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Objective Model Selection for Identifying the
Human Feedforward Response in Manual Control

Frank M. Drop,Student member, IEEE,Daan M. PoolMember, IEEE Marinus (Reg) M. van Paassergenior
member, IEEEMax Mulder, Heinrich H. Bilthoff, Member, IEEE

Abstract—Realistic manual control tasks typically involve pre- that feedforward control was studied by means of system

dictable target signals and random disturbances. The human jdentification and parameter estimation techniques [IHH
controller (HC) is hypothesized to use a feedforward control with the goal of modeling the feedforward in detail.

strategy for target-following, in addition to feedback control for Svst identification techni I t . tall
disturbance-rejection. Little is known about human feedforward ystem iaentification techniques allow us to experimeyita

control, partly because common system identification methods Measuref, and mathematically modéiow the HC responds
have difficulty in identifying whether, and (if so) how, the HC  to multiple sources of information. Many of the common
applies a feedforward strategy. In this paper an identification techniques [1], [13], [20]-[26], however, were not desighe

procedure is presented that aims at an objective model selection ; : ; o :
for identifying the human feedforward response, using linear identify the feedforward response in addition to the, reddy
well-known, feedback response.

time-invariant ARX models. A new model selection criterion is ) ' > )
proposed to decide on the model order (number of parameters) ~ 1he main problem is that, given a particular manual control
and the presence of feedforward in addition to feedback. For a task, it is often not known a priori whether the HC will exert
range of typical control tasks, it is shown by means of Monte feedforward control, or not. Adding a feedforward path to
Carlo computer simulations that the classical Bayesian Infor- the HC model adds degrees of freedom in the model (more

ti iterion (BIC) | to selecti Is that contai . L :
??;ggé&g%ogéth ?ome?jista ogsﬁeergtgg tr)?/oc;ep?ureafece%r:o;:i parameters) that the identification method can use to obtain

model: ‘false-positive’ feedforward detection. To eliminate thee & better fit. When the model selection is only based on the
false-positives, the modified BIC includes an additional penalty on ‘best’ quality of fit, the identification procedure is liketg be
model complexity. The appropriate weighting is found through pjased towards selecting more complex models. The choice
computer simulations with a hypothesized HC modelprior 10 ¢4 jncluding a feedforward path might be a ‘false-positive
performing a tracking experiment. Experimental human-in-the- result. A secondary problem is that it is often unkno

loop data will be considered in future work. With appropriate
weighting, the method correctly identifies the HC dynamics in a the human feedforward and feedback paths should be modeled.

wide range of control tasks, without false-positive results. Although basic control-theoretical insights provide a @oo
Index Terms—Manual control, feedforward control, human initial guess, prior assumptions on the feedforward dyeami
control models, system identification, parameter estimation cannot be based on previous experimental results, because

hardly any literature exists on the subject.
. INTRODUCTION It is the goal of this paper to address and resolve these

ANUAL control of a dynamic system typically re- two issues, and describe an objective identification promed
M quires the human controller (HC) to steer that systeﬁ'ﬂ simultaneously identify the HC feedforward and feedback

perturbed by disturbances, along a reference trajectony. gontrol responses. To address the first issue, the procedure
example is the manual control of an aircraft during turns arif/€Cts the best model based on a trade-off between model
landings, in the presence of turbulence. The HC will use APMPlexity (the model order) and the model quality-of-fio. T
available information and knowledge, i.e., visual, vasii, ad(_:iress the second issue, it usesonstrained linear m0(_jels
and somatosensory information as well as prior experience,Vhich allows the selection of the best global model avadabl
improve control performance and reduce effort [1]-[5]. In shprt, the proposgd |Qent|f!cat|on procedure W|Ill|d.fynt|

In many everyday control situations the reference trajef1any different linear time invariant (LTI) autoregressivéh
tory or target signal has a simple and predictable wav8¥0genous input (ARX) models [27]. The models vary in
form. Evidence exists that in this case the HC employs 3¢ model structure (pure feedback and combined feedback-
feedforward control strategy, as it can considerably imgrof€edforward response models are considered), and in the
tracking performance, without affecting closed-loop #igh Number of model parameters (model order). A model selection
[6]-[8]. Feedforward control plays an essential role in mancrlterlon, derlve_d from the Bayesian Information Crlter!o
neurophysiological processes as well [9]-[12]. (BIC) [27], [28] is used to choose the best model. It deC|de§

Although feedforward control strategies were frequentQ" the model order and whether a feedforward component is
hypothesized [1], [6]-[8], [13], [14] and some empirical- evheeded, or not, to describe the data. This differs from previ

idence was provided [15], [16], it was only until recentIyARX _estimation procedures, where no explicit model order
selection step was used [21]-[23], [25]
F. M. Drop and H. H. Bilthoff are with the Max Planck Institute for Biologi-  The functionality of the proposed procedure is assessed b
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to identify the true dynamics. It is found that the original
BIC does not weigh the model complexity enough, such that
‘false-positive’ feedforward identification occurs fresuly.
This problem is addressed by altering the relative weightin = 1"
of model quality and model complexity in the model selection
criterion, by the introduction of a ‘model complexity petyal
parameter’ in the selection criterion as suggested by Ljung
[27]. The weighting is tuned by means of offline Monte o _ _ _ _
Catlo simulations with a HC model based on literature. THE, 2, Furst depley for st pich convl The it back e
procedure is applied to experimental data in future work. pitch attitude, and thus the vertical distance between the target and the
The paper is structured as follows. Section Il provides @fifcra_\ft symbol is the erroe. ‘_I'he disp_lay _onIy s_hows the current values of
overview of the identification problem, our workflow and"® Signals: no pastipreview information is available.
proposed procedure. Sections Ill and IV describe in more
detail the individual steps in the procedure. Sections V o V. . .
discuss the results of applying the procedure to a compreh&H© manual feedforward addressed O.4 directly, relying on
sive example, involving four typical manual control taskae models derived from control theoretical insights ratheanth

paper concludes with a discussion and conclusions. system identification results [17], [18]. _ _
The objective of the procedure described here is to simulta-

neously address O.1 and O.2, providing the insights negessa
to parametrize the model (O.3). The procedure duoasaim
Section Il introduces the general identification problerd anp address O.4; existing parameter estimation methods work
provides an overview of the steps in the procedure. Section datisfactory and are currently not limiting manual control
and IV describe ARX model identification and our tuning ofesearch [26]. Objectives O.1 and O.2 involve five challsnge

fi

EYs)

Il. IDENTIFICATION PROBLEM AND APPROACH

the model selection criterion, respectively, in detail. First, the HC is presented with three signals on a pursuit
display, Fig. 2:f;, e andf, and can respond to all three (but
A. Identification problem and objectives possibly also to two, or even just one). Because of the linear

This paper focuses on the identification of human <:or5?|‘5‘t'0n.Shlpe = fi - 9.’ hovygver, only the responses to two
trol behavior in a combined target-tracking and distumanc!npm. _S|gnals can be identified [7]. Th_e two responses to be
rejection task, with predictable target signals and unptedle identified can be chosen freely; all choices are equivatemtf

disturbances. Here, the task resembles an aircraft piticdt an identification point of view. For this particular conttabkk,
control task.. Fig. 1 illustrates the task: the HC controls &c choose to identify the feedforward response on the tgiget

dynamic systemy, such that the outpu (perturbed by -t 8, S0 BRSO e O et

disturbance/,) accurately follows the targef;. Thus, the as we conside redic):abletar et signals [17]. Other fgr?:rol

error ¢, defined ase = f; — 6, is minimized. The targef; K p diff tgh 519 f 'BI HC

and disturbancg, signals are referred to dsrcing functions tasks may require a_ ! ere_tn choice o_ POSS! ‘_3 respanse
Second, the HC is a highly adaptive, nonlinear controller

and will change the control strategy to the characteristics

f Y, (s), human Ja Y. and the properties of the forcing function$ and f,.
tl+A€ pcontroller u Y.(s) I Therefore, the HC response needs to be measured in a control
- dynamics task very similar to the task for which the identified modell wi
be used, and the identification procedure should be contpatib

with the chosen forcing functions and system dynamics.-Real
Fig. 1. Control scheme studied here. The HC perceives thettaignal iStiC control tasks often involve ramp or parabola-likeereihce
[, the perturbed system outpéitand the erroe from a pursuit display and signals, which have power at all frequencies. This rendens n
generates control signal. : : o
parametric techniques that rely on the excitation of the HC a
discrete frequencies useless [13], [24]. Hence, the proeed
System identification and parameter estimation methods #mtroduced here is based on multi-input, single-output§M)
used to address four objectives: O.1) to identify the signdinear time-invariant (LTI) ARX models [27] that pose less
to which the HC responds in a particular task; these are tdigingent requirements on forcing function properties.
input signals of the HC model; O.2) to identify the governing Third, a relatively large portion of the HC control signal is
HC dynamics, in the frequency range where they contributet (linearly) correlated to any of the input signals presdn
most to the model output signal, O.3) to obtain a precise to the HC, and thus cannot be described by a linear model.
and physically meaningful parametrization of the HC modeThis modeling residual, designated is human remnanand
and 0.4) to quantify changes in those dynamics as a functiconsists of the unmodeled nonlinear dynamics and random
of control task variables. A single method suitable for afioise. The remnant level (expressed as the variance of the
four objectives does not exist. These four objectives shbal remnant over the variance of the control signaf,/o?) is
addressed sequentially by specific methods and the redultaisually large, up to 30% [26], and is a key complicating facto
one step are necessary for the next. However, previousestudn the identification of small, yet relevant control dynamito



L 5} .

1) Choice | | 1.2) Simulite | | 1.3) Estimate| | 1.4) Exclude | | 1.5) Select best_) 1.6) Tune model J Can all requirementi -
of control |1} HC modelY,™? [2}| ARX models |3} | invalid models|3}| model Y,>*s* (4} selection criterion| | be satisfied? |

task, T 6
defined by L { P ——— :

feofa. | | 2:2)Human | | 2.3) Estimate| | 2.4) Exclude| |25) Selectbest 1 26)Isypet 7 9}

andY. [1)] experiment (2] ARX models [3}] invalid models|3}| modelY,est 4}! similar to Y, L 10}

Fig. 3. Workflow of the procedure proposed in this paper. [EBitmumbers denote outputs of the steps.fL, f4, Ye, and remnant powes2 /o2, 2}
em, Um. 3} Set onp with correspondingism,. 4} YprSt, abest, 5} Increase/decrease model complexity weighting.Yes: phase 2, human-in-the-loop
experiment, can commence} Ro: make changes to control task or experimental paradigm, go batk 8 Tuned model selection criterion weighting} 9
Yes: phase 1 was performed for the corrét;fyp. 10} No: aldjustYphyp and go back to 1.2.

reduce the remnant level, experimental data is averaged on®st importantly, tdunethe model selection criterion. When
multiple recordings before it is further analyzed. successful in identification of the simulated HC model and
Fourth, the use of MISO LTI ARX models for identificationthe criterion being tuned to satisfaction, the second phase
purposes requires the user to choose the appropriate nundmnmences and the procedure is applied to the experimental
of model parameters (the model order), and the time deldgta using the obtained model selection criterion tunifge T
for each of the model inputs. In the proposed identificatioindividual steps are briefly introduced below.
procedure we will use a model selection criterion derivednfr 1) The control task is defined by the chosen target signal
the Bayesian Information Criterion (BIC) [28] to objectiye f,, disturbance signaf;, and system dynamick,. For this
determine the model order and time delay values. The modehtrol task, based on existing literature or control-tie&o
selection criterion must prevewnverfitting the selection of a principles, a model for the HQ{phyp, is hypothesized. Here,
model with too many (meaningless) parameters. It takes inglyp is a MISO system with inputg, ande, and outputu.
account both the modejuality, the goodness of the model fit, The experimental paradigm will determine the remnant level
and the modetomplexity the model order, in the choice fors2 /o2 for which the procedure has to be evaluated.
the ‘best’ model. Although the primary objective of the mbde 1.2) Many (100+) different remnant realizations are gener-
selection criterion is to prevent overfitting, by puttingeatain  ated, such that the simulation data set has a sufficient tdvel
weight on model complexity, it is equally important to prete randomness to reflect the nonlinear human response.
underfittingby putting too much weight on model complexity. 1 3) Many different MISO ARX models are estimated from
Our procedure will explicitly address this weighting. the collected data. The signals used to estimate the ARX
Fifth, all measurements need to be takenclosed-loop models are the two model inputs: the target sighaind the
This causes the tracking errer(one of the model inputs) t0 measured tracking errer,,; and the model output signal: the
be correlated with the noise (human remnant) present in thasured control signal,,,. Each estimated ARX modé]’p
control signalu (the model output). That is, apart from thegs simulated to obtain the estimated control sigag!.
“fo_rwafd’ relati.o.nship betwegre a”‘?'u (that is to be iden- 1.4) The validity of the ARX models from an identifica-
tified), an additional correlation exists, equal+d /Y., due jon point-of-view is tested and invalid models are exchiide
to the closed-loop feedback [29, pp. 19], [30]. At frequesCi \,qels with dynamics (poles and zeros) outside the frequenc
where remnant is larger than the disturbance signal thi®c€or ;g6 excited by the forcing functions are considered idval
lation —1/Y, might be |d_e_nt|f|ed [20]. ‘Indirect’ identification 1.5) The best ARX model™best, with correspondingi?est,
methods are l.e SS .sensmve .[30] .tq thgse closed—logp effelqst selected through a modelpselection criterion that t?laﬂbs
than the classic ‘direct’ [27] identification approach. ihedt model complexity and model quality. For simulated datas thi

|d.ent_|f|cat|on me_thods, however, often consist of more S‘:‘teﬁade-off is tuned until all requirements at step 1.6 aristadl.
yielding a more involved procedure or tend to return models . . o

) . S 1.6) Simultaneously, the model selection criterion is tlune
of unnecessarily high order [30], which is unacceptable for

. ) Sohyp
our objective. Thus, we apply a direct identification apptoa and the ability of the procedure to. cqrrectly |(_jent|ffg; 'S
assessed by means of four quantitative requirements, that a

chosen by the user depending on the objectives of the study:
B. Approach R.1) ‘False-positive’ identification of one or more respess
The identification procedure introduced in this paper réflecshould occur in fewer thany, realizations, where);, is a
the workflow we recommend when performing studies on H@ercentage chosen by the user. R.2) The selected model is the
behavior. It is illustrated in Fig. 3. best of all evaluated modelbut not necessarily a good model
The workflow consists of two phases. In the first phas#) an absolute sense. Therefofést is compared tau,, to
the procedure is applied to data obtained dignulating an assess the time-domain quality-of-fit. The quality-of-fibald
HC model that is hypothesized for the control task at hangyrpass a level chosen by the user. R.3) The selected model
with numerous remnant realizations. Using this simulatiata Yp'f’est should be sufficiently complex to describe dynamics of
set, a Monte Carlo analysis is performed to assess whettie same order ag,hyp. R.4) The response dynamicsygjbest
the procedure is indeed able to identify the HC model anshould be sufficiently similar t(YI}WP.



(k) shown in Fig. 4 and is described by the discrete-time diffege
l equation (1), withk the discrete time samples of 0.04 s:

ft (k‘ - nkft) - By, (q; nbft) [A(q;14) A(ql;na) A(gi na)um(k) = By, (q;nbf‘)ft(k a nkft)+ 1
Be(gimJem(k — ni,) + (k)
€m (k_nkp) - Be ((J§nbc)/A(‘I§na) > Um(k)

+ Here,e is a white noise signal is the delay operator and the
polynomialsA, By,, and B, are defined as:

. _ —1 —Ng
Fig. 4. Generic ARX model structure. A(g;na) =l+aqg +...+anq"
Bft(q;nbft) :bfml+bft72q_1+"'+bft;nbftq(

The main result of step 1.6, i.e., with the simulated data, i93¢(¢;ms.)  =be1 +beog ™t +... + be,nbeq(’””““)

that the model selection criterion is tuned to the HC belravio (2)

expected for the control task being studied, such that tBach ARX model is described by three model orders, i.e.,

procedure reliably selects a model similar ng‘yp. If all the number of parameters in the polynomial (), the By,

requirements cannot be satisfied simultaneously, the @onfpolynomial ¢, ), and theB. polynomial ). For each of

task or experimental paradigm needs to be changed to extite two input signals, a delay parameter needs to be idehtifie

the relevant HC dynamics more, or reduce the remnant levetise feedforward time delayy,, , and the feedback time delay
The requirements imposed by 1.6 are assessed as a functign both integer multiples of the sample time 0.04 s.

of the relative weighting of model complexity and model Theeffectivetotal number of free parameteiof each ARX

quality at step 1.5. For simulated data, the ‘true’ dynamieaodel is the sum o, ny,, , andny,, plus the total number

thyp are perfectly known and thus it is possiblettmethe of delays in the model. That is, for a pure feedback model

model selection criterion such thaf>e* is most similar to with ny, = 0 andn, > 0, the number of free parameters

Y,h¥P. Most importantly, repeating the procedure for all indid equalsn, + ns, + 1. For a pure feedforward model, with

vidual remnant realizations allows us to assess the oquease 7, > 0 andn,, = 0, d = n, + ny,, + 1. For a combined

of ‘false-positive’ and ‘false-negative’ results, and seew feedback-feedforward model, with,, > 0 andn,, > 0,

the relative weighting needs to be tuned to minimize thede= na + ny,, + np, + 2.

objective, yetinvalid, model selections. Each model order and delay parameter is varied over a
The steps of phase 2 are identical to the corresponding stépgain range, and the full factorial combination of themeges

in phase 1, with the following exceptions. results in a huge number of model candidates. The ranges
2.2) Experimental human-in-the-loop data are collectétepend on the expected complexity and time delay of the

from a number of participants. HC responses, where a more complex response requires more
2.5) The model selection criterion uses the tuning obtain@@rameters. The identification procedure is more objedtive

in step 1.6, i.e., the model selection is not tuned in phase the evaluated range is large, at the cost of computation time
2.6) The model>** that was identified fronexperimental  Step 1.3, substep CEach model is evaluated tsjmulating

data is compared tdfphyp, to assess whether the Montdhe f; ande,, signals through the estimated model to obtain

Carlo analysis was performed for the correct model. In cade., the estimate of the measured control signgl The full

discrepancies b(:'-];We(-'j‘j?‘jobeSt and thyp are substantial, pha3981.92 s of data are used to simulate the model and obtgin

1 should be repeated using a model more similar to the expewt only the last 40.96 s (the validation data set) are used to

imentally foundY,>est. If >t identified from experimental calculate the quality of the fiv’, with Ny = 1024:

Ty +1)

data is indeed very similar tiziphyp (confirming the HC model | 2N
hypothesis) Y,»¥ can be used for 0.3 and O.4. V=— Z (o (k) — tm (k) ©)
Na k=Ng+1
. ARX I DENTIFICATION AND MODEL SELECTION Step 1.4.The validity of each ARX model from an iden-

The ARX model estimation, evaluation and selection stepification perspective is assessed and ‘invalid’ models are
(1.3 through 1.5 in Fig. 3) are an essential part of thexcluded. The HC dynamics can be identified only within the
identification procedure. They are described in detail .next frequency range where both forcing functiofisand f,; have

Step 1.3, substep AThe data are time traces ¢f, e.,,,, and power. Outside this frequency range only noise is measured.
Uum, lasting 81.92 s and sampled at 100 Hz. These are splitintcEarly evaluations of the identification procedure re-
an estimation sett(= [0,40.95] s) and a validation set (= vealed that ARX models containing dynamics approximating
[40.96, 81.91] s). Data are resampled to 25 Hz after filtering te-1/Y.(s) were selected in a small number of cases, see
prevent aliasing, yielding 1024 samples data sets. RegagnplSection 1I-A. These models provided a good fit, because in
reduces computation effort, but may introduce biases in thddition to fitting the HC control dynamics (that are to be
estimated models. The estimated time delays are affectstl malentified), they could also fit the correlation betweeand the
as these can only be integer multiples of the sample time. remnant at higher frequencies caused by taking measurement

Step 1.3, substep BMany ARX models are fit onto the in closed-loop. The use of separate estimation and vadidati
estimation data. The generic structure of each ARX modeldsta sets does not prevent the selection of these models,



because this relation is ‘real’. These models are excludedR.3) Feedforward ARX models:(, > 0) should be identi-
by checking for the presence of zeros in the feedback pdibd from data generated by a combined feedback-feedforward
of the ARX model close to, or above the highest frequendyC model (with K,,, > 0). Moreover, the selected ARX
component in the disturbance sigryal model Ypbest should be sufficiently complex to describe the
Step 1.5.The model selection criterion is calculated fodynamics onPh-‘/P_ For example, if the feedforward inhYP
each model from the quality of fi' and model complexity is a differentiator, them,,, should be equal to or larger
expressed by the number of parametér$he model with the than 2 to describe these dynamics accurately. Clearly then,
smallest value is selected as the best model. The selegtion @lentified ARX models with less parameters are considered
terion used is a modified version of the Bayesian Informatidalse-negativeesults. If false-negatives are found in more than
Criterion (BIC), defined as [27]: nr realizations, the value of should be decreased.
dlog Ny R.4) The dynamics of the selected ARX modgi*** should
N, be similar to the hypothesized modqjlyp. Here, similarity is

The trade-off between model quality and complexity by thgonsidered sufficient if the frequency responsergf*" falls

BIC is fixed. Yet, each control task has its own particulesiti W'th'}n a predefined range of the magnitude and phase response
and for some studies the original BIC might either put to8f ¥»"": defined by the inequalities:

much weight on model complexity, such that certain HC dy- 1
namics are overseen, underfitting, or too little weightdieg
to overfitting. Therefore, in our identification procedure a st oo
additional parametet is introduced to allow the trade-off to |[2Y)%H (w) = LY, ¥P(W)] < Nphase (8)

be tuned[27], yielding the modified BIC (mBIC): The frequency range of interest over which the inequaliies
dlog Ny 5 tested, as well ag,,,,4 andnpnqse, are chosen by the user.

N, ®) All four requirements involve one or more objective thresh-
The ‘model complexity penalty parameteris to be tuned by olds .cho_sen by the user, whiph will dgpgnd on the application
means of computer simulations, such that false-positives 4'PPlications relying on precise predictions of future coit
avoided, while maintaining sensitivity to small yet imont mputs, €g. gdvanced motion cueing [31], will S?t more ,
contributions of certain HC control dynamics. For a givefiingent requirements than those that rely on an ‘average
value of¢, the model with the lowest mBIC value is selectedC model, e.g., haptic aids for easy-to-control dynamic.[3

BIC =log V' + (4)

V5P ()] < [V (@)] < Mmag VP (w)], (7)

mag

mBIC =logV + ¢

to be the best modéarbest. The metric used fo[bR.4_ enabl_e_s the user to obglectlvely
P decide whether or not > is sufficiently similar toY,>».
IV. M ODEL SELECTION CRITERION TUNING It does not reveahow the models differ. This is valuable

.information if not all requirements can be satisfied siméta

The main innovation in the identification procedure lies 'Busly and changes to the control task or experimental di
the tuning of the model selection parametet step 1.6 guided need to be made. We propose therefore, as an al gdditional

by fou'r tangible requirements desgribed in. detail next.eNo nalysis method that isot part of the tuning process, fit
that this tuning process happens with the simulated data onte parametersf Y» onto Vbest in the frequency domain
p p 1 1

R'l). False-positive |deqt|f|gat|on of a response shoul rough minimizing a normalized quadratic cost function:
occur in fewer thany, realizations. The order of the path )

in Y'"es* associated to a response that is not present'ir? ne | VPest () — VYR (s )

should be equal to zero. E.gu,, should be zero for data p = arg min 5 +

generated by a pure feedback model. If false-positives are P im1 ’37,}30“(%)

found in more thamy, realizationsc should be increased. . ’ 2 9)
R.2) The time-domain quality of fit of the selected ARX i Yot (W) = VP (pywi)

model ?pbest is evaluated, by comparing its control signal ) 2

uPest to the measured control signal,, in the time domain. i=1 ‘Yz}fgt(wi)'

Previous literature measured the fit quality using the Visea o1 ) denotes the parameter vector of the parametric model
Accounted For (VAF) [17], [18], defined as: VWP, w; the ith frequency where the two models are com-
Zii’f]l\,iﬂ (i (k) — T (K))? pared, anch; the number of frequency points. The frequencies
- N, 2 % 100%. (6) w, should be spaced logarithmically, to ensure that the fitting
> k= Nat1 Um (k) does not unduly favor higher frequencies. A genetic algorit
The VAF of ypbest is to be compared to the VAF df;yp, by [33]is used to find a reasonably accurate initial estimatbef
means of the/AF ratio defined as VAFK}pbcst) | VAF(Y,vP), model parameters, refined'by a gradient Qescend method. This
A VAF ratio larger than 1 is an indication of overfitting;Process is performed ten times, from which the parameter set
Ypbest was able to fit the remnant and should be made With the lowest cost function is considered the final estémat
larger to prevent this. A VAF ratio smaller than 1 indicates
underfitting. The user chooses an allowable range for the VAF V. EXAMPLE IDENTIFICATION PROBLEM
ratio depending on the importance of preventing overfitting The procedure’s workflow and performance is illustrated
over obtaining a model providing a high model quality. by an example, involving four representative control tasks

VAF = (1



TABLE |
HC MODEL STRUCTURE AND PARAMETER VALUES USED IN SIMULATIONSUNLESS NOTED OTHERWISE

Yhyp(s) Kp, Tr,S Tp, S theyp(s) Kp, TrL,S Tp.,S || wnms, radls Cnms

Pt
1 1
Sl — ¢ Pt? 1 0.28 0.2 Kp e Tpe? 2.3 - 0.21 12 0.2

K
" YSl(s) (Trs +1) :

1 1

Kpp—r— ™5 | 1 035 045 || Kp, (Trs+1)e~™ves | 045 125 028 || 95 0.27
PtYDI(s) (Tys + 1)2 pe (TLs+1)e

DI

In this paper, we present the results for phase 1 only, B> HC Models and Remnant Model
validate the proposed procedure using models that arelgxact
known beforehand. The accompanying experimental study isAt step 1.2, data is generated through computer simulations
presented in future work. In this section, the consideredrob With HC models. These simulations require: i) a HC model
tasks are introduced. Section VI discusses the model &mect?;"" that describes the expected HC control behavior, and i)
tuning results, and Section VII presefiswthe selected’Pest @ noise model to generate the remnant signal
differs from Y;}lyp. 1) HC Models: Fig. 6 shows the generic structure of the
hypothesized HC modelfphyp for all conditions. The HC
model structure consists of three components: i) a feedback
A. Control Tasks componenty,”?, ii) a feedforward componerit*?, and iii)
- a model of the neuromuscular systéniy> that acts on the
_ The approach starts by defining the control task t0 kg, meq feedback and feedforward signals: + u,,. Model
investigated (step 1), selgctlng the forcing functiofysand details are summarized in Table I.
fa and the system dynamids..
1) Forcing functions:Two variations of the target signg] fmmm e ‘
will be studied: i) a signal composed of predictable ramp seg ‘ Up, | fa
ments (R), and ii) a signal composed of predictable parabola ‘ | J
segments (P), see Fig. 5. The unpredictable disturbannoalsig f: e Up, ! 0
fa consists of a sum of ten sines, with the lowest frequency ‘ Y. (8) =0~ Yams(s) p : Ye(s)
at 0.23 rad/s and the highest frequency at 17.33 rad/s. This L Human controllen
signal is identical to the one used in [17].

— 3
<

Fig. 6. HC model block diagram.

20 |

Literature [17], [18] suggests that the feedback pgft®
of the combined feedback-feedforward HC model can be
modeled with a structure identical to McRuer’'s Extended
Crossover Model [1]. For an SI, this compensatory model
1 consists of a gain and a time delay; for DI dynamics a lead
— iR TSP T3 fuR Pl’ , , , term parametrized by’ is added, see the colum@lyp(s) in
o 10 20 30 40 0 50 60 70 80 Table I. Model parameter values are taken from [17], [18].
The model of the feedforward pakt™>" is based on the
Fig. 5. Two predictable target signafs, consisting of ramp and parabola notion that the ‘ideal’ feedforward controller equals thedrse
segments, and the quasi-random sum-of-sines disturbama gig of the system dynamics [7], [17], [18]. Hence, it consistsof
gain, inverse system dynamia§ !(s), an equalization term,
2) System dynamicsiwo common variations of the systemand a time delay, see the colurlip, (s) in Table I.
dynamicsY. will be considered: i) a single integrator (Sl), The equalization tern¥; accounts for the possibility that

Jts fa, deg

Eq. (10), and ii) a double integrator (DI), Eq. (11): the HC is not able to invert the system dynamics over the
. entire frequency range, but only up to a certain frequengy. [1

Yo (s)=1/s (10) Then,,, captures the time delay present in the feedforward

response, originating throughout the entire perceptiod an

YCDI(S) =5/s? (11) action loop responding to the target signal. The HC might,

however, compensate for this delay by anticipating theréutu
These represent a wide array of vehicle dynamics [13]. Dburse of the target signal, effectively reducing it to zdroe
dynamics are more difficult to control than SI dynamics, aperfect’ feedforward gair¥,, is 1, but the HC might not be
they require considerable lead action for stability [13]. able, or willing, to perform a feedforward action with such
Each combination of system dynamics and target signal walirength, as previous studies have shown [17], [18]. Naté th
be referred to with the syntax{SI,DI}-{R,P}’. E.g., SI-P for K, = 0, the HC model becomes a pure feedback model.
designates single integrator dynamics and the parabaattar The neuromuscular system (NMS) is modeled with second-



TABLE I

b . .
RANGE OF TESTEDARX MODEL ORDERS andu,, of Y» for that condition, see Fig. 6. The bounds on

magnitude and phase ang,., = 1.5 andn,uq.se = 45 deg.
Table Il shows the lower and upper bounds on the param-
eter values of the HC modé@,hyp, fitted to the selected ARX

A, Be, By, order time delay
Na  Mbe  Mby, | Mke My

fower bound| 1 0 1 1 S ) ! o
upper bound| 7 7 7 15 15 model to obtain insight in the differences betweagff** and
thyp. These bounds are identical for all conditions.
order dynamics [34]: TABLE 1l
) RANGE OFHC MODEL PARAMETER VALUES
w
Yub (s) = e (12) K, T K, T
I T e L Tpe Wnms Cnms
nms 2 4+ 2CmsWnmsS + w2, P s 7 s s rad/s
Appropriate values fow,,,,s and(,.s depend on the system fow.b. [0 0 0 0 0 0 5 0

dynamics and were chosen based on [18], see Table I.

2) Remnant Model:Remnantn is added to the control
signalu, Fig. 6. It is white noise passed through a third-order

low-pass filter ¢,,=12.7 rad/s) with damping((,=0.26) [26]:

K,w3
H,(jw) = o

(()® + 26awnjo + 62 ) (G +wn)

Here, K, is used to scale the remnant power such that its va‘rll-
ance equals 15% of the variance of the control signaluring
a disturbance-rejectionnly control task:o2 /o2 = 0.15: the
remnant level obtained when averaging five tracking rung. Th

D. Computer Simulations

For each of the four tasks evaluated the hypothesized HC
(13) model will be simulated, with the feedforward gaif,,
ranging between 0.0 and 1.0 in steps of 0.1. For each of these

reason for this is that during the ramp and parabola target- - _
tracking segmentsy is not zero-mean, resulting in a largeA. False-positive Feedforward Model Selection (R.1)

control signal variance which would make the scaled siredlat

remnant unrealistically large [17].

C. ldentification and Parameter Estimation Boundaries

4 (4 x 11) HC models, one hundred independent remnant
realizations will be used.

VI. RESULTSI: TUNING THE MODEL SELECTION

CRITERION

Fig. 7 shows the percentage of remnant realizations for

which an ARX model was selected with eithegft =0, 1,
2, ..., or 7, as a function of the model complexity penalty

parameterc. For low values ofc, and for all conditions, the

In our procedure the researcher needs to set: i) the rangd'dfnPer of parameters in the feedforward path is relativigit h

ARX model orders to be tested at step 1.3, see Section Il i
the requirements R.1 through R.4 guiding the tuning proce!
at step 1.6, and iii) the lower and upper bounds on the H
modeIYp]flyp parameter values during the parametric fitting t

assess how et differs from Y,

models to be tested have only three parameters, the most
complex models have 23 free parameters. For each modgl, Time Domain Quality of Fit (R.2)

the feedforward and feedback time delays are varied betweerRequirement R.2 states that the VAF ratio should be above
1 and 15 samples, corresponding to a delay between 0.08.% forall realizations. Fig. 8(a) shows the mean and minimum
and 0.60 s which is a reasonably wide range around the t\&F ratio for all conditions fork,,, = 0, for which thyp is a
pure feedback model. For both SI conditions, the mean VAF
At step 1.6 we will impose the following requirements. R.1)atio is equal to 1 for smalt, and remains mostly constant as

delay values in the simulated HC models, Table I.

False-positive feedforward identification is allowed iwéz

f-Br a considerable number of ARX models: false-positives.
en ¢ increases, these false-positives diminish. Egr 3,

g less than 2% of the 100 available remnant realizations a

Beedforward model is erroneously selected, such that R.1 is

met for all conditions. Note that for = 1, for which the

Table Il lists the lower and upper bounds of ARX moderIn.BhIC cr;tenon equa(;s th(_a otr;]glr}al SfIC a fgedf?r]rvyardhmode!

orders, defining the ARX models to be estimated and evaluatvt\e”(.!i up 1o seven orders in the feediorward path Is chosen in

0,
in step 1.3, identical for all conditions. The least comple9<Ver 20% of the cases.

¢ is made larger; the first notable decrease in the VAF ratio

thann s, = 2% of the realizations generated wilf),, = 0. R.2) appears only at ~ 40. This indicates that the very high order
The VAF ratio should be above 0.9 fall remnant realizations. false-positive feedforward models, selected for. 3, do not
R.3) For SI conditions, a model with at least two parametepsovide a truly better fit than models without the feedfordvar
in the feedforward pathnf,, > 2) is necessary to describepath. The minimum VAF ratio for Sl conditions is also close to
inverse system dynamics. For DI conditions, three parammetd, indicating little variance between realizations. FothbDI
are necessaryng, > 3). Models with fewer parametersconditions, however, the minimum VAF ratio is considerably
are considered false-negatives. False-negatives shagldr o smaller than 1. For DI-P, requirement R.2 is met fox. 60.

in less thanny, = 25% of realizations forkK,, = 1. R.4) For DI-R, however, the VAF ratio is below 0.9 fail values
Similarity betweenf/pbest and thyp is tested between theof ¢, such that requirement R.2 cannot be met.

lowest frequency inf; (= 0.23 rad/s) and the upper bound Then, Fig. 8(b) shows the VAF ratio for all conditions
of the frequency range that contains 90% of the poweu,pf for K, = 1, for which YI}WP is a combined feedback and



and 15% for SI-P. Fok,,, > 0.3 no false-negative results are
found. ForK,,, = 1, all the selected models contain at least
two parameters in the feedforward path, required to describ
the inverse system dynamics, and thus R.3 is met.

b, count, %
nbft count, %

D. Feedforward Model Selection in DI Conditions (R.3)

Figs. 9(b) and 9(g) show that, far = 3, the number
of realizations for which a feedforward model is selected is
much smaller in the DI conditions than in the Sl conditions.
Even for largek,,, the majority of the selected feedforward
models has just one or two parameters in fhe polynomial,
not sufficient to describe the double differentiator feedfard
dynamics, and thus R.3 isot met. Hence, the feedforward
contribution in both DI conditions, for = 3 and HC model
parameter values as given in Table |, is likely to be overseen

Feedforward ARX models are selected more frequently in
the DI-P condition than in the DI-R condition, caused by the
Fig. 7. Percentage of ARX models with, . between 0 and 7, selected relatively larger contribution of the feedforward path tret
from simulated data withK,, = 0, as a function of the model complexity total control signal, Fig_ 10 shows that, for the DI-R coiuafit
parameter. All ARX models withny,, > 0 are false-positives. u,, is a sharp pulse of short duration following the onset and
endings of the ramp segments. Following this initial transi
up, IS zero, irrespective of the duration or rate of the ramp
segment, making identification of the feedforward dynamics
difficult. For the DI-P conditionu,, is a constant, non-zero

— control input resembling a ‘doublet’ and persists during th
] NN s o8 entire parabola segment; here identification of the feeetod
e -1 1 100 1@ 1¢ dynamics is more straightforward.

by, count, %
nbft count, %

(c) DI-R (d) DI-P

1 1

0.9 0.9

==

VAF ratio, -
VAF ratio, -

~

il

C, - c,-
a b
@ (b) | ~
i ini i 3 3 — ¢, DI-R, scaled
Fig. 8.h Minimum (dashed) and mgan .(solld) values of VAJCst) / E _ft scale
VAF(Y,”?) taken over all remnant realizations. (&),, = 0. (b) K, = 1. < ft, DI-P, scaled
F — - up,,DIR
L — =~ up, DI-P
feedforward model. As forx,, = 0, the mean VAF ratio is

larger than 0.9 in SI conditions and DI-P up to laigesuch %0 s s s s s0 e e 60
that R.2 can be met. Contrary i#§,, = 0, requirement R.2
can also be met for the DI-R condition, but only fox 5. Fig. 10. Feedforward control signal,,, in the DI-R and DI-P conditions.
Note that the VAF ratio tends to decrease in a step-wise
fashion; these steps correspond to the ‘disappearance’ of) Feedforward Model Selection fer< 3: If it is deemed
dynamics in Ypbest that are present irYphyp as ¢ is made acceptable to have false-positive results in more thanZ#st
larger. The first stepwise decrease for both DI conditions @ simulations, as required by R.dcan be made smaller in an
seen betweer = 1 and 10, suggesting that 10 is the uppegffort to identify the small, but perhaps relevant, feedfard
bound forc for avoiding false-negatives. Further analysis wiltontribution in the DI conditions and meet R.3.
reveal that the disappearing dynamics are the feedforward. Figs. 9(c) and 9(h) show that, far = 2, a considerably
larger number of feedforward models are selected. The major
L . ity of selected models, however, still contain only one oo tw
C. Feedforward Model Selection in SI Conditions (R.3) parameters in the feedforward path for the DI-R conditiar. F
We then analyze the complexity of models estimated fromI-P, however, choosing = 2 did result in a large increase
data generated with HC models that include feedforward) wibf selected models with,,,, > 3, especially fork,,, > 0.5.
K,, between 0.1 and 1.0, to assess ‘false-negative’ results. Finally, Figs. 9(d) and 9(i) illustrate how the distributio
Figs. 9(a) and 9(f) show that far = 3, very few feed- of selected models changes whers reduced further to 1,
forward ARX models are selected fdk,, = 0.1 in both for which the mBIC is equal to the original BIC. Fdf,, =
Sl conditions. That is, for<,, = 0.1 a false-negative result 0 many false-positive results are found and fig, > 0.1
is found in approximately 90% of the simulations. The pemany models are selected with just one parameter inthe
centage of selected feedforward ARX models witf), > 2 polynomial, that clearly do not modé’(phyp correctly. This
much increases faK,,, > 0.2 in both conditions, reducing the demonstrates the importance of choosing a value thfat is
number of false-negative results to approximately 5% feRSI large enough to prevent false-positive results.
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Fig. 9. Percentage cases for which an ARX model with an indicatumber of parameters in the feedforward path was identdiea, function off,, .

2) Effects of Feedback Gain on Feedforward Model Selec:  '*
tion: To illustrate the effect of the relative strength of the
feedforward and feedback paths on the detection of the corre
model, further simulations with reduced feedback gainsewer £0-1
performed for the DI conditions. The feedback g#ip, was
reduced by 30% to 0.32 and the lead time consfanset at 1072
1 s. The effects are considerable: compare Figs. 9(b) and 9(¢
to Figs. 9(e) and 9(j), respectively. The number of (cotygct

10"

gnitude, -
Magnitude, -

w, rad/s

selected feedforward ARX models with,, > 3 is much 122 | |
larger for K, > 0.5, especially in the DI-P condition. g 8 ol foco-.
g & o=~ I
. < £ = hyp
E. Similarity betweer/’>*** and Y,»» (R.4) ¢ & 180T Yo |
R 270 — ybest
Fig. 11 shows a Bode plot 6f><*t, for 40 different remnant -360 ke :
. . e — 1
realizations of the SI-P conditionk(,, = 0.3; ¢ = 3) e 10 10: e

compared to the true modhlhyp. Green dashed lines indicate
the boundaries corresponding to R.4, for the frequencyeaang (2) feedforward (b) feedback
over which R.4 is tested. 90% of the power«wy, is at very Fig. 11. Bode plots of>e*t, SI-P ¢ = 3, K, = 0.3), other parameter

low frequencies € 0.8 rad/s);u,. has a more uniform power values as given in Table I. Dashed lines indicate boundaripssed by R.4,
distribution, and thus similarity is tested over a widergan drawn for the frequency range over which R.4 is tested.

The majority of the models fall within the boundaries. Thus,

we conclude that both the feedforward and feedback paths are

sufficiently similar toyphyp, realizations of the DI-P condition, fak,, = 1, compared to
At higher frequencies, two ‘clusters’ of similar solutionsY,;”?, if ¢ is reduced to 2, see Section VI-D1. Again, results

are seen: models that show the NMS peak, markgdahd appear in ‘clusters’. Here, these clusters correspond ¢o th

models that lack this peak, marked.Models belonging to number of parameters in thBy, polynomial, as annotated

the second cluster have fewer parameters intmolynomial. in the figure caption. The models with,,, > 3 are similar

Models without NMS dynamics in the feedforward path alstp ¥,¥®, in the sense that they are a double differentiator for

lack these dynamics in the feedback path, as they are intlude < 2 rad/s, but only few fall within the bounds of R.4. For

in both, Fig. 4. The NMS contribution is small and mostly = 3, even fewer models fall within the bounds.

present at higher frequencies, where remnant dominates. lirig. 13 shows the percentage of remnant realizations for

25% of the cases the contribution of the NMS was apparenthhich Ypbest was sufficiently similar tothYP, for ¢ = 3, as

too small and ‘drowned’ in the remnant noise to overcome tliested by (7) and (8), for all conditions and all valuesgy,.

penalty of added complexity, and is not present in the mod€lor both SI conditionsYpbest is sufficiently similar toY][,h-le

For larger values ofs;,, the selected ARX models resembléfor all realizations fork,, > 0.5. In the DI-P condition,

Y¥P much better foro < 3 rad/s (not shown). That is, thethe similarity is sufficient in a few cases fdg,, > 0.7.

results shown for,,, = 0.3 illustrate ‘worst case’ results.  For the simulations performed with lower feedback gains, se
Fig. 12 shows a Bode plot (ﬁ‘]}"“st, for 40 different remnant Section VI-D2, the similarity is sufficient in more casest bu
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10! insight, the parametric mod@f™? is fit onto Y,>***, and the
g g P parameter estimates are compared to the true values.
% % - 1) SI Conditions: Figs. 14(a)-(g) show the HC model
g g parameter estimates, for each individual remnant reaizat
07 for both S| conditions. Note that the results are shown ooty f
10‘;71 theffp‘Oest models for whichn,, > 2. Allindividual results are

plotted in a scatter-plot, to explicitly show their distitions.

The feedforward gait,,, varied between 0.0 and 1 (steps
of 0.1) in the simulations, is estimated close to the realeal
with little variance, Fig. 14(a). Bias and variance is seailh
the SI-R condition than in the SI-P condition, suggestirgf th
the ramp target signal is more suited for the correct detecti
of feedforward. Note that fof.1 < K,, < 0.2 (for which
false-negative results were found in some cases) the bs an
w, radls w, radls variance is of the same magnitude as £y, > 0.3, for which
no false-negative results were found. Heri€ea feedforward
model is selected, the model has the correct feedforward gai
Fig. 12. Bode plots off;>*>* compared toy,*”, condition DI-P,c = 2, Fig. 14(b) shows the estimate of the feedforward equal-
Kp, = 1, other parameter values as given in Table I. Clusters ofteslii  jzation parametefl;. Whereas in the SI-R conditiorig; is
o it by b o o i vt 3 €SUMALEG close 10 7670 10, < 0.6, and close 10 the true
is tested. value for K,,, > 0.6, for the SI-P conditions the estimate is

bad. The effects off; are larger during the onsets of ramp
) segments, as compared to the onsets of parabolas. Hence, a

still not 100%. For DI-R,Y,>**" is never sufficiently similar; reliable estimate of; is possible only in the SI-R conditions
neither for the parameter set of Table | nor for the lowgfom models with a strong feedforward component. If it is
feedback gains. This confirms the results obtained for R.3.deemed important thaf; is estimated with higher accuracy,
a target signal needs to be designed with a higher power at

Phase, deg
©
o
Phase, deg
©
o

-360 -360

(a) feedforward (b) feedback

\122 ||~ s+R frequencies wher&; has an effect. Changes madeftavould,
g ool = however, likely also cause the control behavior to changé [3
% 20| | The feedforward time delay,, is estimated equal to integer
3 20l 1|~ DR, red. gain multiples of the 0.04 s sample time, Fig. 14(c). For all SI
b = =" || Di-Pred.gan conditions 7, is overestimated, with a large variance and
0 01 02 030405 06 07 08 08 1 slightly smaller bias whenk,, increases. The bias in the

K) 07 . . . . .
" estimates forr,, is likely caused by the interaction between

Fig. 13.  The percentage of remnant realizations for whiches® is Tr andT,,, as both parameters cause lagjp. That is, most
sufficiently similar oY, for ¢ = 3. of the dynamics caused by thé parameter can be described
by choosing a slightly larger value far; . , without any added
costto the model complexity, such that these models are likely
to be preferred by the selection criterion.

Fig. 14(d) shows that the feedback gdif), is estimated

h Be}jed _f(_)n Fhe presegted resul;; we Conchﬁe (tjr;a:u”\lf'Wth moderate bias and variance. Furthermore, the quality o
the identification procedure can identify small feedfo Athe estimate is mostly unaffected by the variatiorfdp,. If a

contributions {,,, > 0.3) for all SI conditions, when ChOOS'I}fwigher similarity betweerf/]}’est and Y™ with respect to the

int?t ¢ = 3, \;VTiCh pr(_)t\_/ides a I?rosbabilitg Itehss than dZ% OYeedback gain is desired, remnant levels need to be reduced,
obtaining a Taise-posilive result. second, the procedare Ce.g., by averaging the data over more than five runs [26].

|dent|_fy the feedforward con.tr|bL.Jt|or? n thg DI-P conditio Fig. 14(e) shows a multimodal distribution in the estimates
only if the feedforward contribution is relatively large i of the feedback time delay, , with a density peak around
choosinge = 3. Third, the procedureannotproperly identify 0.20 s (close to the real vapleu’e of 0.21 s), and smaller peaks
the feedforwa_rd contribution in the_ DI-R condition With_omaround 0.08, 0.12, and 0.16 s. This is c’aused by the delay
greatly_r(_aducmg the yqlue of, which increases the risk parametern;_ that is equal to an integer multiple of the
of obtaining false-positive results. Hence, the procedsre sample timee of 0.04 s. The bias towards lower values is
suitable to analyze experimental human-in-the-loop ddta fkely a result of the interaction between_ and the NMS
both SI conditions and the DI-P condition. parameters, Figs. 14(f) and 14(g). As shown by Fig. 11(b),
_ > best v hyp 90% of the signal power ofi, is located below 5 rad/s,
VII. RESULTSIIZ ANALYSIS OF Y)’®- Y,%P SIMILARITY  raqiting in a bad estimation of dynamics affecting higher
Requirement R.4 allows the user to test the similarityequencies. Especially thg,,,s estimates have a large bias
betweenY,>*** and Y,*" in an objective, quantitative way, and variance, indicating that the identification procedisre
but does not revedhow ?pbest differs from thyp. To obtain unable to successfully capture the NMS effects in these

F. Conclusions
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Fig. 14. The identified values of each HC model parameter fon @adividual remnant realization compared to the real valagttfrough (g) show results
for the SI-R and SI-P conditions, with HC model parameter \@k given in Table |, and = 3. (a) Ky,, (b) T7, (€) 7p,, (d) Kp,, (€) Tp., () wnms, (9)
Cnms. (h) through (o) show results for the DI-R and DI-P condifipwith K, = 0.32, 71, = 1 s, and all other HC model parameter values as given in
Table I, ande = 3. (h) Ky, () 1, () 7p,» (&) Kp,. () Tr, (M) 7p,., () Wnms, (0) Crms.

conditions, see also Fig. 11. If it is deemed important thatith a large variance, whereas the delgy is overestimated
the NMS dynamics are estimated with higher accuracy, thg approximately 200 ms. Bode plots (Fig. 12(a)) revealad th
power distribution inf; needs to be changed. This might alsall selected{/p‘oeSt models indeed lack the effect 8%, i.e., they
affect the HC control behavior [35]. are a double differentiator up to = 10 rad/s, whereasfphyp
To conclude, in the SI conditions the model selection crpecomes a single differentiator around= 1/7; = 2.8 rad/s.
terion selects a model that describes the underlying dyceami he effect ofT; is apparently too small to be captured and as
‘efficiently’. It is not more complex than strictly necesgar & consequence its value is estimated close to zero.
and in many cases a slightly worse quality of fit is accepted Considerable variances in estimates are found for all feed-
in return for a reduction in model complexity. back parameters, but with small biases, see Figs. 14(k) -
2) DI Conditions: Only a few feedforward ARX models 14(m). NMS parameter estimates show considerable biases
and variances, Figs. 14(n) - Fig. 14(o).

with np, > 2 were selected from simulations with the X o
parameter values of Table I, but many from simulations with A Variety of changes can be made to the DI-P condition if

a reduced feedback contribution in the DI-P condition. d@ore accurate feedforward identification is desired. Theeuo
discussed in Section VI-D2. Hence, for the initial simwat ©' /¢ relative tof, can be increased to emphasize feedforward,

it was possible only to estimate the feedback parameters. Alsthe expense of accuracy of feedback identification. Fur-

these estimates were very similar to those for the simulatio"érmore, reducing the remnant level by averaging over more

with reduced feedback gains, we only show the latter fracking runs is expected to improve'identification results
Figs. 14(h) through 14(0). Results only include selected-moPUt Note that HC control behavior might not be constant
els Withnbft > 3, hence far more results are shown for the Dlt-hrOUQhOUt many repetitive runs.

P than DI-R conditions (see also Figs. 9(e) and 9(j)). The few

remaining parameter estimates for the DI-R condition show VIIl. DIsCUsSION
large biases, confirming that the procedure cannotideRif@y  Given a particular manual control task, it is often not
dynamics in the DI-R condition. known a priori whether the HC will exert feedforward control

The feedforward parameter estimates for the DI-P conditioor how the HC feedforward and feedback paths should be
Figs. 14(h) through 14(j), show notable biases with corrsidemodeled. Prior assumptions on the feedforward or feedback
able variance, but do illustrate thﬁ;l};est is a reasonably accu- dynamics cannot be made based on previous experimental
rate representation df'p};yp. K, is generally underestimatedresults, because hardly any literature exists on the subjec
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This paper presents a new LTI-model based identificatithe least room for any subjective interpretation. The Monte
procedure, to more objectively identify the feedforwardianCarlo simulations simultaneously assess the ability of the
feedback components of HC control behavior without makirigentification procedure to estimate the correct model from
any prior assumptions on the HC dynamics. The novel featureeasurements made in closed-loop, and deal with the high
of this procedure is thebjective selection of the correct levels of human remnant (colored white noise).

model, based on a model selection criterion that is tuned byThe main disadvantage of the features included to prevent
means of simulationprior to collecting experimental data. false-positive results are possible false-negative tgsia., ex-

The introduced procedure is successful in answering if aigting controller dynamics that are not identified, or dymzsm
how the HC responds tqg; and e for three of the four that are identified with a relatively large bias. For ins&®nc
control task conditions studied in this paper. For the SI-Rhe effects of the feedforward bandwidth parameterare
SI-P, and DI-P conditions, the procedure correctly idesdifi missing from the selected models in the DI-P condition: this
the characteristic features of the feedforward and feddbds essentially a false-negative result. Accurate tuninghef
controller dynamics from a noisy data set, making the preaodel selection criterion should prevent most false-p@sit
cedure suitable for O.1 and O.2. False-positive detection @ccurrences, but for certain conditions a compromise vaileh
a feedforward response from data generated by a purédybe found between false-positive and false-negativelteesu
feedback model is prevented by tuning the model selectionThe presented identification procedure is part of a complete
criterion. False-negative results, i.e., the selectioa @urely approach to studying manual control behavior, which ingslv
feedback model from data generated by a combined feedbasiknaulations and experimental data and has an iterativaaatu
feedforward model, occur only for data generated with smathis paper presented the simulation results, from which we
feedforward gainsK,, < 0.3) in both Sl conditions. For the conclude that, apart from the DI-R condition, an experiraent
DI-P condition, false-negative results occur for a largerge study can be performed to answer if and how the HC responds
of K, values, and depend much on the relative strength w@f the target signals and system dynamics evaluated. glearl
the feedforward and feedback paths. if the experimentally obtained HC dynamics are very differe

The procedure is able to correctly identify the governinffom the hypothesized HC dynamics, the whole tuning proce-
low-frequency dynamics of the HC responses. More subtiieire should be repeated with an HC model closer to the HC
dynamics, such as feedforward equalization and time delagehavior found experimentally.
are estimated, if at all, with large biases. Hence, the tesfil  The tuning process is guided by four objective requirements
this procedure alone are not sufficient to build a paranedrizdetermined by the user based on the application. These four
HC model (O.3). A gray-box modeling approach is requiregéquirements can additionally be used to compare the perfor
to obtain the HC model with the correct parametrization. mance of this procedure with novel methods in the future.

In the DI-R conditions, the contribution of the feedforward The proposed procedure is considered to be particularly
path is small and is identified only sporadically from theseful in studies that involve multi-loop or multi-modal HC
noisy data. To improve the identification accuracy in thisehavior, which generally require more complex HC models to
condition, one could evaluate the ARX modelsly on the describe the measured behavior. For the first time, we showed
segments where feedforward is expected, such as the rafgx in dealing with these more complex models false-pasiti
onsets and endings. This method was reported in [18], wbecur more frequently than one would expect, which casts

used a time-domain parameter estimation method. Eva@iatiserious doubts upon the validity of many previous findings.
this approach for ARX models is beyond the current scope.

Our identification procedure includes three features to en-
sure objective model selection, which were not previously
applied in the identification of manual control behaviorese  We introduced an objective procedure to identify if and how
features are: i) the use of a separate estimation and vialidatthe human controller utilizes feedforward and feedback, in
data set to prevent overfitting, ii) the use of a model sadecti control tasks with predictable target signals and unptetie
criterion that makes an explicit trade-off between modellqu disturbances. The procedure aims to identify HC dynamics in
ity and model complexity, and iii) the tuning of this exptici closed loop, from noisy data, and without making any prior
trade-off by means of simulated data. assumptions regarding the HC model structure or parameters

Our results demonstrate that the use of the standard BliGstimates and evaluates a large number of LTI ARX model
results in many false-positive results, and thus the delectcandidates and uses a novel model selection criterion éutsel
criterion needs to be modified by choosing an appropriatee best model. The original Bayesian Information Criterio
value for thec parameter. Other model selection criteria existyas found to return many false-positive results: model$ tha
such as the Akaike Information Criterion (AIC) [36], but #ge contain dynamics not present in the measured system. We
criteria generally penalize model complexity even lesstii@ demonstrate that in identifying HC dynamics, it is mandgator
BIC and would not be suitable in the current application. to increase the penalty imposed on the model order, through a

We argue that performing Monte Carlo simulations usingnodel complexity penalty parameter. The appropriate vafue
a hypothesized model is the most objective way to gathis parameter can be found through Monte Carlo computer
insight in the identification process and tune@ppropriately. simulations with a hypothesized HC model, guided by four
It evaluates the identification process for a case similahéo objective requirements chosen by the user. To illustrage it
real case, and for which the ground truth is known, leavimgerformance, the procedure was applied to four typical rabnu

IX. CONCLUSIONS



control tasks, with single and double integrator dynamaesl
predictable target signals composed of ramp and parabola

segments. The procedure was able to identify the corr

HC model structure for both target signals with the single
integrator dynamics, and for the parabola target signath wif
the double integrator. The identification for HC behaviothwi
double integrator dynamics and ramp targets proved to be
problematic, confirming previous results.
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