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ABSTRACT:

Governments use flood maps for city planning and disaster management to protect people and assets. Flood risk mapping projects
carried out for these purposes generate a huge amount of modelling results. Previously, data submitted are highly condensed
products such as typical flood inundation maps and tables for loss analysis. Original modelling results recording critical flood
evolution processes are overlooked due to cumbersome management and analysis. This certainly has drawbacks: the ‘static’ maps
impart few details about the flood; also, the data fails to address new requirements. This significantly confines the use of flood maps.
Recent development of point cloud databases provides an opportunity to manage the whole set of modelling results. The databases
can efficiently support all kinds of flood risk queries at finer scales. Using a case study from China, this paper demonstrates
how a novel nD-PointCloud structure, HistSFC, improves flood risk querying. The result indicates that compared with conventional
database solutions, HistSFC holds superior performance and better scalability. Besides, the specific optimizations made on HistSFC
can facilitate the process further. All these indicate a promising solution for the next generation of flood maps.

1. INTRODUCTION

To prepare for potential future flood disaster (Figure 1), many
countries have conducted flood mapping projects in past dec-
ades (Merz et al., 2007, Cheng, 2005, Tran et al., 2009). For
instance, in USA, the Federal Emergency Management Agency
(FEMA) generated digital flood maps for most of the U.S. pop-
ulation (Council et al., 2009). The European Water Directors
also established the European Exchange Circle on Flood Map-
ping (EXCIMAP) to gather all existing experiences in Europe
on flood mapping to improve related practices. The goals in-
clude land-use planning and land management, watershed man-
agement, hazard assessment on local level, emergency planning
and management, and insurance (Van Alphen et al., 2009).

Figure 1. Breach of a dike in Japan in 2019. Image source: The
Japan News

China has implemented the national flood risk mapping pro-
jects for key areas during 2013 to 2015. The mapping process
∗ Corresponding author

mainly includes two parts. The first part concerns running a 1D
and 2D coupled hydrodynamic model to compute water depth,
flow speed and direction at different time steps, given a specific
breach case. The result is stored in a 2D grid covering the mod-
elling basin, which is then used for making various maps such
as the maximum inundation map and inundation duration map.
Also, combined with social economic data, potential loss tables
are computed. The water ministry collects these final products,
and plans to use them for decision making. However, they omit
a large part of original modelling result which is cumbersome
to manage, analyze and present. This certainly has drawbacks:

1. since the products are ‘static’ (Figure 2), no more details
can be derived;

2. the map fails to address new types of queries, which signi-
ficantly confines the use of flood maps;

3. many small regions which can alleviate the risk of larger
flood storage and retention areas are not modelled, which
limits analysis when a real flood happens;

4. for the regions simulated, input breach cases are not
enough, because the real breach may be somewhere else;

5. due to limited computing power, spatial and temporal res-
olution is confined to coarse scales;

6. frequent update due to land use change (Merz et al., 2007,
Cheng, 2005) is impossible.

In fact, any specific flood maps can be expressed by SQL quer-
ies. For example, the inundation extent is achieved by select-
ing all the grid cells with water depth larger than 0, while the
arrival time map is created by selecting cells at different time
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Figure 2. A typical flood evacuation map in China

steps of flooding. In addition, new queries such as flood situ-
ation around certain objects can also be resolved. Hence, to
address issues listed above, developing an efficient database for
ad-hoc queries is imperative.

The issue then becomes which database technology to use. Cur-
rent solutions for flood risk analysis are mainly based on rela-
tional databases, either standalone as flat tables (Brocca et al.,
2013), or encapsulated in GIS software (Forkuo et al., 2011,
Wang et al., 2010). However, according to practical experi-
ence and previous studies in geo-applications (Stonebraker et
al., 2013, Van Oosterom et al., 2015), indexing flat tables per-
forms inefficiently faced with large multidimensional data. One
major reason is the huge size of the extra indexing structure
which makes it cumbersome to use. GIS software mainly fo-
cuses on processing and analyzing small datasets, and lacks
mechanism to handle huge data. Another aspect to consider
is that current flood models mainly use irregular grids, e.g., tri-
angular networks for computation. So, the multidimensional
array databases such as SciDB and Rasdaman are inapplicable,
as they focus on regular grids (e.g., the raster) (Liu et al., 2018).
Alternatively, point cloud databases can be an option:

• we can directly use the point cloud model to manage the
flood modelling result. Each point (i.e., the centre of a
cell) has breach case ID, X, Y, Z, time, depth, velocity and
direction dimensions;

• recent HistSFC framework which is aimed at efficiently
managing and querying massive nD point clouds is de-
veloped and verified with applications on LiDAR point
clouds (Liu et al., 2020). It is implemented in a database,
with nD-histograms and irregular querying techniques to
solve more complex queries;

• flood risk queries can be performed by using such a data-
base, where different maps can be derived from queries.
Besides, the database can address other potential queries,
such as evaluating water depth along a road or the risk to
a house considering all breach cases.

This paper investigates the applicability of the nD-PointCloud
structure, HistSFC for querying flood risk, and presents its ad-
vantage in terms of functionality and efficiency. The rest of
the paper is organized as follows: Section 2 discusses the state-
of-the-art HistSFC, including novel optimizations we made for
flood queries. Section 3 tests the performance of HistSFC, and
demonstrates its superiority over conventional solutions based
on a case study in China. In the end, the paper concludes with
summary of main results and future work in Section 4.

2. HISTSFC

In point cloud data, each point contains multiple dimensions.
In terms of data management, we distinguish two types of di-
mensions. Organizing dimensions are used to cluster and index
the data, e.g., X/Y/Z/T. The other property dimensions are affil-
iated, such as color, intensity and classification, which are not
frequently used in the SQL WHERE clause. These two types
of dimensions are not fixed, and may be varied depending on
applications.

Another key concept is Space Filling Curve (SFC). It is an ad-
vanced technique to cluster and access data, and has been adap-
ted and improved for multidimensional point data management
(Wang and Shan, 2005, Zhang et al., 2014). Among all SFCs,
the Morton curve is commonly studied and practiced due to the
simplicity of mapping functions (Morton, 1966). It is based on
interleaving the bits from the coordinates.

HistSFC (Liu et al., 2020) utilizes Morton curve to convert all
organizing dimensions into a Morton key for storage. For ex-
ample, given a point with coordinates (3,2), its binary repres-
entation is (11, 10). By interleaving these bits, the Morton key
can be derived which is 1101, i.e., 13 as a decimal number. In
such a way, all nD-points can be converted to 1D Morton keys.
Then, one-dimensional indexing structure such as the B+-tree
can be used to retrieve the keys, to address a query. The re-
maining work is to map the query window to ranges of Morton
keys for selection. Section 2.1 specifies this process.

2.1 Primary settings

As is mentioned, each nD-point is encoded as a full resolution
Morton key, a combination of all organizing dimensions. Prop-
erty dimensions are attached to the key. Such a full resolution
key can be decoded directly to the original coordinates. Figure 3
presents the workflow of HistSFC. For storage, after computing
SFC keys, HistSFC adopts the Index-Organized Tables (IOT)
(Oracle, 2013a) to manage them. Oracle has implemented the
B+-tree structure in IOT: the key and other property dimensions
are stored in leaf nodes present in a flat table, while the internal
B+-tree uses the SFC keys to organize and index the storage. In
this way, the indexing structure is integrated with the storage,
which lead to a very compact structure.

Before executing queries, we first build the HistTree. HistTree
is devised to represent the data distribution to avoid excessive
range generation in sparse areas, in the presence of a skewed
point distribution. As Figure 4 shows, HistTree counts the
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Figure 3. The loading and querying procedure of HistSFC
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STRUCT HistNodeND
{

HistNodeND* child;
HistNodeND* neighbor;
uint256 t key;
long long pnum;
short height;

}

Figure 4. A 2D HistTree example, where the threshold is 100; left: point counting, middle: pointer structure of HistTree, with each
node storing a SFC key and number of points, right: structure of a HistTree node

points in each SFC node at different level. If the number ex-
ceeds the threshold of the tree, the node will be partitioned into
nodes at a lower level. A height field is used in a HistTree node
to distinguish different nodes, because branch nodes at differ-
ent levels may possess identical keys. A HistTree node actually
represents the MBB of a quadrant, but it contains neither points
nor pointers to points. Thus, HistTree is a compact structure
which can be stored in a flat table.

When querying (Figure 3), HistSFC employs HistTree to map
the query window to 1D SFC ranges. Starting from the root
node, the extent of each HistTree node can be computed us-
ing its height and the key. Then, by performing intersection
between branch nodes and the query window iteratively, Hist-
SFC retrieves all intersected leaf nodes, and abandons non-
overlapping nodes. Some of the nodes retrieved locate totally
inside the query window. HistSFC directly exports ranges rep-
resented by them. The other resultant leaf nodes fall on the
boundary of the query window. These can be further refined
based on a recursive fixed decomposition. That is, halving every
dimension to build child nodes in each iteration. The process
stops when the number of ranges reaches the maximum we set.
The IOT strategy then uses the B+-tree to select keys within all
these ranges. The returned keys (points) are then applied to the
second filter to select the required set of points (Figure 3).

The theoretical querying time of HistSFC is as follows:

T = r · tpre +

(
r∑

i=1

⌈
ki
B

⌉)
· tio + k′ · tpost (1)

where B = page capacity in the number of points
r = number of ranges generated
ki = number of points inside a specific range
k′ = number of points returned by the first filter∑r

i=1 ki = k′

In Equation 1, tpre elaborates the computing time and scanning
time of one range for joining with the SFC point records. The
middle term indicates the I/O cost, and tio refers to the time cost
to load one page from disk. In fact, the middle term is an upper
limit of I/O operations, as different ranges might cover the same
disk page which has been counted more than once. In the last
term, tpost refers to the post processing after retrieving one SFC
record, including decoding, point-in-window computation and
exporting. Parallelism can be implemented for post-processing
in a straightforward way (Section 2.2.3). Basically, we divide
SFC ranges among p processors, each of which will get part of
k′. So, the final decoding will cost about k′

p
· tpost time, given

a balanced workload.

2.2 Optimizations

The first filter leverages the B+-tree for querying, which is ef-
ficient. However, due to the constraint of maximum number
of ranges, it may use larger coarse ranges and thus return ad-
ditional false positive points which can only be filtered out by
the second filter. In fact, flood risk queries often result in large
output, e.g., to support whole basin management and statistical
analysis. Thus, we optimize HistSFC in the following.

2.2.1 Range refinement In current settings, boundary leaf
nodes selected will be recursively decomposed in a breadth-first
way to intersect the query window, to derive child nodes (Fig-
ure 5). So, HistSFC can filter out more false positive points.
This strategy assumes all leaf nodes are equally important for
decomposition, which may not be appropriate.

In Figure 5, some SFC cells (i.e., nodes) intersect with the
query window by a large proportion. Thus, most points inside
these cells are within the query window as well. In contrast,
other boundary cells, i.e., P1, P2 and P3, which intersect the
query window by a small portion mainly contain false posit-
ives. These cells should get priority for the refinement such
that a decomposition becomes more effective. Consequently,
we can optimize the nodes’ partitioning process to refine the
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ranges, by considering the intersection ratio which equals the
volume of intersection divided by the volume of node.

P1

P2

P3

Figure 5. A 2D query sample: leaf nodes selected (red) in the
HistTree to match the query window (blue)

Specifically, we compute the intersection ratio in the first fil-
ter and rank the intersected leaf nodes by the estimated num-
ber of false positive points (Equation 2). The leaf nodes with
more outliers will be decomposed first. After one decompos-
ition, we assume points are allocated evenly to different child
nodes. Then, we add the child nodes into the original pool of
leaf nodes, and rank them again for further decomposition.

˜fpp = (1−R)×Nc (2)

where ˜fpp = estimated number of false positive points
in a boundary node
R = intersection ratio
Nc = number of points in the boundary node

2.2.2 Polytope querying HistSFC is not restricted to rect-
angular search regions, but can also deal with irregular geo-
metry querying, such as an nD sphere or triangle. The recurs-
ive partition of the SFC node to match the query geometry still
applies. However, we need to overwrite the intersection mod-
ule for different types of geometry. To make the solution more
generic, we use half-spaces composing a convex polytope to ap-
proximate the real query geometry, and develop a generic sweep
algorithm (Thompson et al., 2020) for intersection computation.

The sweep algorithm first identifies the enter and exit (one of
the vertices) of a SFC node with respect to a half-space (,∑n

i=1 aixi − b ≥ 0). For each dimension, if the corresponding
ai ≥ 0, then the enter takes the lowest value at that dimension.
Otherwise, it adopts the highest value. The exit is the opposite
of the enter (Figure 6). As an illustration, Figure 6 indicates
how the algorithm determines whether a node intersects a poly-
tope composed by H1 and H2:

• Case 1: if the enter is inside the half-space, then the node
is fully inside the half-space, and therefore is fully inside
the polytope;

• Case 2: if the exit is outside the half-space, then the node
is totally outside the polytope;

• Case 3: if the enter is outside the half-space, but the exist
is within the half-space, then the node is cut by the half-
space boundary (, e.g., for both H1 and H2). The node
intersects the polytope;

enter

exit
H1

H2

1

H2

H1

exit

enter

H2H1

enter

exit
H2

H1

exit

enter

2

3 4

Figure 6. Four cases of intersection between a SFC node and
half-spaces in the 2D space

• Case 4: if the enter is outside the half-space, but the exit is
inside, then the node intersects the half-space (H2). How-
ever, if the exist is outside another half-space (H1), then
the node is totally outside the polytope.

For each node, HistSFC examines all half-spaces. If intersec-
tion happens, HistSFC decomposes the node to its children to
check again. During this process, HistSFC records the half-
spaces totally containing the node so that no more examination
will be conducted for its children. Till the maximum of ranges
generated, the algorithm exports all intersected nodes.

2.2.3 Parallel decoding The previous optimizations are
aimed at decreasing the false positive keys returned by the first
filter. However, the decoding process can still be time consum-
ing if large amount of keys have to be processed anyway. To
address this issue, we adopt the parallel technique for decod-
ing. A straightforward way is to evenly distribute the ranges
to different processors so that each processor performs a query
and decode the result. This can be easily implemented as all
processors adopt the same function.

3. USE CASE STUDY

The research area is Niansi Levee, located at Jiangxi province,
China (Figure 7). To its northwest is the Poyang Lake. The total
area is about 183 km2. Niansi Levee is one of the key areas that
are modelled in the national flood mapping project.

3.1 Data

The hydrodynamic model consists of a 1D channel model, and
a coupled 2D flood routing model in the basin. The channel
model provides extreme flow for the flood simulation in the 2D
grid which totally contains 59,680 triangular cells. The model
computes water depth, velocity and flow direction. We mod-
elled 8 cases: 4 locations of breach, combined with extreme
rainfall with a return period of 20 and 50 years. Each case sim-
ulates 720 steps (corresponding to a 30-min resolution). So in
total, we get 59,680 × 720 × 8 = 343,756,800 points, in an 8D
space composed by case ID, X, Y, Z, time, depth, velocity and
direction.
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Figure 7. Niansi Levee (green zone), with locations of simulated breach in red

3.2 Queries

According to the experience acquired during the project, as well
as potential need, we devised 6 queries for testing (Table 1). All
locations are depicted in Figure 7, e.g., Q4 and Q5.

QID Analysis
Q1 The area that is flooded with depth greater than 3 m,

when dyke I bursts
Q2 The area that is flooded in 24 hours, when dyke IV

bursts
Q3 The maximum inundation area when dyke III bursts
Q4 Risk of several houses (depth > 0) when dyke II or

III bursts
Q5 Risk to a county road (velocity ≥ 0.5) considering

all possible bursts
Q6 The dangerous area evaluated by human instability

(depth × velocity ≥ 2), when dyke I bursts

Table 1. Queries used for benchmarking

Q4 selects all points around 4 houses that have been flooded.
The rectangular area is about 1.5 km2. Q5 uses an irregular
geometry (i.e., the road) to query. The result of Q5 is 93 8D
points, presented as 6 distinct spatial points at different time
steps in Figure 8. The points indicate the vulnerable parts of the
road which need enhancement. During flood evacuation, people
should also avoid these locations. Q6 uses the product of flow
velocity and depth to quantify the human instability in flow-
ing water (Jonkman and Penning-Rowsell, 2008). We choose 2
m2/s, a rather safe level, as the threshold.

3.3 Implementation

The test is conducted on a ‘testbed’ server: a HP DL380p Gen8
server with 2 × 8-core Intel Xeon processors, E5-2690 at 2.9
GHz, 138 GB of main memory, a RHEL6 operating system.
The disk storage is a 41 TB SATA 7200 rpm in RAID6 config-
uration.

Figure 8. Result of Q5: the red points on the road. The color
becomes stronger when the maximum velocity is larger

Among the 8 dimensions of the data, flow direction is seldomly
used for ad-hoc analysis, compared with other dimensions. So,
we set it as the property dimension when building HistSFC,
while encode the other 7 dimensions into the Morton key stored
in IOT. We use 1000 as the threshold to build the HistTree. As a
comparison, we also build a flat table which stores each dimen-
sion as an individual column. Although this approach performs
inefficiently, it serves as a baseline to compare with. Solutions
provided by major spatial databases fail to address nD-point
management. For instance, Oracle SDO PC (Oracle, 2013b)
builds point blocks based on a 2D organization, while PostGIS
can maximally support a 4D-point geometric type.

To explore the scalability, both approaches divide the whole
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dataset into 4 stores, containing 1, 2, 4 and 8 cases respectively.
The size of HistSFC store with 8 cases is 12.88 GB, and that
of the HistTree is 84 MB on the disk. The flat model occupies
15.4 GB disk space.

3.4 Benchmark tests

For all queries, HistSFC utilizes 16 processors to decode Mor-
ton keys. Besides, it employs 7 half-spaces to approximate the
shape of Q6, for querying (Figure 9). More details about imple-
menting data storage and queries can be found in the Appendix.

Figure 9. Polytope querying of Q6

Figure 10 shows all testing results. It indicates that for all quer-
ies, compared to the flat table approach, HistSFC holds better
scalability, following a constant trend. In most cases, the time
cost is much lower than the flat table solution. An exception
is Q6, where HistSFC performs significantly worse. This is
because current parallel implementation evenly distributes the
ranges to different processors. As each range contains differ-
ent number of points due to skewed data distribution, the actual
workload can be unbalanced among processors. In this case, we
found a processor undertakes 72% of the whole workload.

More specifically, Q2 takes less time on the whole, compared
with Q1 and Q3. This is because it selects only 925,691 points
out of the total 343,756,800 points, while Q1 and Q3 export
26,484,215 and 32,183,314 points, respectively. Q4 is also
very selective, returning 170,417 points. It first does a spa-
tial window selection (, i.e., a rectangular area with houses),
and then checks the flood information which is indicated by a
positive depth value. Unlike Q4, Q5 utilizes a long and nar-
row 2D polygon for the spatial selection, consisting of 628
edges. This, however, does not introduce significant overhead
compared with Q4. Q6 uses the polytope querying technique
(Figue 9), which leads to a resultant 30,937 point set, slightly
larger than the correct answer 28,351. The false positive rate is
below 1%. For all other queries, the two approaches return the
same results.

3.5 Discussion

Flood analysis is frequently performed globally, such as Q1, Q2
and Q3. Therefore, a large output may always be encountered.
To perform such queries efficiently, low I/O operations and par-
allel post-processing become very crucial, indicated by Equa-
tion 1. Both processes are related to the data distribution: if data
is severely skewed in the nD space, some ranges generated will
contain lots of false positives, which significantly increases I/O;
besides, the uneven distribution will cause unbalanced work-
load among processors (Figure 10(f)). It is possible to perform

the first filter on a single thread, and then distribute the keys se-
lected for decoding. However, additional memory and time cost
will become an issue. A direct solution is to estimate the num-
ber of points in the final ranges, e.g., based on the length of the
range. Then, each processor gets the job allocated according to
the points estimated.

Besides, the dimensionality is a variable. The test dataset con-
tains only one levee. In fact, to defend flood, groups of levees
are built and used. Consequently, a levee ID may also get in-
volved for an integrated database. Encoding too many dimen-
sions into the SFC key is not sensible, as this will significantly
decrease the accuracy of the first filter (Liu et al., 2020). The
consequent I/O cost will become huge. Hence, it is suggested
that before using HistSFC, a comprehensive analysis of applic-
ations and data should be conducted to determine the proper
organizing dimensions. For example, this research does not
consider using flow direction for data organization, as it is not
queried often.

4. CONCLUSIONS AND FUTURE WORK

This paper has investigated the possibility of using an nD-
PointCloud structure — HistSFC — for the next generation of
flood maps, to fulfill increasing needs of different stakeholders.
This research also developed critical optimizations on HistSFC
to resolve flood issues. Then, a benchmark test is performed
to evaluate HistSFC’s performance in practice. The result in-
dicates that the optimized HistSFC can process various flood
queries very efficiently. The scalability remains stable as the
input size increases. Although the paper only presents 6 quer-
ies, HistSFC can address more complex nD queries in an ana-
logous way. The polytope querying technique is also generic:
in additional to the polygonal spatial queries, more query geo-
metries formed in other physical dimensions can be addressed.
Besides, with the parallel post-processing, HistSFC can be im-
proved further using state-of-the-art hardware, e.g., not only
powerful workstations, but also cloud computing platforms. We
can additionally parallelize the range computing process to en-
hance HistSFC.

Point cloud databases enable dynamic analysis on large-scale
flood simulations. However, the SQL interface is less friendly
and requires high level of expertise to master. So, in the fu-
ture, we plan to develop a Graphical User Interface (GUI) as
the front-end, to drive various queries and analysis. User re-
quirements must be collected for devising such an integrated
flood mapping system. Besides, the GUI should support effi-
cient rendering, as large-scale point visualization may become
the routine. This reversely calls for new design in the data struc-
ture, such as embedding Level of Detail (LoD). This verifies the
advantage of HistSFC which can just treats LoD as another or-
ganizing dimension. Specific LoD that is applicable to flood
analysis should be researched and developed in the next step.

An nD-point data structure managing flood modelling results
is innovative, as the major use of high dimensional points is
still in the surveying domain and initial stage of applications.
However, either a physical point or a simulated point functions
as the carrier of data. The nD point cloud model is the core.
From this perspective, we can extend the scope of applications,
e.g., wind modelling and mechanical analysis of materials.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-367-2021 | © Author(s) 2021. CC BY 4.0 License.

 
372



1 2 4 8
0

10

20

30

40

Q
ue

ry
ex

ec
ut

io
n

tim
e

[s
]

Flat table
HistSFC

(a) Q1

1 2 4 8
0

10

20

30

40

Q
ue

ry
ex

ec
ut

io
n

tim
e

[s
]

Flat table
HistSFC

(b) Q2

1 2 4 8
0

10

20

30

40

Q
ue

ry
ex

ec
ut

io
n

tim
e

[s
]

Flat table
HistSFC

(c) Q3

1 2 4 8
0

10

20

30

40

Q
ue

ry
ex

ec
ut

io
n

tim
e

[s
]

Flat table
HistSFC

(d) Q4

1 2 4 8
0

10

20

30

40

Q
ue

ry
ex

ec
ut

io
n

tim
e

[s
]

Flat table
HistSFC

(e) Q5

1 2 4 8
0

10

20

30

40

Q
ue

ry
ex

ec
ut

io
n

tim
e

[s
]

Flat table
HistSFC

(f) Q6

Figure 10. Performance of querying, where X axis represents the number of cases included in the specific data store
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APPENDIX

Table creation

Flat table

CREATE TABLE NS FLAT (CaseID NUMBER, X
NUMBER, Y NUMBER, Z NUMBER, T NUMBER,
Depth NUMBER, V NUMBER, Di NUMBER);

HistSFC

First, we create a staging table:

CREATE TABLE NS SFC (SFC NUMBER, Di
NUMBER);

Then, we load data into NS SFC using SQL*LOADER. After
loading, we build the IOT table:

CREATE TABLE NS IOT (SFC, Di, CONSTRAINT
NS IDX PRIMARY KEY(SFC)) ORGANIZATION
INDEX AS SELECT * FROM NS SFC;

HistTree

CREATE TABLE HistTree NS (ID NUMBER, SFC
NUMBER, PNUM NUMBER, CNUM NUMBER, Height
NUMBER, Child NUMBER, Neighbor NUMBER);

Query SQL

Flat table

All the breaches only consider rainfall with a return period of 20
years. In Q5, the road is selected by using geometric operators
in the Boost C++ library.

• Q1 SELECT * FROM NS FLAT WHERE CaseID=1
AND Depth>=3;

• Q2 SELECT * FROM NS FLAT WHERE CaseID=4
AND Depth>0 AND T<=48;

• Q3 SELECT * FROM NS FLAT WHERE CaseID=3
AND Depth>0;

• Q4 SELECT * FROM NS FLAT WHERE CaseID
BETWEEN 2 AND 3 AND X BETWEEN Xmin AND
Xmax AND Y BETWEEN Ymin AND Ymax AND
Depth>0;

• Q5 SELECT * FROM NS FLAT WHERE CaseID
BETWEEN 1 AND 4 AND V>=0.5;

• Q6 SELECT * FROM NS FLAT WHERE CaseID=1
AND Depth*V>=2;

HistSFC

Firstly, HistSFC converts all query geometries into ranges
which are stored in a temporary range table: CREATE TABLE
RANGE PACKS (LOWER NUMBER, UPPER NUMBER).
Then, it executes all queries as follows,

SELECT /*+ USE NL (t r) */ t.* FROM NS IOT
t, RANGE PACKS r WHERE t.SFC BETWEEN
r.LOWER AND r.UPPER;
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