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12.1 Introduction
Understanding how the brain works has always been a challenge for humankind, for
both cognitive and clinical purposes. Neurosurgery is believed to be the oldest med-
ical specialty, dating back to ancient times [1]. Today, neuroscience combines the
advances in neuroimaging technology and signal processing, and while the mystery
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of the brain keeps being unraveled, we have achieved many breakthroughs in diag-
nostic tools and treatments of neurological or psychosomatic diseases.

In fact, the relationship between neuroscience and engineering technologies is
two-sided. Certainly, engineering is involved in every aspect of neuroimaging, and
in the development of diagnostic tools and medical care systems. However, under-
standing of the brain’s anatomy and functioning has also inspired the making of
such engineering tools, and even more. The most straightforward, yet powerful ex-
ample of this phenomenon is given by artificial neural networks, which mimic the
human nervous system for artificial intelligence tasks. Artificial neural networks are
used in various fields, including medicine, nanotechnology, telecommunications, au-
tonomous vehicles, art, and finance [2].

Overall, modeling of the structure and function of the brain gains more and more
attention every day. In this review, we look into where tensors stand on the way to
understanding the mechanisms behind brain function. The main motivation for the
use of tensors to model brain signals follows from the fact that brain signals are
inherently large-scale and can hold various modes such as time, space, frequency,
channel, experimental condition, modality, trial, and subject. The interactions across
different modes can only be fully captured by expanding the order of simple space-
time representations, and as such call for tensor-based (multiway) methods instead
of matrix-based (two-way) methods. Tensors are increasingly used in a broad range
of neuroimaging applications, from filling in missing or noisy recordings to feature
extraction and classification for brain–computer interfaces (BCIs).

The rest of this chapter is organized as follows. First, fundamentals of the most
common neuroimaging modalities are provided. Each neuroimaging modality grasps
the brain data based on different biophysical principles (such as electrical or mag-
netic outcomes of neuronal transmission) and presents them in different fashions for
different objectives (such as temporal evolution of brain images in order to reveal the
functioning of neural circuits, unlike structural neuroimaging, which focuses on the
brain anatomy). These fundamentals are necessary to understand the nature of the
input data for accurate modeling and further processing.

Next, the convenience of using tensor-based modeling of neural signals and im-
ages is discussed. This section focuses on the multiway nature and the complex
organization of the brain and explains how tensors essentially fit brain data repre-
sentations.

This is followed by a section highlighting the most common tensor decomposi-
tion structures, which will be referred to in the upcoming sections. These structures
include canonical polyadic (CP) decomposition, Tucker decomposition, and block
term decomposition (BTD), together with their commonly used variants.

Subsequently, various applications of tensors in the neuroimaging literature are
presented. This section is organized in parallel with an intuitive ordering of the main
steps in data analysis pipelines, ranging from preprocessing strategies (such as de-
noising and dimensionality reduction) to classification of brain data for the purpose
of BCIs. In the end, a summary of the considered tensor-based methods is provided,
along with the most common practical challenges that are encountered while using
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these methods. Several strategies that can be used to tackle the presented challenges
are also mentioned.

Last but not least, we point out future challenges that await medical technology
and the widespread adoption of tensor tools to address these challenges.

12.2 Neuroimaging modalities
A diagram of main neuroimaging modalities is provided in Fig. 12.1. This review
will investigate these modalities from the perspective of how tensors can be useful to
capture the multiway nature of acquired brain signals for various applications.

FIGURE 12.1

Categorization of neuroimaging modalities.

The area of neuroimaging can be divided into two main fields, namely struc-
tural and functional neuroimaging [3]. Structural imaging deals with the analysis of
anatomical properties of the brain and is useful for diagnosing intracranial lesions
such as tumors. The earliest technique used for imaging the brain structure is com-
puted tomography (CT), which utilizes X-rays to visualize brain slices [4]. Later,
magnetic resonance imaging (MRI), which uses powerful magnets instead of ionizing
radiation, has replaced CT, offering greater contrast between normal and abnormal
brain tissue [5]. There exist several variants of MRI such as magnetic resonance
spectroscopic imaging (MRSI), which includes an extra dimension for spectroscopic
information besides the MRI data. Other variants include T1- (and T2-)weighted
MRI, perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI), and
diffusion tensor imaging (DTI), which further enhance the contrast in MR images by
incorporating the effect of tissue relaxation times, the hemodynamic status of tissues,
tissue water diffusion rates, and tissue water anisotropies, respectively [6,7].

On the other hand, functional imaging is used to identify brain areas and processes
that are associated with performing a particular cognitive or behavioral task. Infor-
mation flow in the brain while processing a task is controlled by the firing of neurons
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via both electrical and chemical signals [8]. Provided in Fig. 12.2 is an illustration
showing the effects of neuronal activity together with the modalities that make use of
those effects for neuroimaging.

FIGURE 12.2

Functional neuroimaging modalities, which are discussed in this review in detail, are shown
in relation to neurovascular coupling. Neurovascular coupling describes the relationship
between neuronal activity (which takes place using both electrical and chemical signals)
and the resulting changes in blood flow. EEG and MEG directly measure neuronal activity
whereas PET, fNIRS, fMRI, and fUS provide an indirect measure through neurovascular
coupling.

The neuronal activity of the brain can be recorded directly by electroencephalo-
graphy (EEG) and magnetoencephalography (MEG) in the form of aggregated post-
synaptic potentials of larger neuronal populations. EEG is the oldest functional brain
imaging technique, with the first reported human EEG dating back to 1929. In EEG,
the electrical activity of neurons is detected via electrodes placed along or below (in-
tracranial EEG or electrocorticography [ECoG]) the scalp [9]. On the other hand,
MEG records the magnetic field produced by this electrical activity using mag-
netometers, which are most commonly selected as superconducting quantum unit
interference devices [10].

The indirect measures of neuronal activity rely on a phenomenon known as neu-
rovascular coupling. When a brain region becomes active, it starts to consume more
glucose and oxygen. These changes are met by an increasing blood flow to the region,
known as the hemodynamic response. Neurovascular coupling describes this interac-
tion between local neuronal activity and cerebral blood flow (CBF) [11] and forms
the basis of many functional neuroimaging techniques including positron emission
tomography (PET), functional near-infrared spectroscopy (fNIRS), functional mag-
netic resonance imaging (fMRI), and functional ultrasound (fUS) (Fig. 12.2).

PET measures the alterations in glucose levels in response to metabolic activ-
ity by injection of radioactive tracers to the brain which are attached to glucose
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FIGURE 12.3

Functional neuroimaging modalities with their temporal and spatial resolutions, where an
opened skull refers to invasive imaging [16].

and absorbed by the bloodstream [12]. Meanwhile, the changes in oxygenation of
hemoglobin in red blood cells can be detected by fNIRS and fMRI. In fNIRS, near-
infrared light is used to track hemodynamic changes based on the differential optical
properties of hemoglobin states [13]. The magnetic properties of hemoglobin are af-
fected as well by the amount of oxygen that the cells carry, resulting in the blood
oxygen level-dependent (BOLD) signal detected by fMRI via electromagnets. Since
the early 1990s, fMRI has come to dominate brain mapping research due to its non-
invasive nature (requiring no injections or surgery) and high spatial resolution [14].
Nevertheless, fUS, a recently developed neuroimaging technique, is able to image
the brain with higher spatiotemporal resolution than fMRI, yet at lower cost. In fUS
imaging, ultrasound waves are transmitted to the brain through a cranial window and
the strength of the reflected waves is directly proportional to the number of mov-
ing red blood cells in the local region, i.e., the local CBF or cerebral blood volume
(CBV) [15]. The temporal and spatial resolutions of the aforementioned functional
neuroimaging modalities are compared in Fig. 12.3.

12.3 Multidimensionality of the brain
Brain activity exists and spreads in time and space. Hence, temporal and/or spatial
modes follow straightforwardly while describing brain data [17]. In structural neu-
roimaging, the objective is to only visualize brain anatomy; therefore, the collected
brain data have only spatial information. These visualizations can be brought in pixels
of 2D slices or voxels of 3D volumes. On the other hand, in functional neuroimaging,
the functioning of the brain is to be monitored, which means that temporal informa-
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tion is involved as well as spatial information. In the case of EEG and MEG, spatial
information is depicted by channel locations instead of pixels or voxels.

Many studies have also considered the frequency mode and worked on space-
time-frequency models of neural signals [89]. Furthermore, the increasing use of
multiple subjects, experimental conditions, modalities, or trials have naturally intro-
duced other modes in brain data representations. Such multiway models are naturally
fit to multidimensional arrays, named as tensors. Fig. 12.4 shows several examples of
third-order tensor models (although higher orders are also possible, only third-order
tensors are given for visualization) used in the neuroimaging literature.

FIGURE 12.4

Examples of third-order tensor representations used in neuroimaging literature. The models
provided in (a), (b), and (c) are utilized in [89], [43], and [18], respectively.

It is possible and quite common to unfold such modes of a tensor to obtain a ma-
trix, so that well-established decomposition methods that are set in the 2D framework
such as principal component analysis (PCA) or independent component analysis
(ICA) can be utilized. PCA is a technique to identify modes of variation in a data
matrix by defining orthogonal subspaces of the data. The most common tool to per-
form PCA is singular value decomposition (SVD). SVD uniquely decomposes an
input matrix to its orthogonal singular (i.e., basis) vectors, which are ordered from
most to least significant in terms of how much variance in the data matrix they ac-
count for. Hence, PCA can be obtained by truncation of the less important singular
vectors from the original SVD subspaces. On the other hand, the goal of ICA is to
find a set of statistically independent basis vectors whose linear combination (i.e., the
mixing matrix) returns the data matrix.

However, both methods require any extra mode, such as subjects, to be repre-
sented in the input data matrix by concatenation in time or space. Such matricization
of a tensor causes underestimation of existing interactions between the folded modes
[19] and neglects variations over the unfolded mode, i.e., time courses or spatial
maps that are common across the new modes (e.g., subjects) are obtained. Group
ICA methods can partially address this problem by later predicting the individual
maps or courses using back-projection, but the multidimensional structure of data is
not reflected in the estimation stage itself [20]. In addition, the assumptions made by
PCA and ICA, i.e., orthogonality and independence, respectively, may be physically
irrelevant [90].
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On the contrary, there is a trend to tensorize data that were originally in matrix
form. For instance, fusing cumulant information with the covariance of the measure-
ment matrix and stacking several time-lagged covariance matrices have been shown
to improve ICA results [21]. Such tensorization, or imposing a priori information
on neural data [103], leads to decompositions that exhibit certain structures, such as
in the form of Hankel [103] or Toeplitz [81] blocks. These structures often change
across modes and/or factors, which is much easier to incorporate using tensor models.

Last but not least, many conventional approaches require an a priori selection
of a region of interest along one or more modes, such as a time window [22], an
anatomical area [23], or a frequency band [24], to be examined. On the other hand,
tensors can handle the whole dimensionality of the brain and can be applied in a
completely data-driven manner.

To summarize, tensors are the natural representations of neural signals, consider-
ing both the way they are acquired and the complexity of brain activity itself. As such,
tensors also facilitate drawing neurophysiologically meaningful conclusions [25].
Accompanied by the escalating development of mathematical tools to perform tensor-
based analyses, the ability of tensors to fairly model and process the large-scale and
multidimensional neural data favors the utilization of tensors in neuroimaging appli-
cations.

12.4 Tensor decomposition structures
As one of the most important tools in 2D analysis, SVD (along with PCA) has been
at the core of data analysis since more than a century ago. Using SVD, any matrix X
can be factorized as follows [26]:

X = U�VH, (12.1)

where U and V are unitary matrices whose columns stand for the left and right singu-
lar vectors of X, respectively, and � is a diagonal matrix. The diagonal elements of
�, denoted by σi ≥ 0, appear in decreasing order and are called the singular values of
X. If X is real, U and V are real orthogonal matrices. Eq. (12.1) can also be expressed
using the outer product as follows:

X =
∑

i

σiui ◦ vi , (12.2)

where ui and vi show the i-th column of U and V, respectively.
SVD is used in all areas of science, engineering, and statistics [27]. However, as

mentioned in the previous section, reducing the dimensionality of a multiway array
by unfolding causes a loss of information and variance over the unfolded mode(s).
Therefore, tensor decomposition methods are necessary for analyzing multiway data.

The goal of tensor decomposition is to approximate an original input tensor us-
ing a smaller number of parameters by expressing it in terms of lower-dimensional
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subspaces. This section provides a short introduction to the main tensor decomposi-
tion structures that are different generalizations of matrix SVD to tensors and which
will also be referred to in the later parts of this chapter. These structures are CP
decomposition (CPD), also known as CANDECOMP/PARAFAC analysis, Tucker
decomposition, BTD, and their commonly used variants. In order to be able to for-
mulate these decompositions, various product operations defined on tensors are also
presented.

12.4.1 Product operations for tensors
There are four product operations defined on tensors which are essential to fully
acknowledge the tensor decompositions, as well as many other computations in the
tensor framework that are used in various applications, as will be seen in the later
sections.

• The outer product of N vectors u(1),u(2), ...,u(N) produces a rank-1 tensor X ∈
R

I1×I2×...×IN denoted as X = u(1) ◦ u(2) ◦ ... ◦ u(N). The elements of X are given
by

xi1i2...iN = u
(1)
i1

u
(2)
i2

... u
(N)
iN

. (12.3)

• The n-mode (matrix) product of a tensor X ∈ R
I1×I2×...×IN and a matrix U ∈

R
J×In is given by a tensor Z = X ×n U, whose elements satisfy the following

[28]:

zi1... in−1j in+1... iN =
In∑

in=1

xi1i2...iN ujin . (12.4)

• The generalization of the n-mode product to two tensors is called a tensor contrac-
tion. While an n-mode product is computed along one common dimension (In)
of a given matrix and tensor, two tensors may share multiple common dimen-
sions, along which contraction is defined. Formally, if two tensors carry com-
mon dimension(s) J1, J2, ..., JM such that X ∈ R

I1×I2×...×IN×J1×J2×...×JM and
Y ∈R

J1×J2×...×JM×K1×K2×...×KP , then their tensor contraction over the common
dimensions Z = X •{J1,J2,...,JM }Y gives

zi1...iN k1...kp =
J1...JM∑

j1...jM=1

xi1...iN j1...jM
yj1...jMk1...kp . (12.5)

• The tensor–tensor product (or t-product) Z = X � Y , Z ∈ R
I×L×K of two 3D

tensors X ∈ R
I×J×K and Y ∈ R

J×L×K is defined using convolution as follows
[124]:

Zk =
K∑

k′=1

Xk′ •{J } Yk−k′ , (12.6)

where (.)k = (.)::k denotes the k-th frontal slice of the corresponding tensor.
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12.4.2 Canonical polyadic decomposition
CPD expresses an input tensor X of size I1 × I2 × ... × IN as a sum of R rank-1
terms (Fig. 12.5):

X ≈
R∑

r=1

u(1)
r ◦ u(2)

r ◦ ... ◦ u(N)
r , (12.7)

where R gives the rank of the tensor and each term u(n)
r , n = 1,2 . . .N , is a column

vector of length In and gives rise to the factor matrices U(n) = [u(n)
1 . . .u(n)

R ].
CPD can be viewed as an extension of SVD (Eq. (12.2)) to higher orders, with

the difference that factor matrices are not necessarily orthogonal [29]. CPD is unique
under mild constraints [30].

FIGURE 12.5

CPD of a 3D tensor.

For 3D arrays, CPD can also be expressed in matrix notation at each slice Xk of
X as follows:

Xk ≈ U(1)Dk(U(2))T, (12.8)

where Dk is a diagonal matrix whose diagonal is composed of k-th row elements of
U(3) (Fig. 12.6(a)).

PARAFAC2 is an extension of CPD that is able to represent both regular and ir-
regular tensors which are collections of matrices with changing size along one of
the modes (Fig. 12.6(b)). CPD assumes one factor matrix along each mode, meaning
that the same set of factor matrices is valid across all slices of a tensor, whereas
PARAFAC2 relaxes this constraint by allowing variation across one mode [78].
PARAFAC2 factorizes the input tensor X at each slice k as Xk ≈ U(1)

k Dk(U(2))T,
which is unique under mild constraints [31].

12.4.3 Tucker decomposition
Tucker decomposition (Fig. 12.7) approximates X as

X ≈ S ×1 U(1) ×2 U(2) ×3 · · · ×N U(N), (12.9)

where S is a core tensor of size R1 × R2 × · · · × RN (Rn ≤ In, ∀n) and each factor
U(n) is a matrix of size In ×Rn. Note that Tucker decomposition becomes equivalent
to CPD when the core tensor S is diagonal.
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FIGURE 12.6

(a) CPD of a regular 3D tensor and (b) PARAFAC2 decomposition of an irregular 3D tensor,
both shown in matrix notation over frontal tensor slices [32].

FIGURE 12.7

Tucker decomposition of a 3D tensor.

Referring back to Eq. (12.1), Tucker decomposition with orthogonal factor matri-
ces and an all-orthogonal core tensor corresponds to a multilinear SVD (MLSVD),
also known as higher-order SVD (HOSVD) [33]. Owing to the orthogonality condi-
tions, MLSVD is essentially unique [34].

Furthermore, if an input tensor admits to an MLSVD with a diagonal core (i.e.,
when S is a diagonal core tensor and factor matrices U(n) are orthogonal), a decom-
position known as tensor SVD is obtained. In the case of 3D tensors, tensor SVD
shares the same form as matrix SVD with tensor factors such that

X = U �S �VT, (12.10)

where U and V are orthogonal tensors and S is diagonal at each frontal slice
(Fig. 12.8) [35].
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FIGURE 12.8

Tensor SVD of a 3D tensor [36].

FIGURE 12.9

(a) BTD and (b) rank-(Lr ,Lr ,1) BTD of a 3D tensor.

12.4.4 Block term decomposition
BTD can be interpreted as a generalization of CPD where factors can be higher-order
tensors (Fig. 12.9(a)) as follows:

X ≈
R∑

r=1

Sr ×1 U(1)
r ×2 U(2)

r ×3 · · · ×N U(N)
r . (12.11)

A special case of BTD, known as rank-(Lr ,Lr,1) BTD, decomposes a 3D in-
put tensor into multilinear rank-(Lr,Lr,1) terms (Fig. 12.9(b)). The rank-(Lr,Lr,1)

BTD achieves a more general low-rank structure compared to CPD while preserving
uniqueness under relatively mild conditions [37].

12.5 Applications of tensors in neuroimaging
This section gives an overview of successful tensor-based analysis techniques in
neuroimaging studies. It will become evident that tensor structures and decompo-
sitions can be useful at any given stage of the data processing pipeline. First, various
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preprocessing problems are discussed. Images may be corrupted; therefore, filling
in missing data (Section 12.5.1), denoising, and artifact removal may be necessary.
Furthermore, dimensionality reduction may be applied in order to reduce the compu-
tational complexity of subsequent processing steps (Section 12.5.2). Once the images
are conditioned, image segmentation (Section 12.5.3) may be applied in order to
select areas of interest (e.g., a tumor) or reject areas of no interest (e.g., skull or ven-
tricles). When multiple images need to be compared or processed together – such as
in a longitudinal study, tracking the evolution of a patient using repeated images over
time—these need to be coregistered first (Section 12.5.4).

While the preprocessing steps mentioned above are important both in structural
and functional imaging, certain data processing problems are specific for functional
imaging. Functional neuroimaging techniques record a time series at different spatial
locations, and they typically capture various sources of brain and other physiological
activity, as well as noise. Source separation (Section 12.5.5) techniques are crucial to
disentangle the activity of these sources. In many applications the ultimate goal is to
recognize a specific activity of interest (e.g., the occurrence of an epileptic seizure)
and to localize it, as discussed in Section 12.5.6. In other contexts, understanding
the global behavior of the brain can be of interest. Structural connectivity analysis
aims to establish how the anatomically distinct brain regions are physically intercon-
nected. Functional connectivity analysis, on the other hand, explores the statistical
interdependence between the activity time courses of different anatomical regions
(Section 12.5.7). These interdependencies may provide insight into the intrinsic or-
ganization of the brain activity and how distinct brain regions cooperate. Functional
connectivity may be studied in the resting state or examined during task execution. In
the latter case—in a well-controlled experiment—the known time course of the task
paradigm can be used as a model for the expected brain activity. Then, regression
analysis (Section 12.5.8) can reveal if the model explains the observed brain activity,
to what extent, and in which brain regions exactly. The ultimate goal of (clinical)
neuroimaging is assisting diagnosis: distinguishing between healthy and pathologi-
cal images or activity. To this end, Section 12.5.9 introduces tensor techniques for
feature extraction and classification.

Besides the listed applications, tensors are excessively used in data fusion to han-
dle large-scale data acquired from different modalities. Particularly, fusion of EEG
and fMRI has been very prevalent in neuroscience due to the high temporal reso-
lution of the first and high spatial resolution of the latter. Therefore, tensor-based
fusion methods of EEG and fMRI are investigated in detail separately in Chapter 11
(Coupled tensor decompositions for data fusion).

12.5.1 Filling in missing data
Estimation of missing data is essential in many signal and image processing appli-
cations arising from any kind of information loss or errors in data collection. For
instance, in the concept of neural signals, a sensing component such as an elec-
trode might become loose, the signal may become saturated due to large movements,
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or data may be lost during transfer. These problems may lead to missing fibers or
random missing entries throughout the tensor, respectively (Fig. 12.10). Tensor com-
pletion methods aim at filling such missing entries of incomplete tensors.

FIGURE 12.10

An example tensor with (a) random missing entries and (b) missing channels [43].

The first application of tensor completion on neuroimaging data is proposed in
[38]. The authors reformulate the CANDECOMP/PARAFAC (CP) model for EEG
data as a weighted least-squares problem where only the known entries are modeled.
The developed algorithm, named CP-weighted optimization (CP-WOPT), expresses
the weighted CP formulation as

fW (U(1),U(2),U(3)) =
I∑

i=1

J∑
j=1

K∑
k=1

{
wijk

(
xijk −

R∑
r=1

u
(1)
ir u

(2)
jr u

(3)
kr

)}2

, (12.12)

where X shows the EEG tensor with factor matrices U(1),U(2), and U(3), i, j , and
k denote the indices in the first, second, and third mode, respectively, of the corre-
sponding tensor, and W is the weight tensor defined as

wijk =
{

1 if xijk is known,

0 if xijk is missing.
(12.13)

Finally, Eq. (12.12) is directly solved using first-order nonlinear optimization.
The authors test CP-WOPT on EEG data recorded during proprioceptive stimuli

of the left and right hands of 14 subjects, making 28 measurement conditions in total.
The constructed EEG tensor has three modes: measurement condition, channel, and
time-frequency, which is obtained using continuous wavelet transform. Their results
show that CP-WOPT can capture the underlying brain activity even when almost half
of the electrodes are missing. Last but not least, CP-WOPT is noted to be much faster
than its matrix- and tensor-based alternatives due to the fact that the missing entries
are neglected in the cost function.

In CP-WOPT, the rank of the input tensor is assumed to be known, i.e., it has
to be entered manually. In return, [39] states that a rising number of missing entries
increases the chance of incorrect specification of the tensor rank, which results in
deterioration of the performance of such tensor factorization schemes. Instead, the
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authors propose to model the input tensor as a combination of the true latent tensor
(generated by tensor factorization with a low CP rank), sparse outliers, and isotropic
Gaussian noise (Fig. 12.11) and determine the rank of the latent tensor automatically
by minimizing the dimensionality of the latent space. This minimization corresponds
to column-wise sparsity of factor matrices in each mode. Thus, sparsity inducing
priors are employed over all unknown parameters. This way, all parameters, including
the CP rank, are determined automatically under a Bayesian framework. This method
is known as Bayesian CP factorization (BCPF). BCPF is used to recover EEG data
with missing entries and denoise noisy MRI data in [40].

FIGURE 12.11

An incomplete tensor can be approximated as the summation of a low-rank tensor, sparse
outliers, and isotropic noise [39].

In [41], the CP-WOPT is extended with rank regularization such that the proposed
cost function becomes as follows:

X̃ = arg min
Y

1

2
||(X −Y) ∗W ||2F + λ||Y ||∗, (12.14)

where W is the binary weight tensor (Eq. (12.13)) that accounts for the missing
entries, ||.||∗ shows the nuclear norm operator, and λ ≥ 0 is the rank controlling pa-
rameter. Simply put, Eq. (12.14) searches for a low-rank tensor X̃ that has minimal
distance to the original input tensor X over the available entries while achieving a
low-rank structure via nuclear norm regularization.

The nuclear norm is used widely in optimization problems to search for low-rank
solutions. In the case of a matrix, the nuclear norm becomes equivalent to the sum
of its singular values, whereas the tensor nuclear norm is dependent on the choice of
base field [42]. In [41], the authors define the nuclear norm of a third-order tensor Y
based on CPD as

||Y ||∗ = min
{U(1),U(2),U(3)}

1

2
(||U(1)||2F + ||U(2)||2F + ||U(3)||2F) (12.15)

subject to Y =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r .
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Expressing the CPD of Y with unit norm terms such that ar = u(1)
r /||u(1)

r ||, br =
u(2)

r /||u(2)
r ||, and cr = u(3)

r /||u(3)
r || gives

Y =
R∑

r=1

γr(ar ◦ br ◦ cr ) (12.16)

with weights γr = ||ar || ||br || ||cr ||, r = 1 . . .R.
Finally, the completion problem can be reformulated as follows:

X̃ = arg min
{Y ,γ ,ar ,br ,cr }

1

2
||(X −Y) ∗W ||2F + λ

2
||γ ||2/3

2/3 (12.17)

subject to Y =
R∑

r=1

γr(ar ◦ br ◦ cr ).

The cost function provided above controls the tensor rank by inducing sparsity on
the amplitudes of its rank-1 components. These priors are introduced on the tensor
factors via a Bayesian framework. The proposed method is observed to outperform
CP-WOPT when tested on corrupted 3D MR images.

In [43], the authors utilize tensor completion to fill in corrupted EEG data, which
might originate from a high impedance between electrodes and scalp, motion, eye
blinks, and so on. In other words, noisy measurements are treated as missing samples
or unknowns, which are later inferred using a tensor approach. They model the EEG
data as a tensor with modes channel, time, and trial and apply the following tensor
completion algorithms: CP-WOPT, BCPF, 3D patch-based tensor completion [44],
and high-accuracy low-rank tensor completion [45]. They evaluate the performance
of the aforementioned completion methods by testing the classification accuracy of
imagined movement in a BCI experiment with corruptions and missing channels. All
four algorithms are reported to increase the classification accuracy when compared
to the conventional approach of average interpolation across trials.

12.5.2 Denoising, artifact removal, and dimensionality reduction
Denoising, artifact removal, and dimensionality reduction algorithms are prerequi-
sites to a majority of signal processing applications. An omnipresent tool in this
context for matrix data is SVD, as it can capture signals and noise in different sub-
spaces. Recognizing and rejecting the noise subspace achieves all above objectives.
Therefore, multilinear extensions of SVD—MLSVD and CPD—are natural methods
of choice in the case of tensor data. Indeed, many methods covered in this review
intrinsically denoise or reduce the volume of input data by low-rank approximating
them or by separating its components of interest from background data via various
tensor decomposition techniques. Nevertheless, this section will be dedicated to al-
gorithms that solely aim at denoising, artifact removal, or dimensionality reduction.

To begin with, different imaging modalities are prone to different types of arti-
facts. For instance, MRSI data are often corrupted by residual water, EEG signals
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may be corrupted with ocular artifacts, while functional images are seriously dis-
torted by head motion. These phenomena call for custom solutions, especially when
it comes to identifying the noise subspace. Some examples are outlined below.

Residual water in MRSI accounts for a large variance in the data and should be
suppressed to accurately assign brain metabolite signals [46]. In [47], the purification
of MRS images from residual water is regarded as a source separation problem. To
this end, first the MRSI input tensor X is compressed via truncated MLSVD, leading
to a core tensor S and factor matrices U(n) as given in Eq. (12.9). Truncated MLSVD
is used to approximate X as a smaller tensor S , whose size Rn is smaller than the ac-
tual column rank of X(n) along one or more modes (n) [28]. Next, CPD is applied on
the compressed core tensor S . Finally, the components whose resonance frequencies
(as given by MRSI) are outside the region of interest are marked as water compo-
nents. As expected, such a twofold procedure with MLSVD and CPD is observed to
be particularly beneficial when the input tensor is large.

EEG signals can be seriously distorted by ocular artifacts, i.e., large changes
in the electric field caused by the movement of the eyeball which acts as a dipole
[48]. Assuming that the ocular artifacts and brain activity are independent, [49] pro-
poses a tensor decomposition scheme to automatically remove these artifacts. As
the cumulants of such independent sources lead to a superdiagonal tensor [50], [49]
diagonalizes the fourth-order EEG cumulant tensor through CPD. The extracted com-
ponents are thresholded in terms of their kurtosis values in order to automatically
identify the ocular artifacts to be removed.

Like many neuroimaging modalities, fNIRS data are prone to artifacts caused
by relative motion between the scalp and fNIRS optical fibers [51]. For removal of
motion artifacts, [52,53] apply CPD to 3D fNIRS tensors with modes space, time, and
wavelength (accounting for the different wavelengths used in fNIRS for absorption
of both oxygenated and deoxygenated hemoglobin). Similarly, [54] uses CPD on 3D
water diffusion maps of DT images in order to extract only the components of interest
that correspond to major fiber orientations.

The approaches described above consider the existence of undesired artifact com-
ponents in data, which can be even more powerful than the activities of interest [46].
Therefore, after decomposing the input tensor into its components, some of these
components (that point to artifacts) are removed either manually or automatically.
However, tensor decomposition techniques can also be used to denoise an input ten-
sor by finding a low-rank approximation of it, without explicitly rejecting a portion
of the extracted components. For example, [55] proposes a method to jointly recon-
struct and denoise PET images via low-rank approximating a PET feature tensor X
using tensor nuclear norm regularization:

X̃ = arg min
Y

1

2
||(X −Y)||2F + λ||Y ||∗, (12.18)

where Y can be decomposed using tensor SVD (Eq. (12.10)) and λ controls the
nuclear norm regularization. The authors use an intuitive approach [56] based on
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tensor SVD to define the tensor nuclear norm:

||Y ||∗ =
R∑

r=1

srr1, (12.19)

where R defines the rank. This way, a closed-form solution is obtained for reconstruc-
tion. The proposed scheme is observed to accomplish more than mere denoising of
PET data, providing enhancement to the reconstructed images by intensifying struc-
tural information.

Moreover, tensor decomposition methods can be used to reduce the dimension-
ality of input data without losing valuable information. Considering the remarkable
performances achieved by deep learning methods in various signal processing appli-
cations over the past decade, dimensionality reduction becomes even more critical
due to the curse of dimensionality of input training data. The curse of dimensionality
refers to the fact that an increase in the dimensionality of input data will demand an
exponentially growing storage space.

Particularly in medical image processing, convolutional neural networks (CNNs)
have gained significant attention, which have the advantage of combining feature ex-
traction and classification steps. To reduce the dimensionality of CNN inputs, [57]
proposes a CPD-based framework for an input EEG tensor X with modes time, fre-
quency, and channel.

First, CPD is applied on the input tensor producing the factor matrices U(1),
U(2), and U(3) along the modes time, frequency, and channel, respectively. In or-
der to reduce the number of channels by only selecting the ones that are of interest,
a projection matrix is defined as P = ((U(3))TU(3))−1(U(3))T. The new low-rank rep-
resentation X̃ of X is found by X̃ = X ×3 P, which converts the original channel
slices into superslices. The number of superslices is equal to the rank of CPD. Em-
ploying superslices does not only reduce the dimension of CNN training inputs, but
also handles the artifacts and redundancies of the EEG signals. The proposed method
is tested with various time-frequency transformations and CNN parameters. Com-
pared to 1D and 2D state-of-the-art dimensionality reduction techniques including
PCA, the proposed tensor-based framework is observed to perform better in terms of
classification accuracy for seizure detection.

In parallel to the increasing interest towards dimensionality reduction methods
that keep out the redundant parts of acquired data, a theory known as compressed
sensing (CS) has emerged. Most neural signals exhibit a sparse representation nat-
urally or in another domain. Using such sparse representations, CS techniques aim
at directly sensing data in a compressed form. Conventionally, 1D or 2D sparsity
bases are utilized to solve even higher-order problems. To make use of and preserve
the high-dimensional structure in CS applications, [58] proposes MLSVD as a ten-
sor sparsifying transform for 3D MRI data. More specifically, the authors directly
apply MLSVD to the inverse Fourier transform of the zero-filled undersampled k-
space measurements (X ) as in Eq. (12.9). The factor matrices U(n), n = 1,2, ...N ,
give the sparsity bases and are obtained by applying matrix SVD to the mode-n un-
folding matrices X(n), n = 1,2, ...N . MLSVD leads to a sparse core tensor S due to
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the all-orthogonality and ordering conditions applied to it, which guarantee that most
of the energy of the core tensor lies around one vertex. The proposed approach is re-
ported to improve image reconstruction quality when compared to 1D/2D sparsifying
transforms.

12.5.3 Segmentation
Segmentation, as opposed to the preprocessing steps discussed so far, is specific for
images rather than signals. The purpose of segmentation may be to discard nonbrain
tissue from the image (skull, ventricles, etc.) or to partition the image of the brain into
smaller meaningful regions. This can be achieved in a supervised or an unsupervised
manner, i.e., with or without known labels. We will begin our overview with the
latter.

For differentiation of tumor, necrotic, and normal brain tissue types, a nonnegative
CPD (NCPD)-based segmentation from MRSI and multiparametric MRI (MP-MRI)
data is proposed in [59] and [60] respectively. For MRSI data, a feature vector x is
calculated for each voxel based on their spectra. For MP-MRI data, x at each voxel
is constructed in a way that highlights different information brought from different
modalities, namely MRI, PWI, DWI, and MRSI. By stacking the matrices xxT for all
voxels, a tensor X is obtained. Next, X is decomposed into R sources using NCPD.
It should be mentioned that imposing constraints on factor matrices, such as the non-
negativity constraint here, can help to relax the uniqueness condition, reduce the
computational cost, enhance robustness against noise, and increase the interpretabil-
ity of the results [61]. In MP-MRI data, R is set manually whereas in MRSI data, R

is automatically determined as follows. First, a data matrix is constructed by concate-
nating the spectra of each voxel and the covariance of the data matrix is estimated.
Then, the eigenvalues of the spectra covariance matrix are calculated. Finally, R is
estimated as the minimum number of eigenvalues whose cumulative sum is greater
than 99% of the sum of all eigenvalues. The results on both imaging types show
that NCPD is better at separating tumor tissue compared to matrix-based decompo-
sitions.

Although the approaches described above can successfully segment the images,
the found segments still lack a label, for which a supervised classification approach
is required. To this end, [62] proposes a two-stage fully automated superpixel-wise
tumor tissue segmentation algorithm for MP-MRI data. The algorithm employs a
random forest classifier with truncated MLSVD-based feature extraction, which first
identifies the whole tumor and then divides it into its subregions. In [63], a CNN
architecture with MLSVD-based low-rank regularization on the convolutional layers
is proposed to label MRSI voxels as “tumor,” “bad quality,” or “normal.” MLSVD is
observed to give faster results (as the number of computations is lowered) without
causing a significant change in the performance of CNN.

Medical images are volumetric, and hence many neural network models have
also embraced 3D CNN architectures for their segmentation. These models include
the 3D extension of the U-Net, which is one of the most prominent medical image
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segmentation networks so far [64]. U-Net takes its name from its architecture, which
indeed looks similar to the letter U. The first half of the network is the contract-
ing part, where the input image is encoded into feature maps at various levels for
classification. The second half is the expanding part which up-samples the feature
maps to be localized at the input pixel space [65]. The 3D U-Net model replaces
the 2D operations in the original model with their 3D versions. In [66], the authors
propose adding volumetric feature recalibration (VFR) layers to the 3D U-Net ar-
chitecture as shown in Fig. 12.12. A VFR layer takes an input feature tensor and
low-rank regularizes it to a rank-1 tensor using CPD. Such regularization forces
only the most critical patterns within the feature tensor to be captured and leads
to smooth spatial changes in the segmented tissues across adjacent slices, which is
in line with the anatomical organization of the brain. The proposed model is used
for segmentation of major brain tissues—namely the white matter, gray matter, and
cerebrospinal fluid—from MRI data, and currently ranks first in the MRBrainS13
Challenge [67].

FIGURE 12.12

The 3D U-net architecture with VFR layers proposed in [66].

12.5.4 Registration and longitudinal analysis
Image registration is defined as the process of geometrically aligning two or more
images and allows comparison of datasets across subjects, conditions, modalities,
or time. Thus, it is a prerequisite to numerous neuroimaging applications [68]. For
instance, registration of a subject and a control brain helps revealing abnormal
regions in the subject brain. As a particular case of neurological image registra-
tion, longitudinal studies explore the changes in a subject’s brain across his/her life
span and show the evolution of the structure or function of progressive diseases
[69].

Tensor-based morphometry (TBM) is a tensor solution to track differences in two
brain images by constructing a Jacobian change map at the voxel level that is com-
puted by nonlinearly registering a scan of interest to a baseline scan. Mathematically,
for each voxel (x, y, z), a displacement vector d = (dx, dy, dz) is found between a 3D
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study scan S and a 3D template scan T such that t(x−dx)(y−dy)(z−dz) = sxyz. Then,
the Jacobian matrix of the deformation field at (x, y, z) is calculated as [70]

J(x, y, z) =
⎛
⎝∂(x − dx)/∂x ∂(x − dx)/∂y ∂(x − dx)/∂z

∂(y − dy)/∂x ∂(y − dy)/∂y ∂(y − dy)/∂z

∂(z − dz)/∂x ∂(z − dz)/∂y ∂(z − dz)/∂z

⎞
⎠ . (12.20)

The determinant of Eq. (12.20) gives the Jacobian at (x, y, z). For instance, a
Jacobian value of 0.9 or 1.1 corresponds to a 10% tissue loss or a 10% tissue gain,
respectively, in the local volume [71]. The 3D Jacobian change map is obtained by
calculating the Jacobian for all voxels. An illustration of longitudinal analysis by
TBM is given in Fig. 12.13.

FIGURE 12.13

Illustration of TBM for longitudinal analysis. The template brain is a prior scan of the same
subject to quantify the voxel-level differences that have occurred in time. These differences
are marked by TBM based on the Jacobian of the deformation field.

In [72], the authors apply TBM to 3D MR images acquired 1 year apart from
three groups of subjects: patients with Alzheimer’s disease (AD), patients with mild
cognitive impairment (MCI), and a control group of healthy patients. Consistent with
prior studies, the authors report a widespread cerebral atrophy in patients with AD
and a more restricted atrophic pattern in patients with MCI.

In [71], it is argued that using logarithmic transformation on the Jacobian values
is crucial while evaluating the volumetric differences as it symmetrizes the Jacobian
distribution by assigning equal probabilities to tissue gains and losses that are recip-
rocals of each other. The authors validate their claim on sequential MRI scans of a
patient diagnosed with semantic dementia.
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TBM is used to demonstrate HIV-induced brain damage from T1-weighted MR
images in [73]. A 3D profile of brain tissue reduction is constructed by calculating
the ratio of the mean Jacobian in HIV patients to the mean Jacobian in control sub-
jects at each voxel. In addition, using the Mann–Whitney U test, which evaluates
the randomness of the voxel-wise difference between the mean log-Jacobian in HIV
patients and the control group, a significance map is constructed (high significance
corresponds to the differences being true, i.e., not random). Their results show that
the greatest tissue loss occurs in primary and association sensorimotor areas.

Anatomical differences in the brains of HIV patients are also examined in [70]
from their MRI scans. The authors also compare using multivariate statistics of the
Jacobian matrix to the conventional approach of using its univariate statistics (such
as its determinant). The proposed multivariate method (based on manifold testing)
is observed to more extensively reveal the atrophy of gray and white matter caused
by HIV.

TBM analysis with log-transformed Jacobian maps is used to identify regional
differences in brain volume based on prenatal alcohol exposure in [74]. To this end,
the T1-weighted MR scan acquired from each subject is compared to an average
anatomical template obtained from the control group. Furthermore, ICA is applied on
the log-Jacobian maps to better identify brain tissue deformations. The deformations
obtained after ICA are observed to be useful indicators of the presence and extent of
prenatal alcohol exposure.

Finally, it is also possible to reflect on longitudinal analysis from a tensor decom-
position point of view. In [75], a DTI tensor with modes fiber, longitudinal features,
and cross-section is constructed and factorized using CPD. In the end, pathological
longitudinal changes appearing along white matter fibers caused by multiple sclerosis
are detected.

12.5.5 Source separation
Blind source separation (BSS) is the unmixing of original source signals from their
intermixed observations. In general, tensor decomposition methods aim at factorizing
a data tensor into several components. However, in many cases, the defined objective
requires focusing on only one of those components, such as the seizure component,
whereas the others are simply regarded as background noise [90]. We discuss the use
of tensor decompositions for denoising in Section 12.5.2. Similarly, even when the
objective is to compare the content of data along various modes across different ex-
perimental conditions, such as during the resting state and during a mental task, the
data belonging to these conditions can be collected at different times and analyzed
individually [89], without the need for source separation. This section will be dedi-
cated to algorithms which consider multiple sources of interest that are active during
the experiment time.

BSS is divided into the following two main groups: instantaneous (Eq. (12.21))
and convolutive (Eq. (12.22)), i.e.,
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xi(t) =
R∑

r=1

air sr (t) + ei(t), (12.21)

xi(t) =
R∑

r=1

L∑
l=0

hir (l)sr (t − l) + ei(t), (12.22)

where xi(t), sr (t), and ei(t) are measurement, source, and noise signals, respectively,
and R is the number of sources. The linear mixing coefficients air of the instanta-
neous case are generalized by incorporating memory to the system in the form of
convolutive mixing filters hir (l) of length L in the convolutive case.

Tensor decompositions are common and intuitive tools for solving the BSS prob-
lem [76]. Indeed, note that Eq. (12.21) can be written in the form of

X =
R∑

r=1

ar ◦ sr + E, (12.23)

where the measurement matrix X holds all measurement vectors along its rows and
the mixing vector ar holds all air coefficients. As described in Section 12.3, neu-
roimaging data often take the form of a tensor, either when a number of measurements
are made in multiple domains, such as at multiple locations (channels), in multiple
patients, in multiple conditions, etc., or via the tensorization of a measurement ma-
trix. Then, the above equation becomes

X =
R∑

r=1

ar ◦ br ◦ ... ◦ sr + E, (12.24)

which is analogous to the definition of CPD in Eq. (12.7). Then, the result of CPD
can be interpreted as follows. Each of the R components ar ◦ br ◦ ... ◦ sr corresponds
to an individual source, each of the signatures ar , br , ... describes a certain property
of the source, such as its variability in space, among patients, etc., and the temporal
signature sr describes the time course of the source.

For example, [77] uses CPD to localize several epileptogenic sources from EEG
measurements, where these sources are simultaneously active at different brain re-
gions. The EEG data are tensorized as a 3D space, time, and wave vector (STWV),
regarding which more details will follow in Section 12.5.6.1. The spatial signatures of
the extracted CPD components are observed to be pointing to the epileptogenic sites
as confirmed directly by intracerebral stereotactic EEG recordings. An illustration of
the presented methodology is provided in Fig. 12.14.

Despite the fact that neuroimaging data are often inherently multidimensional,
matrix-based methods are well established and widely used. ICA, for example, is
widely used for matricized fMRI data where the spatial modes are unfolded into a
single long voxel mode. As a result, the spatial structure of the data is lost. In order to
retain the spatial structure, [78] represents the fMRI data as a 4D tensor with modes
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FIGURE 12.14

An illustration of CPD-based source separation with three sources. This approach is utilized
in [77], where the collected EEG data consisting of mixed observations of the underlying
sources are tensorized according to the STWV format (the spatial and temporal signals of
this illustration are arbitrary and provided only for visualization). Each extracted component
is defined by the outer product of its signatures and stands for one site of epileptic activity.

depth-length × width × time × subject. Then, various tensor-based instantaneous
BSS techniques are applied, which are explained below.

The standard CPD modeling assumes the same (up to a scaling) underlying signal
sources (spatial maps and time courses) for all subjects. However, empirical stud-
ies show that the impulse responses, known as the hemodynamic response functions
(HRFs), leading to the blood signals acquired with fMRI change across subjects and
brain regions. PARAFAC2 relaxes the strict multilinear assumption of CPD by allow-
ing variation along one mode, i.e., subjects, as shown in Fig. 12.15.

Nevertheless, similar to CPD, PARAFAC2 still holds the rank-1 assumption,
which is unrealistic for the spatial signatures of true brain sources. Consequently, the
authors propose a PARAFAC2-like BTD model to achieve nonstrict multilinear mod-
eling while incorporating higher-order components. When applying BTD/BTD2, the
spatial signature of each source is assumed to be low-rank and the temporal signature
is assumed to be rank-1. Different from BTD, BTD2 offers different time courses
for each subject. Both in simulations and augmented datasets, nonmultilinear meth-
ods (BTD2 and PARAFAC2) are shown to be more suitable for BSS of fMRI data.
Furthermore, BTD2 is observed to be significantly more robust to noise compared
to PARAFAC2 at the cost of increasing computational complexity. Note that the as-
sumption of independent sources—which has proved to be powerful in the fMRI
literature—was not made in this study.

A second-order tensor-based convolutive ICA method is utilized to jointly address
convolutive source separation and blind deconvolution of fUS data in [81]. In the pro-
posed signal model (Eq. (12.22)), the hemodynamic response signals acquired with
fUS correspond to the measurement signals xi(t), whereas the source signals sr (t)
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FIGURE 12.15

(a) CPD and (b) PARAFAC2 over an example space-time-subject tensor [79]. CPD can
accommodate different temporal and spatial signature pairs for different neural
components, but these are assumed to be the same for each subject up to a scaling factor.
On the other hand, PARAFAC2 offers flexible temporal representations (which is necessary
to model the HRF variability) across subjects.

represent the events that trigger these responses in the brain. Finally, the convolutive
mixing filters hir (l) stand for the HRFs. It is shown that if the sources are assumed
to be uncorrelated, the tensor consisting of lagged measurement autocorrelation ma-
trices can be factorized with a block-diagonal core tensor with inner Toeplitz blocks,
which in the end leads to a BTD with constant rank terms [80].

The proposed approach has three main advantages. The first one is that the HRFs
can be estimated differently based on the measurement and source index, which
accounts for the HRF variability across brain regions and events, respectively. The
second one is that the model offers a multiple input–multiple output solution, which
is suitable for representing the complex interactions leading to hemodynamic activ-
ity of brain voxels. Last but not least, the unknown HRFs and neural stimuli can be
identified simultaneously via BTD.

The convenience of tensor-based solutions to BSS problems is investigated in a
wide range of neural signal processing applications in [82]. Several methods includ-
ing tensor-based singular spectrum analysis and complex PARAFAC2 are employed
for analysis of both single and multichannel signals. For more information on the
topic, we refer the reader to the abovementioned paper.

In the following section, we discuss an important application of tensor-based BSS
in neuroimaging. More specifically, careful interpretation of the signatures resulting
from appropriate tensor decompositions can lead to successful activity recognition
and source localization.
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12.5.6 Activity recognition and source localization
Functional neuroimaging tools collect signals (directly or indirectly) from millions of
neurons, which communicate in time and space through short bursts of oscillations.
The goal of activity recognition is to establish if and when a certain neural process
takes place, such as a particular stage of cognitive processing or a pathological event
(e.g., an epileptic spike). Subsequently, one may aim to localize those neuronal pop-
ulations which are involved in the activity of interest.

Brain data have conventionally been described by a matrix, with time courses
or spectral information along one mode and information from different channels
organized along the other mode. The data are later decomposed using a matrix fac-
torization technique, such as PCA [83] or ICA [84]. Finally, each component is
represented by two vectors (time or frequency and space) which are often called
signatures. The assumption of orthogonality (PCA) or independence (ICA) ensures a
unique solution. If the assumption is plausible, one can be confident that the compo-
nents correspond to the actual sources and the signatures describe the true physical
properties of the sources. In turn, these signatures allow to recognize the activity of
interest. As described in the previous section, this idea can be extended to multilinear
analysis using CPD, with the advantage that it can describe the data in more than two
domains (i.e., time and frequency and space), and leads to a unique solution without
hard constraints as in the matrix case [85].

CPD has been developed in 1970 in psychometrics by two independent studies
that extend factor analysis to multiway signals, one of which has defined the process
as parallel factor analysis, whereas the other defined it as canonical decomposition
[86]. Approximately a decade later, [87] has practiced, to the best of our knowledge,
one of the very first uses of CPD (and multidimensional analysis) on brain signals. In
this study, the authors report differential hemispheric activity with positive emotional
tasks being associated to right temporal activity after applying CPD on an EEG tensor
with channel × time × subject modes. CPD was later used by [88] under the name
of topographic component analysis for processing of event-related potentials (ERPs)
described by the same modes and supported with biophysical considerations.

Another common three-way representation of EEG data combining spatial, spec-
tral, and temporal modes is proposed initially in [89]. The spectral information is ob-
tained using wavelet transform, which is often chosen for its optimal time-frequency
resolution by resolving high-frequency components within small time windows and
low-frequency components in larger time windows [90]. After applying CPD on the
3D EEG tensors with space-time-frequency (STF) modes, in line with previous find-
ings, frontal theta components and occipital alpha components were identified during
separate analysis of a mental arithmetic task and the resting condition, respectively.

This work was extended by addition of condition and subject modes [91]. This
way, the differences in STF modes can be identified based on subjects and condi-
tions (object or nonobject drawings are presented to subjects) through a single CPD
computation. For instance, the “object condition” is observed to be more active in
the occipital region at the lower gamma band than the “nonobject” condition. In [92],
the same 5D tensorization (except with Hanning windowed fast Fourier transform
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for construction of the spectral mode) is used to analyze transcranial magnetic sim-
ulation (TMS)-induced EEG responses, known as TMS-evoked potentials (TEPs).
Using CPD, TEPs are analyzed under four conditions as predrug and postdrug status
of two different drug types. The results unveil three unique signatures along the space
and frequency modes as frontal-sensorimotor beta, posterior alpha, and theta (whose
location is observed to depend on the site of stimulation) components. Furthermore,
the inter-subject variability is characterized by the fourth mode, whereas on the fifth
mode drug effects are revealed, such as an observed reduction in postconditions of
both drugs for all components.

CPD of evoked EEG signals acquired from healthy subjects and patients with
chronic pain, each condition represented by an STF tensor, was also used to high-
light differences across modes based on the subject’s health condition [93]. More
specifically, the active neural response of chronic pain patients was spotted around
the frontal region with lower frequency values compared to the control group, whose
active location is detected around the central region.

On fNIRS data, CPD is applied to identify the temporal and spatial characteristics
of a verbal task in [52]. For this purpose, a 3D tensor with modes space, time, and
wavelength was constructed. The wavelength mode entails two bands in the near-
infrared spectrum for extraction of the hemodynamic response based on oxygenation
of hemoglobin. The results show that CPD is capable of both motion-artifact removal
and identification of task-related activity, which is confirmed with commonly used
approaches in the fNIRS literature such as the general linear model. CPD of fNIRS
data (time × channel × frequency × subject) is also used to investigate differences
in spatial, temporal, and spectral patterns of infant brain reactions to human and me-
chanical hands [94].

Detection and localization algorithms focusing on epileptic seizures will be in-
vestigated separately considering the significance of and the large amount of work
dedicated to epilepsy, which is one of the most common neurological disorders,
influencing around 70 million people worldwide [95]. Epilepsy is characterized by
recurrent seizures which take place due to excessive electrical discharges in a group
of brain cells which are observed as rhythmic patterns in brain recordings. Seizures
can start in one part of the brain and continue to spread throughout the brain, affect-
ing more parts of the body unless prevented, as shown in Fig. 12.16. These seizures
can potentially be cured by surgically removing the seizure focus, if it is accurately
localized, or by blocking the spread of the seizures using medication or stimulation if
the onset of the seizure is detected early on [97]. Neuroimaging tools combined with
signal processing techniques can be helpful in both treatment approaches.

12.5.6.1 Seizure localization
Seizure localization aims to identify the seizure onset zone in the brain. In other
words, the main interest is on the spatial content of seizure component(s).

Applying CPD on EEG data for seizure localization is proposed in [90] by con-
structing a 3D STF tensor with wavelet transform defining the spectrum array. The
optimal rank value for CPD is determined as two by applying the core consistency
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FIGURE 12.16

Epileptic activity zones. The seizures start in the seizure onset zone and might spread to
adjacent areas (symptomatogenic zone) [96].

diagnostic [98]. In order to identify which of the two components arises from epilep-
tic activity, both components are ordered according to their contribution in the spatial
mode in terms of their variance, and the component with the highest contribution is
classified as the epileptic component. The authors claim the following for this se-
lection. Seizure activity has more stable spectral and spatial signatures compared to
background EEG, which is expected to be more random. Therefore, CPD will be
relatively insensitive to background EEG, and model the dominant, i.e., epileptic,
activity. Although the spatial signature of the epileptic component is assumed to cor-
respond to the spatial distribution of epileptic activity, only the electrodes showing
a potential above a predefined threshold are used to define the exact focus of the
seizure. Furthermore, it is observed that the maximum frequency in the spectral con-
tent of the epileptic component corresponds to the frequency of the rhythmic seizure.

A Tucker decomposition approach for seizure localization on EEG data is pro-
posed in [99]. Tucker decomposition on STF tensors is compared to two-way de-
composition methods such as SVD and PCA constructed with either space × time or
space × frequency modes. The results obtained show that multiway analysis achieves
more precise localization compared to two-way analyses. Nevertheless, the authors
state that it is much more difficult to interpret the resulting components from Tucker
decomposition compared to those from CPD. This is due to the fact that CPD extracts
multilinear components, where each component is described by the interactions of
exactly one signature from each mode, which directly match the properties of the
given component. However, Tucker decomposition employs a core tensor that allows
the interaction of multiple signatures from each mode (Section 12.4). Therefore, the
individual signatures cannot be interpreted alone.

Overall, CPD provides a more restricted and simpler model compared to Tucker
decomposition for seizure localization [100]. However, EEG data recorded during a
seizure are often contaminated with eye blinks, eye movements, and muscle artifacts,
which might interfere with the expected dominance of epileptic activity over back-
ground EEG in the case artifacts account for most of the variation. Therefore, [100]
proposes combining CPD of STF tensors of EEG data with an artifact removal stage
through multilinear subspace analysis. The optimal rank value for CPD is determined
via the core consistency diagnostic. Although the decomposed terms are labeled as
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artifact or seizure using clinical feedback from neurologists, when the spectral sig-
natures of components were compared, the authors noticed that most artifacts lie in
a low-frequency band whereas high-frequency content is present for epileptic activ-
ity, which can be a potential lead for automating the component selection process.
For artifact removal, the authors suggest using Tucker decomposition which returns
factor matrices along STF modes. Based on visual inspection of the components in
the spatial mode, the artifact components are determined. The original tensor is then
projected onto the null space determined by the artifact components. The resulting
artifact-free tensor is then provided as input to CPD.

Seizure localization on neonatal EEG data is investigated under two different
seizure types in [101], namely oscillatory and spike-train type seizures. For oscilla-
tory seizures, CPD is applied to the STF tensor using the core consistency diagnostic
as in [90] whereas for spike-train type seizures, the 3D EEG tensor is constructed
differently. More specifically, spikes are detected [102] and segmented from each
channel and placed into a tensor. In other words, the constructed tensor at each slice
has the segmented data from all channels where the segments are constructed when-
ever a spike is detected. This tensor is decomposed into its signatures using a rank-1
CPD as the proposed tensorization method only captures seizure data (Fig. 12.17).
Consequently, the resulting spatial signature corresponds to the spatial distribution of
the seizure.

FIGURE 12.17

CPD-based approach for spike-train seizure localization proposed in [101] where E shows
the residual tensor. As the input tensor is constructed using only seizure segments, a
rank-1 CPD is applied to obtain the seizure component.

CPD expresses the STF EEG tensor into a sum of rank-1 tensors, which means
every extracted term is defined by the combination of exactly one spatial, temporal,
and spectral signature. Therefore, stating that in cases where the seizure pattern is
nonstationary such a trilinear signal model will be insufficient, [103] proposes to use
BTD for seizure localization with EEG. Decomposition into rank-(Lr,Lr,1) terms
facilitates the extraction of sources that are rather fixed along one mode but vary in
others, such as sources with a constant spectral structure that spatially spread over
time or sources which evolve in frequency but are spatially constrained. BTD is also
useful in combination with a Hankel expansion (instead of time-frequency expan-
sion) of the data, based on the assumption that EEG signals can be modeled as a sum
of exponentially damped sinusoids. The Hankel matrix of a time series has a low rank
depending on the number of underlying sinusoids. Assuming that the multichannel
EEG records the linear mixture of such sources, the data admits a rank-(Lr,Lr,1)
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model indeed. The authors show three scenarios in which BTD is more successful
than CPD in localizing the seizure according to clinical assessment: a seizure with se-
vere eye artifacts, with evolving frequency, and with varying locations. Nevertheless,
the performance of BTD is observed to depend heavily on the appropriate selection
of the number of extracted components (R) and the rank of the factor matrices (Lr ).

CPD is applied to STWV tensors for seizure localization on EEG data in [77]. A
wave vector corresponds to a local spatial Fourier transform within a certain region
on the scalp defined by a spherical window function. The STWV modeling is shown
to yield better results compared to STF, especially with correlated sources, i.e., when
similar epileptic spikes spread in multiple regions with short time delays in between.
In addition, the authors provide a theoretical explanation on the conditions explaining
the functioning and performance of trilinear STF and STWV analyses such as the
source strengths and source correlations in time and space.

12.5.6.2 Seizure recognition
Seizure recognition refers to determining the time intervals in which a seizure takes
place (detection) or there are indications that a seizure might be approaching (predic-
tion). While the former can replace a manual seizure diary, the latter especially can
allow triggering of warning devices beforehand and prevent serious injury.

One way for seizure detection is dividing the brain data into time segments
(epochs), extract features from each epoch, and classify the features as “seizure” or
“nonseizure.” In [104], an EEG tensor for each epoch is constructed using wavelet or
Hilbert–Huang transform with STF modes. Features from each epoch are extracted
from the signatures obtained with CPD and BTD of the corresponding tensor. In or-
der to determine the optimal rank value for decomposition, MLSVD is utilized. The
MLSVD core is truncated until the singular values represent more than 95% of the
data variance. Low-multilinear rank approximation is initialized with the truncated
MLSVD core, which finds the multilinear rank that best approximates the tensor
in the least-squares sense. Several classifiers are used to label the epoch features,
namely K-nearest neighbor, radial basis support vector machine (SVMRB) and lin-
ear discriminant analysis. The classifiers are trained with one seizure segment while
the remaining data are used for testing. The block diagram of the proposed method is
provided in Fig. 12.18. The best results are obtained when spatial signatures are used
as features and the SVMRB as classifier.

Alternatively, features can be included inside the tensor. One such feature tensor is
proposed in [105] with modes time epoch, feature, and channel, where the features are
created in time and frequency modes in a way to create distinction between seizure
and nonseizure periods of EEG data. The tensor is regressed to seizure and nonseizure
classes using multilinear partial least-squares.

A deep learning solution to seizure detection has been proposed in [57] and dis-
cussed in detail in Section 12.5.2. In summary, the authors introduce a CPD-based
dimensionality reduction stage to obtain a low-rank approximation of the original
EEG tensor to be given as input to a CNN.
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FIGURE 12.18

The block diagram of the proposed algorithm in [104] for seizure detection using tensor
decomposition-based feature extraction.

In [106], EEG signals are recorded from multiple patients in 3-hour sessions that
include the preictal period (before seizures take place) as well as the seizure. After
applying fast Fourier transform, an STF tensor is obtained from each patient. The STF
tensors are decomposed using CPD. In order to assess if any of the extracted compo-
nents are related to the preictal period, a binary target vector showing the time instants
of the preictal period is constructed. The correlation between the temporal signatures
of all extracted components and the target is computed. Almost in all cases, a com-
ponent that is significantly correlated to the preictal period is found. The spatial and
spectral signatures of the preictal components suggest that a common structure might
be involved in seizure generation, which can be useful in prediction of a seizure.

12.5.7 Connectivity analysis
Brain connectivity can be investigated in three subcategories, i.e., structural, func-
tional, and effective connectivity (Fig. 12.19). Structural connectivity defines the
existence of white matter tracts physically interconnecting brain regions whereas
functional connectivity describes the statistical dependencies between neural signals
acquired from different brain areas using measures such as correlation and coher-
ence [107]. Effective connectivity can be considered as the combination of the two,
as it attempts to extract networks quantifying the directional effects of one neural
population on another one, characterized by axonal pathways [108].

12.5.7.1 Structural connectivity
In [109], a tensor network is proposed which shows the strength of white matter tracts
between each pair of brain regions that are of interest. To start with, a tensor of size
M × M × S is constructed from DWI and MRI scans of S subjects covering M brain
regions. For quantifying the relation between two regions, different features are tried,
such as the fiber counts in-between or the water diffusivity along the fibers. Next, a
semi-symmetric CPD is applied whose factors along the first two modes are equal
(u(1)

r = u(2)
r ) due to the symmetry of structural connectivity between two regions.
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FIGURE 12.19

Types of brain connectivity [108]. Three brain regions are shown to be connected
structurally (via fiber pathways), functionally (via statistical relations), and effectively (via
information flow).

The number of components R is selected based on cumulative proportion of variation
explained [110].

In order to discover a connectivity network that captures the most variation in

the structural connectomes across all subjects, a weighted sum of u(1)
r (u(1)

r )
T

for
r = 1,2, ...,R is calculated. Finally, the connectivity networks from different sub-
ject groups are compared. The obtained results reveal that stronger interconnections
exist in the cortical area in people with positive traits, such as high language learning
and motion ability, whereas weaker interactions exist in people with negative traits,
such as use of alcohol.

12.5.7.2 Functional connectivity
Functional connectivity of the brain was assumed to be constant with respect to
time until recently. As a consequence, functional connectivity networks (FCNs) were
commonly represented with nodes that correspond to brain regions and edges that de-
scribe their pair-wise associations. After experimental studies that unveiled the time
dependency of functional connectivity, dynamic FCNs have gained significant atten-
tion [111]. For dynamic FCNs where temporal information is incorporated as a third
mode besides pairs of brain regions, tensors become the intrinsic representations.

In [112], the authors propose a tensor decomposition scheme for dynamic func-
tional connectivity analysis on resting-state fMRI data. For this purpose, a tensor X
of dimensions M × M × W is constructed as shown in Fig. 12.20, where M is the
number of brain regions and W is the number of time windows. The time windows
are obtained by overlapping sliding windows over the time courses of investigated
brain regions. For each time window w (w = 1,2, ...,W ), a matrix of size M × M

showing the pair-wise connectivity values (computed using Pearson correlation or
mutual information [113]) is constructed and placed into the w-th slice of X .

Next, CPD is applied on X , leading to factor matrices U(1), U(2), and U(3) of
dimensions (M × R), (M × R), and (W × R), respectively. Note that due to the as-
sumed symmetry of functional connectivity between two regions, U(1) = U(2). The
columns of U(1) = U(2) correspond to spatial signatures that are interpreted as con-
nectivities. Both the input tensor and the approximated tensor obtained with CPD are
denoised using binarization via thresholding.
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FIGURE 12.20

A 3D tensor model for dynamic functional connectivity [112]. The matrices at each slice
showing pair-wise connectivity between brain regions are symmetric.

In order to find spatial maps that are common across subjects, K-means clustering
is applied to the set of all spatial signatures extracted from all subjects. Finally, the
cluster centers are assigned as prototype brain networks, which are found to be similar
to several known resting state networks.

The model in Fig. 12.20 is extended with the subject mode in [114] for classifi-
cation of multisubject fMRI data using MLSVD under two sets of conditions: (i) low
vs. high walking speed in the elderly and (ii) resting vs. stress state in moderate-heavy
alcohol consumers. The proposed approach is observed to provide a better classifi-
cation accuracy than conventional SVD, which is applied after matricization of the
original 4D tensor. MLSVD is also employed in [115] to analyze functional connec-
tivity from fMRI data, but this time on a 3D tensor model with modes connectivity,
time, and subject. In other words, unlike previous approaches, here the connectivity is
not represented in a symmetric matrix form; instead, it is vectorized. The authors also
propose a general linear model using the extracted temporal signatures to determine
which connectivity maps are related to the experimental paradigm.

In [116], CPD is compared to Tucker decomposition for dynamic FCNs on
resting-state multisubject fMRI data using sliding window correlation analysis. The
authors conclude that although interpreting the components of CPD is more straight-
forward than interpreting those of Tucker decomposition, the Tucker model is often
more effective for group differentiation.

Instead of using fixed-sized sliding windows, [117] proposes an approach to auto-
matically determine different FCN states. The authors utilize a twofold algorithm to
define the FCNs from a cognitive EEG study with multiple subjects. The first step is
to identify the change points in time where the FCNs indicate a significant alteration.
For this purpose, a low-rank approximation of the third-order tensor containing the
pair-wise connectivities of a random subset of subjects at each time point is calcu-
lated via convex hull optimization [118], which selects an optimal value for the tensor
rank. Tucker decomposition is applied to the tensors with the calculated rank value.
Note that the factors along the first and second mode are equal (U(1)(t) = U(2)(t))

due to the symmetry of matrices at each slice. Finally, the subspace distance between
consecutive (in time) basis elements of the decomposed matrices along the first mode
is calculated as explained in [119]. The change points are detected by thresholding
the distance (Fig. 12.21).
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FIGURE 12.21

Steps of change detection in FCNs over an example [117]. Low-rank approximation is
applied on the 3D tensors with a randomly selected subset of subjects at each time point to
estimate their rank (r̂(t)). Tucker decomposition is applied based on the rank values. The
subspace distance d(t) between the column subspaces obtained via Tucker decomposition
(U(1)(t)) is calculated. Every distance value above a threshold yields a new functional
connectivity state.

The change points define the time boundaries for functional connectivity states.
The second task is to summarize the functional connectivity states inside these
boundaries across subjects. Assuming that the functional connectivity states should
remain stationary and common across subjects, the summarized states are obtained
via tensor-matrix projections across time and space using another Tucker decomposi-
tion stage. The results demonstrate the formation of transient frontal networks during
error processing.

In [120], PARAFAC2 is applied in the complex domain to compute functional
connectivity by relating the extracted components to one another. For this purpose,
received EEG signals are expressed as a linear mixture of multiple sources, which
are modeled as auto-regressive (AR) processes. The EEG data are tensorized us-
ing short-time Fourier transform with Hanning windows, yielding three modes as
channel, complex frequency, and complex trial. The connectivity metric is computed
via a phase-lag index which estimates phase differences between trials that are ex-
tracted using PARAFAC2. PARAFAC2 adds the flexibility of expressing the trials in
terms of frequency, and thus producing different connectivity maps for different fre-
quency bands. On the other hand, [121] uses PARAFAC2 to obtain subject-specific
network scaling as follows. First, functional connectivity is formulated as the covari-
ance matrix of an fMRI data matrix (voxels × time). However, in order to obtain
networks that are generalizable (among subjects) and interpretable, the data matrices
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from each subject are first stacked into a 3D tensor and later decomposed into their
low-rank components prior to covariance estimation. Using PARAFAC2, the strength
of underlying networks is allowed to vary based on the subject.

Functional connectivity is an important field of research as changes in connec-
tivity may serve as a biomarker in neurological disorders. This has been shown, for
example, in [129] for autism spectrum disorder (ASD). The authors work on a third-
order tensor of fractional amplitude of low-frequency fluctuations (fALFF) calculated
for each voxel in an fMRI dataset. The metric fALFF characterizes the intensity of
spontaneous brain activities and provides a measure of functional architecture of the
brain. A linear tensor regression model is proposed by the authors, about which a
more detailed explanation will follow in Section 12.5.8. Simply put, the image ten-
sor serves as the observation whereas the subject’s diagnosis status (as 0 [healthy] or
1 [having ASD]) and other variables such as age and sex form the covariate vector.
The estimated coefficient tensors from healthy subjects and subjects who have ASD
show clear distinctions in regions that are consistent with the autism literature such
as the cerebellum, which is responsible for motor learning, coordination, cognitive
functions, and effective regulation.

12.5.7.3 Effective connectivity
Functional connectivity explores the statistical similarities between the nodes in a
physiological network, whereas effective connectivity searches for the direct (causal)
interactions between them. Consequently, while describing effective connectivity, it
is quite common to use multivariate AR modeling which expresses the dependency
of the value of a node at a given time to the past values of all the nodes employed in
the network.

For instance, [122] uses time-variant partial directed coherence (tvPDC) based
on the Fourier transform of time-variant multivariate AR models on EEG data. The
general form of a time-variant multivariate AR process of order P and with M nodes
is expressed as [123]

x(t) =
P∑

q=1

A(q)(t)x(t − q) + e(t), (12.25)

where x(t) ∈ R
M is the data vector at time t , A(q)(t) ∈ R

M×M contains the q-th-
order AR coefficients at time t , e(t) ∈ RM is the innovation noise, and the order P

determines the total number of time lags included in the model.
The Fourier transform of the time-variant AR coefficients is defined as

A(t, f ) = I −
P∑

q=1

A(q)(t)e−2π if r , (12.26)

where I is the identity matrix.
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The degree of causal influence from node j to node i at time t and frequency f

can then be quantified by tvPDC as follows:

tvPDCi←j (t, f ) = |Aij (t, f )|√∑M
m=1 |Amj (t, f )|2

∈ [0,1], i �= j. (12.27)

Hence, the tvPDC analysis of a single subject results in a 3D tensor containing
the modes space (expressed for each node pair), time, and frequency. In order to en-
hance the interpretability of tvPDC analysis while incorporating an extra mode for
different subjects, [122] proposes to apply CPD after obtaining the 4D tvPDC ten-
sor from EEG data. The results show that the relation between the stimulus onset and
signatures in temporal mode becomes more prominent in multisubject decomposition
than in single-subject decomposition, meaning that the addition of the subject mode
can provide critical input. In general, applying CPD on the tvPDC tensor is observed
to reduce the amount of results to be investigated to a smaller but more informative
subset, and this reduction can be taken even further by displaying the computed net-
works only if their associated content satisfies certain constraints. These constraints
can be temporal resemblance to the onsets of a stimulus or be linked to a spectral
window of interest.

Effective connectivity of the brain is studied on fMRI signals using Granger
causality (GC) in [124]. GC is used to investigate the direction and magnitude of
information flow between two simultaneously recorded time series [125].

Let the fMRI data matrix X be of size M × T , where M is the total number of
voxels and T is the number of time samples. Based on the multivariate AR model
given in Eq. (12.25), [124] expresses the BOLD signal xt = X:t for P time lags, only
A(q)(t) is replaced by A(q), i.e., AR coefficients are not time-varying (referred to as
spatial multivariate AR model). Any nonzero coefficient A(q)

ij refers to the time series
j (Granger) influencing time series i after q lags.

GC can be written as a tensor regression by extending Eq. (12.25) to multiple time
samples t = P + 1, ..., T + P :

Xt−q = [xP+1−q, ...,xT +P−q ]T. (12.28)

Then, by stacking all time lags (q = 1, ...,P ) together, the data tensor X ∈
R

P×M×T and the AR coefficient tensor (i.e., the connectivity tensor) A ∈R
M×M×P

is obtained. Finally, the tensor regression based on the multivariate AR model is ex-
pressed as

Xt = A •{M,P } X + Et , (12.29)

where •M,P shows tensor contraction over common dimensions M and P and Et is
the innovation noise. The connectivity tensor can be estimated as

Â = arg min
A

{
||Xt −A •{M,P } X ||22 + π(A)

}
, (12.30)
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where π(.) shows the penalty function.
Effective connectivity suggests structured sparsity on the connectivity tensor to

avoid any forced connections. Therefore the authors posit a CPD structure for the
connectivity tensor. The factors along the first, second, and third modes correspond
to the spatial signature for receiving nodes, the spatial signature for sender nodes, and
the temporal signature for causal lags, respectively.

12.5.8 Regression
Regression analysis aims to estimate the relationship between a set of dependent
variables (i.e., the observations, responses, or outcomes) and independent variables
(i.e., covariates, predictors, or explanatory variables). Particularly, the generalized
linear model (GLM), which is a generalization of ordinary linear regression through
a link function, is used for modeling in many areas of neuroimaging due to its flexible
framework.

GLM is used to explain the expected value μ of the observation vector y given the
matrix of covariates X with the help of regression coefficients (β) and a link function
g(.) as follows [126]:

g(μ) = g(E(y|X)) = Xβ. (12.31)

Note that the ordinary linear regression model can be obtained by exploiting an
identity link function. As observed from Eq. (12.31), classical regression methods
treat each covariate as a vector (which are later concatenated in the matrix X) while
estimating the corresponding regression coefficients. However, new advances in neu-
roimaging require covariates of higher dimensions.

To adapt the GLM framework for higher-order data models, [127] proposes a
generalized linear tensor regression model for a scalar observation y, a conventional
covariate vector z ∈R

I0 , and a general covariate tensor X ∈R
I1×I2×...×IN :

g(μ) = α + γ Tz + < B,X >, (12.32)

where α is the intercept value, γ ∈R
I0 is the conventional regression coefficient vec-

tor, and B ∈ R
I1×I2×...×IN is the coefficient tensor that captures the strength of the

entries of the covariate tensor. In this model, clinical outcome (a binary value indicat-
ing the diagnosis status) is treated as the observation, multidimensional neuroimaging
data (from 3D MR or 4D fMR images) correspond to the covariate tensor, and other
predictors such as age and gender are included in the conventional covariate vector.

The challenge that comes with regressing such a model is its ultrahigh dimension-
ality. Therefore, the authors assume a low-rank structure of B by expressing it with
a rank-R CPD. This significantly reduces the dimensionality from (I0 + ∏N

n=1 In)

to (I0 + R × ∑N
n=1 In). Maximum likelihood estimation is performed for parameter

prediction by introducing sparsity regularization that is used to identify subregions
that are associated with the response traits.

This approach is adopted in [128] by representing the coefficient tensor B with
Tucker decomposition which provides a more flexible and practical model especially
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in brain images with skewed dimensions as it allows a different number of factors
along each mode, unlike CPD. The authors test their method on an attention deficit
hyperactivity disorder dataset with T1-weighted MR images by first estimating the
coefficient tensor from the training subjects and then predicting the clinical outcome
for the rest of the subjects. Their results show that Tucker decomposition outperforms
CPD in terms of classification accuracy.

Alternatively, [129] proposes to treat the observation as a tensor variable (Y ∈
R

I1×I2×...×IN ) instead of a scalar and expresses the linear tensor regression model as
follows:

Y = B ×N+1 x + E, (12.33)

where x ∈ R
d is the covariate vector, B ∈ R

I1×I2×...×IN×d is the (N + 1)-th-order
coefficient tensor, and E ∈ R

I1×I2×...×IN is the independent error tensor. Here, the
brain image serves as the observation tensor, and the diagnosis status, age, gender,
etc., form the covariate vector. The proposed method embeds two key sparse struc-
tures on B, element-wise sparsity and low-rankness, through a weighted CPD. The
prediction of weights and regression coefficients constitutes a nonconvex optimiza-
tion problem, for which an alternating updating algorithm is developed. The authors
use the proposed model on fMRI data to demonstrate the differences in functional
brain connectivity caused by ASD (Section 12.5.7.2).

For regression of tensor observations on tensor predictors, a tensor subspace re-
gression model, called higher-order partial least-squares (HOPLS), is proposed in
[130]. To achieve this goal, a tensor subspace for both covariates and observations
is constructed via Tucker decomposition. The authors test their method on simulta-
neously recorded EEG (scalp EEG, measured noninvasively) and ECoG (intracranial
EEG, measured invasively) data, which are both represented as 4D arrays with modes
trial, channel, frequency, and time. Their results show that HOPLS performs superior
over ordinary PLS approaches for decoding of the ECoG data using EEG signals.

12.5.9 Feature extraction and classification
Feature extraction aims at summarizing the initial raw data using a smaller amount of
entries which still capture their essence such that meaningful models can be learned
from them in a more computationally efficient manner. From this perspective, it is
not surprising that tensor decompositions, which can well approximate low-rank data
using fewer parameters, are well suited for this task. Extracted features can later
be used for classification purposes. Some topics related to feature extraction and
classification (e.g., segmentation and seizure detection) or classification (e.g., binary
regression algorithms) have been described in Section 12.5.3, Section 12.5.6.2, and
Section 12.5.8; therefore, they will not be elaborated here. For details about the re-
lated works, aforementioned sections should be (re)visited.

CPD and Tucker decomposition are used to extract features for EEG-based classi-
fication of patients with Alzheimer’s disease in [131]. To achieve this, an EEG tensor
is constructed with modes space, frequency, and subject for both training and test
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sets. First, subject-mode unfolding of the training tensor X is approximated via a
tensor decomposition. Using the factor matrices extracted from the rank-R CPD of
X , mode-n unfolding matrix of X can be expressed as

X(n) ≈ U(n)[U(N) � ... � U(n+1) � U(n−1) � ... � U(1)]T, (12.34)

X(n) ≈ U(n)E, (12.35)

where � shows the Khatri–Rao product. Here, U(n) is a matrix of size In × R and
holds R signatures of the unfolded mode n, each of which can be regarded as a
feature vector. Therefore, U(n) can be denoted as a feature matrix F. For the given
case X(subject) is computed, thus F holds the subject features. On the other hand,
the encoding matrix E holds the information from space and frequency modes. The
equivalent of encoding matrix in Tucker decomposition is given as the product of the
core tensor with the factor matrices along space and frequency.

When unseen test data are received, a subject-mode unfolding matrix of the new
tensor Y is calculated by directly unfolding the tensor, denoted as Y(subject). The
least-squares projection of the encoding matrix E on any Y(subject) returns the feature
matrix F′ of Y :

F′ = Y(subject)E†. (12.36)

Finally, a feed-forward multilayer perceptron is used for classifying the feature
matrices. Note that the proposed method reduces overall complexity by applying ten-
sor decomposition to only the training data from which a dictionary is obtained and
used for projecting on any unseen test data. The steps of this method are illustrated
in Fig. 12.22.

A similar approach is utilized for drowsiness detection with EEG using a support
vector machine classifier [132]. Furthermore, the authors propose a nonparametric
Bayesian model to automatically determine the underlying CP rank by involving prior
gamma distributions of factor matrices.

In [133], PARAFAC2 and CPD are used to extract refined composite multiscale
entropy features from MEG data which are shown to differ between patients with
Alzheimer’s disease and healthy subjects. Another CPD-based feature extraction de-
scribing the mismatch negativity in EEG ERPs is defined in [134] to classify children
with reading disability and attention deficit.

A multivariate TBM method is proposed in [135] for group-based classification of
patients with Williams syndrome based on 3D MR images. First, individual surface
deformation tensors are obtained by registering brain images to a common template.
Since the resulting 3D maps provide many more features than the number of subjects
included, a feature reduction step is found to be necessary. Consequently, a linear
classifier is utilized to learn the feature weights with l1-norm regularization which
enforces sparsity on the surface features.

Another promising use of neural signal classification (besides for diagnostic pur-
poses) is BCIs. A BCI receives brain signals from a subject and translates these
signals to an external device that will take the subject’s commands into action
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FIGURE 12.22

Feature extraction using an encoding matrix [131]. The encoding matrix E is calculated
from the training dataset using CPD or Tucker decomposition (top row). The least-squares
projection of the encoding matrix on the subject-mode unfolding matrix of any test dataset
returns the new feature matrix F′.

(Fig. 12.23). For instance, if a subject imagines to move his left arm, even if he does
not actually move it, his neural activation will still point out that he wishes to do so.
This way, by establishing a connection with the recording device, a robot arm can
realize the desired movement for the subject. BCIs can be driven by mental imagina-
tion of an activity (such as motor imagery) or by responses to external stimuli (such
as P300 and steady-state visually evoked potentials [SSVEPs]).

The main paradigms used by the vast majority of BCIs are motor imagery, P300,
and SSVEP. In motor imagery, subjects imagine themselves moving their body parts,
which creates event-related (de)synchronizations in sensorimotor areas. P300-based
BCI takes its name from the P300 wave, which is a type of ERP that occurs in the
human brain as a positive deflection with a time delay of around 300 ms after a
specific auditory, visual, or somatosensory event has taken place. SSVEPs are evoked
in the occipital cortex when the user concentrates on flickering visual stimuli [136].

For classifying left and right hand imagery movement, CPD and Tucker decom-
position of 4D EEG tensors with modes frequency (based on Morlet wavelets), time,
channel, and trial is proposed in [137]. Both techniques are reported to outperform
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FIGURE 12.23

Illustration of BCIs. BCIs convert the subject’s neural signals to commands that control
external devices.

common spatial pattern (CSP) filtering. CSP filtering finds spatial filters that max-
imize the variance of the filtered signal for one class and minimize for the other
using training set labels [138]. Alternatively, a 4D EEG tensor consisting of modes
frequency (based on Morlet wavelets), time, channel, and condition is decomposed
using CPD and Tucker decomposition in [139] for the same imagery movement prob-
lem. To extract the most discriminative components for different classes (left hand or
right hand), sparseness is imposed on the condition mode. The resulting components
unveil differences across conditions in channel, time, and frequency signatures; for
example, the components that correspond to imagined motor tasks covering sensori-
motor areas reveal symmetrical behavior in their topography and condition modes as
expected, i.e., the left class shows a higher amplitude (than the right class) when the
left hemisphere is active, and vice versa. The authors however note that the proposed
offline method should be extended for dynamic and window-based time analysis in
order to capture the changing neural streams over time.

An online BCI system for predicting left and right hand imagery movement is
combined with several tensor completion algorithms (Section 12.5.1) to analyze a
rather flawed EEG dataset along modes time, channel, and trial that includes cor-
rupted entries and channels in [43]. Feature vectors are extracted from the completed
tensors using CSP filtering. To evaluate the improvement achieved by each algo-
rithm, linear discriminant analysis and linear support vector machine classification is
utilized. For each subject, the first run is recorded where a cue (left or right arrow) is
shown to the subject and used to train the classifier. The system also gives an online
feedback by showing the result of classification.

Single-trial EEG classification remains a challenging but important task in BCI
applications, considering that it offers a more convenient and faster framework for
the subjects. Taking into the account the low number of training samples and high
dimensionality of the data in such a case, [140] proposes spectral regularization us-
ing the nuclear norm due to the fact that it conveys a priori structural information.
To construct the tensorial EEG model, first each channel is segmented into time win-
dows. For each channel, the Hankel matrix of a feature vector containing mean signal
amplitudes of each time window is calculated. Channel Hankel matrices are stacked
to obtain the EEG tensor. Compared to linear discriminant analysis with shrinkage
applied to the feature vector, nuclear norm regularization on tensorial EEG is ob-
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served to perform significantly better in classifying P300 ERPs in an auditory oddball
paradigm.

In [141], multilinear discriminant analysis of an EEG feature tensor is proposed
to classify ERPs from a visual P300-based BCI experiment, in which a matrix of
letters is presented to the subjects who silently count how many times the indicated
target letter is intensified. The feature tensor is constructed by appending degrees of
polynomial fittings for each channel and time segment.

In order to carry BCIs to a practical real-life use, there are two main challenges:
subject mobility and subject-specific calibrations (such as in [43] mentioned above).
A subject-specific calibration-free method for mobile BCI is proposed based on CPD
and BTD of EEG data in [142] with P300 auditory oddball paradigm. For this pur-
pose, the average ERP of all subjects except one is calculated during baseline and
target stimuli. This way, two template matrices (one for the baseline and one for tar-
get stimuli) are constructed with modes channel and time. Each trial pair (with the
same modes as the templates) of the unknown subject are stacked into a tensor and
appended with the baseline and target template obtained from all other subjects to
construct the final 3D tensor. The addition of these templates to the trial pair data
tensor enhances the likelihood of extracting a task-related signature. After decom-
position, the value in the trial-mode signature cues the presence of the target. The
classification results are observed to be similar to subject-specific trained models.

Another subject-specific calibration-free classification for an SSVEP-based BCI
experiment is proposed in [143] using CPD on a 4D EEG tensor with modes trial,
space, frequency, and subject. The experiment involves a left and right button flashing
with different frequencies and the objective is to identify which button the subject is
focused on at a given time. Nonnegativity is enforced in the trial, space, and subject
modes which facilitates their interpretation while orthogonality is imposed on the
frequency mode which guarantees linear independence between factors representing
the distinct frequency SSVEP peaks. The rank of CPD is kept constant at 3 so that
distinct factors for the two SSVEP signals of interest could be uniquely described
whereas the third factor can account for background activity. The factor matrices
obtained by decomposing the training tensor along the space and frequency modes
(U(2) and U(3), respectively) are used to define the encoding matrix E = [U(2) �
U(3)]T, which is projected on data tensors from new subjects and trials as described
above ([131]).

A method based on l1-regularized multiway canonical correlation analysis (mul-
tiway CCA [MCCA]) for an SSVEP-based BCI with frequencies f1, ..., fM is pro-
posed in [144]. CCA attempts to find a pair of linear transforms for two random
variables that maximize the correlation coefficient between them. In the training
stage, 3D EEG tensors X (m) (channel × time × trial) whose trials belong to a spe-
cific frequency fm and matrices Y(m) (harmonic × time) which store the harmonics
of fm are constructed. The l1-regularized MCCA searches for the optimum linear
transforms in channel and trial modes for X (m) and in harmonic mode for Y(m) as
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follows:

w(m)
1 ,w(m)

3 ,v(m) = arg min
w1,w3,v

1

2
||X (m) ×1 wT

1 ×3 wT
3 − vTY(m)||22 (12.37)

+ λ1||w1||1 + λ2||v||1 + λ3||w3||1 (12.38)

s.t. ||w1||2 = ||v||2 = ||w3||2 = 1, (12.39)

where λ1, λ2, and λ3 are regularization parameters to control the sparsity of the linear
transforms w1, v, and w3 respectively. The results produce one optimized reference
vector for each frequency as z(m) = X (m) ×1 (w(m)

1 )T ×3 (w(m)
3 )T. When a single-

trial data (X: channel × time) is received, the CCA coefficient ρm between X and
z(m),m = 1, ...,M , is calculated. Finally, the frequency of the trial is estimated by
m̂ = arg maxm ρm, and thus f̂ = fm̂. The block diagram of the proposed method is
demonstrated in Fig. 12.24.

FIGURE 12.24

Steps of l1-MCCA for SSVEP-based BCI [144]. During training, optimal reference signals
z(m) are learned by applying l1-MCCA between X (m) (from multiple trials) and Y(m) for
each frequency index m. For new single-trial data X, the CCA between X and each z(m) is
calculated. The frequency of the new SSVEP trial is estimated as the one leading to the
highest CCA coefficient.

12.5.10 Summary and practical considerations
The multiway structure of the brain, including various modes that are introduced by
the experimental designs (such as multiple subjects, conditions, trials, etc.) or by the
imaging modality (such as the use of different wavelengths in fNIRS) or incorpo-
rated during analysis for a more comprehensive capture of the underlying dynamics
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(such as frequency expansion via wavelet transform), designates the use of tensors
as the intuitive approach for modeling and processing of neuroimaging data. More-
over, comparative studies that evaluate the performance of tensors with respect to
their 1D or 2D alternatives show that tensors reveal better results in numerous appli-
cations ranging from dimensionality reduction [57] and seizure localization [99] to
segmentation [59] and analysis of brain connectivity [114]. Tensor-based solutions
for neuroimaging applications reviewed in this chapter are listed in Table 12.1 ac-
cording to the imaging modality.

In terms of practicality of tensor decompositions, there exist several challenges
that can be categorized under the correct choice of rank, components of interest, and
initial parameters.

Various approaches have been utilized so far for automatic determination of rank.
These include the core consistency diagnostic [90], cumulative proportion of vari-
ation explained [109], minimization of the dimensionality of the latent space as
described in a Bayesian framework [39], and truncation based on the MLSVD core
[104] or based on eigenvalues of the measurement covariances [59].

In addition, some applications require selecting a subset of extracted components,
such as for removal of artifact terms, dimensionality reduction, seizure localization,
or connectivity analysis. For instance, [90] orders components according to their vari-
ance to automatically determine the dominant (epileptic) component, whereas [47]
defines an a priori frequency band separating the noise and signal subspaces for au-
tomatic removal of residual water in MRS images. Alternatively, [122] proposes to
extract only the FCNs that are related to the experimental paradigm, i.e., whose tem-
poral signatures follow the stimulus onsets. Even when component selections are
made based on external clinical input, significant differences are observed between
signatures belonging to different activity components [100]. The more field expertise
or previous empirical findings about the activities of interest are embraced as prior
knowledge, the more informed and stable decisions can be made while automating
component selection.

Last but not least, as with any optimization problem, good initialization is required
to ensure convergence to global optima. Optimization-based tensor decomposition
algorithms require any factor matrices and core tensors involved to be initialized. Ten-
sorlab [145] offers internally integrated initialization method(s) for CPD, MLSVD,
and (Lr ,Lr,1)-BTD based on randomized SVD with randomized subspace itera-
tions to approximate the SVDs of tensor unfoldings. The same method can be used
in structured data fusion to reduce the computation time. Another general option is to
initialize all values randomly (most likely multiple times, among which the best-cost
solution should be determined). For example, [47] uses a quality metric to evaluate
the decomposition result based on the variance of component subspaces, which, if
found poorly, sends a feedback for reinitialization. Alternatively, the results from a
previous decomposition run can be used to initialize a new run [124].

In summary, tensors can be very powerful tools for analyzing multidimensional
neuroimaging data, but their success depends on well-informed and appropriate
choices for the critical steps explained above.
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Table 12.1 A summary of the tensor-based algorithms reviewed in this work with their corresponding applications to neu-
roimaging data.

Neuroimaging modality Tensor-based analysis Application

EEG

CPD, PARAFAC2 Filling in missing data [38,40,43], denoising, artifact removal, and dimensionality re-
duction [57], source separation [77,82], activity recognition and source localization
[87–93,100,101,104,106], connectivity analysis [120,122], feature extraction and clas-
sification [43,131,132,134,137,139,142,143]

Tucker, MLSVD Denoising, artifact removal, and dimensionality reduction [100], activity recognition and
source localization [99,104], connectivity analysis [117], regression [130], feature extrac-
tion and classification [131,137,139]

BTD Activity recognition and source localization [103,104], feature extraction and classification
[142]

MCCA Feature extraction and classification [144]

MRI (and variants)
TBM Registration and longitudinal analysis [70–74], feature extraction and classification [135]
CPD Filling in missing data [41], denoising, artifact removal, and dimensionality reduction [40,

54], segmentation [59,60,63,66], registration and longitudinal analysis [75], connectivity
analysis [109], regression [127]

Tucker, MLSVD Denoising, artifact removal, and dimensionality reduction [47,58,63], segmentation [62,
63], regression [128]

fMRI
CPD, PARAFAC2 Source separation [78], connectivity analysis [112,116,121,124,129], regression [127,

129]
Tucker, MLSVD Connectivity analysis [114–116]
BTD, BTD2 Source separation [78]

fNIRS CPD Denoising, artifact removal, and dimensionality reduction [52,53], activity recognition and
source localization [52,94]

PET Tensor SVD Denoising, artifact removal, and dimensionality reduction [55]
fUS BTD Source separation [81]
MEG CPD, PARAFAC2 Feature extraction and classification [133]
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12.6 Future challenges
Evolution of medical technology, as well as the ever-increasing demand for it, has
led to escalating data sizes with higher spatiotemporal resolution, longer record-
ings, and a rising number of patients. By 2020, the amount of health care data
worldwide has reached 25,000 petabytes, whereas it amounted to approximately 500
petabytes in 2012 [146]. The availability of data at such a large quantity encourages
the development of data-driven approaches for medical care purposes. These include
patient diagnoses, treatments, and continuous monitoring of patients’ health status.
Inevitably, the future of medical care relies on Big Data solutions.

Indeed, during the last decade we witnessed the power and effectiveness of deep
learning methods in solving very complex tasks using vast amounts of available train-
ing data [147]. This is true in particular for image processing, including medical
imaging. However, deep learning falls short in transparency: its decision structure is
highly complex and nonlinear, and therefore not interpretable. Understanding how
and why a certain decision is made, however, is crucial in medical decision sup-
port systems in order to maintain trust and avoid unexpected behavior [148]. We
believe that tensors can play a role in making deep learning solutions more transpar-
ent. Indeed, a series of theoretical research studies has shown links between (deep)
neural networks and tensor decompositions. Their results suggest that, by analyzing
and modeling certain classes of deep neural networks (DNNs) using tensor tools, we
obtain simpler network structures of enhanced expressive power and reduced com-
plexity [149].

Reduced complexity is not only important for transparency; it is also crucial for
computational efficiency. When the input data are high-dimensional, the number of
entries and hence the number of DNN parameters become intractable. This problem
is referred to as the curse of dimensionality: the number of entries in a tensor grows
exponentially with its order. Dimensionality reduction using MLSVD (as described
in Section 12.5.2) may not be helpful: the core tensor, having the same order as the
original tensor, still has a large number of entries even in the case of low multi-
linear rank [150]. Tensor trains overcome this problem by expressing a high-order
tensor as a series of tensor contractions between consecutive low (typically second
and third)-order tensors [151]. Tensor trains are still scarcely used in biomedical sig-
nal processing. A remarkable application for whole-brain fMRI pattern recognition
is presented in [152], where the weight matrix of the fully connected layer of a neural
network is compressed via a tensor train.

In many applications it is easy to collect large amounts of normal and healthy
data, but abnormal examples, such as rare diseases or epileptic seizures, are scarce.
This results in unbalanced training data, which is a challenging machine learning
problem. In order to be able to learn and generalize from a few examples in the tar-
get class, the machine learning model can benefit from prior knowledge based on
expert input. In practice, the prior knowledge can be incorporated in the form of con-
straints in the optimization problem. The constraint reduces the solution search space
and therefore helps to converge to the global minimum. As real-life data are often
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low-rank, a simple regularization using the trace norm (i.e., the convex relaxation of
the rank function) or its tensorial extensions can already be helpful [153,154]. When
more specific knowledge is available (e.g., sparsity, nonnegativity, or a parametric
generating function), these can be conveyed via explicit constraints such as sparsity,
nonnegativity, or a parametric generating function [155]. As tensors can admit differ-
ent constraints along each of their modes simultaneously [21], they are especially fit
for this task.

Many studies that have been performed on multiple subjects highlight the neces-
sity to deliver personalized health care and medicine, taking into consideration each
patient’s medical history and even their genetics [156]. In this context, multimodal
fusion will gain importance. We believe that tensor techniques will play an important
role here as well, as they allow to handle heterogeneous data (e.g., EEG, structural
images, and phenotypic scores [157]) simultaneously and—again—to impose con-
straints that ensure interpretability.

Tensors were formulated in 1900 [158], but it was only in the last few decades that
they have been extensively recognized by the signal processing and machine learning
community. In our opinion, the use of tensor tools at their full potential, especially
in applied and clinical contexts, depends on two crucial factors. Good software tools
are needed and the users of such tools have to be appropriately educated about their
use.

There are various software toolboxes available that allow novice users to apply
standard tensor decomposition structures. For an overview, see [150]. These allow
quick prototyping and testing of new tensor models, and some offer heuristics for
practical choices. However, as the complexity of the model increases (e.g., coupled
factorizations and constraints) the computational time needed to solve the optimiza-
tion problems becomes excessive. Before such tensor tools can be used in practice,
custom-made efficient optimization algorithms are needed. The practical challenges
outlined in Section 12.5.10 also become more pronounced. Therefore, young re-
searchers should be provided with in-depth training material about the correct use
and interpretation of tensor models. Tensor overview articles such as [28], [150], and
[159] contribute well to this objective. We believe that tensors will become an increas-
ingly tackled topic in the near future at workshops, tutorials, and summer schools and
as elective courses in electrical, computer, and mathematical engineering curricula.

12.7 Conclusion
This chapter provides a general overview on the use of tensors for a wide range of
neuroimaging applications. When experimental data are inherently multidimensional,
1D or 2D methods that require unfolding of the original tensor are not fully capable
of representing all variations and interplay of the data in each mode. Meanwhile,
multidimensionality is an indispensable property of neural data, especially if one
wishes to obtain results that are generalizable, such as over multiple subjects, trials, or
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conditions. Furthermore, keeping the natural formation of the data makes individual
structuring of its modes and interpretation of the modeling and results simpler.

Tensor-based solutions exist in all stages of the neural signal processing pipeline,
ranging from denoising and dimensionality reduction to BCIs. As with any math-
ematical algorithm, one might face several challenges when using a tensor-based
method, such as parameter selection. However, with a correct understanding of the
nature of input neural data and, accordingly, an appropriate choice of the tensor tool,
it has been possible to build completely data-driven end-to-end systems. In this chap-
ter, we aimed to list existing employments of tensors in neuroimaging, along with
several reasons why we expect to see more of tensors while addressing the needs of
future medical technology regarding Big Data applications in diagnosis and monitor-
ing of patients, providing them with the right personalized medical care.
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