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1  INTRODUCTION 

The design of a geotechnical structure needs to deal 
with the uncertainties in the heterogeneous and 
dynamic field conditions that are unique for each 
construction site (Hicks & Nutall, 2012). In the 
Observational method Ab Initio approach a flexible 
design and construction plan is made to allow 
anticipation to observational data (Peck, 1969). This 
data is gathered throughout different construction 
phases to give feedback on the performance of the 
geotechnical design. This way the design can be 
optimized to the in-situ conditions as they appear, 
which can be beneficial from both safety and 
economic point of view (Powderham & Nicholson 
1996). It is believed that the design method is 
especially suitable for deep excavations in the soft 
soil conditions of The Netherlands, because of a 
staged construction sequence and non-brittle failure 
mechanisms (Nicholson et al. 1999, Korff et al. 
2013). 

Despite its potentials, the Observational method 
Ab Initio approach has few applications. A valuable 
design approach is presented by the CIRIA guideline  
C760 on retaining walls from the UK (Gaba et al. 

2017). The guideline proposes the use of a traffic 
light system as a basis for decision making. 
However, due to the integral approach of the 
Observational method many concerns are raised on 
how to actually quantify the safety of the structure 
being built (Patel et al. 2007). This quantification is 
required to justify interventions and to avoid and 
reduce the impact of any unforeseen event. In order 
to do so, it is necessary to subtract crucial 
information from the observational data.  

In this paper a method is shown for real-time data 
interpretation with the use of Bayesian updating 
(Ang & Tang, 2007). In the Bayesian update the 
predicted retaining wall performance, as assessed by 
a computational model in the design phase, is 
combined with the information obtained from 
observations during construction. By describing both 
sources of  information via probability density 
functions different uncertainties in both the design 
and construction phase can be weighted in the 
outcome of the update. As construction continues a 
Bayesian update can be performed each time new 
observations are available. Consequently, the 
retaining wall behaviour as predicted by the 
computer model can be re-assessed throughout the 
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different excavation stages. 
This paper is structured as follows. First, the 

principles of the Bayesian updating method are 
introduced. The method is then demonstrated using a 
case study of a deep excavation in The Netherlands. 
This is followed by a more general evaluation of the 
proposed method, to finally conclude on the value of 
the Bayesian update in the context of the 
Observational method for the use of deep 
excavations in soft soil conditions. 

2  BAYESIAN UPDATING 

2.1 Monitoring wall displacements 

Spross et al. 2014 promoted the potential of 
Bayesian inference by presenting a fictive case of a 
rock pillar. They illustrated the use of Bayesian 
updating to find a deformation modulus in 
accordance with a fictive measurement set. To show 
general validity of his method, they concluded that 
more  case studies of different geotechnical kinds are 
needed. This work was used in the underlying study 
to look into the potential of Bayesian updating for 
processing retaining wall displacements for deep 
excavations. Often strict SLS requirements are set 
on the maximum allowable deflection of the 
retaining wall. Therefore, the performance of the 
retaining wall can be directly related to the 
movements that occur during sequential excavation 
(Gaba et al. 2017).  

At the beginning of construction there is only one 
source of information available on the expected 
deformations of the wall, namely the prediction 
made by a computational model. This prediction is 
based on the model input that represents the 
engineers’ assumptions of the initial field conditions. 
Inevitably, those assumptions carry uncertainty, the 
magnitude of which depends on site-investigation 
efforts. The goal of Bayesian updating is to reduce 
these initial uncertainties by adding a second source 
of information, which is the monitored wall 
displacement. Each time measurements are taken, 
this observational data is combined with the 
prediction to form a new updated prediction on the 
expected deformations. This combination is done by 
the equations of the Bayesian update (Ang & Tang, 
2007) that requires the quantification of all the 
uncertainties in both the design, construction and 
monitoring of the retaining wall. 

 
 

2.2 Predictive uncertainty 

The prediction contains (1) uncertainty in the model 
input and (2) inaccuracy of the computational model 
used (De Wolf, 2019). The uncertainty in the model 
input  follows directly from the heterogeneity of soil 
strength properties and is commonly described by a 
normal distribution (CUR, 2008). Other input 
uncertainties can be taken into account as well, for 
example the natural fluctuations of water levels.  
The impact of the variance of each input parameter 
can be first accessed by a sensitivity analysis. Each 
parameter is then assigned with a sensitivity score 
that represents the impact of its variance on the 
modelled outcome. Because each construction phase 
is different, the sensitivity score varies per phase. 
Hence, during different construction phases, 
different soil parameters can become relevant or 
irrelevant for the structure’s stability.  

Consequently, the variance of the prediction on 
the structure’s performance can be quantified by 
means of a Monte Carlo simulation. For this 
simulation only the parameters with significant 
sensitivity scores should serve as stochastic input. 
The Monte Carlo simulation then returns an output 
distribution with properties ��� and ���  
representative for the uncertainty in the expectation 
of retaining wall displacements (Fig. 1). For 
calculations performed with the Spring model, this is 
typically a lognormal distribution (De Wolf, 2019). 

 

 

Figure 1. Principle of Monte Carlo simulation  

 
 

To recognize the inaccuracy of the calculation 
model to predict retaining wall displacements an 
additional model error is added to the output 
distribution of the Monte Carlo simulation. For the 
Spring model, an absolute error of 10% is added in 
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accordance with the Dutch CUR standards. Finally, 
the properties of the lognormal distribution can be 
described by mean �� and standard deviation ��.  

2.3 Measurement uncertainty 

Measurements of the retaining wall displacements 
have an uncertainty introduced by: 

(1) The inherent variability between the  
n measurement devices: σ���.

�  
(2) Error of the measurement device: σ�.�.

�   
Both these factors can be combined via: 

 
 �� = ln[σinh.

2 +  σm.e.
2 ]                                                       (1)     

 
with �� being the variance of the measurement 
distribution. Other errors can be added as well to 
equation (1) (Spross et al. 2014). The mean of the 
measured dataset is indicated by �̅.  

Note that the natural logarithm in equation (1) is 
used to transform the normally distributed variances 
to their lognormal equivalent. This is done in order 
to combine these measurements with the 
lognormally distributed prediction in the Bayesian 
update.  

2.4 Bayesian update 

Once the first construction phase has been 
completed the measurement data obtained is added 
to the original model prediction with initial 
properties ��, ��. The outcome of the Bayesian 
update, that follows from applying equations (2) and 
(3) (Ang & Tang, 2007), is therefore indicated by the 
superscripts  ��

� and ��
�. 

The Bayesian update can be repeated after the 
second construction phase has finished: the  ��

� and 
��

� obtained after processing the first measurement 
set will be updated again with a second 
measurement set, leading to ��

��and ��
��. This can 

be repeated each construction phase such that the 
model prediction is updated with all the information 
on hand. 

 

��
� =  

�� �
��

�
� + ��

�  �� �̅ 

�
��

�
� + ��

�

                                               (2) 

��
� =  �

��
�  �

��

� �

�
��

� � + ��
�

                                                            (3) 

2.5 Calibration 

Each updated prediction is associated with a new set 
of input parameters for the model. This parameter 
set can be found by calibration, which is in principle 
the opposite of a Monte Carlo simulation (Fig. 1): 
Given a new range of displacements, the calibration 
is looking for the representative stochastic input 
distributions. As more observations are added, 
ideally, the range of possible displacements 
decreases. This implies that the initially assumed 
parametric uncertainty decreases as well. 
Consequently, the calibrated parameter distributions 
can be used to assess the safety of the build 
geotechnical structure via the principles of Eurocode 
7 (Vrijling, 2015).  

The above described methodology is summarized 
by Figure 2.  
 

 

Figure 2. Outline of the methodology. 

 

3  CASE STUDY  

3.1 Project description 

The methodology is demonstrated by means of a 
case study that concerns the construction of a  
2-layered basement in the north of The Netherlands. 
Due to the geological history, strong heterogeneity is 
expected at the construction site. Additional 
uncertainty is introduced by basing the design on a 
rather simplified 2D spring model (Fig. 3), whereas 
the asymmetric shape of the deep excavation (Fig. 4) 
might actually lead to a more favourable distribution 
of strut forces (Fuentes et al. 2018). 
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Figure 3. Implemented design with stratigraphy. 

 

 

 

Figure 4. Top view of the building pit.  

 
 
The implemented design with 3 layers of struts 

was based on a limit state design and a soil profile 
taken from the site-investigation (Table 1 and Fig. 
3). To avoid any installation problems, a Mixed in 
Place (MIP) wall was selected. During the 
excavation phases, see Table 2, no difficulties were 
obtained. In fact, the actual displacements in the 
field were kept very limited. For cross-section 4, the 
observed maximum deflection was less than 5 mm. 
In this case study, the data of the 2 inclinometers of 
cross-section 4 are analysed with the goal to find 
representative parameters for loamy clay layer 2B. 
In the site-investigation no laboratory tests were 
performed. Instead, Table 2B of the Dutch National 
Annex NEN9997-1 was used to derive the 
characteristic soil parameters from CPT data. 
Therefore, the coefficients of variations (COV) are 

adopted from the Annex as well to stochastically 
describe the uncertainty of these parameters. Their 
values are stated in Table 1. 
 
 
Table 1. Characteristic values for soil layers. 

 

Table 2. Construction phasing.  

Phase # Description 

1 Installation of MIP wall at +7.6 m. 

2 Excavation +6.1 m, 
installation 1st layer of struts. 

3 Excavation +3.52 m, 
installation 2nd layer of struts. 

4 Excavation +0.6 m, 
installation 3rd layer of struts. 

5 Excavation: final depth -2.0 m. 

6 Installation of concrete floor. 

7 Construction of basement floors, 
stepwise removal of struts. 

 
 
 
 

3.2 Sensitivity analysis 

At first a sensitivity analysis is performed to see 
what parameters dominate the structural response. 
To take into account the possible underestimation of 
the structural force distribution, it was chosen to 
vary the stiffness modulus EI with 20% alongside 
the soil strength parameters.  

The results of the sensitivity analysis are 
presented in Figure 5. The friction angle of top layer 
1A only has significant influence to the wall 
deformation for the first part of the excavation. It 
can be seen that the EI becomes relevant once a 
certain depth of excavation has been passed. The 
strength properties of layer 2B contribute to the 
structure’s performance throughout the whole 
excavation process. Its friction angle has an 
increased dominant impact during construction 
phases 4 and 5. 

Soil parameters 

 1A.Sand 2A.Clay 2B.Loam/clay COV 

γsat [kN/m3] 19 19 21.5 5% 
φ [°] 30 22.5 28 10% 
δ [°]  30 22.5 28 10% 
c  [kPa] - - 2.5 20% 
OCR [-] - - 3.0 20% 
k1 [kN/m3] 1.2E+04 4.0E+03 6.0E+03 20% 



  5/8 

 
 

 

Figure 5. Result of the sensitivity analysis. 

 

3.3 Bayesian update 

Next, the Bayesian update is performed. The 
inclinometer error ��.�. is  set to be 1.36 mm (De 
Wolf, 2019). This is a rather large standard deviation 
compared to the actual observations that were less 
than 5 mm. Therefore the variance of this error in 
the Bayesian update is reduced for each construction 
phase via equation 4. 

  

�� =  �� �����.
� +  

��.�.
�

������ − 1
�                                         (4) 

 
Figure 6 illustrates the Bayesian updates 

throughout the excavation phases 2 to 5. It can be 
seen that the shape of each update gets smaller in the 
process. As more observational data is added, the 
incorrectness of the originally assumed parameter 

input is confirmed as the Bayesian update shifts  
more towards the measurements. At phase 5 the  
Bayesian update has fully converged. This means 
that at that phase the updated prediction coincides 
with the field observations. The parameters found by 
the calibration in phase 5 should thus be 
representative for the overall observed structural 
deflections. Figure 7 presents the results of a 
forward simulation of the Spring model, performed 
with these calibrated input parameters (Table 3).  
 
   

 

Figure 7. Forward simulation with calibrated parameters of 
phase 5 shows a fit towards the overall observed structural 
displacements. 

 

3.4 Calibrated results 

Figure 8 illustrates the change of the probability 
density function (pdf) of the friction angle of layer 
2B for different phases. The calibrated results follow 
the outcome of the sensitivity analysis. It can be 
seen in Figure 5 that the biggest change in the 
mean  � is at phase 4 as its sensitivity score strongly 
increased relative to phase 3. This update in � can be  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Bayesian update for construction phases 2-5.  
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noticed by the shift of the pdf of phase 4 towards the 
right. Consequential calibration of phase 5 
confirmed this updated �, leading to a significant 
decrease of standard deviation �.  

Such results could not be found for every input 
parameter. For both the stiffness EI and the modulus 
of subgrade reaction k1 of layer 2B the coefficients 
of variations remained around 10%. As noticed 
during the first calibration phases, many mutual 
combinations were possible between the two 
parameters leading to the same calculated retaining 
wall displacement (Fig. 9). This means that a slightly 
higher modulus of subgrade reaction, with a lower 
stiffness value, leads to the same outcome. This 
result makes sense as both parameters have a 
comparative sensitivity score with a comparable 
effect on the outcome of the Spring model as can be 
derived from the sensitivity analysis. 
 

 

Figure 8. Calibrated friction angle of layer 2B. 

 

 

 

Figure 9. Possible parameter input combinations with same 
displacement as outcome as found for calibration of phase 3. 

Table 3. Mean parameter values for MIP wall and soil layer 2B 
assumed in design phase (original) and calibrated via Bayesian 
update in phase 5.  

 

Mean parameter values: � 

  

Original 

Calibrated 

phase 5 

2B.φ [°] 33.5 40.4 
2B.OCR [-] 4.0 3.6 
2B.k1 [kN/m3] 9.0E+03 50.5E+03 
EI [kNm2/m] 8.75E+04 19.19E+04 
   

 
 

4  DISCUSSION 

4.1 Interpretation of the calibrated solution 

The calibrated parameters of phase 5, presented in 
Table 3, fit the overall measured wall deflection as 
shown in Figure 7. However, these values are not 
truly representative for the actual soil conditions: 
Both the calibrated values for wall stiffness EI and 
the modulus of subgrade reaction 2B.k1 are 
unrealistically high. Instead, it should be realized 
that the results are simply a way to fit the 
computational model to the observations. Unrealistic 
calibrated parameters could thus indicate 
shortcomings in the computational model. 

The process of the Bayesian update allows to 
assess the structure’s safety in real-time if, and only 
if, these results hold till the end of construction. 
Therefore, the type of computational model is an 
important choice as it should accurately simulate soil 
behaviour and soil-structural behaviour in time. For 
soft soil conditions, this means that it is especially 
important that the model is able to recognize the 
temporary effects of undrained soil behaviour. In the 
case study however, the long timespan of the overall 
measurement set indicated that undrained soil 
behaviour was not relevant during the staged 
excavation (De Wolf, 2019). Instead, the observed 
limited MIP wall displacements are most likely a 
result of more favourable force distributions 
between the structural elements and the soil than 
previously assumed. This might have been caused by 
the following explanations: 

(1) The cement-soil mixture of the MIP wall has 
been modelled incorrectly by assuming a too low 
modulus of subgrade reaction. 

(2) The stiffness due to the asymmetric shape of 
the deep excavation might have been more 
favourable than assessed by the 2D Spring model.   

The contribution of each explanation could not be 
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found due to a lack of additional data. In the project, 
no strut forces were measured alongside the 
considered cross-section. It would have been 
valuable to have this extra data to be more decisive 
on the actual force distributions between the 
structural elements. Additionally, there is little 
guidance for the selection of input parameters for 
modelling a MIP wall in existing literature. All in 
all, it should be realized that limitations of the model 
and observational data affect the possibilities of 
engineers to fully explain the site-conditions. 

4.2 Features affecting the performance of the 
Bayesian update 

A valuable feature of the Bayesian update is that 
uncertainties can be taken into account for both the 
model and the observations. With this method the 
prediction on the structure’s performance can be 
updated anytime during the construction process 
based on the weight of each uncertainty. According 
to equations (2) and (3) enough n measurements 
should be performed in order to converge. Before 
convergence, the structure’s performance is carefully 
assessed by not fully rejecting the original 
prediction. Depending on the certainty of each 
Bayesian update with regards to this original 
prediction, the structure’s performance can be 
reassessed. This can be beneficial in both safety and 
economic points of view as this methodology can 
timely reveal flaws in the set-up of the original 
model prediction. For instance, based on the 
growing set of measurements in the case study, the 
decision could have been made to adjust the 
structure in construction phase 4, as the Bayesian 
update indicated the incorrectness of the original 
prediction. Therefore, the Bayesian update and 
corresponding calibrated parameters can be used to 
justify the decision to continue with a more 
economical design alternative with two struts instead 
of three. 

Typically, the necessary number of measurements 
in order to converge depends on the specification of 
the model and measurement errors. However, 
determining the magnitude of these errors can still 
be subjective and case dependent. As demonstrated 
in this case study, it might be desired to adjust the 
measurement error as the number of observations 
grows. However, such choices are not generally 
specified and might not be easily made in real-time.  
 

5  CONCLUSIONS  

The case study showed a successful application of 
the Bayesian update. The value of the proposed 
methodology is primarily in the ability to determine 
a set of soil parameters to fit the computational 
model to the observational data. Consequently, this 
can be used to justify decisions to adjust the original 
design. It needs to be emphasized that the calibrated 
results are not truly representative soil parameters if 
the constitutive model is not suitable for the site-
conditions. Also, additional sources of information 
might be needed to fully interpret the measured data. 
The presented methodology with the Bayesian 
update works with different computational models. 
In order to use this method for real-time 
measurement processing in the Observational 
method it is necessary to investigate some aspects 
further.  

The use of different computational models could 
be tested in order to take into account undrained soil 
behaviour as relevant for soft soil conditions. It 
would be valuable to extend this method for an 
excavation with adjacent buildings and to combine 
multiple observed quantities. Therefore, the 
methodology could be extended to add, for example, 
surface settlements as an additional information 
source. Finally, the quantification of the 
uncertainties in both the model and observations 
play an important role in the outcome of the 
Bayesian update. Therefore, more case studies 
should be performed to come up with a more 
ambiguous formulation of these uncertainties. 

To conclude, it is believed that the presented 
methodology with the Bayesian update has the 
potential to enrich the Observational method in the 
applications of deep excavations. It could be a 
starting point for a more active use of real-time 
measurement interpretation.  
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