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Objective Model Selection for Identifying the
Human Feedforward Response in Manual Control

Frank M. Drop,Student member, IEEE,Daan M. Pool,Member, IEEE,Marinus (Reńe) M. van Paassen,Senior
member, IEEE,Max Mulder, Heinrich H. B̈ulthoff, Member, IEEE

Abstract—Realistic manual control tasks typically involve pre-
dictable target signals and random disturbances. The human
controller (HC) is hypothesized to use a feedforward control
strategy for target-following, in addition to feedback control for
disturbance-rejection. Little is known about human feedforward
control, partly because common system identification methods
have difficulty in identifying whether, and (if so) how, the HC
applies a feedforward strategy. In this paper an identification
procedure is presented that aims at an objective model selection
for identifying the human feedforward response, using linear
time-invariant ARX models. A new model selection criterion is
proposed to decide on the model order (number of parameters)
and the presence of feedforward in addition to feedback. For a
range of typical control tasks, it is shown by means of Monte
Carlo computer simulations that the classical Bayesian Infor-
mation Criterion (BIC) leads to selecting models that contain
a feedforward path from data generated by a pure feedback
model: ‘false-positive’ feedforward detection. To eliminate these
false-positives, the modified BIC includes an additional penalty on
model complexity. The appropriate weighting is found through
computer simulations with a hypothesized HC modelprior to
performing a tracking experiment. Experimental human-in-the-
loop data will be considered in future work. With appropriate
weighting, the method correctly identifies the HC dynamics in a
wide range of control tasks, without false-positive results.

Index Terms—Manual control, feedforward control, human
control models, system identification, parameter estimation

I. I NTRODUCTION

M ANUAL control of a dynamic system typically re-
quires the human controller (HC) to steer that system,

perturbed by disturbances, along a reference trajectory. An
example is the manual control of an aircraft during turns and
landings, in the presence of turbulence. The HC will use all
available information and knowledge, i.e., visual, vestibular,
and somatosensory information as well as prior experience,to
improve control performance and reduce effort [1]–[5].

In many everyday control situations the reference trajec-
tory or target signal has a simple and predictable wave-
form. Evidence exists that in this case the HC employs a
feedforward control strategy, as it can considerably improve
tracking performance, without affecting closed-loop stability
[6]–[8]. Feedforward control plays an essential role in many
neurophysiological processes as well [9]–[12].

Although feedforward control strategies were frequently
hypothesized [1], [6]–[8], [13], [14] and some empirical ev-
idence was provided [15], [16], it was only until recently
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that feedforward control was studied by means of system
identification and parameter estimation techniques [17]–[19]
with the goal of modeling the feedforward in detail.

System identification techniques allow us to experimentally
measureif, and mathematically modelhow the HC responds
to multiple sources of information. Many of the common
techniques [1], [13], [20]–[26], however, were not designed to
identify the feedforward response in addition to the, relatively
well-known, feedback response.

The main problem is that, given a particular manual control
task, it is often not known a priori whether the HC will exert
feedforward control, or not. Adding a feedforward path to
the HC model adds degrees of freedom in the model (more
parameters) that the identification method can use to obtain
a better fit. When the model selection is only based on the
‘best’ quality of fit, the identification procedure is likelyto be
biased towards selecting more complex models. The choice
for including a feedforward path might be a ‘false-positive’
result. A secondary problem is that it is often unknownhow
the human feedforward and feedback paths should be modeled.
Although basic control-theoretical insights provide a good
initial guess, prior assumptions on the feedforward dynamics
cannot be based on previous experimental results, because
hardly any literature exists on the subject.

It is the goal of this paper to address and resolve these
two issues, and describe an objective identification procedure
to simultaneously identify the HC feedforward and feedback
control responses. To address the first issue, the procedure
selects the best model based on a trade-off between model
complexity (the model order) and the model quality-of-fit. To
address the second issue, it usesunconstrained linear models
which allows the selection of the best global model available.

In short, the proposed identification procedure will identify
many different linear time invariant (LTI) autoregressivewith
exogenous input (ARX) models [27]. The models vary in
the model structure (pure feedback and combined feedback-
feedforward response models are considered), and in the
number of model parameters (model order). A model selection
criterion, derived from the Bayesian Information Criterion
(BIC) [27], [28] is used to choose the best model. It decides
on the model order and whether a feedforward component is
needed, or not, to describe the data. This differs from previous
ARX estimation procedures, where no explicit model order
selection step was used [21]–[23], [25]

The functionality of the proposed procedure is assessed by
means of computer simulations, because it is necessary to
know the true model to assess the ability of the procedure
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to identify the true dynamics. It is found that the original
BIC does not weigh the model complexity enough, such that
‘false-positive’ feedforward identification occurs frequently.
This problem is addressed by altering the relative weighting
of model quality and model complexity in the model selection
criterion, by the introduction of a ‘model complexity penalty
parameter’ in the selection criterion as suggested by Ljung
[27]. The weighting is tuned by means of offline Monte
Carlo simulations with a HC model based on literature. The
procedure is applied to experimental data in future work.

The paper is structured as follows. Section II provides an
overview of the identification problem, our workflow and
proposed procedure. Sections III and IV describe in more
detail the individual steps in the procedure. Sections V to VII
discuss the results of applying the procedure to a comprehen-
sive example, involving four typical manual control tasks.The
paper concludes with a discussion and conclusions.

II. I DENTIFICATION PROBLEM AND APPROACH

Section II introduces the general identification problem and
provides an overview of the steps in the procedure. Section III
and IV describe ARX model identification and our tuning of
the model selection criterion, respectively, in detail.

A. Identification problem and objectives

This paper focuses on the identification of human con-
trol behavior in a combined target-tracking and disturbance-
rejection task, with predictable target signals and unpredictable
disturbances. Here, the task resembles an aircraft pitch attitude
control task. Fig. 1 illustrates the task: the HC controls a
dynamic systemYc such that the outputθ (perturbed by
disturbancefd) accurately follows the targetft. Thus, the
error e, defined ase = ft − θ, is minimized. The targetft
and disturbancefd signals are referred to asforcing functions.

Yp(s), human
controller
dynamics

Yc(s)
+

−

+
+ft e u

fd

θ

Fig. 1. Control scheme studied here. The HC perceives the target signal
ft, the perturbed system outputθ and the errore from a pursuit display and
generates control signalu.

System identification and parameter estimation methods are
used to address four objectives: O.1) to identify the signals
to which the HC responds in a particular task; these are the
input signals of the HC model; O.2) to identify the governing
HC dynamics, in the frequency range where they contribute
most to the model output signalu; O.3) to obtain a precise
and physically meaningful parametrization of the HC model;
and O.4) to quantify changes in those dynamics as a function
of control task variables. A single method suitable for all
four objectives does not exist. These four objectives should be
addressed sequentially by specific methods and the results of
one step are necessary for the next. However, previous studies

e
θ ft

Fig. 2. Pursuit display for aircraft pitch control. The horizontal black line
indicates the target pitch attitudeft, the aircraft symbol indicates the current
pitch attitudeθ, and thus the vertical distance between the target and the
aircraft symbol is the errore. The display only shows the current values of
the signals; no past/preview information is available.

into manual feedforward addressed O.4 directly, relying on
models derived from control theoretical insights rather than
system identification results [17], [18].

The objective of the procedure described here is to simulta-
neously address O.1 and O.2, providing the insights necessary
to parametrize the model (O.3). The procedure doesnot aim
to address O.4; existing parameter estimation methods work
satisfactory and are currently not limiting manual control
research [26]. Objectives O.1 and O.2 involve five challenges.

First, the HC is presented with three signals on a pursuit
display, Fig. 2:ft, e andθ, and can respond to all three (but
possibly also to two, or even just one). Because of the linear
relationshipe = ft − θ, however, only the responses to two
input signals can be identified [7]. The two responses to be
identified can be chosen freely; all choices are equivalent from
an identification point of view. For this particular controltask,
we choose to identify the feedforward response on the targetft
and the feedback response on the errore. A feedforward and
feedback model likely reflects the actual control strategy best,
as we considerpredictabletarget signals [17]. Other control
tasks may require a different choice of possible HC responses.

Second, the HC is a highly adaptive, nonlinear controller
and will change the control strategy to the characteristicsof
Yc and the properties of the forcing functionsft and fd.
Therefore, the HC response needs to be measured in a control
task very similar to the task for which the identified model will
be used, and the identification procedure should be compatible
with the chosen forcing functions and system dynamics. Real-
istic control tasks often involve ramp or parabola-like reference
signals, which have power at all frequencies. This renders non-
parametric techniques that rely on the excitation of the HC at
discrete frequencies useless [13], [24]. Hence, the procedure
introduced here is based on multi-input, single-output (MISO)
linear time-invariant (LTI) ARX models [27] that pose less
stringent requirements on forcing function properties.

Third, a relatively large portion of the HC control signal is
not (linearly) correlated to any of the input signals presented
to the HC, and thus cannot be described by a linear model.
This modeling residual, designatedn, is human remnantand
consists of the unmodeled nonlinear dynamics and random
noise. The remnant level (expressed as the variance of the
remnant over the variance of the control signal,σ2

n/σ
2
u) is

usually large, up to 30% [26], and is a key complicating factor
in the identification of small, yet relevant control dynamics. To
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Fig. 3. Workflow of the procedure proposed in this paper. Circled numbers denote outputs of the steps. 1} ft, fd, Yc, and remnant powerσ2
n/σ

2
u. 2}

em, um. 3} Set of Ŷp with correspondinĝum. 4} Ŷ best
p , ûbest

m . 5} Increase/decrease model complexity weighting. 6} Yes: phase 2, human-in-the-loop
experiment, can commence. 7} No: make changes to control task or experimental paradigm, go back to 1). 8} Tuned model selection criterion weighting. 9}

Yes: phase 1 was performed for the correctY hyp
p . 10} No: adjustY hyp

p and go back to 1.2.

reduce the remnant level, experimental data is averaged over
multiple recordings before it is further analyzed.

Fourth, the use of MISO LTI ARX models for identification
purposes requires the user to choose the appropriate number
of model parameters (the model order), and the time delay
for each of the model inputs. In the proposed identification
procedure we will use a model selection criterion derived from
the Bayesian Information Criterion (BIC) [28] to objectively
determine the model order and time delay values. The model
selection criterion must preventoverfitting, the selection of a
model with too many (meaningless) parameters. It takes into
account both the modelquality, the goodness of the model fit,
and the modelcomplexity, the model order, in the choice for
the ‘best’ model. Although the primary objective of the model
selection criterion is to prevent overfitting, by putting a certain
weight on model complexity, it is equally important to prevent
underfittingby putting too much weight on model complexity.
Our procedure will explicitly address this weighting.

Fifth, all measurements need to be taken inclosed-loop.
This causes the tracking errore (one of the model inputs) to
be correlated with the noise (human remnant) present in the
control signalu (the model output). That is, apart from the
‘forward’ relationship betweene and u (that is to be iden-
tified), an additional correlation exists, equal to−1/Yc, due
to the closed-loop feedback [29, pp. 19], [30]. At frequencies
where remnant is larger than the disturbance signal this corre-
lation−1/Yc might be identified [20]. ‘Indirect’ identification
methods are less sensitive [30] to these closed-loop effects
than the classic ‘direct’ [27] identification approach. Indirect
identification methods, however, often consist of more steps
yielding a more involved procedure or tend to return models
of unnecessarily high order [30], which is unacceptable for
our objective. Thus, we apply a direct identification approach.

B. Approach

The identification procedure introduced in this paper reflects
the workflow we recommend when performing studies on HC
behavior. It is illustrated in Fig. 3.

The workflow consists of two phases. In the first phase,
the procedure is applied to data obtained bysimulating an
HC model that is hypothesized for the control task at hand,
with numerous remnant realizations. Using this simulationdata
set, a Monte Carlo analysis is performed to assess whether
the procedure is indeed able to identify the HC model and,

most importantly, totune the model selection criterion. When
successful in identification of the simulated HC model and
the criterion being tuned to satisfaction, the second phase
commences and the procedure is applied to the experimental
data using the obtained model selection criterion tuning. The
individual steps are briefly introduced below.

1) The control task is defined by the chosen target signal
ft, disturbance signalfd, and system dynamicsYc. For this
control task, based on existing literature or control-theoretic
principles, a model for the HC,Y hyp

p , is hypothesized. Here,
Y hyp
p is a MISO system with inputsft and e, and outputu.

The experimental paradigm will determine the remnant level
σ2
n/σ

2
u for which the procedure has to be evaluated.

1.2) Many (100+) different remnant realizations are gener-
ated, such that the simulation data set has a sufficient levelof
randomness to reflect the nonlinear human response.

1.3) Many different MISO ARX models are estimated from
the collected data. The signals used to estimate the ARX
models are the two model inputs: the target signalft and the
measured tracking errorem; and the model output signal: the
measured control signalum. Each estimated ARX model̂Yp

is simulated to obtain the estimated control signalûm.
1.4) The validity of the ARX models from an identifica-

tion point-of-view is tested and invalid models are excluded.
Models with dynamics (poles and zeros) outside the frequency
range excited by the forcing functions are considered invalid.

1.5) The best ARX model̂Y best
p , with correspondinĝubest

m ,
is selected through a model selection criterion that tradesoff
model complexity and model quality. For simulated data, this
trade-off is tuned until all requirements at step 1.6 are satisfied.

1.6) Simultaneously, the model selection criterion is tuned
and the ability of the procedure to correctly identifyY hyp

p is
assessed by means of four quantitative requirements, that are
chosen by the user depending on the objectives of the study:
R.1) ‘False-positive’ identification of one or more responses
should occur in fewer thanηfp realizations, whereηfp is a
percentage chosen by the user. R.2) The selected model is the
best of all evaluated models, but not necessarily a good model
in an absolute sense. Therefore,ûbest

m is compared toum to
assess the time-domain quality-of-fit. The quality-of-fit should
surpass a level chosen by the user. R.3) The selected model
Ŷ best
p should be sufficiently complex to describe dynamics of

the same order asY hyp
p . R.4) The response dynamics ofY best

p

should be sufficiently similar toY hyp
p .
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Bft

(

q;nbft

)

/A (q;na)

Be (q;nbe) /A (q;na)

1
A(q;na)

ft
(

k − nkft

)

em (k − nke
)

ǫ(k)

um(k)
+

Fig. 4. Generic ARX model structure.

The main result of step 1.6, i.e., with the simulated data, is
that the model selection criterion is tuned to the HC behavior
expected for the control task being studied, such that the
procedure reliably selects a model similar toY hyp

p . If all
requirements cannot be satisfied simultaneously, the control
task or experimental paradigm needs to be changed to excite
the relevant HC dynamics more, or reduce the remnant levels.

The requirements imposed by 1.6 are assessed as a function
of the relative weighting of model complexity and model
quality at step 1.5. For simulated data, the ‘true’ dynamics
Y hyp
p are perfectly known and thus it is possible totune the

model selection criterion such that̂Y best
p is most similar to

Y hyp
p . Most importantly, repeating the procedure for all indi-

vidual remnant realizations allows us to assess the occurrences
of ‘false-positive’ and ‘false-negative’ results, and seehow
the relative weighting needs to be tuned to minimize these
objective, yetinvalid, model selections.

The steps of phase 2 are identical to the corresponding steps
in phase 1, with the following exceptions.

2.2) Experimental human-in-the-loop data are collected
from a number of participants.

2.5) The model selection criterion uses the tuning obtained
in step 1.6, i.e., the model selection is not tuned in phase 2.

2.6) The model̂Y best
p that was identified fromexperimental

data is compared toY hyp
p , to assess whether the Monte

Carlo analysis was performed for the correct model. In case
discrepancies between̂Y best

p andY hyp
p are substantial, phase

1 should be repeated using a model more similar to the exper-
imentally foundŶ best

p . If Ŷ best
p identified from experimental

data is indeed very similar toY hyp
p (confirming the HC model

hypothesis),Y hyp
p can be used for O.3 and O.4.

III. ARX I DENTIFICATION AND MODEL SELECTION

The ARX model estimation, evaluation and selection steps
(1.3 through 1.5 in Fig. 3) are an essential part of the
identification procedure. They are described in detail next.

Step 1.3, substep A.The data are time traces offt, em, and
um, lasting 81.92 s and sampled at 100 Hz. These are split into
an estimation set (t = [0, 40.95] s) and a validation set (t =
[40.96, 81.91] s). Data are resampled to 25 Hz after filtering to
prevent aliasing, yielding 1024 samples data sets. Resampling
reduces computation effort, but may introduce biases in the
estimated models. The estimated time delays are affected most,
as these can only be integer multiples of the sample time.

Step 1.3, substep B.Many ARX models are fit onto the
estimation data. The generic structure of each ARX model is

shown in Fig. 4 and is described by the discrete-time difference
equation (1), withk the discrete time samples of 0.04 s:

A(q;na)um(k) = Bft(q;nbft
)ft(k − nkft

)+

Be(q;nbe)em(k − nke
) + ǫ(k)

(1)

Here,ǫ is a white noise signal,q is the delay operator and the
polynomialsA, Bft , andBe are defined as:

A(q;na) = 1 + a1q
−1 + . . .+ ana

q−na

Bft(q;nbft
) = bft,1 + bft,2q

−1 + . . .+ bft,nbft
q

(

−nbft
+1
)

Be(q;nbe) = be,1 + be,2q
−1 + . . .+ be,nbe

q(−nbe+1)

(2)
Each ARX model is described by three model orders, i.e.,
the number of parameters in theA polynomial (na), theBft

polynomial (nbft
), and theBe polynomial (nbe ). For each of

the two input signals, a delay parameter needs to be identified:
the feedforward time delaynkft

, and the feedback time delay
nke

, both integer multiples of the sample time 0.04 s.
Theeffectivetotal number of free parametersd of each ARX

model is the sum ofna, nbft
, andnbe , plus the total number

of delays in the model. That is, for a pure feedback model
with nbft

= 0 and nbe > 0, the number of free parameters
d equalsna + nbe + 1. For a pure feedforward model, with
nbft

> 0 andnbe = 0, d = na + nbft
+ 1. For a combined

feedback-feedforward model, withnbft
> 0 and nbe > 0,

d = na + nbft
+ nbe + 2.

Each model order and delay parameter is varied over a
certain range, and the full factorial combination of these ranges
results in a huge number of model candidates. The ranges
depend on the expected complexity and time delay of the
HC responses, where a more complex response requires more
parameters. The identification procedure is more objectiveif
the evaluated range is large, at the cost of computation time.

Step 1.3, substep C.Each model is evaluated bysimulating
the ft and em signals through the estimated model to obtain
ûm, the estimate of the measured control signalum. The full
81.92 s of data are used to simulate the model and obtainûm,
but only the last 40.96 s (the validation data set) are used to
calculate the quality of the fitV , with Nd = 1024:

V =
1

Nd

2Nd
∑

k=Nd+1

(ûm(k)− um(k))
2
, (3)

Step 1.4.The validity of each ARX model from an iden-
tification perspective is assessed and ‘invalid’ models are
excluded. The HC dynamics can be identified only within the
frequency range where both forcing functionsft andfd have
power. Outside this frequency range only noise is measured.

Early evaluations of the identification procedure re-
vealed that ARX models containing dynamics approximating
−1/Yc(s) were selected in a small number of cases, see
Section II-A. These models provided a good fit, because in
addition to fitting the HC control dynamics (that are to be
identified), they could also fit the correlation betweene and the
remnant at higher frequencies caused by taking measurements
in closed-loop. The use of separate estimation and validation
data sets does not prevent the selection of these models,
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because this relation is ‘real’. These models are excluded
by checking for the presence of zeros in the feedback path
of the ARX model close to, or above the highest frequency
component in the disturbance signalfd.

Step 1.5. The model selection criterion is calculated for
each model from the quality of fitV and model complexity
expressed by the number of parametersd. The model with the
smallest value is selected as the best model. The selection cri-
terion used is a modified version of the Bayesian Information
Criterion (BIC), defined as [27]:

BIC = log V +
d logNd

Nd

. (4)

The trade-off between model quality and complexity by the
BIC is fixed. Yet, each control task has its own particularities
and for some studies the original BIC might either put too
much weight on model complexity, such that certain HC dy-
namics are overseen, underfitting, or too little weight, leading
to overfitting. Therefore, in our identification procedure an
additional parameterc is introduced to allow the trade-off to
be tuned[27], yielding the modified BIC (mBIC):

mBIC = log V + c
d logNd

Nd

(5)

The ‘model complexity penalty parameter’c is to be tuned by
means of computer simulations, such that false-positives are
avoided, while maintaining sensitivity to small yet important
contributions of certain HC control dynamics. For a given
value ofc, the model with the lowest mBIC value is selected
to be the best model̂Y best

p .

IV. M ODEL SELECTION CRITERION TUNING

The main innovation in the identification procedure lies in
the tuning of the model selection parameterc at step 1.6 guided
by four tangible requirements described in detail next. Note
that this tuning process happens with the simulated data only.

R.1) ‘False-positive’ identification of a response should
occur in fewer thanηfp realizations. The order of the path
in Ŷ best

p associated to a response that is not present inY hyp
p

should be equal to zero. E.g.,nbft
should be zero for data

generated by a pure feedback model. If false-positives are
found in more thanηfp realizations,c should be increased.

R.2) The time-domain quality of fit of the selected ARX
model Ŷ best

p is evaluated, by comparing its control signal
ûbest
m to the measured control signalum in the time domain.

Previous literature measured the fit quality using the Variance
Accounted For (VAF) [17], [18], defined as:

VAF =

(

1−

∑2Nd

k=Nd+1 (um(k)− ûm(k))
2

∑2Nd

k=Nd+1 ûm(k)2

)

× 100%. (6)

The VAF of Ŷ best
p is to be compared to the VAF ofY hyp

p , by
means of theVAF ratio defined as VAF(̂Y best

p ) / VAF(Y hyp
p ).

A VAF ratio larger than 1 is an indication of overfitting;
Ŷ best
p was able to fit the remnant andc should be made

larger to prevent this. A VAF ratio smaller than 1 indicates
underfitting. The user chooses an allowable range for the VAF
ratio depending on the importance of preventing overfitting
over obtaining a model providing a high model quality.

R.3) Feedforward ARX models (nbft
> 0) should be identi-

fied from data generated by a combined feedback-feedforward
HC model (with Kpt

> 0). Moreover, the selected ARX
model Ŷ best

p should be sufficiently complex to describe the
dynamics ofY hyp

p . For example, if the feedforward inY hyp
p

is a differentiator, thennbft
should be equal to or larger

than 2 to describe these dynamics accurately. Clearly then,
identified ARX models with less parameters are considered
false-negativeresults. If false-negatives are found in more than
ηfn realizations, the value ofc should be decreased.

R.4) The dynamics of the selected ARX modelŶ best
p should

be similar to the hypothesized modelY hyp
p . Here, similarity is

considered sufficient if the frequency response ofŶ best
p falls

within a predefined range of the magnitude and phase response
of Y hyp

p , defined by the inequalities:

1

ηmag

|Y hyp
p (ω)| < |Ŷ best

p (ω)| < ηmag|Y
hyp
p (ω)|, (7)

| 6 Ŷ best
p (ω)− 6 Y hyp

p (ω)| < ηphase (8)

The frequency range of interest over which the inequalitiesare
tested, as well asηmag andηphase, are chosen by the user.

All four requirements involve one or more objective thresh-
olds chosen by the user, which will depend on the application.
Applications relying on precise predictions of future control
inputs, e.g., advanced motion cueing [31], will set more
stringent requirements than those that rely on an ‘average’
HC model, e.g., haptic aids for easy-to-control dynamics [32].

The metric used for R.4 enables the user to objectively
decide whether or not̂Y best

p is sufficiently similar toY hyp
p .

It does not revealhow the models differ. This is valuable
information if not all requirements can be satisfied simultane-
ously and changes to the control task or experimental paradigm
need to be made. We propose therefore, as an additional
analysis method that isnot part of the tuning process, tofit
the parametersof Y hyp

p onto Ŷ best
p , in the frequency domain,

through minimizing a normalized quadratic cost function:

p̂ = argmin
p











ni
∑

i=1

∣

∣

∣
Ŷ best
pt

(ωi)− Y hyp
pt

(p;ωi)
∣

∣

∣

2

∣

∣

∣
Ŷ best
pt

(ωi)
∣

∣

∣

2 +

ni
∑

i=1

∣

∣

∣
Ŷ best
pe

(ωi)− Y hyp
pe

(p;ωi)
∣

∣

∣

2

∣

∣

∣
Ŷ best
pe

(ωi)
∣

∣

∣

2











(9)

Here,p denotes the parameter vector of the parametric model
Y hyp
p , ωi the ith frequency where the two models are com-

pared, andni the number of frequency points. The frequencies
ωi should be spaced logarithmically, to ensure that the fitting
does not unduly favor higher frequencies. A genetic algorithm
[33] is used to find a reasonably accurate initial estimate ofthe
model parameters, refined by a gradient descend method. This
process is performed ten times, from which the parameter set
with the lowest cost function is considered the final estimate.

V. EXAMPLE IDENTIFICATION PROBLEM

The procedure’s workflow and performance is illustrated
by an example, involving four representative control tasks.
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TABLE I
HC MODEL STRUCTURE AND PARAMETER VALUES USED IN SIMULATIONS, UNLESS NOTED OTHERWISE

Y hyp
pt (s) Kpt TI , s τpt , s Y hyp

pe (s) Kpe TL, s τpe , s ωnms, rad/s ζnms

SI Kpt

1

Y SI
c (s)

1

(TIs+ 1)
e−τpts 1 0.28 0.2 Kpee

−τpes 2.3 - 0.21 12 0.2

DI Kpt

1

Y DI
c (s)

1

(TIs+ 1)2
e−τpts 1 0.35 0.45 Kpe (TLs+ 1) e−τpes 0.45 1.25 0.28 9.5 0.27

In this paper, we present the results for phase 1 only, to
validate the proposed procedure using models that are exactly
known beforehand. The accompanying experimental study is
presented in future work. In this section, the considered control
tasks are introduced. Section VI discusses the model selection
tuning results, and Section VII presentshow the selected̂Y best

p

differs from Y hyp
p .

A. Control Tasks

The approach starts by defining the control task to be
investigated (step 1), selecting the forcing functionsft and
fd and the system dynamicsYc.

1) Forcing functions:Two variations of the target signalft
will be studied: i) a signal composed of predictable ramp seg-
ments (R), and ii) a signal composed of predictable parabola
segments (P), see Fig. 5. The unpredictable disturbance signal
fd consists of a sum of ten sines, with the lowest frequency
at 0.23 rad/s and the highest frequency at 17.33 rad/s. This
signal is identical to the one used in [17].

3 · fd (R, P)ft (P)ft (R)

time, s

f
t
,f

d
,d

eg

0 10 20 30 40 50 60 70 80
-30

-20

-10

0

10

20

Fig. 5. Two predictable target signalsft, consisting of ramp and parabola
segments, and the quasi-random sum-of-sines disturbance signal fd.

2) System dynamics:Two common variations of the system
dynamicsYc will be considered: i) a single integrator (SI),
Eq. (10), and ii) a double integrator (DI), Eq. (11):

Y SI
c (s) = 1/s (10)

Y DI
c (s) = 5/s2 (11)

These represent a wide array of vehicle dynamics [13]. DI
dynamics are more difficult to control than SI dynamics, as
they require considerable lead action for stability [13].

Each combination of system dynamics and target signal will
be referred to with the syntax ‘{SI,DI}-{R,P}’. E.g., SI-P
designates single integrator dynamics and the parabola target.

B. HC Models and Remnant Model

At step 1.2, data is generated through computer simulations
with HC models. These simulations require: i) a HC model
Y hyp
p that describes the expected HC control behavior, and ii)

a noise model to generate the remnant signaln.

1) HC Models: Fig. 6 shows the generic structure of the
hypothesized HC modelY hyp

p for all conditions. The HC
model structure consists of three components: i) a feedback
componentY hyp

pe
, ii) a feedforward componentY hyp

pt
, and iii)

a model of the neuromuscular systemY hyp
nms that acts on the

summed feedback and feedforward signals:upe
+ upt

. Model
details are summarized in Table I.

Ype
(s)

Ypt
(s)

Ynms(s) Yc(s)

Human controller

ft e upe

upt

u

n fd

θ

Fig. 6. HC model block diagram.

Literature [17], [18] suggests that the feedback partY hyp
pe

of the combined feedback-feedforward HC model can be
modeled with a structure identical to McRuer’s Extended
Crossover Model [1]. For an SI, this compensatory model
consists of a gain and a time delay; for DI dynamics a lead
term parametrized byTL is added, see the columnY hyp

pe
(s) in

Table I. Model parameter values are taken from [17], [18].
The model of the feedforward partY hyp

pt
is based on the

notion that the ‘ideal’ feedforward controller equals the inverse
of the system dynamics [7], [17], [18]. Hence, it consists ofa
gain, inverse system dynamicsY −1

c (s), an equalization term,
and a time delay, see the columnYpt

(s) in Table I.
The equalization termTI accounts for the possibility that

the HC is not able to invert the system dynamics over the
entire frequency range, but only up to a certain frequency [18].
Then,τpt

captures the time delay present in the feedforward
response, originating throughout the entire perception and
action loop responding to the target signal. The HC might,
however, compensate for this delay by anticipating the future
course of the target signal, effectively reducing it to zero. The
‘perfect’ feedforward gainKpt

is 1, but the HC might not be
able, or willing, to perform a feedforward action with such
strength, as previous studies have shown [17], [18]. Note that
for Kpt

= 0, the HC model becomes a pure feedback model.
The neuromuscular system (NMS) is modeled with second-
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TABLE II
RANGE OF TESTEDARX MODEL ORDERS

A, Be, Bft order time delay
na nbe nbft

nke
nkft

lower bound 1 0 0 1 1
upper bound 7 7 7 15 15

order dynamics [34]:

Y hyp
nms(s) =

ω2
nms

s2 + 2ζnmsωnmss+ ω2
nms

(12)

Appropriate values forωnms andζrms depend on the system
dynamics and were chosen based on [18], see Table I.

2) Remnant Model:Remnantn is added to the control
signalu, Fig. 6. It is white noise passed through a third-order
low-pass filter (ωn=12.7 rad/s) with damping (ζn=0.26) [26]:

Hn(jω) =
Knω

3
n

(

(jω)
2
+ 2ζnωnjω + ω2

n

)

(jω + ωn)
. (13)

Here,Kn is used to scale the remnant power such that its vari-
ance equals 15% of the variance of the control signalu, during
a disturbance-rejectiononly control task:σ2

n/σ
2
u = 0.15: the

remnant level obtained when averaging five tracking runs. The
reason for this is that during the ramp and parabola target-
tracking segments,u is not zero-mean, resulting in a large
control signal variance which would make the scaled simulated
remnant unrealistically large [17].

C. Identification and Parameter Estimation Boundaries

In our procedure the researcher needs to set: i) the range of
ARX model orders to be tested at step 1.3, see Section III, ii)
the requirements R.1 through R.4 guiding the tuning process
at step 1.6, and iii) the lower and upper bounds on the HC
modelY hyp

p parameter values during the parametric fitting to
assess hoŵY best

p differs from Y hyp
p .

Table II lists the lower and upper bounds of ARX model
orders, defining the ARX models to be estimated and evaluated
in step 1.3, identical for all conditions. The least complex
models to be tested have only three parameters, the most
complex models have 23 free parameters. For each model,
the feedforward and feedback time delays are varied between
1 and 15 samples, corresponding to a delay between 0.04 s
and 0.60 s which is a reasonably wide range around the true
delay values in the simulated HC models, Table I.

At step 1.6 we will impose the following requirements. R.1)
False-positive feedforward identification is allowed in fewer
thanηfp = 2% of the realizations generated withKpt

= 0. R.2)
The VAF ratio should be above 0.9 forall remnant realizations.
R.3) For SI conditions, a model with at least two parameters
in the feedforward path (nbft

≥ 2) is necessary to describe
inverse system dynamics. For DI conditions, three parameters
are necessary (nbft

≥ 3). Models with fewer parameters
are considered false-negatives. False-negatives should occur
in less thanηfn = 25% of realizations forKpt

= 1. R.4)
Similarity betweenŶ best

p and Y hyp
p is tested between the

lowest frequency infd (= 0.23 rad/s) and the upper bound
of the frequency range that contains 90% of the power ofupt

andupe
of Y hyp

p for that condition, see Fig. 6. The bounds on
magnitude and phase areηmag = 1.5 andηphase = 45 deg.

Table III shows the lower and upper bounds on the param-
eter values of the HC modelY hyp

p , fitted to the selected ARX
model to obtain insight in the differences betweenŶ best

p and
Y hyp
p . These bounds are identical for all conditions.

TABLE III
RANGE OF HC MODEL PARAMETER VALUES

Kpt TI τpt Kpe TL τpe ωnms ζnms

- s s - s s rad/s -
low. b. 0 0 0 0 0 0 5 0
up. b. 2 10 1 10 6 1 20 2

D. Computer Simulations

For each of the four tasks evaluated the hypothesized HC
model will be simulated, with the feedforward gainKpt

ranging between 0.0 and 1.0 in steps of 0.1. For each of these
44 (4 × 11) HC models, one hundred independent remnant
realizations will be used.

VI. RESULTS I: TUNING THE MODEL SELECTION

CRITERION

A. False-positive Feedforward Model Selection (R.1)

Fig. 7 shows the percentage of remnant realizations for
which an ARX model was selected with eithernbft

= 0, 1,
2, ..., or 7, as a function of the model complexity penalty
parameterc. For low values ofc, and for all conditions, the
number of parameters in the feedforward path is relatively high
for a considerable number of ARX models: false-positives.
When c increases, these false-positives diminish. Forc ≥ 3,
in less than 2% of the 100 available remnant realizations a
feedforward model is erroneously selected, such that R.1 is
met for all conditions. Note that forc = 1, for which the
mBIC criterion equals the original BIC, a feedforward model
with up to seven orders in the feedforward path is chosen in
over 20% of the cases.

B. Time Domain Quality of Fit (R.2)

Requirement R.2 states that the VAF ratio should be above
0.9 forall realizations. Fig. 8(a) shows the mean and minimum
VAF ratio for all conditions forKpt

= 0, for whichY hyp
p is a

pure feedback model. For both SI conditions, the mean VAF
ratio is equal to 1 for smallc, and remains mostly constant as
c is made larger; the first notable decrease in the VAF ratio
appears only atc ≈ 40. This indicates that the very high order
false-positive feedforward models, selected forc < 3, do not
provide a truly better fit than models without the feedforward
path. The minimum VAF ratio for SI conditions is also close to
1, indicating little variance between realizations. For both DI
conditions, however, the minimum VAF ratio is considerably
smaller than 1. For DI-P, requirement R.2 is met forc < 60.
For DI-R, however, the VAF ratio is below 0.9 forall values
of c, such that requirement R.2 cannot be met.

Then, Fig. 8(b) shows the VAF ratio for all conditions
for Kpt

= 1, for which Y hyp
p is a combined feedback and
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Fig. 7. Percentage of ARX models withnbft
between 0 and 7, selected

from simulated data withKpt = 0, as a function of the model complexity
parameterc. All ARX models with nbft

> 0 are false-positives.
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Fig. 8. Minimum (dashed) and mean (solid) values of VAF(Ŷ best
p ) /

VAF(Y hyp
p ) taken over all remnant realizations. (a)Kpt = 0. (b) Kpt = 1.

feedforward model. As forKpt
= 0, the mean VAF ratio is

larger than 0.9 in SI conditions and DI-P up to largec, such
that R.2 can be met. Contrary toKpt

= 0, requirement R.2
can also be met for the DI-R condition, but only forc < 5.

Note that the VAF ratio tends to decrease in a step-wise
fashion; these steps correspond to the ‘disappearance’ of
dynamics in Ŷ best

p that are present inY hyp
p as c is made

larger. The first stepwise decrease for both DI conditions is
seen betweenc = 1 and 10, suggesting that 10 is the upper
bound forc for avoiding false-negatives. Further analysis will
reveal that the disappearing dynamics are the feedforward.

C. Feedforward Model Selection in SI Conditions (R.3)

We then analyze the complexity of models estimated from
data generated with HC models that include feedforward, with
Kpt

between 0.1 and 1.0, to assess ‘false-negative’ results.
Figs. 9(a) and 9(f) show that forc = 3, very few feed-

forward ARX models are selected forKpt
= 0.1 in both

SI conditions. That is, forKpt
= 0.1 a false-negative result

is found in approximately 90% of the simulations. The per-
centage of selected feedforward ARX models withnbft

≥ 2
much increases forKpt

≥ 0.2 in both conditions, reducing the
number of false-negative results to approximately 5% for SI-R

and 15% for SI-P. ForKpt
≥ 0.3 no false-negative results are

found. ForKpt
= 1, all the selected models contain at least

two parameters in the feedforward path, required to describe
the inverse system dynamics, and thus R.3 is met.

D. Feedforward Model Selection in DI Conditions (R.3)

Figs. 9(b) and 9(g) show that, forc = 3, the number
of realizations for which a feedforward model is selected is
much smaller in the DI conditions than in the SI conditions.
Even for largeKpt

, the majority of the selected feedforward
models has just one or two parameters in theBft polynomial,
not sufficient to describe the double differentiator feedforward
dynamics, and thus R.3 isnot met. Hence, the feedforward
contribution in both DI conditions, forc = 3 and HC model
parameter values as given in Table I, is likely to be overseen.

Feedforward ARX models are selected more frequently in
the DI-P condition than in the DI-R condition, caused by the
relatively larger contribution of the feedforward path to the
total control signal. Fig. 10 shows that, for the DI-R condition,
upt

is a sharp pulse of short duration following the onset and
endings of the ramp segments. Following this initial transient
upt

is zero, irrespective of the duration or rate of the ramp
segment, making identification of the feedforward dynamics
difficult. For the DI-P condition,upt

is a constant, non-zero
control input resembling a ‘doublet’ and persists during the
entire parabola segment; here identification of the feedforward
dynamics is more straightforward.

upt
, DI-P

upt
, DI-R

ft , DI-P, scaled

ft, DI-R, scaled

time, s

u
p
t

,d
eg

,f
t
,-

48 50 52 54 56 58 60 62 64 66

-1

-0.5

0

0.5

1

Fig. 10. Feedforward control signalupt , in the DI-R and DI-P conditions.

1) Feedforward Model Selection forc < 3: If it is deemed
acceptable to have false-positive results in more than just2%
of simulations, as required by R.1,c can be made smaller in an
effort to identify the small, but perhaps relevant, feedforward
contribution in the DI conditions and meet R.3.

Figs. 9(c) and 9(h) show that, forc = 2, a considerably
larger number of feedforward models are selected. The major-
ity of selected models, however, still contain only one or two
parameters in the feedforward path for the DI-R condition. For
DI-P, however, choosingc = 2 did result in a large increase
of selected models withnbft

≥ 3, especially forKpt
≥ 0.5.

Finally, Figs. 9(d) and 9(i) illustrate how the distribution
of selected models changes whenc is reduced further to 1,
for which the mBIC is equal to the original BIC. ForKpt

=
0 many false-positive results are found and forKpt

≥ 0.1
many models are selected with just one parameter in theBft

polynomial, that clearly do not modelY hyp
p correctly. This

demonstrates the importance of choosing a value ofc that is
large enough to prevent false-positive results.
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Fig. 9. Percentage cases for which an ARX model with an indicated number of parameters in the feedforward path was identified,as a function ofKpt .

2) Effects of Feedback Gain on Feedforward Model Selec-
tion: To illustrate the effect of the relative strength of the
feedforward and feedback paths on the detection of the correct
model, further simulations with reduced feedback gains were
performed for the DI conditions. The feedback gainKpe

was
reduced by 30% to 0.32 and the lead time constantTL set at
1 s. The effects are considerable: compare Figs. 9(b) and 9(g)
to Figs. 9(e) and 9(j), respectively. The number of (correctly)
selected feedforward ARX models withnbft

≥ 3 is much
larger forKpt

> 0.5, especially in the DI-P condition.

E. Similarity between̂Y best
p and Y hyp

p (R.4)

Fig. 11 shows a Bode plot of̂Y best
p , for 40 different remnant

realizations of the SI-P condition (Kpt
= 0.3; c = 3)

compared to the true modelY hyp
p . Green dashed lines indicate

the boundaries corresponding to R.4, for the frequency range
over which R.4 is tested. 90% of the power ofupt

is at very
low frequencies (< 0.8 rad/s);upe

has a more uniform power
distribution, and thus similarity is tested over a wider range.
The majority of the models fall within the boundaries. Thus,
we conclude that both the feedforward and feedback paths are
sufficiently similar toY hyp

p .
At higher frequencies, two ‘clusters’ of similar solutions

are seen: models that show the NMS peak, marked 1}, and
models that lack this peak, marked 2}. Models belonging to
the second cluster have fewer parameters in theA polynomial.
Models without NMS dynamics in the feedforward path also
lack these dynamics in the feedback path, as they are included
in both, Fig. 4. The NMS contribution is small and mostly
present at higher frequencies, where remnant dominates. In
25% of the cases the contribution of the NMS was apparently
too small and ‘drowned’ in the remnant noise to overcome the
penalty of added complexity, and is not present in the model.
For larger values ofKpt

the selected ARX models resemble
Y hyp
p much better forω < 3 rad/s (not shown). That is, the

results shown forKpt
= 0.3 illustrate ‘worst case’ results.

Fig. 12 shows a Bode plot of̂Y best
p , for 40 different remnant
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Fig. 11. Bode plots of̂Y best
p , SI-P (c = 3, Kpt = 0.3), other parameter

values as given in Table I. Dashed lines indicate boundariesimposed by R.4,
drawn for the frequency range over which R.4 is tested.

realizations of the DI-P condition, forKpt
= 1, compared to

Y hyp
p , if c is reduced to 2, see Section VI-D1. Again, results

appear in ‘clusters’. Here, these clusters correspond to the
number of parameters in theBft polynomial, as annotated
in the figure caption. The models withnbft

≥ 3 are similar
to Y hyp

p , in the sense that they are a double differentiator for
ω < 2 rad/s, but only few fall within the bounds of R.4. For
c = 3, even fewer models fall within the bounds.

Fig. 13 shows the percentage of remnant realizations for
which Ŷ best

p was sufficiently similar toY hyp
p , for c = 3, as

tested by (7) and (8), for all conditions and all values ofKpt
.

For both SI conditions,̂Y best
p is sufficiently similar toY hyp

p

for all realizations forKpt
≥ 0.5. In the DI-P condition,

the similarity is sufficient in a few cases forKpt
≥ 0.7.

For the simulations performed with lower feedback gains, see
Section VI-D2, the similarity is sufficient in more cases, but
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Fig. 12. Bode plots of̂Y best
p compared toY hyp

p , condition DI-P,c = 2,
Kpt = 1, other parameter values as given in Table I. Clusters of results: 1}
correspond tonbft

= 1; 2} nbft
= 2; 3} nbft

≥ 3. Dashed lines indicate
boundaries imposed by R.4, drawn for the frequency range overwhich R.4
is tested.

still not 100%. For DI-R,Ŷ best
p is never sufficiently similar;

neither for the parameter set of Table I nor for the lower
feedback gains. This confirms the results obtained for R.3.
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Fig. 13. The percentage of remnant realizations for whichŶ best
p is

sufficiently similar toY hyp
p , for c = 3.

F. Conclusions

Based on the presented results we conclude that, first,
the identification procedure can identify small feedforward
contributions (Kpt

≥ 0.3) for all SI conditions, when choos-
ing c = 3, which provides a probability less than 2% of
obtaining a false-positive result. Second, the procedure can
identify the feedforward contribution in the DI-P condition
only if the feedforward contribution is relatively large when
choosingc = 3. Third, the procedurecannotproperly identify
the feedforward contribution in the DI-R condition without
greatly reducing the value ofc, which increases the risk
of obtaining false-positive results. Hence, the procedureis
suitable to analyze experimental human-in-the-loop data of
both SI conditions and the DI-P condition.

VII. R ESULTS II: A NALYSIS OF Ŷ best
p - Y hyp

p SIMILARITY

Requirement R.4 allows the user to test the similarity
betweenŶ best

p and Y hyp
p in an objective, quantitative way,

but does not revealhow Ŷ best
p differs from Y hyp

p . To obtain

insight, the parametric modelY hyp
p is fit onto Ŷ best

p , and the
parameter estimates are compared to the true values.

1) SI Conditions: Figs. 14(a)-(g) show the HC model
parameter estimates, for each individual remnant realization,
for both SI conditions. Note that the results are shown only for
theŶ best

p models for whichnbft
≥ 2. All individual results are

plotted in a scatter-plot, to explicitly show their distributions.
The feedforward gainKpt

, varied between 0.0 and 1 (steps
of 0.1) in the simulations, is estimated close to the real value
with little variance, Fig. 14(a). Bias and variance is smaller in
the SI-R condition than in the SI-P condition, suggesting that
the ramp target signal is more suited for the correct detection
of feedforward. Note that for0.1 ≤ Kpt

≤ 0.2 (for which
false-negative results were found in some cases) the bias and
variance is of the same magnitude as forKpt

≥ 0.3, for which
no false-negative results were found. Hence,if a feedforward
model is selected, the model has the correct feedforward gain.

Fig. 14(b) shows the estimate of the feedforward equal-
ization parameterTI . Whereas in the SI-R conditionsTI is
estimated close to zero forKpt

< 0.6, and close to the true
value forKpt

≥ 0.6, for the SI-P conditions the estimate is
bad. The effects ofTI are larger during the onsets of ramp
segments, as compared to the onsets of parabolas. Hence, a
reliable estimate ofTI is possible only in the SI-R conditions
from models with a strong feedforward component. If it is
deemed important thatTI is estimated with higher accuracy,
a target signal needs to be designed with a higher power at
frequencies whereTI has an effect. Changes made toft would,
however, likely also cause the control behavior to change [35].

The feedforward time delayτpt
is estimated equal to integer

multiples of the 0.04 s sample time, Fig. 14(c). For all SI
conditions τpt

is overestimated, with a large variance and
slightly smaller bias whenKpt

increases. The bias in the
estimates forτpt

is likely caused by the interaction between
TI andτpt

, as both parameters cause lag inYpt
. That is, most

of the dynamics caused by theTI parameter can be described
by choosing a slightly larger value fornkft

, without any added
costto the model complexity, such that these models are likely
to be preferred by the selection criterion.

Fig. 14(d) shows that the feedback gainKpe
is estimated

with moderate bias and variance. Furthermore, the quality of
the estimate is mostly unaffected by the variation inKpt

. If a
higher similarity between̂Y best

p andY hyp
p with respect to the

feedback gain is desired, remnant levels need to be reduced,
e.g., by averaging the data over more than five runs [26].

Fig. 14(e) shows a multimodal distribution in the estimates
of the feedback time delayτpe

, with a density peak around
0.20 s (close to the real value of 0.21 s), and smaller peaks
around 0.08, 0.12, and 0.16 s. This is caused by the delay
parameternke

that is equal to an integer multiple of the
sample time of 0.04 s. The bias towards lower values is
likely a result of the interaction betweenτpe

and the NMS
parameters, Figs. 14(f) and 14(g). As shown by Fig. 11(b),
90% of the signal power ofupe

is located below 5 rad/s,
resulting in a bad estimation of dynamics affecting higher
frequencies. Especially theζnms estimates have a large bias
and variance, indicating that the identification procedureis
unable to successfully capture the NMS effects in these
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Fig. 14. The identified values of each HC model parameter for each individual remnant realization compared to the real value. (a) through (g) show results
for the SI-R and SI-P conditions, with HC model parameter values as given in Table I, andc = 3. (a)Kpt , (b) TI , (c) τpt , (d) Kpe , (e) τpe , (f) ωnms, (g)
ζnms. (h) through (o) show results for the DI-R and DI-P conditions, with Kpe = 0.32, TL = 1 s, and all other HC model parameter values as given in
Table I, andc = 3. (h) Kpt , (i) TI , (j) τpt , (k) Kpe , (l) TL, (m) τpe , (n) ωnms, (o) ζnms.

conditions, see also Fig. 11. If it is deemed important that
the NMS dynamics are estimated with higher accuracy, the
power distribution infd needs to be changed. This might also
affect the HC control behavior [35].

To conclude, in the SI conditions the model selection cri-
terion selects a model that describes the underlying dynamics
‘efficiently’. It is not more complex than strictly necessary
and in many cases a slightly worse quality of fit is accepted
in return for a reduction in model complexity.

2) DI Conditions: Only a few feedforward ARX models
with nbft

> 2 were selected from simulations with the
parameter values of Table I, but many from simulations with
a reduced feedback contribution in the DI-P condition, as
discussed in Section VI-D2. Hence, for the initial simulations
it was possible only to estimate the feedback parameters. As
these estimates were very similar to those for the simulations
with reduced feedback gains, we only show the latter in
Figs. 14(h) through 14(o). Results only include selected mod-
els withnbft

≥ 3, hence far more results are shown for the DI-
P than DI-R conditions (see also Figs. 9(e) and 9(j)). The few
remaining parameter estimates for the DI-R condition show
large biases, confirming that the procedure cannot identifyHC
dynamics in the DI-R condition.

The feedforward parameter estimates for the DI-P condition,
Figs. 14(h) through 14(j), show notable biases with consider-
able variance, but do illustrate thatŶ best

pt
is a reasonably accu-

rate representation ofY hyp
pt

. Kpt
is generally underestimated

with a large variance, whereas the delayτpt
is overestimated

by approximately 200 ms. Bode plots (Fig. 12(a)) revealed that
all selected̂Y best

p models indeed lack the effect ofTI , i.e., they
are a double differentiator up toω = 10 rad/s, whereasY hyp

p

becomes a single differentiator aroundω = 1/TI = 2.8 rad/s.
The effect ofTI is apparently too small to be captured and as
a consequence its value is estimated close to zero.

Considerable variances in estimates are found for all feed-
back parameters, but with small biases, see Figs. 14(k) -
14(m). NMS parameter estimates show considerable biases
and variances, Figs. 14(n) - Fig. 14(o).

A variety of changes can be made to the DI-P condition if
more accurate feedforward identification is desired. The power
of ft relative tofd can be increased to emphasize feedforward,
at the expense of accuracy of feedback identification. Fur-
thermore, reducing the remnant level by averaging over more
tracking runs is expected to improve identification results,
but note that HC control behavior might not be constant
throughout many repetitive runs.

VIII. D ISCUSSION

Given a particular manual control task, it is often not
known a priori whether the HC will exert feedforward control,
or how the HC feedforward and feedback paths should be
modeled. Prior assumptions on the feedforward or feedback
dynamics cannot be made based on previous experimental
results, because hardly any literature exists on the subject.
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This paper presents a new LTI-model based identification
procedure, to more objectively identify the feedforward and
feedback components of HC control behavior without making
any prior assumptions on the HC dynamics. The novel feature
of this procedure is theobjective selection of the correct
model, based on a model selection criterion that is tuned by
means of simulationsprior to collecting experimental data.

The introduced procedure is successful in answering if and
how the HC responds toft and e for three of the four
control task conditions studied in this paper. For the SI-R,
SI-P, and DI-P conditions, the procedure correctly identified
the characteristic features of the feedforward and feedback
controller dynamics from a noisy data set, making the pro-
cedure suitable for O.1 and O.2. False-positive detection of
a feedforward response from data generated by a purely
feedback model is prevented by tuning the model selection
criterion. False-negative results, i.e., the selection ofa purely
feedback model from data generated by a combined feedback-
feedforward model, occur only for data generated with small
feedforward gains (Kpt

≤ 0.3) in both SI conditions. For the
DI-P condition, false-negative results occur for a larger range
of Kpt

values, and depend much on the relative strength of
the feedforward and feedback paths.

The procedure is able to correctly identify the governing
low-frequency dynamics of the HC responses. More subtle
dynamics, such as feedforward equalization and time delays,
are estimated, if at all, with large biases. Hence, the results of
this procedure alone are not sufficient to build a parametrized
HC model (O.3). A gray-box modeling approach is required
to obtain the HC model with the correct parametrization.

In the DI-R conditions, the contribution of the feedforward
path is small and is identified only sporadically from the
noisy data. To improve the identification accuracy in this
condition, one could evaluate the ARX modelsonly on the
segments where feedforward is expected, such as the ramp
onsets and endings. This method was reported in [18], who
used a time-domain parameter estimation method. Evaluating
this approach for ARX models is beyond the current scope.

Our identification procedure includes three features to en-
sure objective model selection, which were not previously
applied in the identification of manual control behavior. These
features are: i) the use of a separate estimation and validation
data set to prevent overfitting, ii) the use of a model selection
criterion that makes an explicit trade-off between model qual-
ity and model complexity, and iii) the tuning of this explicit
trade-off by means of simulated data.

Our results demonstrate that the use of the standard BIC
results in many false-positive results, and thus the selection
criterion needs to be modified by choosing an appropriate
value for thec parameter. Other model selection criteria exist,
such as the Akaike Information Criterion (AIC) [36], but these
criteria generally penalize model complexity even less than the
BIC and would not be suitable in the current application.

We argue that performing Monte Carlo simulations using
a hypothesized model is the most objective way to gain
insight in the identification process and tunec appropriately.
It evaluates the identification process for a case similar tothe
real case, and for which the ground truth is known, leaving

the least room for any subjective interpretation. The Monte
Carlo simulations simultaneously assess the ability of the
identification procedure to estimate the correct model from
measurements made in closed-loop, and deal with the high
levels of human remnant (colored white noise).

The main disadvantage of the features included to prevent
false-positive results are possible false-negative results, i.e., ex-
isting controller dynamics that are not identified, or dynamics
that are identified with a relatively large bias. For instance,
the effects of the feedforward bandwidth parameterTI are
missing from the selected models in the DI-P condition: this
is essentially a false-negative result. Accurate tuning ofthe
model selection criterion should prevent most false-positive
occurrences, but for certain conditions a compromise will have
to be found between false-positive and false-negative results.

The presented identification procedure is part of a complete
approach to studying manual control behavior, which involves
simulations and experimental data and has an iterative nature.
This paper presented the simulation results, from which we
conclude that, apart from the DI-R condition, an experimental
study can be performed to answer if and how the HC responds
to the target signals and system dynamics evaluated. Clearly,
if the experimentally obtained HC dynamics are very different
from the hypothesized HC dynamics, the whole tuning proce-
dure should be repeated with an HC model closer to the HC
behavior found experimentally.

The tuning process is guided by four objective requirements,
determined by the user based on the application. These four
requirements can additionally be used to compare the perfor-
mance of this procedure with novel methods in the future.

The proposed procedure is considered to be particularly
useful in studies that involve multi-loop or multi-modal HC
behavior, which generally require more complex HC models to
describe the measured behavior. For the first time, we showed
that in dealing with these more complex models false-positives
occur more frequently than one would expect, which casts
serious doubts upon the validity of many previous findings.

IX. CONCLUSIONS

We introduced an objective procedure to identify if and how
the human controller utilizes feedforward and feedback, in
control tasks with predictable target signals and unpredictable
disturbances. The procedure aims to identify HC dynamics in
closed loop, from noisy data, and without making any prior
assumptions regarding the HC model structure or parameters.
It estimates and evaluates a large number of LTI ARX model
candidates and uses a novel model selection criterion to select
the best model. The original Bayesian Information Criterion
was found to return many false-positive results: models that
contain dynamics not present in the measured system. We
demonstrate that in identifying HC dynamics, it is mandatory
to increase the penalty imposed on the model order, through a
model complexity penalty parameter. The appropriate valueof
this parameter can be found through Monte Carlo computer
simulations with a hypothesized HC model, guided by four
objective requirements chosen by the user. To illustrate its
performance, the procedure was applied to four typical manual
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control tasks, with single and double integrator dynamics,and
predictable target signals composed of ramp and parabola
segments. The procedure was able to identify the correct
HC model structure for both target signals with the single
integrator dynamics, and for the parabola target signal with
the double integrator. The identification for HC behavior with
double integrator dynamics and ramp targets proved to be
problematic, confirming previous results.
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