European countries)
Abbreviations

FIT Feed-in Tariff
DER Distributed Energy Resources
DRBCF Distributed Residential Batteries Control

Framework
DSO Distribution System Operator
HEMS Home Energy Management System
MILP Mixed Integer Linear Programming
MPC Model Predictive Control
PAR Peak to Average Ratio
PMS Power Management System
PV Photovoltaic
ROI Return on Investment
RT Real-Time
RTC Real-Time Control
ReFLEX Responsive Flexibility
SoC State of Charge
ToU Time of Use

I. INTRODUCTION

INTEGRATING more residential renewable energy produc-
tion is seen as key to building lower-carbon and resilient

energy systems in many countries [1]. A key technology that
has emerged to achieve this are small-scale home batteries,
typically suitable for deployment in an individual dwelling
with rooftop solar PV (e.g. Tesla Powerwall, ABB Residential,
AlphaEss), which have seen fast technological development.
However, a key barrier for faster adoption of home batteries
is their economic cost, which can be above £6000 [2]. Fur-
thermore, home battery capacity is often under-utilised at the
individual domestic consumer level, and for this reason they
are not cost-effective [3]. For example, although small batteries
can have a reasonable investment recovery (payback) period
[4], currently commercialised residential battery systems used
solely for self-consumption in Europe or in the US have an
investment recovery period ranging from 15 to 20 years, which
is economically unattractive for domestic consumers [5]–[8].

To address this, there has been a surge of interest in using
residential batteries to generate secondary revenue streams,
especially through participation in wholesale energy markets.
This is the context of the Responsive Flexibility (ReFlex)
project, the UK’s largest Integrated Energy System demon-
strator project [9] that aims to decarbonise the Orkney Islands
by integrating distributed storage such as domestic batteries in
the current energy ecosystem.

However, although residential battery assets can be inte-
grated more readily than large-scale batteries (e.g. less network
operator concerns with respect to asset tripping or grid codes
[10], [11]), home batteries are typically too small to participate
in such energy markets by themselves (in most countries,
wholesale energy markets are not open to small assets of
power capacity below 1 MW [12]). Hence, one solution to
allow residential assets to participate in wholesale markets

consists in using demand-side aggregators, and designing real-
time control (RTC) algorithms for home batteries that allow
them to be used for a multiple objective: first, at the individual
consumer level, to maximise local energy self-consumption
through arbitrage. Second, at the aggregator level, to ensure
that the fleet of aggregated small-scale domestic batteries par-
ticipate profitably in wholesale markets. Designing algorithms
that can handle these - often conflicting - objectives in real
time with many distributed assets that usually communicate at
time intervals of 5 to 10 minutes is a challenging problem, that
requires a multi-layered approach and control solution. In more
detail, it requires the integration of a number of techniques:
a wholesale energy market bidding strategy at the aggregator
level to maximise the fleet’s revenues from the market, and a
real-time control solution for every battery of the fleet with
efficient coordination despite non-continuous communication.

In this work, we propose an integrated solution for this
problem, by providing: a method to determine what quantities
of energy an aggregator of residential assets can bid in the
wholesale energy markets, and a real-time control algorithm
for all these distributed assets, taking into account real con-
straints such as communication latency, retail and wholesale
markets constraints and forecast errors.

Although prior works have addressed extensively the topic
of energy market participation for stand alone assets or
commercial Virtual Power Plants, they have not covered the
context of many projects such as ReFLEX [9] that require to
coordinate residential assets to participate in wholesale energy
markets while maximising local self-consumption to make
them profitable. Furthermore, in prior works, real-time control
of home batteries has mostly been studied in the context
of a single objective of arbitrage whereas a few works also
implemented a multi-objective solution including arbitrage
and frequency market participation in the same time [13],
[14]. However, the problem of real time control of a fleet
of domestic assets to perform local arbitrage and participate
in energy markets has not been addressed yet. Indeed, unlike
frequency markets that require participating assets to follow
the frequency signal, energy markets require coordination be-
tween residential assets that do not communicate continuously
due to technical constraints [2]. Therefore, there is a need
to formulate a new real-time control algorithm and bidding
strategy to address these concerns.

In terms of prior work on battery control, this has attracted
a lot of research attention recently. On the applications side,
the role of batteries for power grid applications has first been
either to provide grid services such as frequency [13], [14]
or voltage [15] regulation. Other works aimed to optimise
the revenues of a battery owner such as a prosumer through
arbitrage [8], [16], [17]. Although small residential batteries
with small power electronics can provide payback periods
below 5 years [4], current residential batteries with capacities
of 5 to 10 kWh and with power above 5 kW able to supply
a whole dwelling have payback periods that can be longer
than the 10 years of battery life time [6]–[8]. As a result,
some research works proposed control algorithms that allow
energy producers to bid in the wholesale energy market [17]–
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[20] in order to increase the potential revenues provided by
the battery. However, they only considered large-sized stand-
alone batteries located in a single location, which is not com-
patible with the case of small-scale home batteries that usually
cannot participate in wholesale markets alone and cannot be
considered as a single battery given their distributed locations,
communication limitation, and different environments (local
consumption and production). Finally, several works such as
[17], [19], [21], [22] propose solutions for future local peer to
peer markets with residential batteries, involving game theory
aspects but they are not compatible with the use of batteries
distributed over a larger regional or national grid to participate
in current wholesale markets.

On the technical side, RTC for batteries has been imple-
mented through Model Predictive Control (MPC) [23], [24],
or through heuristic rules [17], [25], and can consider battery
degradation [24], [26] or not. Although it is relevant to study
batteries degradation depending on the use of the battery
[4], it was shown that for grid applications with currently
commercialised residential batteries, it is usually not more
financially profitable to consider battery degradation in the
battery control algorithm [5], [8], [27]. However, most RTC
algorithms apply either to the case of self-consumption only,
or to the procurement of grid services, for which the strategy
mostly consists in following either the frequency, or a specific
signal from the grid operator [13]–[15]. Furthermore, although
distributed batteries coordination has been successfully imple-
mented for grid services such as frequency regulation in [19]
and [28], these works do not address energy markets applica-
tions and assume perfect continuous communication between
assets, which does not reflect real-life implementations with
residential batteries. Hence, there is a clear and well defined
gap in the literature to address the problem of the participation
of distributed residential batteries in wholesale energy markets.

To address this challenge, we propose a framework to
control distributed residential batteries that are aggregated into
a fleet and coordinated by an aggregator to participate in
wholesale energy markets. To achieve this coordination, we
propose a blockchain technology based solution, that does not
rely on a single authority or point of failure [29], [30]. We
demonstrate that this framework benefits both the aggrega-
tor and the households hosting batteries by increasing their
revenues. Therefore, our work provides a techno-economic
and social-economic solution to incentivise investment into
domestic renewable generation and local storage.

The key novel features of our framework include:
• A solution to aggregate distributed residential assets

such as rooftop PV and domestic batteries to participate
in wholesale energy markets under a real environment,
which includes real constraints such as forecast errors,
communication latency, and diversity of sizes and en-
vironment such as weather among assets. This solution
includes the energy quantities and associated times that
the aggregator can bid in the wholesale energy market.

• A real time battery control algorithm based on Model Pre-
dictive Control (MPC) and embedded in each Home En-
ergy Management System (HEMS), that includes several
objectives, such as local bill reduction, self-consumption

maximisation, and commitment to the wholesale energy
market bid from the aggregator.

• A comprehensive techno-economic study that demon-
strates the economic interest for prosumers and aggre-
gators to install residential generation assets at end-user
premises while participating to wholesale energy markets.
This study is based on wholesale energy market prices,
real end-user pricing scheme and national grid imbalance
prices to provide a comprehensive demonstration that the
proposed framework is a viable solution to successfully
deploy distributed assets at end-users premises. We also
demonstrate the robustness of the proposed solution to
different sources of uncertainty and communication la-
tency.

In addition to these features, our framework is ”Blockchain-
ready” as we implemented a blockchain-enabled smart con-
tracting platform to coordinate the individual households ex-
ports. Such a blockchain platform also facilitates the settlement
phase to distribute the aggregator’s revenues to each house-
holds.

The remainder of the paper is structured as follows. Sec-
tion II presents a detailed overview of the proposed framework,
while Section III describes the RTC algorithm for distributed
batteries. Section IV presents the implementation and benefits
in the case of 70 residential batteries participating in the
day-ahead energy market, while Section V concludes with a
discussion.

II. DISTRIBUTED RESIDENTIAL BATTERIES CONTROL
FRAMEWORK

In this section, we present an overview of our Distributed
Residential Batteries Control Framework (DRBCF). It is de-
signed to control a fleet of distributed residential batteries that
make a joint energy export commitment on the wholesale
energy market. These distributed batteries operated by an
aggregator can either be owned by the aggregator or by the
households. Hence, the use case of this study corresponds
to the concept of ”Energy as a Service” in which an energy
supplier or aggregator would manage distributed storage assets
installed at end-user premises (residential households or com-
mercial buildings) to provide cheaper and cleaner energy to the
consumers. Therefore, the economic objective for prosumers
is to reduce their bill, whereas the supplier or aggregator aim
to maximise their revenues that come partly from a share of
end-user energy bill reduction and from the wholesale energy
market revenues. A secondary objective is to increase the share
of renewable generation in end-users’ energy consumption
mix.

A visual representation of the use case is shown in Fig. 1,
corresponding to the real-life case study from the ReFLEX
project [9]. As shown on the left side of Fig. 1, assets consist
in residential or commercial buildings (load), generation from
rooftop solar PV (Photovoltaic) or wind turbines, and also
residential batteries installed at the end-user premises. The
aggregator can also include his own assets in the portfolio
(such as large PV or wind generation located in a single
location). The DRBCF framework enables the aggregator to
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take advantage of these heterogeneous assets to bid energy
quantities on the wholesale energy market, from which it
generates revenues.

We note that market price formation and computation of
bidding prices is not covered in this study – the aggregator is
assumed to be a price taker. This is because, for a large-scale
(national or regional) wholesale energy market, the ability of a
small domestic aggregator to influence clearing prices is lim-
ited. Also, as presented in Section III, at the time of delivery,
a dedicated smart contract and a RTC algorithm embedded in
every household HEMS ensure that the distributed batteries
will meet the commitments made on the markets.

Fig. 1: Use case representation: an aggregator manages dis-
tributed assets at households and building premises, but also
a wind farm and a solar PV farm.

The control framework DRBCF can be divided into three
main phases as detailed in Fig. 2. In the first phase, based

Fig. 2: DRBCF Framework for the control of distributed
residential batteries contributing to the wholesale market.

on forecasts of wholesale market prices, aggregated demand
of residential loads and production of the whole fleet, the
aggregator solves (1) to compute Et

eA , a first estimation of
the optimal market bidding quantities and associated time. For
this computation, the aggregator considers a virtual fleet as if
all assets were not distributed but aggregated into one large
virtual load, one large virtual PV and wind generation site,
and one large virtual battery. The optimisation problem (1) is
a Mixed Integer Linear Programming (MILP) formulation that
is detailed in [5], where each time interval t corresponds to the
wholesale market intervals (30 minutes in European countries,
including the UK), and the time horizon can be a day:

minimize
Et

BA
D

,Et

BA
C

, ∀t

T∑
t=1

(
Et

iAπ
t
i − Et

eAπ
t
e

)
subject to (2), (4), Et

BA
D
, Et

BA
C
, Et

iA , E
t
eA ≥ 0,

Et
BA

D
, Et

BA
C
≤ Emax

BA , ∀t,

(1)

where Et
BA

D
, Et

BA
C

are the discharged and charged energies of
the aggregated battery capacity in time interval t respectively,
Et

iA and Et
eA are the optimal net import and export of the

aggregated fleet of assets (residential loads, production and
batteries) in time interval t, and Emax

BA is the maximum energy
the virtual aggregated battery can import or export during the
considered time interval. It corresponds to a limit in maximum
power, which is computed as the sum of the powers of all the
storage assets that constitute the aggregator’s fleet. Superscript
A refers to aggregated quantities. Indeed, in phase 1 and 2
of the DRBCF, the aggregator considers all distributed assets
and loads as if they were only one asset. Differentiation
between assets being done in Phase 3. πt

i is the retail price
of electricity (import from the grid) and πt

e is the forecasted
wholesale market price for time interval t. Constraint equation
(2) corresponds to the energy balance:

Et
iA + ηAd E

t
BA

D
−
Et

BA
C

ηAc
= Et

dA − Et
pA

Et
eA − η

A
d E

t
BA

D
+
Et

BA
C

ηAc
= Et

pA − Et
dA

(2)

where ηAd and ηAc are the discharging and charging efficiencies
of the virtually aggregated battery respectively given by (3),
and Et

dA and Et
pA are the forecasted energy demand and pro-

duction respectively of the whole portfolio of the aggregator
(end-users’ loads and generation assets such as PV and wind).

ηAd,c =

∑
k∈households Ckηkd,c∑

k∈households Ck
(3)

where ηkd,c is the efficiency of the battery of household k,
and Ck is its nominal capacity. Then, (4) expresses the state
of charge (SoC) limits for the virtually aggregated battery
capacity and also applies to every time interval t.

SoCA
min ≤

t∑
l=1

(
El

BA
C
− El

BA
D

)
+ SoC0,A ≤ SoCA

max, (4)
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where superscript 0 corresponds to the quantities at the start
of the considered period, for t = 0. SoCA

max = CA is
the maximum available capacity of the virtually aggregated
battery, and corresponds to the sum of the capacities (Ck)
of all the storage assets that constitute the aggregator’s fleet.
Forecasts are inputs of the model that are not in the scope of
this paper, but can be generated using statistical or AI methods
such as Artificial Neural Networks or K-Nearest Neighbour
regressions with good accuracy when considering aggregated
assets, which is the case in phase 1 and 2 [31].

In phase 2, the aggregator uses the energy export quantity
Et

eA , output of the optimisation problem (1), to determine
the optimal energy quantities to bid on the wholesale energy
market. Once the wholesale energy market is cleared, the
aggregator receives a pre-agreed energy schedule, Et

c for all t.
If this schedule differs from the submitted bids, the aggregator
will re-run the optimisation of the virtual aggregated battery
given in (1) based on an updated price time-series such that
πt
e = 0 for all the time intervals t without export contract.

Similarly, constraints for the net exported energy Et
eA must

be updated such that Et
eA = Et

c when an export contract
was awarded, with Et

c the agreed contractual export in MWh
for time interval t. The second phase is completed once
the aggregator circulates the following time series to the
distributed fleet: (i) the optimised SoC profile for the virtual
aggregated battery capacity SoCt,A in % for every time-step
of the considered period (day ahead e.g.), (ii) the required
aggregated net export quantities Et

c for every coming market
periods, and (iii) a state indicator, S, that represents the mode
of operation of the aggregated battery capacity for every time
interval:

S =

{
0 if Battery power must match residual demand
1 otherwise.

(5)
where the residual demand consists of the difference between
the demand and production of the considered system.

The third phase of the framework corresponds to the RT
operation of the distributed batteries as detailed in section
III. Coordination among all residential batteries is achieved
through a smart contract that ensures that the whole fleet will
export energy quantities Et

c agreed on the wholesale market.

III. REAL-TIME CONTROL OF DISTRIBUTED BATTERIES

Unlike prior research that considers large batteries for
wholesale energy market applications, distributed residential
batteries must have a dedicated control algorithm to maximise
local self-consumption, while helping the fleet to meet the
wholesale market commitments. This section introduces our
novel algorithm that optimises local self-consumption while
ensuring coordination and energy sharing between assets.

A. Model-Predictive Control Algorithm

In this paper, RT control consists of power set-points com-
puted by every household’s HEMS and sent to the household’s
battery at every time step of its operation cycles (from µs
to ms). This RTC of each household’s battery is achieved

through an approach inspired from Model Predictive Control
(MPC) where the system that is modelled corresponds to the
household’s demand and production forecasts and the storage
asset. At every time intervals tj (e.g. tj+1− tj = 1 or 2 min),
each HEMS solves a local optimisation problem specified in
(6) where the time horizon t corresponds to the rest of the
considered market time interval. The output of (6) is a series
of set-points (Etj+1

Bk
C,D

, E
tj+2

Bk
C,D

, ...Et
Bk

C,D
) from which the HEMS

will keep the first one, Etj+1

Bk
C,D

, that will be sent as a set-
point to the Battery Power Management System (PMS) of the
household’s battery. Unlike previous implementations of MPC
for battery control that consider either a single objective of
bill reduction or self-consumption [23], [24], or that aim to
regulate the grid through balancing frequency or voltage [32],
[33], the proposed algorithm includes two objectives, i.e. the
maximisation of self-consumption at the household level, but
also the integration of the market commitments, which can
imply the need for charging or to empty the battery at a given
time. These two objectives being sometimes contradictory,
it is necessary to arbitrate them. This arbitrage is achieved
through variables εRE and St described below. Furthermore,
this second objective also depends on the actions taken by the
rest of the fleet of residential assets, which requires a different
approach than the one other works propose for single stand
alone batteries. The MPC formulation given in (6) corresponds
to a novel solution to these challenges.

Since the time horizon t of the optimisation problem can be
up to 30minutes (t− tj), the MPC optimisation problem com-
putes the optimal battery schedule (Etj+1

Bk
C,D

, E
tj+2

Bk
C,D

, ...Et
Bk

C,D
)

with relatively large time steps equal to tj+1 − tj ≈ 1min, so
the computation of (6) can be tractable. Hence, it does not
correspond to a RT schedule as RT time steps for a battery
control (noted ts in this paper) are usually in the order of the
µs or ms. Therefore, between two consecutive optimisations
that occur at times tj and tj+1, the Battery PMS will take Ns

operational decisions (charging/discharging) that correspond to
the recommendation from the first step of the optimal schedule
(Etj+1

Bk
C,D

), where Ns is the number of RT operations/cycles
between tj and tj+1 (tj+1 − tj = Nsts), and depends on the
clock frequency of the PMS. The recommendation can either
be to compensate or follow the local residual demand, such
that there is no energy export nor import in the period, or
to apply a specific charge/discharge power given by E

tj+1

Bk
C,D

,
which is the first step of the optimal schedule. Finally, it should
be noted that battery degradation, which was added in our
previous work in [5], is not added here as it was shown that
the impact on battery life time is limited [5], [8], [27].

Fig. 3 details the chronology of the MPC algorithm. There
are 4 time indicators to be considered.

• t, the current market time interval, corresponds to the
time horizon for the MPC optimisation (for example t−
(t−1) = 30min).

• tsc is the time at which each HEMS sends and receives
the last information to/from the smart contract (vertical
arrows in grey in Fig. 3), for coordination with the rest
of the fleet (for example tsc − tsc−1 = 5min).
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minimize
El

Bk
D

,El

Bk
C

, ∀l

t∑
l=tj+1

El
ikπ

l
i + (1− εRE)E

l
ekπ

l
e + St(1− ε2RE)

SoCt,A − SoCt,k

SoCk
max

+ εRE

∣∣∣∣∣REt,k −
t∑

l=tj+1

(
El

ek − E
l
ik

)∣∣∣∣∣
max(Emax

i , Emax
e )

subject to (2), (4), El
Bk

D
, El

Bk
C
, El

ik , E
l
ek ≥ 0, El

Bk
D
, El

Bk
C
≤ Emax

B ,
(
El

ik − E
l
ek

)
≥ Emax

i ,
(
El

ek − E
l
ik

)
≤ Emax

e , ∀l.
(6)

• tj is the time at which MPC optimisations are executed
(e.g. every 2 minutes).

• Finally, the smallest time step ts (vertical markers in grey
in Fig. 3) corresponds to the cycle time for the battery
PMS RT operations (e.g. ts − ts−1 = 200µs).

At the beginning of each market time interval t, the HEMS
initializes REt,A (the remaining net export required from the
whole fleet) with the value that was communicated originally
by the aggregator at the end of the phase 2 in Fig. 2. At every
communication time with the smart contract tsc, each HEMS
receives an updated value of REt,A that can be negative if the
fleet produced more than what was committed to the wholesale
market. Along with REt,A, the smart contract communicates 2
weights values wk

e and wk
i to each household k, that represent

the percentage of REt,A that should be exported (wk
e if

REt,A > 0) or imported (wk
i if REt,A < 0) by the household

k for the rest of time interval t. The details of the weights
computation are provided in the next subsection. With these
information, each HEMS updates REt,k, the remaining net
export required from the household k before the end of the
market interval:

REt,k =


REt,A · wk

e −
tj∑

l=tsc

(
El

ek − E
l
ik

)
, if REt,A ≥ 0

REt,A · wk
i −

tj∑
l=tsc

(
El

ek − E
l
ik

)
, otherwise,

(7)

where
∑tj

l=tsc

(
El

ek − E
l
ik

)
corresponds to the effort (export

or import) that was already realized by the household k since
tsc, the time of the last communication with the smart contract.

The HEMS also computes a forecast of the household’s
future consumption and production for the remainder of the
current market interval. In our simulations, the HEMS gener-
ates a forecast for the next 30 minutes with 15 minutes time
steps, using a Linear Regression model, as it was shown to be
the best compromise between speed and accuracy for forecasts
of up to 1 hour ahead. Beyond this forecasting horizon, K-
Nearest Neighbour regressions showed better accuracy results.

As it is shown in (6), the whole MPC optimisation problem
formulation includes the cost of electricity imports at the
prosumer level, but also a penalty for energy exports when
there is no export contract with the wholesale market, in
order to incentivise self-consumption. It also includes the
SoC recommendation SoCt,A and net export requirements
REt,k that have been coerced into achievable values. εRE

is a state variable such that εRE = sgn(REt,k), and St is the
battery state indicator for time interval t sent by the aggregator

(5). SoCt,k is the state of charge of battery k at the end
of the time interval t. REt,k is updated before each MPC
optimisation using (7). Finally,

(
El

ek − E
l
ik

)
is the net export

from household k at time l, and is determined by (2), where t
must be replaced by l, and superscript A replaced by k, noting
that l corresponds to the optimisation time intervals (tj), e.g.
2 minutes between two consecutive times l. Then, variables
Emax

i and Emax
e introduced in (6) correspond respectively to

the maximum imported and exported energy quantities allowed
over a time interval tj ≈ 2min. This represents a limit in
imported/exported power that can be set as functions of the
local voltage or grid frequency, following recommendations
from the grid operators. For example, in a situation where the
frequency rises above 50.2Hz in the UK, then Emax

e could be
set equal to 0Wh for all households. Similarly, if the voltage
rises above 230V +10% in a given location, Emax

e could be
set equal to 0Wh for households located in this area.

Fig. 3: MPC process with smart contract communication.

Finally, introducing a positive auxiliary variable x ≥∣∣∣∣∣REt,k −
t∑

l=tj+1

(
El

ek − E
l
ik

)∣∣∣∣∣, converts (6) into a MILP opti-

misation problem. The solution of the optimisation consists in
the optimal battery schedule given by El=tj+1,...,t

Bk
C,D

, from which

the first charging and discharging energy quantities El=tj+1

Bk
C,D

are sent to the battery’s PMS as set-points for the battery
power P s

Bk , to be followed at every time step ts of the PMS
operation between tj and tj+1. P s

Bk is the power of the battery
system, and is positive (negative) when the battery is charging
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(discharging):

P s
Bk

=


η
[
P ts
pk − P ts

dk

]
, if Etj+1

Bk
C

− Etj+1

Bk
D

= η
[
E

tj+1

pk − Etj+1

dk

]
E

tj+1

Bk
C

−E
tj+1

Bk
D

s·Ns
, otherwise,

(8)

where s is the time between two consecutive RT actions (s =
ts − ts−1), and η is given by:

η =

ηc, if P ts
Pk − P ts

Dk ≥ 0
1

ηd
, otherwise.

(9)

This real-time control algorithm presented in this subsection
is implemented in the Home Energy Management System of
each participating household. As it was mentioned, it requires
a certain level of coordination with the rest of the fleet to en-
sure market commitments (through REt,A, wk

e , and wk
i ). This

coordination can either be done using a centralised approach,
where coordination is achieved through direct communication
between the assets and the aggregator’s server, or it can be
distributed using distributed ledger technologies. The next sub-
section explains how blockchain technologies can be used to
achieve such coordination, although the centralised approach
can be used indifferently by implementing the following
equations in a central server.

B. Smart Contract Platform

A blockchain-enabled smart contract between the aggregator
and the fleet of distributed batteries coordinates each battery
operation and ensures that contractual export commitments
Et

c to the wholesale market are met. It also coordinates the
sharing of energy surpluses within the fleet and allows an
automatic redistribution of the aggregator’s benefits among the
participants. The smart contract represents a distributed and
tamper-proof way that increases the reliability and security of
the coordination of the battery fleet, by removing a single point
of failure and by improving resilience to cyber-attacks. This is
in comparison to a centralized operation realised by a single
server. Indeed, in the proposed Smart Contract approach,
distributed nodes, computers or HEMS aggregate to create a
virtual environment that will execute the contract each time
it is needed. This increases the reliability as the number and
geographical distribution of nodes limit the risk of a global
failure of the virtual environment compared to the case of a
single server implementing the coordination scheme. Further-
more, the smart contract allows for automatic self-verification
of commitments and exports of the fleet of batteries, thereby
not relying on a single aggregator authority. Furthermore, such
Smart Contract implementation is especially relevant for the
aggregation of distributed residential assets as it makes the
settlement phase easier, more transparent and automatic for
all the agents. Indeed, based on the measurements sent by
each HEMS or smart meter, the smart contract automatically
distributes the benefits from the aggregator to the households
based on their recorded exports. Finally, although smart
contracts are not well adapted to full RTC with milliseconds

time interval communication, the proposed algorithm relies on
minutely to 15 minutes time intervals’ communication between
the assets and the smart contract, making it suitable for smart
contract implementation on a permissioned blockchain.

In our experiment, the smart contract was implemented in
an Ethereum-based private blockchain using the Ganache en-
vironment. It was developed using Solidity, and compiled and
deployed using Python’s library web3.py [34]. Each HEMS
was associated with an account, similar to the aggregator,
who deploys and manages the smart contract and associated
operating fees, as shown in Fig. 4.

Fig. 4: Local smart contract implementation for distributed
batteries coordination. The deployment and management of
the smart contract is detailed for the aggregator node.

The functions implemented in the smart contract are listed
below:
• Constructor, to initialize the contract.
• Register a new household.
• Update the time series sent by the aggregator

(SoCt,A, Et
c,St).

• Update a household information: SoCtsc,k the bat-
tery SoC at the current time, Etsc,k

e the energy ex-
ported/imported by household k since the last commu-
nication between the battery k and the smart contract,
and Et,k

e a new variable equal to the net exported energy
of household k since the beginning of time interval t. It
is computed as the sum of all previous quantities Etsc,k

e .
• Compute the batteries weights wk

i and wk
e for all the

batteries k. The weights are computed as follows:

wk
e =

W k
e∑

k∈households
W k

e

, wk
i =

W k
i∑

k∈households
W k

i

(10)

where W k
i = 100%− SoCtsc,k and W k

e is given by:

W k
e =

{
SoCtsc,k if Etsc,k

e ≥ 0 , SoCtsc,k ≥ SoCt,A

0 Otherwise.
(11)

• Compute REt,A the remaining aggregated energy to be
exported:

REt,A = Et
c −

∑
k∈households

Et,k
e . (12)

• Provide the required information to all registered house-
holds using the emit method: REt,A, wk

e , w
k
i .

The cost of this smart contract for a portfolio of 70 batteries is
around 105957 gas units when implemented on an Ethereum
blockchain, which corresponds to 0.002 ether or 0.7$, to be
paid at every time step tsc ≈ 15min. However, this cost can be
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reduced to only the nodes operation costs if the smart contract
is realised on a permissioned blockchain.

IV. EXPERIMENTAL VALIDATION

A. Experimental set-up and case study

The proposed DRBCF framework was implemented for the
use case described in section II, that reflects the settings of
our large-scale demonstrator [9]. An aggregator invests in
distributed residential batteries and generation assets (rooftop
PV) and installs those at customers’ premises. 70 households
were considered in this study, each of them with a micro-
generation asset and a residential battery [2]. Households are
incentivised to participate in such scheme by a reduction of
their electricity bill, and by the reduction of CO2 emissions
associated with their energy consumption. Such incentives in
the ReFLEX project were sufficient for households in the UK
to allow the aggregator to control the battery to achieve these
two objectives. To address a more general case, the aggregator
also owns large generating assets that include one PV power
plant of 105 kW and one wind farm of 130 kW. Although these
two large-scale assets are not predictable and could have led
to over or under delivery without our proposed framework,
it will be shown in this section that the algorithm described
in Section III takes advantage of all distributed batteries to
counterbalance potential forecast errors, and ensure that the
commitments on the wholesale energy market will be met.
The data used for the demand and production profiles are

TABLE I: Breakdown of an electricity bill [35].

Bill component definition Value (%)

Wholesale costs 32
Supplier Operation costs 17
Supplier margin 1
Supplier direct costs 2
Network costs 23
Environmental & social obligation costs 20
VAT 5

minutely data from real measurements from the ReFLEX
project [9]. The pricing data for the wholesale market price
have been extracted from Nordpool’s day-ahead market for
the UK [36]. Retail import prices follow dynamic Time of
Use (ToU) pricing scheme from [37]. Market time interval is
30 minutes. We do not consider export tariff for households
(such as FiT), as these incentives are either being removed
or very small (e.g. 2p in the UK). Furthermore, as forecasts
errors and communication latency can lead RT operations to
achieve different export energy quantities than the contractual
agreement, we considered wholesale market penalties that can
apply to the aggregator, equal to the product of the energy
quantity difference and an imbalance price. Imbalance prices
were taken from [38]. Also, we consider that the fleet is linked
by a virtual private wire contract [39], which means that when
a household consumes electricity that is produced by another
asset of the fleet, the electricity price paid by the consumer
is equal to 48% of the retail import price. This corresponds
to the network costs with environmental and social taxes and

neglects the production costs and supplier fees, as shown in
Table I [35]. This percentage is currently fixed irrespective of
the distance between the producer and the consumer [35].
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Fig. 5: Experimental results with 30 minutes time intervals
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(c) Household with micro-wind generation.

Fig. 6: Production, demand and resulting SoC for different
households with time intervals of 1 minute.

B. Experimental Results

The results presented in this section were obtained with a
communication time interval of 5 minutes between the assets
and the smart contract. Similarly, day-ahead forecasts from
Phases 1 and 2 were voluntarily worsen to achieve an error
of 25%, with a time interval of 2 hours between two forecast
points, which is conservative as forecasts are done for the
virtually aggregated whole fleet, for which forecast accuracy
is more reliable than for individual assets.
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Fig. 5.a shows the wholesale market price. Fig. 5.b displays
the aggregated demand and production forecasts, along with
the fleet net energy export from (1) contracted in the wholesale
market. Finally, Fig. 5.c compares this contractual energy
export quantities with the realised export of the aggregated
fleet after RT operations. The realised export match the market
commitments with an average error below 10%. Fig. 6 shows
the real consumption and production data for three different
households, along with their battery SoC that results from the
RTC operations. It shows that the SoC is following the local
demand and production as the SoC of the household with wind
generation (Fig. 6.c) is different than the SoC of batteries in
households owning solar PV generation. This demonstrates
one of the novelty aspect of the proposed algorithm: although
residential batteries are coordinated at a pace of 5 minutes to
meet markets commitment, local RT control provided by each
HEMS maximises each household’s own self-consumption.

We will now assess the economic benefits that an aggregator
can expect from the proposed DRBCF framework. The source
of revenues for the fleet is the revenues from energy exports
agreed on the wholesale energy market and the total bill
reduction of the households due to their self-consumption. The
bill reduction is computed as the total bill difference between
the baseline scenario without distributed generation (Scenario
0 defined below without battery and rooftop PV) and the total
bill after the framework is implemented (scenario 4). Based
on the ReFLEX demonstrator project, a number of scenarios
have been considered for comparison purpose:

Scenario 0 (baseline) considers the 70 households’ demand
only, and assumes they do not have any distributed generation
asset (no rooftop PV nor batteries).

Scenario 1 considers the households individually, with a
rooftop PV and a residential battery, but without any aggrega-
tor and without any revenue from energy exports to the grid.
The batteries are individually controlled using an heuristic
based RT control algorithm [5], [27] that provides similar
revenues as an optimisation-based algorithm when batteries
do not export to the grid [5].

Scenario 2 considers an aggregator that would install all the
residential generation assets in the same location, resulting in
a large scale PV power-plant and battery, controlled by the
proposed RT algorithm considering only one asset (k = 1).
Therefore, households’ demand is not included in the aggre-
gator’s portfolio for this scenario, and the aggregator sells all
the energy in the wholesale market.

Scenario 3 corresponds to Scenario 2 (centralized gen-
eration assets) with the addition of distributed individual
households in the aggregator’s portfolio, and no distributed
assets as they are kept installed in a single location, as for
Scenario 2. The aggregator bids on the energy market, and
proposes a specific retail contract to the individual households,
using a virtual private wire contract, but no assets are installed
at the end-users premises. Hence, when households consume
electricity, they pay either the ToU tariff or a reduced tariff
(48% of the ToU tariff [35]) when centralised generation assets
export.

Scenario 4 considers distributed residential assets with
an aggregator that bids on the wholesale energy market. It

corresponds to the main use case of this paper where each
households has a micro-generation asset and a residential
battery controlled by the RTC algorithm described in Section
III.

Scenario 5 corresponds to the Scenario 1, but without any
battery. It is used only for comparison purpose in the next
section to assess the impact of Scenario 4 on the grid.

Table II displays the monthly bill reduction compared to the
baseline (scenario 0) in each scenario, along with the monthly
revenues from the market exports. The last column displays
the total revenue for the fleet, computed as the sum of the bill
reduction and market revenues. The installation costs for solar
PV and batteries were extracted from [40].

TABLE II: Comparison of economic benefits on a monthly
basis of the proposed RT control framework

.

Scenario Energy Bill Market Total ROI
Reduction Revenue Revenue (years)

(£) (£) (£)

0 0 0 0 -
1 2032 0 2032 17
2 0 2722 2722 13
3 2620 818 3438 10
4 2887 802 3689 9
5 1014 0 1014 12

Table II shows that the proposed RTC algorithm for dis-
tributed batteries in Scenario 4 provides £3689 of monthly
revenue to the community, which is the greatest revenues
among all the scenarios, and consequently the shortest time
of return on investment (ROI). Indeed, the ROI using the
proposed framework (scenario 4) is almost half the one of
scenario 1, which is the current state of the art scenario for
residential batteries used for self-consumption or arbitrage pur-
pose. It demonstrates that it is more profitable for prosumers to
allow an aggregator to control their battery assets to generate
extra revenue, as long as RT local control maximises self-
consumption as it is proposed in our algorithm.

Furthermore, comparing the results of scenario 4 with other
scenarios involving an aggregator (Scenarios 2 and 3), we
can see that bidding on the market while taking advantage of
distributed residential generation for self-consumption allows
an aggregator to increase its revenues by 35% compared to
Scenario 2 in which an aggregator does not include house-
holds demand in his portfolio. However, including household
demand in a portfolio will not provide the greatest revenues,
it is also important to install generation assets at the location
of demand and maximise self-consumption while ensuring
market commitment are met. Indeed, the proposed frame-
work increases the revenues by 7% compared to Scenario 3,
in which an aggregator includes households demand in his
portfolio and invests in generation assets (PV and batteries)
installed all at a single location. Although this result may
seem counter intuitive, it is due to the fact that in the case
of centralized generation assets with distributed residential
loads (Scenario 3), electricity imports from households always
include a network cost (48 % of the import tariff) that does
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not apply in Scenario 4 when households consume their own
production.

Given the conservative choices for forecast uncertainty and
communication latency in Scenario 4, the performance of the
proposed RTC algorithm is demonstrated. This performance
is explained by the fact that the proposed algorithm leverages
the advantages of residential self-consumption (bill reduction
by self-consumption) and the advantages of wholesale market
participation. This shows that it can be profitable for investors
to support self-consumption by investing in decentralized
generation assets with market bidding. Finally, along with
the financial gain of using the proposed framework, this study
also demonstrates that the proposed scheme increases the self-
consumption rate for end-users: indeed, the average amount of
time households are self-supplied by their generation assets
has increased from 28% of the time in the scenario with only
micro-generation (Scenario 5) to 64% of the time in scenario 4
with the proposed framework. Similarly, the self-consumption
rate, defined as the ratio between the energy self-consumed
by the households and their energy consumption, has been
increased by 2, from 22% for Scenario 5 to 41% for Scenario
4, with the proposed scheme.

C. Sensitivity study of the RTC algorithm
In this subsection, we study the impact of forecast inaccu-

racy and communication latency on the total revenues.
1) Sensitivity to forecasts: two forecasts parameters have

been considered: forecast accuracy and forecast time steps.
Several simulations were run over a range of these two pa-
rameters and resulting revenues were averaged and displayed
in Fig. 7. The forecast accuracy is the parameter that has
the greatest impact on the revenue. However, the proposed
RTC algorithm ensures that even with a minimum accuracy
of 20%, the monthly revenues for the fleet stays above £2970,
which makes the distribution of micro-generation assets more
profitable than Scenario 2.

Fig. 7: Total monthly revenues of the fleet obtained for
different forecast accuracies and forecast time steps.

2) Sensitivity to communication time interval: simulations
were run with different communication time intervals between
the assets and the smart contract, ranging from 1 minute to 15
minutes. The total revenues resulting from the RTC algorithm
showed good robustness to communication latency as they
ranged from £3798 for 1 min communication time interval to
£3375 for 15 min, and therefore provided better revenues than
all other scenarios for communication time intervals below 15
minutes.
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Fig. 8: Revenues of the aggregator obtained for different
communication time intervals.

D. Impact for the grid

Finally, we study the impact of the proposed battery control
on the electrical grid (which can be regional or national scale,
in the UK case).

1) System level: Fig. 9.a shows the power profiles of the
aggregated fleet for scenario 4 (in dark) and scenario 5 (in
green) that corresponds to the DER installation scheme we
experience nowadays, with only households with rooftop PV
and no residential batteries nor aggregator. It shows that the
profile of the aggregated fleet with batteries (Scenario 4) is
relatively flat, except for periods when export is incentivized
by the national grid. However, this should not impact the
system operation (and especially the frequency regulation)
as such large export happen at times where export was
incentivized. However, in order to ensure the fleet does not
endanger the grid, variables Emax

i and Emax
e in (6) that limit

the exported and imported power can be set as functions of
the grid’s frequency. As the fleet is distributed over a large
area (national grid in the UK), these peaks have a low impact
on the voltage, as it will be discussed below.

0

400

Po
w

er
 (

kW
) Scenario 4, RT algorithm

Scenario 5, no batteries

(a) Net power profile of the aggregated fleet of assets.

1 10 20 30 40 50 60 70
Household Number

0

200

400

Pe
ak

 to
 A

ve
ra

ge
 R

at
io

Scenario 4
Scenario 5

(b) Peak to Average Ratio for all considered households.

Fig. 9: Impacts of Scenario 4 and 5 on the grid.

2) Local level: At a local level, we study how the proposed
framework can affect the voltage and cables temperature. Fig.
9.b compares the Peak to Average Ratio (PAR) before and after
the installation of the batteries for each household. The PAR
for scenario 4 is comparable in magnitude with the PAR before
batteries were installed. Indeed, although the PAR values for
households 10, 15 and 48 has considerably increased, this is
due to a reduction of the average power consumption by a
factor 4, close to 0. As an example, Fig. 10 shows the load
profile of an household with and without batteries. We can see
the displacement of production in order to follow the price
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Fig. 10: Example of load profile comparison between scenario
4 and scenario 5 at a household level.

incentive from the wholesale market. It can be seen from the
shape of the load profile that the situation will be the same
as for the current situation with PV only: if many batteries
participating to the same aggregator’s fleet were located on the
same primary transformer, the local voltage could be impacted
and rise during a period of export commitment.

However, the maximum power exported to the grid can be
constrained locally, as shown in (6) that includes a constraint
on the maximal import and export powers allowed by the DSO
or the fleet aggregator for the considered household. Therefore,
this export power is limited so it does not impact the local grid.
It is important to note that in a case where several households
of the same area are not allowed to export, the coordination
scheme will ensure the export commitment will be supported
by the rest of the fleet. Hence, the impacts of the proposed
RTC on the local grid are similar to the current impacts of
distributed solar PV, and should not generate more voltage
excursions than the current situation with PV only.

V. DISCUSION AND CONCLUSIONS

In this paper, we develop a framework for real-time control
of distributed residential batteries. The framework proposes
a strategy to bid optimal energy quantities on the wholesale
energy market. It also includes a novel real-time control algo-
rithm based on MPC to ensure that optimal control decisions
are taken locally and maximise local self-consumption. A
smart contract is proposed to securely coordinate the fleet of
distributed batteries to meet the export commitments from the
wholesale energy market. Considering a real use case of 70
households with per-minute consumption and production data
from one of the largest-scale smart energy demonstrators in
the UK, we show how the proposed framework increases the
potential revenues for the owners of the residential batteries.
First, compared to a state of the art case where residential
batteries are only used for self-consumption at the end-user
premises, the return on investment is reduced by almost a
half. Then, compared to a case where all the generation
assets such as batteries and solar PV would be installed
in a central location, the revenues are increased by 35 %.
Therefore, our experimental analysis demonstrates that it is
more profitable to include residential flexible assets in the
portfolio of aggregators than having a portfolio with only
production power plants. Furthermore, this framework ensured
that more than 60% of the electric consumption of households
was supplied from distributed renewable sources owned by the
aggregator. Therefore, this framework and the associated RT

control algorithm showcase new economic incentives to invest
in decentralized renewable generation, which is necessary to
meet the UK Government’s Net Zero Carbon emission targets.
Finally, the robustness of the RTC algorithm to forecast errors
and communication latency was also studied and validated.
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