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Self-Supervised Monocular Distance Learning
on a Lightweight Micro Air Vehicle

Kevin Lamers, Sjoerd Tijmons, Christophe De Wagter, Guido de Croon, Member, IEEE

Abstract— Obstacle detection by monocular vision is chal-
lenging because a single camera does not provide a direct
measure for absolute distances to objects. A self-supervised
learning approach is proposed that combines a camera and
a very small short-range proximity sensor to find the relation
between the appearance of objects in camera images and their
corresponding distances. The method is efficient enough to run
real time on a small camera system that can be carried onboard
a lightweight MAV of 19 g. The effectiveness of the method
is demonstrated by computer simulations and by experiments
with the real platform in flight.

I. INTRODUCTION

Very small and lightweight Micro Air Vehicles (MAVs)
can play an important role in many useful applications where
size is important. Example applications are the inspection
of difficult to reach areas, agriculture, monitoring, disaster
management and tasks where interaction with humans is
likely, since lightweight MAVs can be inherently safe. Most
applications need fully autonomous systems, which requires
onboard localization and navigation capabilities. Because
sensor weight is a crucial factor for these small MAVs, the
most promising solution involves the use of a single camera.

Many recent studies focus on odometry and mapping tasks
using monocular approaches [1], [2], [3]. These methods
provide accurate information about platform motion and
structure of the environment, but are very demanding in
terms of computing power. Furthermore these methods do
not provide the scale of the estimated motions and distances.

For obtaining the scale from single images, learning
techniques can be applied. Supervised learning has been
applied by training based on a dataset that contains ground
truth [4],[5]. But also self-supervised learning methods have
been demonstrated that make use of terrain classification
and specific system characteristics to combine information
from different types of sensors [6], [7], [8]. Downsides of
these approaches are either the use of heavy sensors for
metric measurements, or assumptions such as ground plane
visibility that are not generic for the application of MAVs.

In this study we propose a self-supervised learning ap-
proach for monocular distance estimation that makes use
of a very small short-range infrared sensor which serves
as a near collision detector. By extracting efficient visual
features from the camera image sequence before each near
collision detection, the system learns the appearance of the
object/environment at different distances through regression.

All authors are with the Control and Simulation Section, Faculty of
Aerospace Engineering, Delft University of Technology, The Netherlands
(e-mail: s.tijmons@tudelft.nl, g.c.h.e.decroon@tudelft.nl)

Fig. 1. The DelFly platform, a flapping wing MAV featuring a monocular
camera system attached on the nose. A closeup of the camera system
is shown at the bottom. The camera board also contains a tiny infrared
proximity sensor. This sensor serves as a near collision detector in a self-
supervised learning scheme in which the DelFly learns to estimate distances
based on obstacle appearance in the camera images.

This approach enables a 19 g MAV to perform collision
avoidance based on individual camera images without the
need for additional continuous metric information and also
enables it to adapt to its environment during flight.

The contribution of this paper is: a self-supervised learning
approach that relies on individual camera images and an
efficient additional sensor for near collision detection. It is
shown that this method can be implemented on a 2 g camera
system to provide real time onboard distance estimates to a
lightweight MAV.

Section II describes related studies. Section III explains
the proposed self-supervised learning method. Section IV
discusses implementation details of the method and the setup
of the experiments, which are performed in computer simu-
lations (Section V) and on the real platform (Section VI).

II. RELATED WORK

Monocular vision is a commonly applied method for
autonomous navigation of MAVs weighing less than 50 g.
Since vision sensors are passive and provide a relatively high
information density, various studies aim at relying solely on
single cameras to perform various control and navigation
tasks. Optical flow is an effective method that enables
onboard processing on these small platforms, making them
fully autonomous. So far, ego-motion estimation [9] and
reactive obstacle avoidance [10][11] have been demonstrated
using optical-flow. In another study a monocular Simultane-
ous Localization And Mapping (SLAM) method was demon-
strated for hovering and waypoint navigation with such a



small platform [12]. Processing was performed off-board in
this study because of the high computational demand of this
vision method. On extremely light weight systems even the
processing of optical flow is still too demanding. Optical
flow based height control was demonstrated on a 101 mg
platform by relying on off-board processing [13].

Monocular approaches can provide motion estimation and
obstacle detection but these estimations lack direct scale
measurements. The most common approach to compute scale
is to use stereo vision. This is a computationally demanding
method but has been demonstrated to run in real time
onboard several platforms [14],[15], even on a light weight
platforms [16]. However, this approach requires a second
camera, which increases the weight of the sensor payload sig-
nificantly. The scale ambiguity can also be solved by relying
on other secondary sensors. Several studies show monocular-
SLAM approaches that use additionally an ultrasound and
optical flow sensor facing downwards for measuring absolute
horizontal speed [17]. A more elegant approach is to rely
on the Inertial Measurement Unit (IMU), as this sensor is
already present on many platforms for attitude control, which
saves the weight of an additional sensor. By tightly-coupled
fusion of IMU and monocular feature tracking measurements
the scale problem can be solved [18]. Using this approach is
more difficult on a light weight platform because of platform
vibrations, and also when the platform has nonholonomic
constraints. Another elegant solution is to purely use diver-
gence estimates from monocular optical flow measurements
by exploiting the self-induced oscillations that result from
the fundamental imperfection of fixed-gain optical flow-
based control [19]. This approach does not require additional
sensors and has been demonstrated for vertical control of a
quadrotor. It is theoretically plausible that also horizontal
control can be integrated. The applicability to the platform
in our study is less likely due to nonholonomic constraints
and because the method requires fast platform dynamics.

Learning techniques have been applied in several vision
based applications, also for MAV control. Imitation learning
is a form of supervised learning that has been used to map
monocular optical flow and visual features to control inputs
given by a human pilot [20]. This method allows a quadrotor
to avoid trees while flying in a forest. Another (nonlinear)
supervised learning method has been used to perform stereo
vision based distance estimation without the need to perform
camera calibration [21]. Supervised learning has been used to
solve the scale problem in monocular vision [4],[5]. Based
on image databases with corresponding depth information
(from laser or RGB-D measurements) this method learns
how to select and use image features to obtain a dense
depth map, but only for the trained environment. In self-
supervised learning, the system generates its own reference
data online. For example, this has been demonstrated on
autonomous cars in two different ways. The first approach
is to detect which part of the camera view corresponds to
drivable road, based on short-range laser data [6]. After
learning what the road looks like, the system determines from
the camera images how the road continues at larger distances.

The second approach is to assume that drivable road is
visible right in front of the car and using the fact that the
distance between the road and the mounted camera is fixed
and known [8]. However, these assumptions cannot be used
on flying vehicles. Self-supervised learning has also been
demonstrated for the landing task of an MAV [22]. Optical
flow information is obtained to detect surface discontinuities
while the MAV is moving around. Objects and potential
landing locations are then classified and their appearance is
learned. When the drone has to land, it can choose landing
locations from still images. Combining optical flow and
appearance has also been shown in an application where
a wheeled robot learns from near collisions with trees [7].
When its infrared sensors detect a near tree, optical flow
from a history of images is then used to track it over
time and to learn the appearance of the tree for a range
of distances. Experiments show that the average number of
tree encounters and the time to travel a certain path both
decrease significantly using this learning approach. Again the
assumption of a ground plane is used to estimate distances.

III. SELF-SUPERVISED LEARNING FOR DISTANCE
ESTIMATION

In this study a Self-Supervised Learning (SSL) method is
proposed that learns to estimate distances from still images.
SSL differs from classical supervised learning in that labels
are not generated by a human but by the robot itself.
Essentially, SSL allows different sensors to work together:
measurements on a certain parameter obtained from one
sensor are used to label data from a second sensor which
does not directly have knowledge about this parameter. When
enough training data is collected, this method enables the
robot to use only the second sensor to measure this parameter
using regression. In this study self-supervised learning is
applied to combine a short-range sensor that provides binary
distance information with a camera that provides continuous
data at all distances. This combination of sensors will provide
distance estimates also for longer ranges.

A. Distance estimation methods

Distance measurements are performed in two ways: using
camera images in combination with information from the
learning process or using a proximity sensor for detecting
near collisions. The first method, using the camera, requires
that the system can rely on training data that was learned
in the past. The second method, using the proximity sensor,
only indicates whether the distance to a nearby obstacle is
too small to continue flying in the current direction. In this
case, two simultaneous actions are performed: the vehicle
changes its heading, and recently recorded images are used
to perform an iteration in the learning process.

1) Camera: A TCM8230 color camera provides RGB
images throughout each flight. To enable distance estimation
on the limited processor (168MHz, 192 kB), data reduction
of the images is realised using an efficient image descriptor
which has the form of a histogram. The histogram indicates
the frequencies of a predefined set of textons [23]. Textons



are fundamental micro-structures in images. In this study a
set of R small representative RGB image patches form a
dictionary of textons. From each camera image, N evenly
spread patches with the same size as the textons are extracted
and matched with the texton dictionary, based on minimum
Euclidean distance. The indices of all best matches with
the dictionary form the histogram of texton occurrences for
each image. Note that the histograms contain information
about the overall appearance of images, not on local image
patterns. The histograms are used for two purposes. First,
to obtain a distance estimate for the current image based on
what has been learned (Section III-B explains how this is
done). Second, to serve as temporary training data in case a
near collision occurs shortly after the image was recorded.

2) Proximity sensor: A TMG399x infrared proximity
sensor (2× 4 mm) is used as a short-range binary detector
for near collisions; it indicates whether an object is detected
within a range of ≈ 50 cm which allows the MAV to perform
an evasive manoeuvre. In case a near collision is detected,
the manoeuvre is executed and recently stored histograms
are assigned a distance label. The distance assigned to each
histogram is based on retrograde extrapolation assuming
constant heading, constant flight speed and constant frame
rate. These distances are regarded as ground truth and are
used to perform an iteration in the learning process.

B. Learning Algorithms

The effectiveness of different learning algorithms is tested
in this study. These algorithms have two functions. First, to
provide a distance estimate based on a histogram input. Sec-
ond, to learn from near collisions by importing histograms
with assigned distance labels as training data.

1) Perceptron Network: The simplest approach that was
tested is an ADALINE network, which is a single-layer
perceptron without hard limits. A perceptron is a simple form
of a neural network in which the output a (distance estimate)
is the weighted sum of all inputs p (the R × 1 histogram)
and a bias term:

a = Wp+ b (1)

When a near collision occurs, the weights W (1×R) and
bias b are updated with a Widrow-Hoff learning rule [24]:

W(k + 1) = W(k) + 2αe(k)pT(k)
b(k + 1) = b(k) + 2αe(k)

(2)

In this equation, α is the learn rate and e is the error
between a and the corresponding ground truth label.

2) k-NN: k-Nearest Neighbours (k-NN) is an algorithm
that can be used for both classification and regression
problems. In k-NN regression an input feature vector is
compared with the full set of trained feature vectors and the
k nearest neighbours (based on smallest Euclidean distances)
are used to calculate the output using the labels of the
training samples. In this study, the feature vectors are formed
by the image histograms that are labeled with distance values.
In case k > 1, distances are estimated by taking the average

of the corresponding distance labels. k-NN is a type of lazy
learning; new training data (histograms with distance labels)
is simply added to the training set. This makes the training
phase fast, but leads to large amounts of training data that
needs to be stored and a slow (distance) evaluation process.

3) k-NN with clustering: To solve the mentioned limita-
tions of the k-NN algorithm, a clustering method is proposed
that reduces the amount of stored training data. Similar
methods, such as condensation [25] or instance selection
[26], have been proposed to remove either noisy samples
from the training set to improve accuracy, or to eliminate
redundant samples to optimally reduce the size of the training
set. The currently proposed clustering method is based on
the assumption that similar histograms correspond to similar
parts of an environment, and that merging their feature
vectors and labels is therefore legitimate. This allows for
storage of a fixed amount of training data while maintaining
diversity. Clustering is done by looking for pairs of similar
histograms (based on Euclidean distance) and by only storing
the averages of their histogram values and labeled distances.

IV. IMPLEMENTATION AND TEST SETUP

The proposed distance estimation method is used to enable
obstacle avoidance on a lightweight flapping wing MAV, the
DelFly [27], [16]. In this study the vehicle has a wing span
of 28 cm and a weight of 17 g. This includes a 1 g autopilot
with an IMU (MPU9150) and a barometer. Its payload is
a 2 g camera system featuring a TCM8230 color camera,
a TMG399x infrared proximity sensor and an STM32F405
ARM processor. The system has a total weight of 19 g and
is able to run the learning algorithm on board.

Its flight characteristics make the DelFly a suitable plat-
form to use the proposed distance estimation method because
it flies passively stable with a constant low forward speed.
The vertical speed and distance to the ground can be re-
stricted using feedback from the barometer. At low speed the
vehicle can perform avoidance maneuvers within the space
covered by the short-range proximity sensor, such that no real
crashes occur. Using gyroscope feedback a fixed heading can
be maintained when no control action is required.

The camera system is mounted in a specific way to the
DelFly; the proximity sensor is aligned with the forward
velocity vector and thus looks straight ahead. The camera
is rotated with an offset of 15 deg to the left. The following
sections on simulation and flight tests explain how this setup
is exploited for control purposes. Tests haven been performed
in a small room of 4 × 4 m which has walls with different
types of textures, as shown in Fig. 2. The top image in this
figure shows the test room as used for simulations. For the
6×6 m simulated room photos from the real room are used.

V. SIMULATIONS

Computer simulations were initially performed to test and
analyse the performance of the different learning-algorithms
and to explore effective reactive avoidance strategies.



Fig. 2. Top: screenshot showing the simulated environment. Bottom: photo
of the DelFly flying in the test room. The simulated room is an imitation
of the real test room.
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Fig. 3. Estimated distance with k-NN using 500 clustered points after
660 s of training.

A. Distance estimation performance

To compare the different learning algorithms, the vehicle
is simulated as flying at a constant height, in straight lines
and with a speed of 0.55 m/s. Each time the vehicle hits a
wall, its heading is changed instantly with a random offset
such that it continues flying within the test room. This way a
data set with recorded image histograms (10 Hz) and flight
tracks is obtained to test the learning algorithms.

Fig. 3 shows an example of the distance estimation per-
formance of k-NN learning with clustering after 660 s of
training.Individual distance estimates are presented, as well
as the result after low-pass filtering. It is observed that the
filtered estimates show an obvious correspondence with the
ground truth data, even though the estimates contain signif-
icant noise. For this reason the performance of the learning
algorithms is expressed by the correlation coefficient, which
is a measure of the linear dependence between the ground
truth data points and the estimated data points.

Fig. 4 shows the correlation coefficients for the different
algorithms over time. The most interesting observation is
that the clustered k-NN method outperforms the Widrow-
Hoff method and has almost similar performance as the
standard k-NN method. The correlation coefficient increases
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different algorithms. For k-NN with all points, all histograms are stored
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N = 70 patches. The patch size is 5× 5 pixels.
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Fig. 5. t-SNE: 3000 histograms with 30 texton bins.

significantly during the first few minutes, and reaches a
more steady performance afterwards. The effectiveness of
the clustering method is clearly visible from Fig. 4. For
comparison the performance is shown if a fixed number
of histograms would be maintained by simply dumping the
oldest histograms. After reaching the maximum number of
histograms (50 s) the difference in performance becomes
visible. The effectiveness of the clustering method can be
explained by analysing the histogram data using the t-
SNE [28] algorithm. It allows to visualise the total set of
high dimensional histograms as a two-dimensional image, as
shown in Fig. 5. Each histogram is a point in this image, and
relative distances between the points are based on similarity.
The result shows that clusters of similar points are formed,
and that within the groups color gradients are visible. This
confirms the hypothesis that similar histograms correspond to
the same part of the test room and that the histograms change
gradually with distance. The proposed clustering method is
thereby justified and used in further experiments.

B. Control

The camera is mounted with an offset on the vehicle, also
in simulation. This allows for obtaining individual distance
estimates (k-NN with 500 clustered points) for the two halves
of the camera images: one halve that looks straight ahead
and one halve that looks to the left side. Control is based on
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Fig. 6. Near collision events and flight trajectories of two simulated flights
where vision-based control is applied. The left plot shows results when
control is active from the start. The right plot shows results when control
is activated after 300 seconds. The bottom plots show trajectories from the
moment vision-based control was turned on.

thresholds on the two distance estimates; if either of the two
estimates indicates a small distance, the vehicle turns left
with constant input. Otherwise the vehicle flies straight. The
threshold used for the left side is more conservative to ensure
a free space on the side to perform an avoidance manoeuvre.

Fig. 6 shows results of two tests where the vehicle uses
its distance estimates for avoidance control. In the first test
avoidance control is active from the start, in the second
test the switch to active avoidance is made after 300 s. In
both tests training is performed throughout the flight. For
the second test only the flight trajectory after the control
switch is shown. From the results it is clear that in the second
test the near collision rate after 300 s is much lower than
in the first test. This can be explained by the total number
of near collision events which is much higher at this point.
Furthermore the flight track of the first test indicates that
the vehicle flies a lot of small circles which slows down
the learning process. The moment of switching apparently
influences the total number of near collision events that
occurs within a certain amount of flight time.

VI. EXPERIMENTAL RESULTS

The k-NN learning method using 500 clustered points has
been implemented on the 2 g stereo vision system of the
DelFly. First tests show the potential performance of this
system by manually walking around in the test room. In
these tests the operator walks in straight lines, and chooses a
new random direction when the proximity sensor indicates a
near collision. Results of these performance tests are shown
in Fig. 7. The correlation coefficient reached after 600 s is
comparable to what was observed in the simulation results.
Fig. 8 shows distance estimates during one of the tests after
a correlation coefficient of more than 0.5 was reached. These
results clearly visualise that wall approaches can be detected.
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learned distance estimates over time
for two different runs while walking
with the DelFly through the test
room.
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Fig. 8. Partial results showing esti-
mated distance versus ground truth
data from a test while walking with
the DelFly.

Autonomous flight tests with the DelFly have been per-
formed using the proposed learning approach. In these tests
the altitude is regulated using barometer feedback and the
heading is controlled using gyroscope feedback (for enabling
straight flight paths during wall approaches). Furthermore, a
visual tracking system is used for logging the position of
the vehicle and to assist in deciding to turn left or right
in case of a near collision detection. Especially in case
the wall is approached non-perpendicular it is critical to
turn in the right direction. This assistance can be made
superfluous by increasing the heading control authority of
the vehicle at low speeds. Fig. 9 shows distance estimation
performance results of three different flights. In these tests
the trained data in the camera system is cleared prior to the
flight. Note that lower correlation coefficients are reached
as in previous experiments (0.5− 0.6 instead of 0.6− 0.7),
and that the learning rate is lower. Fig. 10 shows distance
estimates during the final part of one of these test flights.
These results also show a worse performance compared with
previous tests, especially for the small ranges. This can be
explained by variations in the altitude, heading changes due
to disturbances, and platform vibrations. These influences
result in variations in camera observations, especially at
distances close to the walls.

To show the potential of the proposed learning method
the autonomous tests were split in two parts. First a training
flight was performed to train the camera system in the
test room. In this test the vehicle only performs collision
avoidance manoeuvres based on inputs from the proximity
sensor. A flight trajectory of such a test is shown in Fig. 11.
After the training flight the trained data is retained for
the next flight. During this subsequent flight the distances
estimated by the learning algorithm are used as control input.
A threshold value of 1.2 m is used to decide whether to fly
straight or to turn left. The results are shown in Fig. 12.

VII. CONCLUSIONS

A self-supervised learning method is proposed that enables
a lightweight MAV to estimate distances based on monocular
images. The method combines distance information from a
small proximity sensor during near collisions with an effi-
cient image description algorithm to enable online distance
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training test flight of the DelFly
equipped with the monocular cam-
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Fig. 12. Flight trajectory of the
DelFly with monocular distance es-
timates in the loop for active wall
avoidance.

estimation on a 2 g camera system. The k-NN based learning
method uses a clustering step to limit the amount of stored
training data that has a marginal effect on performance.
Computer simulations show that the proposed method allows
the MAV in this study to significantly reduce the number
of near collisions over time. Real world tests indicate that
similar performance can be reached on the real system. Real
test flights indicate a lower learning rate, but show that
collision avoidance is possible using the proposed method.
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