
 
 

Delft University of Technology

Recognizing Perceived Interdependence in Face-to-Face Negotiations through
Multimodal Analysis of Nonverbal Behavior

Dudzik, Bernd; Columbus, Simon; Hrkalovic, Tiffany Matej; Balliet, Daniel; Hung, Hayley

DOI
10.1145/3462244.3479935
Publication date
2021
Document Version
Final published version
Published in
ICMI 2021 - Proceedings of the 2021 International Conference on Multimodal Interaction

Citation (APA)
Dudzik, B., Columbus, S., Hrkalovic, T. M., Balliet, D., & Hung, H. (2021). Recognizing Perceived
Interdependence in Face-to-Face Negotiations through Multimodal Analysis of Nonverbal Behavior. In ICMI
2021 - Proceedings of the 2021 International Conference on Multimodal Interaction (pp. 121-130). (ICMI
2021 - Proceedings of the 2021 International Conference on Multimodal Interaction). ACM.
https://doi.org/10.1145/3462244.3479935
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3462244.3479935
https://doi.org/10.1145/3462244.3479935


Recognizing Perceived Interdependence in Face-to-Face
Negotiations through Multimodal Analysis

of Nonverbal Behavior
Bernd Dudzik

Delft University of Technology
Delft, The Netherlands
B.J.W.Dudzik@tudelft.nl

Simon Columbus
University of Copenhagen
Copenhagen, Denmark

simon@simoncolumbus.com

Tiffany Matej Hrkalovic
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

t.matejhrkalovic@vu.nl

Daniel Balliet
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

D.P.Balliet@vu.nl

Hayley Hung
Delft University of Technology

Delft, The Netherlands
H.Hung@tudelft.nl

ABSTRACT
Enabling computer-based applications to display intelligent behav-
ior in complex social settings requires them to relate to important
aspects of how humans experience and understand such situations.
One crucial driver of peoples’ social behavior during an interac-
tion is the interdependence they perceive, i.e., how the outcome
of an interaction is determined by their own and others’ actions.
According to psychological studies, both the nonverbal behavior
displayed by (1) persons themselves and (2) that of others interact-
ing with them may facilitate inferences about their perceptions of
interdependence. Motivated by this, we present a series of experi-
ments to automatically recognize interdependence perceptions in
dyadic face-to-face negotiations using these sources. Concretely,
our approach draws on a combination of features describing indi-
viduals’ Facial, Upper Body, and Vocal Behavior with state-of-the-art
algorithms for multivariate time series classification. Our findings
demonstrate that differences in some types of interdependence
perceptions can be detected through the automatic analysis of non-
verbal behaviors. We discuss implications for developing socially
intelligent systems and opportunities for future research.
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1 INTRODUCTION
Modern computer systems are increasingly envisioned to closely
collaborate with humans in social environments, e.g., as partners
offering support in education [21], or mental healthcare [6]. Techno-
logical systems can benefit from estimating human’s conceptualiza-
tion and experience of social situations as contextual information
about an interaction to display intelligent behavior in such collabo-
ration settings [55]. In particular, intelligent systems could use such
information about social perceptions to meaningfully adapt their
functionality and behavior by facilitating predictions of (1) what a
human might do (2) why they might do it, as well as (3) how a user
might experience a system’s actions.

Motivated by this, one strand of Social Signal Processing (SSP)
strives to facilitate technology that can interpret the meaning of
behavioral cues in terms of social concepts relevant for human
interaction and their judgments [55]. Different theoretical accounts
from psychology can guide this effort since they describe how
individuals’ interpretations and judgments of the social situation,
together with their judgments of other persons, drive behavioral
and emotional responses [34, 43].

One important aspect of how individuals are thought to con-
ceptualize social interactions is the interdependence present in the
situation [3]: their perceptions of how potential outcomes of an
interaction are determined by their own and others’ actions. In
particular, when people perceive themselves as more mutually de-
pendent, they are more willing to behave cooperatively; in contrast,
perceived conflicts of interest undermine cooperation. Differences
in relative power may also affect one’s willingness to cooperate
[10]. This connection makes interdependence a highly desirable
construct for intelligent systems to be aware of in order to reason
whether people may be more or less likely to collaborate with one
another (or potentially another system). Research in psychology
has identified multiple dimensions of perceived interdependence
[19]. These dimensions include (1) Mutual Dependence, (2) Conflict
of Interest, (3) Future Interdependence, (4) Information Certainty, as
well as (5) Power , and can be assessed using a validated instrument
[19] (See Table 1 for definitions). Together, these prior findings
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Table 1: Dimensions of Situational Interdependence (as de-
fined by Gerpott et al. [19])

DIMENSION DESCRIPTION

Mutual Dependence (MD) Degree of how much each person’s outcomes
are determined by how each person behaves in
that situation.

Conflict of Interest (C) Degree to which the behavior that results in the
best outcome for one individual results in the
worst outcome for the other.

Future Interdependence (FI) Degree to which own and others’ behavior in
the present situation can affect own and others
behavior and outcomes in future interactions.

Information Certainty (IC) Degree to which a person knows their partner’s
preferred outcomes and how each person’s ac-
tions influence each other’s outcomes.

Power (P) Degree to which an individual determines their
own and others’ outcomes, while others do not
influence their own outcome.

provide a solid framework for developing an automated approach
for modeling human perceptions of social situations. Moreover,
while existing efforts in SSP have not systematically touched upon
modeling such social situation perceptions, there is a substantial
body of work on related constructs indicating the technological
feasibility of doing so (see Section 2.2 breakdown).

Motivated by the potential for improving the capacities of so-
cially intelligent systems, we investigate the potential of recog-
nizing an individual’s interdependence perceptions through an
analysis of audiovisual recordings of dyadic conversational inter-
action. While the process of interdependence perception is still a
subject of ongoing research, interaction partners’ nonverbal behav-
ior is likely one source of information utilized in it [3]. For example,
preliminary findings point towards the importance of facial ex-
pressions and gestures [19]. Moreover, individuals’ perceptions of
interdependence may guide their actions in social situations [3].

Concretely, we present the following contributions:

• We explore the feasibility of automatically recognizing the
interdependence perceived by individuals in face-to-face ne-
gotiations by analyzing audiovisual data about the behavior
displayed by (1) themselves as well as (2) their interaction
partner. Concretely, we focus on information about individ-
uals’ Facial Expressions, their Upper Body Behavior, as well
as their (Non-verbal) Vocal Behavior.

• We present our approach for predictive modeling as a base-
line for future technological research on this task. It relies
on a State-of-the-Art approach to classify multivariate time
series of behavioral features.

• We discuss the benefits of providing intelligent technologies
with the capacity to predict individuals’ interdependence
perceptions and point out targets for future research.

2 BACKGROUND AND RELATEDWORK
2.1 Situation Perception and Interdependence
The situational context in which a person finds themselves shapes
their cognition and affect. Conversely, however, a person also forms
an impression of the situation, which may influence their behavior
[3, 44]. Forming impressions of situations might help individuals

to orient themselves and navigate their everyday life [3, 43]. Con-
sequently, it has been suggested that people form such impressions
along dimensions that constrain their behavior and determine the
outcomes of their actions [3]. One important set of dimensions on
which social situations differ is interdependence.

Interdependence describes how people mutually control their
own and others’ outcomes in a situation. Experimental evidence
shows that objective interdependence causes variation in coop-
erative behavior, with especially conflicting interests and power
differences having strong effects on negotiation behavior and out-
comes [5, 12, 22, 28].

While social situations can objectively and structurally differ
in terms of their interdependence, in real-world interactions, how
individuals perceive the interdependence present in their dealings
with others determines their affect, cognition, and behavior. Subjec-
tive interdependence refers to these perceptions [3]. People readily
understand and describe social situations along dimensions such as
mutual dependence, conflict of interests, and relative power [19].
Such perceptions track objective features of an interaction, but
they are also influenced by stable and situational features such as
frames through which people perceive the situation [11] and of
the person, such as their personality [19] (for a broader framework
for situation perception, see [44]). Empirical research has shown
that perceptions of interdependence are associated with cooper-
ative behavior [10]. In negotiations, in particular, perceiving the
negotiation as a ’fixed pie’—i.e., high in conflict of interests—has
been linked to worse negotiation outcomes [51, 52]; and percep-
tions of power have been linked to lower offers [42]. More broadly,
subjective perceptions account for a significant share of the varia-
tion in cooperative behavior across situations and between people
[10, 11]. Initial experimental evidence also suggests that this link is
partly causal—i.e., differences in perceived interdependence cause
differences in cooperative behavior [11].

2.2 Interdependence and (Analysis of)
Nonverbal Behavior

A person’s perceptions of interdependence in a situation may be
reflected in their nonverbal behavior and informed by their inter-
action partner’s nonverbal behavior. As such, past studies have
explored both whether differences in interdependence are associ-
ated with expressed nonverbal behavior and whether people infer
interdependence from others’ nonverbal behavior. Moreover, com-
putational work has modeled the relationship between nonverbal
behavior and various constructs related to individual dimensions of
interdependence. In the following, we provide an overview of em-
pirical findings linking each interdependence dimension with either
perceived or expressed nonverbal behavior, combined with exam-
ples for related work from Social Signal Processing and Affective
Computing. Together, these findings highlight both the existence
of (1) links between nonverbal behaviors and the various interde-
pendence dimensions, as well as (2) the relevance of situational
interdependence as a construct concerning existing technological
research.

2.2.1 Mutual Dependence (MD):. Perceptions of MD have been
linked to eye contact and attention to one’s interaction partner [3].
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A related construct addressed extensively in Social Signal Process-
ing is team cohesion. For example, Hung and Perez [25] investigate
the automatic analysis of task-based group meetings based on au-
diovisual analysis, while Zhang et al. explore assessment based on
nonverbal behavior collected through wearable sociometers in a
longitudinal study [61].

2.2.2 Conflict of Interest (C):. Prior research has established that CI
is positively associated with anger and negatively with happiness [3,
41]. Moreover, people infer corresponding interests from smiles [54],
nodding, leaning forward, or affective touching, whereas crossing
arms and leaning away is linked to perceived conflict [3]. Several
projects have explored the detection of conflict in social interactions
from nonverbal cues, e.g., during discussions [29, 38]. Moreover,
detecting expressions of aggression and disagreement – indicators
of conflict – is a prominent line of research in Affective Computing
(e.g., using vocal features [31]).

2.2.3 Future Interdependence (FI):. Little direct empirical evidence
exists on the connection between FI perceptions and either ex-
pressed or perceived nonverbal behavior. However, there is evi-
dence for individuals differing in nonverbal behavior when inter-
acting with either strangers (individuals on which they may not
expect to depend on in the future) and familiars (individuals on
which they may depend on further down the line), e.g., in terms
of emotional facial expressions [56]. Similarly, exploiting this link
to predict the relationship between individuals has been explored
in computational work [60]. Moreover, computational work has
attempted multimodal predictions of peoples’ desire to engage in
future interactions with each other, for example, in the context of
job interviews [36].

2.2.4 Information Certainty (IC):. Existing findings show that non-
verbal behavioral cues can facilitate insights into the feelings of
ones’ conversation partner about a subject of discussion, leading to
a decrease in situational ambiguity [23]. Moreover, the intensity of
emotional responses a person displays might indicate the degree
of importance they assign to a particular outcome [37]. Similarly,
there is evidence linking the richness of behavioral expressions
(e.g., in terms of accessible cues) to the reduction of ambiguity in
emotion perceptions [58]. Together, this makes it plausible that
individuals can rely on conversation partners’ nonverbal affective
behavior to reason about their preferred outcome (e.g., [41]), and
that the presence (or absence) of relevant nonverbal signals relates
to the perceived certainty of those inferences. Meanwhile, certainty
judgments during interactions have not been directly addressed in
automatic behavioral analysis to the best of our knowledge. How-
ever, there exists a substantial amount of work on recognizing
surprise from nonverbal expressions (in particular from the face,
e.g., [33]), which indicates unanticipated or novel stimuli.

2.2.5 Power (P):. Perceptions of higher power have been linked
to more frequent expressions of anger [18, 40, 49], but also smil-
ing, the loudness of voice, interruptions, expansive posture, and
direct eye gaze [24]. People may also attribute high power to others
based on expressions of pride they display [53], free posture, direct
eye gaze, more frequent hand gestures [9] and low power from
expressions of appreciation, fear, and sadness [53]. These findings
are in line with the assumption that individuals who feel more

Figure 1: Overview of Data Collection Protocol

powerful might be more assertive and relaxed [45]. Broadly, the
approach/inhibition model of power suggests that low power leads
to inhibition of emotional expressiveness, whereas high power is
associated with expression of anger and happiness [27]. Finally,
there exists a substantial body of research using automatic behav-
ioral analysis to identify nonverbal patterns indicating dominance
– the behavioral expression of power [7]. For example, Jayagopi et
al. [26] identify the dominant members of a conversation through
analysis of their nonverbal behavior as captured by audiovisual
recordings. Similarly, there exists a substantial amount of technical
work exploring the analysis of nonverbal expressions to estimate
feelings of confidence, e.g., in public speaking settings [59].

3 DATASET
Here we provide an overview of the corpus that we use for modeling
and our steps for cleaning and preprocessing. It captures people’s
perceptions of interdependence during a face-to-face negotiation
task with another person. It includes audiovisual recordings of their
behavior throughout this conversation.

3.1 Data Collection
3.1.1 Procedure: Participants were assigned the roles of applicant
or HR manager in a simulated job negotiation involving eight differ-
ent issues (e.g. salary, annual bonus). Each issue had five options for
which participants could earn a varying number of points. Dyads
were assigned to either a low or a high conflict treatment. In all
treatments, two issues were integrative, meaning that the two nego-
tiators could trade one issue off against the other to maximize joint
gain. In the low (high) conflict treatment, five (one) issues were com-
patible, meaning that both negotiators preferred the same option,
and one (five) issue was distributive, meaning that one negotiator’s
best outcome was the other’s worst outcome. In addition, dyads
differed in the consequences of not agreeing. All started with an
outside option worth 40% of an even split. In one-third of dyads, one
negotiator received an increase to 60%, in another third, a decrease
to 20%. In the remaining third, both negotiator’s outside options
remained unchanged. Dyads were seated face-to-face, each with a
laptop in front of them. Messages and surveys were presented on
the laptop. At the outset, participants received information only
about their own payoffs. The negotiation proceeded in three five-
minute phases (T1, T2, T3); see Figure 1 for an overview of the
protocol. Participants were free to interact during these phases.
Thirty seconds after the start of T2, one participant was informed
about a change in their outside option. At the end of T3, participants
had to come to a negotiated agreement. Points earned were paid
out (up to €20 per participant, on top of a show-up fee of €15).

3.1.2 Collected Measures: Before the start of the negotiation and
after each phase, participants reported their perceptions of inter-
dependence on the 10-item short form of the Situational Inter-
dependence Scale [19]. Additionally, each participant’s behavior
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throughout the negotiation was recorded on video. The footage
was captured using a Logitech C920 camera set on a laptop facing
the participant, at a resolution of 1280 ∗ 720 with 30 frames per
second.

3.1.3 Curation and Preprocessing: Video recordingswere transcoded
to a resolution of 640 ∗ 360 pixel for further processing and split
into 5 minute segments delineating the specific negotiation phases
they cover. We removed records of negotiation phases with incom-
plete or invalid self-reports from the corpus to create a coherent
multimodal dataset. Furthermore, 4 participants in the remaining
dataset completed their final negotiation phase (T3) early, and their
records for this phase have a duration less than the targeted 5 min-
utes. Since the algorithms that we deploy for predictive modeling
(see Section 4.1) require sequences of a fixed length, we discarded
data from these specific negotiation phases. Finally, we only kept
records from interactions where data was available for both par-
ticipants after filtering, removing an additional 3 participants. The
curated corpus contains combined records (perceived interdepen-
dence and behavioral recordings) for 632 negotiation phases (T1:
212, T2: 212, and T3: 208) from a total of 106 sessions. The 212
participants were mostly in their 20s (Age:M(SD) = 22.306(7.097))
born in the Netherlands (Netherlands: N = 182; Other/Undisclosed:
N = 30), with a majority identifying as female (Female: N = 124;
Male: N = 70; Other/Undisclosed: N = 18).

3.2 Multimodal Contents
3.2.1 Audiovisual Recordings of Negotiation-Phases: The audiovi-
sual recordings in the datasets show participants from a frontal
perspective as they are seated at a table and capture their upper body
and face throughout the negotiation with their partner. Overall, this
is a highly controlled setting, including stable lighting conditions
and no environmental background noise, and as such should be
well suited for automatic behavioral analysis. However, manual
inspection of the data reveals occasional instances of participants’
faces being outside of the frame or being occluded by sheets of
paper that they hold in their hands. Moreover, since they are close
in physical space, there are moments where one person’s micro-
phone picks up the voice of their conversation partner, introducing
a potential source of noise. These conditions are well within the
range of natural behavior in front of a screen (e.g. during video con-
ferencing). As such, any approach for recognizing interdependence
from behavioral data in the real world will need to be capable of
functioning despite them.

3.2.2 Reports of Perceived Interdependence: An overview of the
distribution for the intensity of interdependence perceptions across
all negotiation-phases can be seen in Table 2. Apart from ratings for
P and C the distributions of self-reported interdependence percep-
tions are biased towards higher levels of intensity (MD:Median = 4;
FI: Median=3.5; IC:Median=4). This imbalance indicates substan-
tial intersubjective agreement among participants, likely reflecting
comparatively stable situation characteristics inherent in the nego-
tiation setting.

For predictive modeling, we split the continuous ratings for each
interdependence perception into distinct classes. For this purpose,
we first bin the interval of the continuous variables (i.e., [1 − 5])
into three equally spaced ranges, indicating low [0, 1.666], medium

Table 2: Distribution of Interdependence-Perceptions

DIMENSION M(SD) Min/Max #LM #H #T

Mutual Dependence (MD) 4.212 (0.672) 2./5. 71 561 632
Conflict of Interest (C) 3. (1.075) 1./5. 365 267 632
Future Interdependence (FI) 3.502 (0.672) 1./5. 258 374 632
Information Certainty (IC) 3.646 (1.003) 1./5. 231 401 632
Power (P) 3.100 (0.673) 1./5. 173 459 632

[1.667− 3.334] and high intensity [3.335− 5]. Due to the substantial
negative skew of the data, this results in very few examples for low-
intensity perceptions, and we merge this class with the medium-
intensity category. Consequently, we phrase the recognition of
interdependence perceptions as a series of binary classification-
tasks with the goal of differentiating between negotiations with
either a (1) Low-Medium (LM) or (2) High (H) Intensity along a par-
ticular dimension of interdependence. The reason for this splitting
approach is to preserve the mapping to the original rating scale.
Using an alternative strategy, e.g., a median-split would have bro-
ken this connection. An overview of amount of negotiation-phases
in the dataset falling into each of these classes is also available in
Table 2.

4 PREDICTIVE MODELING
4.1 Overview
In this section, we describe our pipeline for automatic recogni-
tion of interdependence perceptions from nonverbal behavioral
signals. A central motivation of our approach is to facilitate the
interpretation of models in future work regarding the importance
of types of human behavioral cues for their predictive performance.
As such, we opt for a solution that is grounded in interpretable
features of nonverbal behavior as an intermediate representation
for predictions, rather than end-to-end learning directly from audio-
visual data (i.e., using Deep Learning). Moreover, learning effective
representations for behavioral analysis from audiovisual media
generally requires large-scale datasets to be effective (see, e.g., the
recent review by Rouast et al. in the context of Affect Detection
[46]). As such, they are unlikely to be applicable to a dataset of our
size. Here, we rely on existing technologies to extract behavioral
features from audiovisual recordings (face and pose features from
individual video frames and speech features from short audio seg-
ments; see below). We then combine and concatenate these features
along the time-axis into a single multivariate time series (MTS) for
further processing and prediction.

An important component of multimodal social signal processing
is combining information from different sources for automatic anal-
ysis and prediction. Within the context of Affective Computing,
research has extensively explored feature-level fusion – where fea-
ture vectors for different modalities are concatenated directly with
each other for predictions – and decision-level fusion – where sep-
arate models are trained on the features from each of the different
information sources and then combined using a meta-estimator or
a voting scheme. Traditionally, neither approach has consistently
demonstrated performance benefits over the other [15]. Here, we
extract a shared representation from the MTS to capture patterns in
temporal dynamics within and across the individual channels of be-
havioral signals (using a multivariate version of the MINIROCKET
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Figure 2: Overview of our Predictive Modeling Pipeline for
Automatic Recognition of Interdependence Perceptions.

algorithm [14]; details below). Classification of the MTS is then
based on this shared representation. Consequently, our approach
relies on a form of feature-level fusion, and as such, is potentially
capable of capturing relationships across individual features and
their dynamics over time.

We present a graphical overview of the entire machine learning
pipeline that we deploy for recognition of interdependence per-
ceptions in Figure 2. Processing in it is undertaken in three stages:
(1) Feature Extraction, (2) Time Series Representation, and (3) Classi-
fication. We describe each stage in greater detail below. The entire
pipeline is deployed separately for predictions of each dimension of
the situational interdependence construct, taking either a video of
the person’s own expressed behavior or that of their conversation
partner as input. Crucially, we deploy this approach in two differ-
ent variations in our empirical investigations, which we denote as
(1) MINIROCKET-Ridge, and (2) MINIROCKET-SVM , differing the
algorithm that they rely on for classification.

4.2 Feature Extraction
4.2.1 Facial Behavior: We deploy the software OpenFace 2.0 [4] for
extracting feature-sets relating to different aspects of individuals’
facial behavior. To characterize Facial Expressions, we rely on the
activation-intensity of the 17 Facial Action Units provided by Open-
Face (AU Intensities). Intensities range from 0 − 5, whereby a value
of 0 denotes no activation of the action unit in question, and a value
of 5 an activation at maximum intensity. To capture pattern in Eye
Gaze during negotiation, we use the gaze-direction vectors pro-
vided by OpenFace, which comprise of angles in radians along the
(x ,y)-axis in world coordinates averaged across both eyes. Finally,
to obtain an indication of participants Head Pose, we use estimates
provided by OpenFace for the head’s position ((x ,y, z)-coordinates),
and orientation ((pitch,yaw, rotation)-angles) relative to the cam-
era. Frame-level vectors for each of these feature sets for a particular
recording are then concatenated along the time axis to result in a
25-dimensional multivariate time series of length L = 9000. In a fur-
ther processing step, feature values for frames in which OpenFace
provided a low-confidence score (i.e., < .1) are replaced with the

mean value for that feature across the previous and following steps
in the time series (3% of all frames were affected by this procedure).

4.2.2 Upper-body Behavior: To characterize individuals’ upper-
body behavior, we use OpenPose [8] to extract the positions of 7
anatomical key-points ((x ,y)-coordinates) at the frame-level: (1) Neck,
(2) Left Shoulder, (3) Right Shoulder, (4) Left Elbow, (5) Right El-
bow, (6) Left Wrist and (7) Right Wrist. All frame-level vectors
for a recording are concatenated along the time axis to form a 14-
dimensional multivariate time series with length L = 9000. Frames
for which OpenPose does not output keypoints are replaced with
feature vectors containing all zeros. Moreover, coordinates of key
points in a frame for which OpenPose outputs a confidence rating
below a cut-off value (< .1) are replaced with the mean (x ,y)-values
calculated from the previous and following steps in the time series.
The proportion of frames affected by this procedure varies substan-
tially across detected joints: For Neck detections, 8.5% of all frames
were affected, while for Shoulder joints, this rose to 18.6%, Wrists
75.7%, and finally about 86.2% of Elbow data. These rates indicate
that especially the hands are often not visible in the recordings (see
Section 6.2 for a discussion of this potential limitation).

4.2.3 Vocal Behavior: For extracting vocal-features, we first split
each video’s audio track into a separate file, before using openSMILE
[17] to extract a set of low-level descriptors (LLDs) of the audio
signal. In the ComParE configuration, the software provides a set
of 64 descriptors forming the traditional baseline for the annual IN-
TERSPEECH paralinguistics challenge (see, e.g., the 2020 iteration
[48]). Descriptors in this set relate to different acoustic characteris-
tics of an audio signal (see Weniger et al. for a detailed description
[57]) and originate from a variety of fields (e.g., Speech Process-
ing and Music Information Retrieval). They have been applied in
a broad array of social signal processing tasks over the years to
infer the states and traits of speakers. Extracting LLDs results in
65-dimensional multivariate time series of length L = 30000. We
downsample this series to a length of L = 9000 for multimodal
alignment.

4.3 Time Series Representation
ROCKET (RandOm Convolutional KErnel Transformation) is a re-
cent approach for time series representation, and classification
achieving state-of-the-art performance on benchmarks for this task
[14]. The algorithm applies a large amount (i.e., 10000 as a default)
of convolutional kernels to an input time series and then calculates
aggregate features over each kernel’s feature map (i.e., pooling).
For ROCKET, pooling operations include computing the maximum
(MAX) and proportion of positive values (PPV), i.e., the proportion
of values for which the output of the convolution is positive. In
contrast to convolutional kernels in deep neural networks, the pa-
rameters for these kernels (e.g., their bias, length, and dilation) are
not learned from the data but are sampled at random from a range
of sensible choices. Pooling features are then fed to a linear classi-
fier for prediction (either a Ridge Classifier or Logistic Regression).
MINIROCKET (MINImally-deterministic ROCKET) is an improved
version of the ROCKET displaying greater computational efficiency
without losing performance [14]. In contrast to a random sampling
of kernel parameters, it relies on a fixed set of 84-kernels combined
with a variable amount of dilation for each. Additionally, it only
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uses the PPV operation for pooling. While originally developed
for univariate time series, ROCKET-variants have been extended
for multivariate data as well and were found to be outperforming
existing alternatives in this task (including state-of-the-art deep
neural network architectures) in a recent large-scale comparison of
algorithms [47]. Instead of applying a kernel/dilation-combination
to all channels of a multivariate input time series, the current multi-
variate implementation of MINIROCKET 1 assigns a random subset
of channels (max. 9) to each. In our experiments, we optimize the fol-
lowing hyperparameters of MINIROCKET: (1) number of features
of the representation produced from {10000, 20000}, and (2) the
maximum amount of dilation per kernel from {32, 64}.

4.4 Classification
In line with the original MINIROCKET algorithm, we feed the time
series representation resulting from the transformation to a Ridge
Classifier (i.e., a linear model with L2-regularization). We denote
this variant of our pipeline as MINIROCKET-RIDGE. However,
this approach assumes a strictly linear decision boundary between
classes in terms of the time series representation. As such, it does
not account for potential interactions among the individual PPV
features resulting from the transformation, each of which indicates
the prevalence of a particular pattern in the input MTS. To explore
the potential benefits of accounting for a non-linear relationship
in modeling interdependence perceptions, we rely on a Support
Vector Machine (SVM) with a Radial Basis Function (RBF)-kernel
as a classifier. SVMs have been widely used in Affective Computing
research [15] and are often deployed as a generic baseline for more
specialized technological approaches to compare against (e.g., in
dataset papers [30]). Apart from being comparatively data-efficient,
SVMs are well suited for dealing with classification problems in
high-dimensional spaces [20]. In the following, we refer to this
variant of our pipelineMINIROCKET-SVM. For both models, we rely
on the implementation from the python library Scikit-Learn [39].
Furthermore, we train both classifiers with loss-terms weighted
inversely proportional to the class frequencies to ameliorate the
adverse effects of the imbalanced distributions on learning.

5 EMPIRICAL INVESTIGATION
We conduct two series of machine learning experiments to explore
the capacity for automatic recognition of interdependence percep-
tions based on nonverbal behavior. In the first one, we investigate
our approach’s performance based on a perceivers’ own behavior.
In contrast, we explore predictive performance in the second series
using information about their conversation partner’s behavior. In
each series we collect one set of samples for the test-performance
on recognizing Mutual Dependence (MD), Conflict (C), Future Inter-
dependence (FI), Information Certainty (IC), and Power (P) respec-
tively. We use these samples for statistical analysis, comparing the
performance of our approach to that of a majority classifier as a
naive baseline. Additionally, we compare the relative performance
of the two variations of our pipeline to each other. This second
comparison offers additional insights into the potential importance
of accounting for non-linear relationships between the temporal
pattern in the behavioral signals and interdependence perceptions.

1https://github.com/angus924/minirocket

5.1 Experimental Setup
For training and evaluation of our models, we rely on a 5-Fold Leave-
Session-Out Cross-Validation procedure (5-Fold LOSOCV). This pro-
cedure creates folds so that no data points from the same dyad are
simultaneously available for both training and evaluation of amodel.
We opt for this procedure since individual records for negotiation-
phases are not independent of each other but instead were col-
lected using a repeated measures design (negotiation-phases nested
in participants, which are again nested in dyads). We repeat the
LOSOC-procedure 6 times, splitting the data into new folds for each
iteration. Together, this results in a total of N = 30 data points for
the test performance on unseen data per variant of our pipeline
for each targeted dimension we investigate in our experiments.
Averaging across different train-test splits in such a way provides a
more robust estimate of models’ performance on unseen data com-
pared to a single train-test split. Please note that splits are re-used
across pipeline variations for the same target and input video to
produce comparable results (i.e., the input data is identical for both
aMINIROCKET-RIDGE andMINIROCKET-SVMmodel). Finally, for
MINIROCKET-RIDGE/MINIROCKET-SVM, the training folds gen-
erated by each LOSOCV-procedure are used as a development set to
optimize the hyperparameters of the machine learning algorithms.
Parameters are identified through a grid search in combination with
an additional inner LOSOCV. To further account for the imbalanced
distribution of class labels in our data, we evaluate the performance
of all our models using the Balanced Accuracy (AccB ) metric. It is
computed as the arithmetic mean of sensitivity (true positive rate)
and specificity (true negative rate): AccB = 1

2 (
T P

T P+FN +
T N

TN+F P ).
Scores lie in the interval of [0, 1], with a classifier exploiting only
the prevalence of the majority class scoring AccB = .5.

5.2 Results and Analysis
Weprovide a graphical overview of test performance for our pipelines
for each targeted interdependence dimension in Figure 3. Moreover,
Table 3 shows a statistical comparison of these samples against the
performance score for a majority classifier (i.e., AccB = .5) 2.

5.2.1 Predictions based on Own Behavior: Comparisons against a
majority classifier indicate the possibility of detecting differences in
perceptions of C, FI, P by analyzing components of individuals’ own
nonverbal behavior. In particular, our models showed the highest
average performance across all our experiments when predicting C
and P perceptions. While both variants of our pipelines performed
significantly above baseline for these dimensions, only the one using
SVM also facilitated predictions for FI. Finally, our comparisons
reveal no significant performance when targeting MD or IC.

5.2.2 Predictions based on Partner Behavior: Our experiments demon-
strate that analysis of the nonverbal behavior displayed by a per-
son’s interaction partner can detect differences in perceptions of C
and IC. However, neither variant of our approach offers significant
insights into the MD, FI, or P dimensions.

5.2.3 Effect of Classifier on Test Performance: To assess the effect
of a non-linear classifier on our pipeline’s performance across the
2Test samples were taken from different repetitions of the 5-Fold LOSOCV proce-
dure and as such are not independent. To control for this nesting in our statistical
analysis, we rely on significance tests using clustered bootstrapping [13] (B = 10000
repetitions).
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Table 3: Test-performance (Balanced Accuracy-Score AccB ) of our pipelines for recognizing the intensity of interdependence
perceptions, including comparison versus Majority Classifier (fixed value of AccB = .5). Significant improvements are bold.

OWN BEHAVIOR PARTNER BEHAVIOR

AccB vs. Majority AccB vs. Majority
Target Pipeline Variant M (SD) Min/Max ∆M (AccB ) p M (SD) Min/Max ∆M (AccB ) p

MD MINIROCKET-Ridge .468 (0.039) .383/.534 -.032 <.001*** .470 (0.035) .387/.526 -.030 <.001***
MINIROCKET-SVM .518 (0.048) .444/.612 +.018 .099 .461 (0.056) .291/.500 -.039 <.001***

C MINIROCKET-Ridge .528 (0.054) .390/.660 +.028 <.001*** .552 (0.052) .450/.688 +.052 <.001***
MINIROCKET-SVM .568 (0.048) .481/.681 +.068 <.001*** .542 (0.048) .438/.620 +.042 <.001***

FI MINIROCKET-Ridge .505 (0.041) .422/.570 +.005 .448 .504 (0.043) .426/.579 +.004 .626
MINIROCKET-SVM .521 (0.044) .491/.649 +.021 <.001*** .498 (0.036) .427/.553 -.002 .61

IC MINIROCKET-Ridge .493 (0.038) .433/.570 -.007 .108 .536 (0.058) .403/.690 +.036 <.001**
MINIROCKET-SVM .485 (0.034) .401/.560 -.015 <.001* .538 (0.042) .430/.632 +.038 <.001***

P MINIROCKET-RIDGE .533 (0.047) .455/.660 +.033 <.001*** .498 (0.052) .399/.653 -.002 .842
MINIROCKET-SVM .568 (0.045) .492/.679 +.068 <.001*** .511 (0.049) .422/.605 +.011 .293

MD: Mutual Depdendence; C: Conflict of Interest; FI: Future Interdependence; IC: Information Certainty; P: Power

Figure 3: Test Performance (AccB ) of our Predictive Modeling Pipeline. Error bars denote the 95% confidence interval.

different interdependence dimensions, we conduct separate multi-
way ANOVAs for the data from the two experiment series. To do so,
we construct linear mixed-effects models with theAccB -score as the
dependent variable and include fixed-effects for (1) the type of inter-
dependence dimension targeted by the pipeline (DIM), (2) the type
of classifier it uses for predictions (CLF ), and (3) their two-way in-
teraction. To account for the nesting of performance samples in our
analysis, we include random effects for the identity of repetitions
within dimensions. For each task, we compare performance only
on those dimensions with at least one classifier performing above
baseline (i.e. for predictions based on own behavior C, FI and P; for
other behavior C and IC). Results for test performance using own
behavior reveal significant main effects for both targeted dimen-
sion (DIMown : F (2, 12) = 17.204, p < .001) and classifier (CLFown :
F (1, 342) = 8.26, p < .001), but not for their two-way interaction.
In contrast to this, the analysis of test performance for predictions
based on partners’ behavior reveals only a significant main effect for
the targeted dimension (DIMpar tner : F (1, 240) = 28.326, p < .001).
Together, this indicates that the choice of classifier can have a
substantial influence on the performance of predictions (i.e., for
predictions based on own behavior, using SVM improves average
performance).

6 DISCUSSION
6.1 Empirical Findings and Implications
The findings from our experiments demonstrate the possibility of
predicting some interdependence perceptions from nonverbal be-
havior. In particular, they show that our approach for automatic

analysis could exploit patterns in peoples’ own behavior to differ-
entiate between the intensity of some perceptions for Conflict of
Interest (C) and Power (P). This result is broadly plausible, given the
existing evidence on the expression of power in nonverbal behavior
[7], and the strong link between negative emotional responses to
situations where ones’ goals are perceived as being impeded by
others (e.g., anger [41]). Similarly, our results show that information
about the behavior of a person’s interaction partner can facilitate
predictions of both Conflict of Interest (C), Future Interdependence
(FI), and Information Certainty (IC). This finding also seems to agree
with existing evidence for the importance of nonverbal information
when inferring others’ feelings, preferences, and ultimately, inter-
dependence within a situation. Additionally, the finding that both
a person’s own nonverbal behavior and that of their conversation
partner facilitates predictions of C indicates that these might pro-
vide complementary information that could be exploited in a joint
model. Importantly, the overall pattern of predictive performance
across interdependence-dimensions indicates a complementary re-
lationship between the two sources of behavior: recognition of
some interdependence perceptions requires only analysis of one’s
own behavior, while others need information about one’s interac-
tion partner. This pattern has crucial implications for intelligent
systems since it might enable developers to make meaningful trade-
offs when sensing interdependence in applications. For example, in
the negotiation scenario covered by our dataset, an intelligent sup-
port system might require insights into user’s perceptions of P and
C to detect moments requiring guidance. Our findings suggest that
it might suffice for an application to monitor only the user’s own

127



nonverbal behavior in this setting without also requiring access to
information about the partner’s behavior (e.g., to preserve privacy).

However, there were several dimensions of perceived interdepen-
dence for which our approach showed very low or no performance
at all in our experiments. One potential reason might be the class
imbalance in the dataset for examples related to some interdepen-
dence dimensions (see also limitations below). However, this fact
alone seems an unlikely cause for the drop in performance, given
that examples for FI are almost balanced while examples for P are
clearly not. Overall, it seems plausible that either nonverbal be-
havior provides no insights into these perceptions (at least in the
setting covered by our dataset) or that the signal is substantially
weaker and more nuanced.

Finally, the significant effect of the choice of classifier (Ridge
vs. SVM) on performance demonstrates that the type of behavioral
pattern picked up by the MINIROCKET in the multivariate time
series can have a complex, non-linear relationship to the intensity
of interdependence perceptions. For this reason, it is likely that
more sophisticated classifiers built on top of ROCKET-variants (in
addition to a wider variety of pooling strategies [50]) might result
in better predictive performance on this task and could be used as
a first step to extend our modeling approach.

6.2 Limitations and Future Work
One substantial limitation for our results is the imbalance in our
dataset for some dimensions of perceived situational interdepen-
dence. While present across all dimensions, a skew in the distribu-
tion is particularly pronounced for low-intensity IC and MD. As
such, research on the automatic perception of situational interde-
pendence will benefit from datasets with more systematic variation
along these dimensions. Similarly, because the interactions captured
in the dataset describe only one type of situation (i.e., negotiations),
it is unclear how well the behavioral patterns recognized by our
models generalize to different types of interactions (e.g., team meet-
ings or dinner dates). To better understand the latter, a collection of
cross-situational datasets measuring situational interdependence
will be needed. Recent events, such as the COVID-19 pandemic,
have lead to a shift in the way people interact with each other -
promoting remote interactions over the in-person interactions indi-
viduals are more used to engage in. Given the overall similarity in
setting, i.e., being seated in front of a computer, with separate video
streams for participants, our findings seem feasible to generalize
to online interactions like video conferencing. Thus, a promising
first target for collecting relevant cross-situational data might be
interactions other than negotiations in that setting.

Finally, the overall low confidence with which wrist- and hand-
joints were detected in our study shows arms may be a sparse
signal in this recording format. As such, to study the role of hand-
based gestures for interdependence perceptions and their automatic
detection may require a recording setup that specifically strives for
their inclusion.

We plan to develop context-sensitive approaches to situation
perception using information about participants’ background (e.g.,
Demographics, Personality) as part of automatic recognition in
future work. Context-sensitivity is a primary challenge for Social
Signal Processing [55], and Affective Computing [16], and plays
an important role in humans ability to infer qualities of others’

situational understanding accurately (e.g., in terms of emotional
appraisals [32]). While we have focused here on exploring the
general potential of nonverbal behavior for predictions, we strive
for a more fine-grained understanding of the contribution provided
by particular modalities and cues in the future. In particular, we
aim to explore techniques providing explanations for predictions
at a temporal level (e.g., using the timeXplain-framework [35]) to
isolate particular behavioral patterns that discriminate between
types of interdependence perceptions. Finally, we plan to account
for the interactive nature of conversations in modeling explicitly. A
first step could be to extend our approach by incorporating features
from both individuals for predictions, i.e., to address phenomena
related to behavioral coordination, such as mimicry [2].

7 SUMMARY AND CONCLUSION
Recognizing how individuals think and feel in social interactions is
envisioned to provide intelligent systems with contextual informa-
tion that is important for them to adapt their behavior in a social
environment [55], especially in circumstances that require close
collaboration with humans [1]. Perceptions of the interdependence
present in a social interaction – how a person’s outcome depends
on their own actions and the actions of other parties involved –
are considered an important driver for how people behave in any
kind of social situation. As such, the construct of situational inter-
dependence can provide intelligent systems with a representation
for describing individuals’ social experiences that is generically rel-
evant for adaptation and personalization. Moreover, it relates to a
wide variety of existing research topics in Social Signal Processing.

Prior research from psychology has implied that non-verbal
behaviors can covary with perceived interdependence. However,
no research has relied on multimodal analysis to investigate how
non-verbal behaviors are associated with the five dimensions of
perceived interdependence. In this article, we have presented a
series of machine learning experiments that demonstrate the prin-
cipal possibility for automatic recognition of some interdependence
perceptions from nonverbal behavior during face-to-face negotia-
tions in a dyadic setting. In particular, this includes perceptions of
Conflict of Interest, Future Interdependence, Information Certainty,
and Power. Moreover, our experiments indicate that behavioral sig-
nals of either the person or their conversation partner can provide
complementary information for the automatic recognition of in-
terdependence perceptions. This insight may facilitate meaningful
trade-offs in developing intelligent applications, e.g., by analyzing
only the behavioral source necessary for predicting particular per-
ceptions. Finally, while recognizing interdependence perceptions is
challenging, our empirical investigations’ approach for predictive
analysis can serve as a baseline for future technological research
and improvements.
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