
 
 

Delft University of Technology

A risk field-based metric correlates with driver's perceived risk in manual and automated
driving
A test-track study
Kolekar, Sarvesh; Petermeijer, Bastiaan; Boer, Erwin; de Winter, Joost; Abbink, David

DOI
10.1016/j.trc.2021.103428
Publication date
2021
Document Version
Final published version
Published in
Transportation Research Part C: Emerging Technologies

Citation (APA)
Kolekar, S., Petermeijer, B., Boer, E., de Winter, J., & Abbink, D. (2021). A risk field-based metric correlates
with driver's perceived risk in manual and automated driving: A test-track study. Transportation Research
Part C: Emerging Technologies, 133, Article 103428. https://doi.org/10.1016/j.trc.2021.103428

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.trc.2021.103428
https://doi.org/10.1016/j.trc.2021.103428


Transportation Research Part C 133 (2021) 103428

A
0
(

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

A risk field-based metric correlates with driver’s perceived risk in
manual and automated driving: A test-track study
Sarvesh Kolekar ∗, Bastiaan Petermeijer, Erwin Boer, Joost de Winter, David Abbink
Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, The
Netherlands

A R T I C L E I N F O

Keywords:
Risk estimate
Perceived risk
Driver modelling
Test vehicle
Risk field

A B S T R A C T

Quantifying drivers’ perceived risk is important in the design and evaluation of the behaviour
of automated vehicles (AVs) and in predicting takeovers by the driver. A ‘Driver’s Risk Field’
(DRF) function has been previously shown to be able to predict manual driving behaviour in
several simulated scenarios. In this paper, we tested if the DRF-based risk estimate (𝑟̂) could
predict manual driving behaviour and the driver’s perceived risk during automated driving. To
ensure that the participants perceived realistic levels of risk, the experiment was conducted in
a test vehicle. Eight participants drove five laps manually and experienced 12 different laps
of automated driving on a test track. The test track consisted of three sections (which were
sub-divided into 12 sectors): curve driving (9 sectors), parked car (1 sector), and 90-degree
intersections (2 sectors). If the driver verbally expressed risk or performed a takeover, that
particular sector was labelled as risky. The results show that the DRF risk estimate (𝑟̂) predicted
manual driving behaviour (𝜌𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = 0.69, 𝜌𝑠𝑝𝑒𝑒𝑑 = 0.64), as well as correlated with the driver’s
perceived risk in curve driving (r2 = 0.98) and while negotiating a car parked outside the lane
boundary (r2 = 0.59). In conclusion, the DRF-based risk estimate (𝑟̂) is predictive of manual
driving behaviour and perceived risk in automated driving. Future research should include
tactical and strategic components to the driving task.

1. Introduction

Recent years have seen a surge in the popularity of automated vehicles (AVs). Although AVs may solve several problems, they
also introduce new ones. What is acceptable driving behaviour for an AV, and when do humans takeover the AV’s control? To
answer these questions, it may be useful to have an estimate of the driver’s perceived risk in the AV (Zhang et al., 2019a). AVs
will be used by drivers and passengers, and how these drivers and passengers perceive their system while driving is hardly known,
yet essential to know. If drivers perceive high levels of risk, and the AV does not react appropriately and reliably, they could lose
trust (Azevedo-Sa et al., 2021) and take over control, or reject the use of the AV altogether. Accordingly, it can be argued that new
AVs need an assessment of how end users perceive their behaviour.

Perceived risk is influenced by a variety of factors, including the environment and traffic situation, the mental state of the
driver, and prior experiences. Several studies have shown a correlation between personality characteristics and risky driving
behaviour (Jonah, 1997; Ulleberg and Rundmo, 2003; Dahlen and White, 2006; Machin and Sankey, 2008). In this study, in which
we provide a computational estimate of perceived risk, we consider the effect of the road environment and traffic situation only.
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Summala (2007) proposed four factors that need to be maintained above a certain threshold to keep drivers within their ‘‘comfort
one’’. These are safety margins (to road edges, obstacles or other vehicles), vehicle–road system (accelerations, road geometry),
ule-following (obeying traffic laws, maintaining speed limits), and good progress of the trip (meeting one’s expectations for the
ace or progress of the travel). Siebert et al. (2013) noted that the rule-following factor for comfort is redundant, as automated
ehicles (AVs) will almost certainly follow the rules, and that good progress of the trip depends on traffic conditions, rather than
utomation state in itself. Therefore, in this paper, we focus specifically on factors that affect the safety margins and vehicle–road
ystem for manual and automated driving. Other researchers have investigated the acceleration-related comfort aspect of automated
riving, which we do not investigate in this paper (Hartwich et al., 2018). Specifically, we will focus only on the perceived risk
hat arises due to the presence of physical objects (road curb, obstacles, cars, etc.) and exclude risks that arise due to other factors
elated to vehicle dynamics (loss of traction, roll over, etc.).

Several studies have attempted to predict manual driving behaviour for scenarios involving road boundaries and obstacles.
or example, longitudinal behaviour has been modelled using the optical edge rate on open roads (Denton, 1980), the time to
xtended tangent point in curves (Gruppelaar et al., 2018), time to collision (TTC) while approaching obstacles (Lee, 1976; Kondoh
t al., 2008), and time headway (THW) during car-following (Van Winsum and Heino, 1996). Lateral behaviour has been modelled
sing the two-point model (Salvucci and Gray, 2004), in which lateral and heading errors were used as signals. Other models
ave used features such as the ‘angle to the tangent point’ (Boer, 1996) and time to lane crossing (TLC) as signals to steer the
ehicle (Van Winsum and Godthelp, 1996; Boer, 2016). Some studies have also utilised a combination of signals such as speed and
cceleration (executed by the drivers) to classify manual driving behaviour into different levels of risk-taking behaviour (Eboli et al.,
016, 2017).

All the above models used a particular measure (TLC, TTC, THW, etc.) to predict the actions of a human driver. If we abide by
äätänen and Summala’s (Näätänen and Summala, 1976) risk threshold theory, which proposes that all motivations for actions are

o reduce the perceived risk and maintain it below a threshold level, these measures would represent the driver’s perceived risk.
owever, using different measures to quantify perceived risk in different scenarios leads to a fragmented model. For example, Basu
t al. (2017) used ten different measures for assessing the behaviour in 14 different scenarios.

The problem with having separate measures for separate scenarios is that: first, it is difficult to compare the estimated risk
etween scenarios; second, if two or more scenarios occur simultaneously, it is difficult to estimate the combined risk; third, the
perational level driving behaviour is often influenced by higher-level factors such as a driver’s familiarity with a particular road,
is/her mood, etc. In the case of a fragmented model, one would have to tune the parameters of several models in a coherent
anner. On the other hand, with a unified model, one has to tune the parameters of only one model. Accordingly, a unified model

hat can estimate driving behaviour or generate a risk estimate is needed.
The first attempt of making a unified model for explaining driver behaviour in different scenarios was made by Gibson and

rooks, using their ‘Field of Safe Travel’ concept (Gibson and Crooks, 1938). However, this was a qualitative description of how
umans drive in different scenarios. There have been several models that utilise this concept of risk field (Mullakkal-Babu et al.,
020; Li et al., 2020; Guofa et al., 2021). For example, Wang et al. (2015, 2016) tested the Driver Safety Index (DSI) in real cars
n straight sections of the highway during car-following and cut-in scenarios. Rasekhipour et al. (2016) proposed a path planning
pproach by combining the potential field approach with an optimal controller. More recently, Kolekar et al. (2020a) proposed
driver model based on the ‘Driver’s Risk Field’ (DRF) which could predict driving behaviour in a unified manner in 7 different

cenarios (curve driving, obstacle avoidance, car following, etc.). Hence, we hypothesise that the DRF risk estimate (𝑟̂) is a good
candidate for evaluating perceived risk during automated driving.

Kolekar et al. (2020a) validated their driver model by comparing its output (i.e., steering angle and speed) to manual driving
behaviour. They did not test if the risk estimate (𝑟̂) that they calculated (which was used as a ‘cost function’ in the driver model)
corresponded to the perceived risk of human drivers. Testing this is important since, if we can formulate a signal that correlates
with the perceived risk by the driver, it can be a valuable tool to assess the behaviour and acceptance of automated driving systems.
Also, Kolekar et al. (2020a) compared their simulation results to manual driving behaviour results published in the literature. Here,
since we aim to quantify the driver’s perceived risk, it becomes imperative that an experiment is conducted in a real vehicle to
generate a realistic feeling of risk.

In this paper, we test if the DRF-based risk estimate (𝑟̂) correlates with the drivers’ perceived risk, in a test vehicle. We perform
two main analyses. First, as an initial check, we tested if the DRF risk estimate (𝑟̂) predicts the driver’s behaviour during manual
driving. This is a necessary validation before performing the second step, where we compared the DRF risk estimate (𝑟̂) to the
driver’s comments and the takeovers that they performed, while being driven in an automated manner around a test track. The test
track consisted of three scenarios: curves with different curvatures, a parked car (placed outside the lane), and intersections. The
parked car being placed outside the lane boundary was done deliberately to examine if objects outside the lane boundary affected
the perceived risk or not.

2. Methods

2.1. DRF risk estimate (𝑟̂)

The DRF risk estimate (𝑟̂) is a product of the ‘consequence of an event’ (e.g., hitting a tree is worse compared to being on the
2

road) and the driver’s subjective belief about the ‘probability of the event occurring’ (Fig. 1d) .
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Fig. 1. Driver’s Risk Field: The figure illustrates the formulation of the Driver’s Risk Field (DRF) and the DRF risk estimate (𝑟̂). In all plots, blue represents a
low cost, and yellow represents a high cost. (a) A schematic representation of the DRF. (b) Four stages in mathematically constructing the DRF. (c) The DRF is
a dynamic field. By comparing (i) and (ii), we can see the effect of an increase in speed on the DRF: its length increases. By comparing (i), (iii), and (iv), one
can see the effect of steering. The DRF curves and expands with steering. (d) The top row illustrates Näätänen and Summala’s (Näätänen and Summala, 1976)
formulation of perceived risk. Two factors, the consequence of an event (e.g., colliding with a tree) and, the driver’s subjective belief about the probability of
that event occurring, are combined to form the driver’s perceived risk. The driver in the ego car is indicated using the black marker. The bottom row illustrates
the quantification of perceived risk. The cost of each element in the driving scene is multiplied by the Driver’s Risk Field (DRF). This product summed over all
grid points generates the risk estimate (𝑟̂).

2.1.1. Consequence of an event
In the DRF model, the ‘consequence of an event’ is represented by a cost map that provides relative costs of colliding with

different objects in the environment (e.g., road = 0, grass off-road = 500, tree = 2000, etc.). The DRF model can generate the 𝑟̂ in
real-time by using the environment generated by lidar and camera systems on-board the test vehicle. However, in this study, we
calculate the 𝑟̂ offline. We acquired a high definition map of the test track, converted it into a cost map, and tracked the location
of the car using GPS (± 5 cm accuracy). The cost of being on the road (𝐶road), cost of being off-road (𝐶off−road), and cost of hitting
the parked car (𝐶parked car) were determined using manually driven trajectories (Table 1).

2.1.2. Probability of the event occurring
The ‘probability of the event occurring’ is represented by the Driver’s Risk Field (Fig. 1a), which was empirically determined by

Kolekar et al. (2020b) and is mathematically represented by a modified torus with a Gaussian cross-section, the height of which
decreases and width increases, as you go further away from the ego-car (Fig. 1b). The formulation begins by predicting the vehicle
path, which is calculated using a kinematic car model. The position (𝑥car , 𝑦car), heading (𝜙car), and steering angle (𝛿) determine the
radius of the arc (𝑅car) in which the car is predicted to travel, assuming a constant steering angle (Eq. (1)).

𝑅car =
𝐿

𝑡𝑎𝑛(𝛿)
(1)

where 𝐿 is the wheel-base of the car. Using 𝑥car , 𝑦car , 𝜙car , and 𝑅car , the centre of the turning circle (𝑥c, 𝑦c) is determined, which is
used to calculate the arc-length (𝑠) along the predicted path. The DRF is modelled as a torus with a Gaussian cross-section (Eq. (2)).
The height (𝑎) and width (𝜎) of the Gaussian are a function of the arc length (𝑠) (Fig. 1b).

𝑧(𝑥, 𝑦) = 𝑎 𝑒𝑥𝑝

⎛

⎜

⎜

⎜

⎜

−
(
√

(

𝑥 − 𝑥c
)2 +

(

𝑦 − 𝑦c
)2 − 𝑅car

)2

2𝜎2

⎞

⎟

⎟

⎟

⎟
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Table 1
DRF and cost map parameter values.

DRF
parameters

𝑝 𝑡𝑙𝑎 𝑘1 𝑘2 𝑚 𝑐
0.04 3 0.02 0.05 0.0055 0.75

Cost map
parameters

𝐶road 𝐶off−road 𝐶oncoming−road 𝐶parked car
0 500 250 5000

The height of the Gaussian (𝑎), is modelled as a parabola (Eq. (3)).

𝑎(𝑠) = 𝑝
(

𝑠 − 𝑣 𝑡la
)2 (3)

With a fixed look ahead time (𝑡la), the look-ahead distance is assumed to increase linearly with speed (𝑣). Parameter (𝑝) defines the
‘steepness’ of the parabola. The width of the Gaussian (𝜎) is modelled as a linear function of arc length (𝑠) (Eq. (4)) and includes the
following parameters: first, 𝑐 defines the width of DRF at the location of the vehicle and is related to the car-width. In this paper, 𝑐
s equal to car-width/4. Second, 𝑚 defines the slope of widening (or narrowing for negative values) of the DRF when 𝛿=0 (driving
traight). Third, 𝑘1 and 𝑘2 increase (or decrease, for negative values) the width of the DRF proportional to the (absolute) steering
ngle (|𝛿|). This relationship between the DRF and 𝛿 is based on the rationale that the variability in steering angle increases linearly
ith the (mean) steering angle (Van Winsum and Godthelp, 1996; Boer, 2016; Eboli et al., 2016, 2017; Näätänen and Summala,
976; Basu et al., 2017; Gibson and Crooks, 1938; Mullakkal-Babu et al., 2020; Li et al., 2020; Guofa et al., 2021; Wang et al., 2015,
016; Rasekhipour et al., 2016; Kolekar et al., 2020a,b, 2018) and is similar to the empirically confirmed signal-dependent noise
resent in the human sensorimotor system (Harris and Wolpert, 1998; Clamann, 1969). 𝑘1 and 𝑘2 represent the parameters for the
nner and outer edges of the DRF, respectively, and allow for an asymmetric DRF. The expansion of DRF proportional to 𝛿 results
n the accumulation of a higher risk for a curve with a smaller radius. The asymmetric expansion (𝑘1 and 𝑘2) provides flexibility to
xhibit curve-cutting (𝑘1 < 𝑘2), centreline (𝑘1 = 𝑘2), or curve overshooting (𝑘1 > 𝑘2) behaviour.

𝜎𝑖 =
(

𝑚 + 𝑘𝑖|𝛿|
)

𝑠 + 𝑐 (4)

𝑖 = 1(inner 𝜎), 2(outer 𝜎)

n short, the Driver’s Risk Field (DRF) is parameterised by 𝑝, 𝑡la, 𝑚, 𝑐, 𝑘1, 𝑘2, and is only dependent on the driver’s state, not the
nvironment. Although these DRF parameters are specific to each individual, in this study, we decided to use the same parameter
alues (Table 1) for the eight participants. This was done so that we could combine/average the results over all the participants.
he values in Table 1 were estimated using a grid search algorithm which tried to minimise ∑3

𝑖=1
(

𝑦𝑖 model − 𝑦𝑖 experiment
)2, where 𝑖

1: steering angle, 𝑖 = 2: speed, and 𝑖 = 3: lateral deviation from the lane centre. Where, 𝑦𝑖 model is the trajectory generated by
he DRF model (page 10 of Kolekar et al., 2020a), and 𝑦𝑖 experiment is the average of five laps manually driven by a test driver.

.1.3. DRF risk estimate for each trajectory
The DRF risk estimate (𝑟̂) is a function of the vehicle’s trajectory, which is defined by the vehicle’s position (𝑥, 𝑦), heading (𝜙),

teering angle (𝛿), and speed (𝑣). We calculated the 𝑟̂ for each manual and automated lap of every participant.

.2. Test track and test vehicle

The experiment was conducted at a test facility in collaboration with Nissan, Japan. The test vehicle was a 1st generation Nissan
eaf equipped with an automated driving system. The participants sat on the right side of the vehicle and drove on the left hand
ide of the road.

To test different scenarios, we divided the test track into three sections. The first section consisted of curves with varying
urvatures and road widths. The second section (parked car section) consisted of a Nissan NV500 van parked along the left shoulder
f the road (outside the lane boundary). The third section consisted of two 90-degree intersections.

We further subdivided these three sections into 12 sectors. The curve driving section was divided into 9 sectors (S1 to S9), the
arked car was its own sector (PC), and the intersection segment consisted of two sectors (I1 and I2), as shown in Fig. 2. One of
he intersections (I1) had a zebra crossing, which the participants were asked to ignore for this experiment.

In Fig. 2, we show a snapshot of the signals recorded during the second manually driven lap by Participant 2. The dotted green
nd red lines indicate the start and end of the trajectory used for analysis, respectively. The driver started every lap from the green
ot and stopped at/after the red dot. In the automated driving condition, the car would need some initialisation time, and hence it
ad to be driven manually from the green dot, and it would get into automated mode by the time it crossed the green line. Hence,
4

he green line is used as the start of the analysis for both the manual and automated trajectories.
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Fig. 2. Snapshot of manual driving condition: A snapshot of the signals of lap 2 from participant 2. The dotted green and red lines indicate the start and end
of the trajectory used for analysis, respectively. (a) The test track consisted of curved section (Sectors SS9), a parked car (PC), and two 90◦ intersections (I1,
I2). The pink dot indicates the current (snapshot) location of the car on the track, and is represented by the vertical dashed pink line in each of the plots. (b)
A screenshot of the video recorded during the experiment. (c) Road curvature is positive for left curves, negative for right curves, and zero for straight roads.
(d) The 𝑟̂ is the DRF risk estimate for this particular lap. It can be seen that there are peaks in sectors S6 and S7, which are caused due to the car going close
to the curb which can be seen in the (e) lateral deviation plot. Positive lateral deviation is towards the left of the centreline and negative lateral deviation is
towards the right of the centreline. The thick black lines indicate the road boundaries and the translucent red box indicates the oncoming lane. The expansion
in the sector S1 is due to a road joining the track as shown in test track plot (a), where most participants used that piece of tarmac to ‘cut the corner’. (f)
Steering angle is positive for left turns and negative for right turns. (g) Car heading is positive counterclockwise and North direction was assumed to be 90◦.
(h) The speed can be seen to drop at all the curves and intersections, especially at the very sharp corner in S9.

2.3. Participants and test procedure

Eight male Nissan test drivers, certified to operate the automated test vehicle, participated in the experiment (mean age = 44.1
and SD = 13.4 years). Each driver drove five laps of the test track manually on one day and on another day they were driven in
the same car, along the same track, in an automated manner for twelve laps. The experimenter (first author) sat behind the driver’s
seat and an interpreter (Japanese ⟺ English) sat in the passenger’s seat.
5
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During the automated driving condition, the participants were requested to comment on how they felt about the driving
ehaviour of the vehicle. They were encouraged to specify the ‘why and where’ of their feedback. This was done because, first,
he driver’s steering or speed control input was unavailable since the car was being driven in an automated manner. Second, we
ould not provide the drivers with a hand-held or foot-operated device to indicate their perceived risk level. This was in accordance
ith Nissan’s safety committee’s guidelines which required the drivers to always be able to takeover the vehicle’s controls. Third,
hysiological measures are reliable in a laboratory setting, but in the dynamic environments of the test course, it is challenging to
cquire reliable physiological data. Hence, the decision was made to ask the participants to think aloud as they were driven around
he lap. The audio and video of all the laps were recorded, and the participants could take over the vehicle’s control whenever they
anted.

.4. Data exclusion

For the automated driving conditions, participants experienced twelve different trajectories (speed and position profiles). The
nitial plan was to have the driver’s experience two repetitions of six different controllers (1: centreline follower, 2: manual replay,
: manual replay with 90% speed, 4: DRF model, 5: DRF model safer (90% risk threshold) from Kolekar et al. (2020a), and 6:

safe’ driver’s trajectory). However, we could not replicate these trajectories on the track. Hence, we decided not to analyse the
esults per controller and attribute the trajectories to any controller type. In other words, we now analyse them purely based on the
rajectory that the driver’s experienced (not what the car was supposed to implement). After every lap, the participants filled up a
uestionnaire that evaluated the characteristics of the controllers. Since we do not draw or attribute any conclusions to the type of
ontroller, we did not analyse the questionnaires. Additionally, due to experimenter error, the video for Lap 4 of participant 6 was
ot recorded and hence this lap has been excluded from the analysis.

. Results

.1. Manual driving

For the manual driving conditions, the eight participants drove five laps of the test course. They were instructed to drive as they
ormally would. To test if the DRF model could predict the driver’s behaviour during manual driving we compared the predictions
f the model to the steering and speed control actions performed by the driver.

.1.1. Driver actions
To mitigate a rise in risk, the driver could perform steering corrections and speed reductions. Hence, we calculated the following

ignals to evaluate the DRF estimate predictions.

• Absolute steering angle (|𝛿|): Since both positive (left turn) and negative (right turn) steering actions indicate the driver’s
intent to reduce risk, we calculate the absolute value of the steering angle to quantify the driver’s action.

• Speed reduction (𝑣reduction): We assume that speed reduction is an indication of the driver’s intent to reduce the risk. The
reduction in speed is calculated with respect to the maximum speed at which the driver drove during that particular lap
(𝑉max). Hence 𝑣reduction= 𝑉max- 𝑣. We calculate the 𝑣reduction with respect to 𝑉max, because we think that 𝑉max represents the
driver’s max willingness to incur risk, in the context of this track.

3.1.2. DRF model predictions
The DRF model by Kolekar et al. (2020a) generates a single risk estimate. However, as mentioned earlier, the driver’s actions

(to mitigate the rise in risk) are split mainly into two components: |𝛿| and 𝑣reduction. To quantify which part of the 𝑟̂ corresponds to
reduction in risk due to |𝛿| and which part corresponds to a reduction in risk due to 𝑣reduction, we calculate the DRF steering risk
otential (𝑝̂steering, Fig. 3b) and DRF speed risk potential (𝑝̂speed, Fig. 3c), respectively.

𝑝̂steering = 𝑟̂𝛿=0,v_max - 𝑟̂v_max

𝑝̂speed = 𝑟̂𝛿=0,v_max - 𝑟̂𝛿=0

The 𝑟̂𝛿=0 is the 𝑟̂ when 𝛿 = 0 and hence, indicates the 𝑟̂ if the driver had not taken any steering actions. Similarly, 𝑟̂v_max is the
𝑟̂ when 𝑣=𝑉max (𝑉max of that particular lap) and hence, it indicates the 𝑟̂ if we were to disregard the speed reductions performed
by the driver. 𝑟̂𝛿=0,v_max is the 𝑟̂ when 𝛿 = 0 and 𝑣 = 𝑉max and hence, it represents the risk estimate if the driver had not made any
peed or steering corrections.

From Fig. 3a we can see that, for most parts, 𝑟̂𝛿=0,v_max> 𝑟̂𝛿=0, 𝑟̂v_max> 𝑟̂. It indicates that, as expected, most of the steering and speed
corrections performed by the driver reduced the risk. In some instances (in the neighbourhood of 300 m) the 𝑟̂v_max is higher than
the 𝑟̂𝛿=0,v_max. The difference indicates that the model thinks that the steering implemented by the diver at this point was ‘incorrect’.
Interestingly, it can be seen that the 𝑟̂𝛿=0 is lower compared to the 𝑟̂𝛿=0,v_max, which indicates that the driver compensated for this
‘steering error’ by reducing the speed more than the model have expected him/her to.

The predictions of the model and the driver’s steering behaviour showed a moderate-to-strong correlation (𝜌𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = 0.69 ± 0.04
Mean ± SD), Table 2). The peaks of the 𝑝̂ and the |𝛿| signals also align, indicating the steering timing also matches. In the
6
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Fig. 3. Manual driving predictions: The figure shows DRF risk estimates, DRF steering risk potential (𝑝̂steering), and DRF speed risk potential (𝑝̂speed) as a function
of the distance covered along the lane centre, for Participant 2. All the signals are the mean of the five repetitions of the manual trajectories. (a) The four
different DRF Risk Estimates: 𝑟̂𝛿=0,v_max, 𝑟̂v_max, 𝑟̂𝛿=0, and 𝑟̂ are plotted. The 𝑟̂𝛿=0,v_max has the highest value, and the 𝑟̂ has the lowest value. In between these two
re the 𝑟̂𝛿=0 and 𝑟̂v_max plots. (b) We compare the 𝑝̂steering, which is the model’s prediction about how much steering the driver should have implemented, to the
teering angle implemented by the driver (|𝛿|). (c) We compare the 𝑝̂speed, which is the model’s prediction about how much speed reduction is needed, to the
peed reduction implemented by the driver (𝑣reduction). The driver’s speed reduction can be seen to have ‘slower dynamics’ compared to the model predictions. 𝜌
s the Pearson’s correlation coefficient.

able 2
orrelation coefficients between DRF model predictions and manual driving behaviour.
Participant No. 1 2 3 4 5 6 7 8 Mean ± SD

𝜌steering 0.69 0.73 0.75 0.62 0.70 0.67 0.74 0.67 𝟎.𝟔𝟗 ± 𝟎.𝟎𝟒
𝜌speed 0.77 0.63 0.63 0.61 0.67 0.64 0.65 0.52 𝟎.𝟔𝟒 ± 𝟎.𝟎𝟕

neighbourhood of 300 m, the |𝛿| is higher than the 𝑝̂steering, which means that the driver steered more than the model expected
him/her to.

Fig. 3 shows that the driver’s speed reduction correlates moderately with the model predictions (𝜌𝑠𝑝𝑒𝑒𝑑 = 0.64 ± 0.07 (Mean ±
SD), Table 2). The peaks of the 𝑣reduction signal occur earlier than the peaks in the 𝑝̂speed, indicating that the drivers reduced their
speed earlier than the model expected them to. This, we think, is due to the parameter values identified for the DRF. Specifically,
the look-ahead-time (𝑡la) parameter of the DRF was set to 3 seconds (Table 1). Increasing this value will lead to the model predicting
an earlier speed reduction.

Ideally, for the speed control case, we should have compared the model predictions to the brake and accelerator pedal activity
since the perceived risk estimate of the driver is more directly related to the actions of the driver. However, the pedal activity was
recorded as a binary (on/off) signal. Hence, we decided to use the speed signal, even though the car dynamics would entail that it
would have ‘slower dynamics’ compared to the risk metric, as can be seen in Fig. 3c.

The results hence verify that DRF risk estimate correlates well with the steering and speed reduction actions performed by the
drivers during manual driving condition.
7
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Table 3
Words mentioned in drivers’ comments (8 participants × 12 laps × 12 sectors)
Risky comments Count Non-risky comments Count

close, left, near, closer 105 right, close, far, clearance,
larger, margin, space, wide,
widely, wider, width

34

curb, edge, stone 37 curb 21

woh, aaahhh, . . . (noises) 40 oh, hmmm, ooooooh (noises) 7

risk, risky, scary, hit, aggressive,
immediately, wrong, bad, dangerous,
harshly, intensely, jumps, rush
scared, sharp, sharply, steep,
suddenly, surprised, weird

45 good, ok, like, nice, fine, risk,
safe, acceptable, safer, comfortable,
reliable, smooth, avoid, avoided,
avoiding, liked, normal, average,
odd, peaceful, so-so

138

override, overrode, overshoot, correct 10 – 0

3.2. Automated driving

Investigating if the DRF risk estimate (𝑟̂) can predict the driver’s subjective feeling of risk during an automated drive is the main
im of this study. To test this we compared the DRF risk estimate (𝑟̂) to the comments provided by the driver, and the takeovers
hey performed during each lap. Essentially, we expected a Risky comment or a takeover when the 𝑟̂ value was high and a Non-risky
omment, no comment, or no takeover when the 𝑟̂ value was low.

.2.1. Driver’s comments and takeovers
We segregated the driver’s comments into two categories: Risky comments and Non-risky comments. Risky comments were those

in which the driver indicated a sense of danger, discomfort, or risk by using words or phrases such as ‘close to the curb’, ‘scary’, etc.
Non-risky comments are those that indicated that the drivers liked the drive, were ‘OK’ with it, found it too safe (boring), or did not
comment at all. Table 3 shows a few words that, for illustration purposes, we categorised into (i) the reasoning (e.g., close, near),
(ii) the object (e.g., curb), (iii) the noises participants made (e.g., woh, aaahhh), (iv) how they described the sector (e.g., risky,
scary), (v) the takeovers (e.g., overtook, (steering) correct(ion)). The complete list of Risky and Non-risky comments can be found
in the supplementary material.

As mentioned in the methods section, we had segregated the track into 12 sectors (Curve driving: S1–S9, Parked car: PC,
Intersections: I1, and I2) because participants usually commented while referring to these salient features, after they had experienced
the sector. Hence using time stamps of the comments to attribute the comments to the location of the vehicle on the track would not
make sense. The comments were hence attributed to each sector. So, if a driver complained about a particular sector being Risky,
the trajectory for the entire sector was ‘marked red’ (Fig. 4). The takeovers by the drivers were measured as a binary signal (black
line in Fig. 4).

3.2.2. DRF model predictions
We compared the driver’s comments and takeovers to the 𝑟̂ calculated during the automated trajectory. Similar to that calculated

for manual driving condition, the 𝑟̂ in the automated driving condition is unique to the trajectory of each of the 12 laps, for each
of the eight participants.

DRF risk estimate trajectories: The 𝑟̂ trajectories for each participant are plotted in Fig. 4. Visual inspection of the plot reveals
that the participants made a Risky comment when the 𝑟̂ was also calculated to be high. This points towards a good match between
the driver’s subjective feeling of risk and the objective risk estimate calculated by the DRF model. However, there are some instances
in the I1 and I2 sectors (intersections) where red sectors are marked at very low 𝑟̂ values.

Another interesting point is that the 𝑟̂ indicates a high-risk level in S1 and S7, but a low-risk level in S9. However, in Fig. 2c,
we can find that the curvature of S9 is even higher than that of S1 and the curvature in S7 is relatively small. The reason for this
high risk is due to the lateral positioning of the vehicle. The AV drove very close to the curb in S7 and S1 and hence led to a high
value for 𝑟̂Ṡeveral Risky comments from the participants also corresponded to the vehicle being too close to the curb. In S9, the AV
would slow down considerably more compared to that in S1 and S7, and hence the 𝑟̂is low despite the curvature being more than
that in S1 and S7.

Maximum of 𝑟̂ per sector: We assume that the maximum risk experienced by the driver is a more valid index of perceived risk
as compared to the mean risk experienced during a sector. Hence, we calculate the 𝑚𝑎𝑥(𝑟̂) in each sector, as a metric, to quantify the
‘riskiness’ of that particular sector. This metric (𝑚𝑎𝑥(𝑟̂) per sector) was labelled either Risky or Non-risky based on the comments,
and takeover or no takeover depending on whether the participant took over the vehicle’s control or not (Fig. 5).

Counting the number of Risky and Non-risky sectors: We plotted a histogram for each participant (Fig. 6) using the 𝑚𝑎𝑥(𝑟̂) for
each sector (from Fig. 4). We compared the qualitative response (the comments provided by the driver) with a quantitative response
(the takeovers performed by the drivers) in a stacked histogram. Fig. 6 shows that in the curve driving and the parked car sections,
none of the participants made any Risky comments or performed takeovers in the lowest risk estimate (bin). However, there are
8



Transportation Research Part C 133 (2021) 103428S. Kolekar et al.
Fig. 4. Risk estimate for automated driving: P1–P8 refer to the eight participants. Each row has 12 plots corresponding to the 12 laps for each participant.
The shaded rectangles indicate the 12 different sectors. S1–S9 for the curve driving segment, PC is the parked car segment, and I1 and I2 indicate the two
90 degree intersections. The plots show the DRF risk estimate (𝑟̂) for each lap. The blue parts indicate Non-risky sectors and the red parts indicate the Risky
sectors. The black ‘steps’ indicate the steering takeover by the driver. It can be seen that, in general, the risk estimate is marked red when the 𝑟̂ is high. Also,
the takeovers occur when the 𝑟̂ peaks.

several instances in the intersections when the participants (P1, P5, P6, P7, and P8) either made a Risky comment or performed a
takeover.

Naturalistic driving is majorly comprised of non-risky situations and a very few risky situations. A similar trend was shown by
the DRF risk estimate (𝑟̂), where the number of sectors decreased as the risk estimate increased (Fig. 6). Also, most of the takeovers
are accompanied by a Risky comment.

DRF risk estimate as a decision variable: The main aim of this paper was to test if the DRF risk estimate could be used to
detect Risky and Non-risky sectors. Since the participants can express their ‘feeling of risk’ by either commenting or by taking over,
we combine the two modes (using the ‘or’ function). Hence a sector is marked Risky if the participant either made a Risky comment,
or a takeover, or both. The remaining sectors are labelled Non-Risky.

We calculated the proportion of Risky sectors ( 𝑅𝑖𝑠𝑘𝑦
𝑅𝑖𝑠𝑘𝑦+𝑁𝑜𝑛−𝑅𝑖𝑠𝑘𝑦 ) for each 𝑟̂ value (mid point of each bin) and averaged it over all

the eight participants. The mean (circular markers) and standard deviation (error bars) are plotted in Fig. 7. The curve driving plot
(Fig. 7a), all the 14 points together, are calculated from 855 points (8 participants × 12 laps × 9 sectors - 9 sectors of lap four of
Participant six, which the experimenter failed to record). The parked car section plot (Fig. 7b), all 8 points combined, represent
9
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Fig. 5. Steps in automated driving analysis: Step 1: The comments were classified into Risky or Non-risky (Table 3). The takeovers were recorded by the
vehicle’s data collection system. Step 2: The trajectory of the entire sector the comment was attributed to was tagged Risky or Non-risky. Similarly, the entire
sector in which the takeover was initiated was tagged takeover or no takeover. If a takeover was initiated or comment was attributed to parts between two
sectors, both sectors were tagged. Step 3: The 𝑚𝑎𝑥(𝑟̂) for each sector was chosen as a metric. The number sectors with different levels of 𝑟̂ were plotted in a
stacked histogram. The two histograms, comments and takeovers, are combined and presented in Fig. 6. Step 4: The proportion of risky comments or takeovers
was calculated for each participant in each of the histogram bins, and then averaged over all eight participants. The red circular markers indicate the mean, and
the bars indicate ± standard deviation (SD). The plot shown here is for the curve driving section (S1–S9). An identical analysis was performed for the parked
car (PC) and the intersections (I1, I2) and the results are shown in Fig. 7.

the mean and standard deviation over 95 points (8 participants × 12 laps × 1 sector - 1 sector of lap four of Participant six). The
intersection plot (Fig. 7c), all 9 points combined, represent the mean and standard deviation over 190 points (8 participants × 12
laps × 2 sectors - 2 sectors of lap four of participant six). We think that this difference in the number of data points explains the
larger uncertainty in the parked car section and intersections compared to the curve driving section.

A logistic function was fit to the (mean) data points in all three sections (Fig. 7). As can be seen from the figure, instances with
𝑟̂ higher than 2250 and 1000 did not occur at the parked car and in the intersections, respectively. In the curve driving section, at
high values of 𝑟̂, the proportion of Risky sectors almost reaches 1, and 0 for low values.

𝑥 =
𝑎1

1 + 𝑒−𝑎2(𝑦−𝑎3)
− 𝑎4 (5)

The results from Fig. 7 show that the DRF risk estimate for the automated driving condition correlates with the participants’
subjective feeling of risk (comments or takeovers) in curve driving and parked car sections. In the intersections however, the results
are inconclusive since no instances of high 𝑟̂ were experienced in any of the laps.

4. Discussion

The aim of this paper was to test if the DRF-based risk estimate (𝑟̂) correlates with drivers’ perceived risk. The results show that
𝑟̂ predicted driver’s manual driving behaviour — speed and steering actions. Furthermore, in automated driving, the risk estimate,
correlated with the comments and takeovers performed by the drivers in curve driving and avoiding a car parked outside the lane
boundary. In other words, the DRF, a field-based risk metric, captured the perceived risk in curve driving and with a static obstacle.

The results for 90 degree intersections were inconclusive. Events with high 𝑟̂ did not occur (Fig. 6, 7) and the proportions of
Risky comments were low at low 𝑟̂ values. It is unknown how the results extrapolate to higher values of 𝑟̂. However, the fact that the
current version of the DRF only accounts for the physical presence of objects suggests that the 𝑟̂ at intersections may be a limitation
on this model. This is because at an intersection the DRF sees a larger patch of road (’safe zone’) and hence reduces the 𝑟̂, which
may result in speeding rather than braking at an intersection. Humans slow down at an intersection in anticipation of traffic. This
kind of learned conscious behaviour will have to be integrated in future versions of the DRF.

In this study, we derived the perceived risk (indicated by the driver) as a measure of it being Risky or Non-risky. This was based
only on the driver’s comments and whether they took over the controls of the vehicle or not. However, while analysing the videos
we found several interesting behaviours where the drivers would hover their hands near the steering wheel (presumably when they
felt a high risk) (De Diego et al., 2013). This kind of bio-mechanical preparedness to takeover also contains valuable information
about the risk perceived by the driver (Zhang et al., 2019b) and could be analysed in detail in future studies.
10
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Fig. 6. Histogram of comments and takeovers: P1–P8 indicate the eight participants. The 3 columns indicate the segregation of sectors into the three segments:
curve driving (S1–S9), parked car (PC), and intersections (I1–I2). The 𝑥-axis represents the number of sectors and the 𝑦-axis represents the DRF risk estimate. We
plot the Risky and Non-risky comments stacked on top of each other for comparison. Simultaneously, we also plot the takeovers and non-takeovers in a stacked
manner. Hence the height of two adjacent bars is equal. The bar plots have 14 bins (y axes) with minimum value of 0 and maximum value of 3500, and a
width of 250.
11
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Fig. 7. Proportion of risky sectors: This plot shows the mean (circular markers) and ±SD (bars) of the proportion of risky sectors (either the comment was
Risky or there was a takeover) over the 12 laps of all the 8 participants (95 laps in total, since 1 lap’s video was accidentally not recorded). The sectors for the
three sections: curve driving (S1–S9), parked car (PC), and intersections (I1, I2) contained 855, 95, and 190 data points respectively. A logistic function was fit
to the mean (circular markers) data points (Eq. (5)). The goodness of fit is indicated by the r squared (r2) metric.

To put our results in the context of literature, we compare it to ‘time to lane crossing’ (TLC) (Van Winsum and Godthelp, 1996).
There are several methods for calculating TLC (Van Winsum et al., 2000), such as the ‘TLC swath’ approach proposed by Boer (2016).
The similarities between the TLC and the 𝑟̂ arise from the fact that they both have an expanding arc (for TLC) or a field (for DRF).
This combined with the threshold, below which these metrics need to be maintained, results in satisficing behaviour (a strategy that
aims for a satisfactory result [e.g., stay within lane boundary], rather than the optimal solution [e.g., follow lane centre]). However,
there are two key differences.

First, the expansion of the arc for the TLC is fixed, whereas the expansion of the DRF is proportional to the (absolute value of the)
steering angle. This means that the DRF expands more (higher 𝑟̂) for a sharper curve compared to a shallower one, and hence would
want the car to drive slower for a sharper curve. The ‘swath TLC’ gets around this problem by having an additional ‘straight-line’
TLC which projects straight ahead and intersects with the outer lane boundary of the curve. The added benefit of having a steering
dependent expansion over a straight line TLC is that it is generalisable to scenarios other than interacting with lane boundaries.

The second difference is that, since TLC is calculated using the intersection points of the arc and the lane boundary, it cannot
account for the presence of objects outside the lane boundary. For a TLC based controller driving on a road with curbs on both sides
is the same as driving on a road with curb on one side and an open oncoming lane on the other. The DRF being a field can expand
beyond the lane boundaries and hence can account for objects outside the lane boundaries and the different levels of danger that
they pose (curb is more dangerous than an open oncoming lane).

In this study, all the scenarios were static which made it easy to formulate a high definition (HD) cost map of the test-track, offline.
However, multi-lane dynamic scenarios need dynamic cost maps that are updated online. Researchers, primarily using computer
simulations, have suggested approaches for straight roads and intersections using the ‘Conditional Random Field (CRF)’ (Guofa
et al., 2021) and the ‘Potential Field Indicator (PFI)’ (Li et al., 2020) that account for the uncertainties in behaviour of neighbouring
vehicles and the noise introduced while sensing their state (e.g., position, velocity, acceleration). Lu et al. (2020) also incorporate
the mass of the vehicle and Huang et al. (2020) incorporate the intention of the vehicle in a mixed (manual + automated) traffic
condition using long-short term memory (LSTM) networks to determine the potential field generated by external vehicles. In the
future, we would like to incorporate these features into the dynamic cost-map and test the validity of 𝑟̂ in multi-lane dynamic
scenarios with test vehicles.

An important aspect of the DRF model is its intent to formulate a unified risk measure over a plethora of driving scenarios.
Although further experimentation with other (static and dynamic) scenarios will be needed to test the validity of the model, this
unified approach to express driver’s perceived risk has important applications in designing the behaviour of automated systems. It
can be used to assess the performance of the automated system in different scenarios and adjusted to meet the preferences of the
individual drivers.
12
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5. Conclusions

The aim of this paper was to test if the Driver’s Risk Field (DRF)-based risk estimate (𝑟̂) could correlate with the perceived risk
f the driver. To ensure that the driver’s perceived a realistic level of risk, the experiment was performed on a test track with a
issan Leaf test vehicle.

• The DRF risk estimate (𝑟̂) correlates with manual driving behaviour expressed in terms of steering angle and speed (𝜌steering =
0.69, 𝜌speed = 0.64, Table 2, Fig. 3)

• In automated driving condition, the 𝑟̂ could predict the comments and takeovers performed by the drivers in the curve driving
section (r2 = 0.98, Fig. 7).

• The 𝑟̂ could also predict the comments and takeovers by the drivers, in the automated driving condition, while negotiating a
car that was parked outside the lane boundary (r2 = 0.59, Fig. 7).
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