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A broad section of cyber security experts from the government, industry and the
academia tend to agree that cybercrime has long evolved from an emerging threat
to one that is urgent and critical. This is reflected in the estimates of economic
losses due to cybercrime. Two estimates of the global annual cost of cybercrime

Using Datasets from Industrial Control
Systems for Cyber Security Research
and Education

Qin Lin', Sicco Verwer!, Robert Kooij'2(®) and Aditya Mathur?3

! Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Delft, The Netherlands
{q.lin,s.e.verwer}@tudelft.nl
2 iTrust Centre for Research in Cyber Security,

Singapore University of Technology and Design, Tampines, Singapore
{robert_kooij,aditya mathur}@sutd.edu.sg
3 Computer Science, Purdue University, West Lafayette, USA

Abstract. The availability of high-quality benchmark datasets is an
important prerequisite for research and education in the cyber security
domain. Datasets from realistic systems offer a platform for researchers
to develop and test novel models and algorithms. Such datasets also
offer students opportunities for active and project-centric learning.
In this paper, we describe six publicly available datasets from the
domain of Industrial Control Systems (ICS). Five of these datasets are
obtained through experiments conducted in the context of operational
ICS while the sixth is obtained from a widely used simulation tool,
namely EPANET, for large scale water distribution networks. This paper
presents two studies on the use of the datasets. The first study uses the
dataset from a live water treatment plant. This study leads to a novel
and explainable anomaly detection method based upon Timed Automata
and Bayesian Networks. The study conducted in the context of education
made use of the water distribution network dataset in a graduate course
on cyber data analytics. Through an assignment, students explored the
effectiveness of various methods for anomaly detection. Research out-
comes and the success of the course indicate an appreciation in the
research community and positive learning experience in education.
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by Symantec [29] and McAfee [16] in 2017 range from $172B to $600B, respec-
tively. In another study [2], set up as a scientific framework for computing the
economic cost of cybercrime, the estimated cost was $225B in 2012.

Cyber threats have now infiltrated the domain of cyber-physical systems
(CPS) [11,33]. Such systems consist of an Industrial Control System (ICS) that
monitors and controls the behavior of the underlying physical process in a CPS
through interactions with a network of sensors and actuators. The focus of this
work is on distributed ICS found specifically in critical infrastructure such as
electrical power grids, water treatment and distribution systems, and transporta-
tion systems.

Most countries have responded to the increasing cyber threats by establishing
a National Cyber Security Strategy (NCSS). We refer to [18] for a comparison
between 19 NCSSs. Typically, such strategies include strengthening the resilience
of the Critical Information Infrastructure, the development of a vibrant cyber
security ecosystem comprising a skilled workforce, technologically-advanced com-
panies, and strong research collaborations. As cyber threats are borderless, such
strategies also include efforts to forge strong international partnerships at a con-
tinental or even global level (see for instance [5,7,8]) An important pillar of a
cyber security strategy is the ramping up of efforts on research and education.
For instance, Singapore’s National Research Foundation launched a $130 mil-
lion, 5-year programme in 2014, with the aim to develop R&D expertise and
capabilities in cyber security [25].

In recent years cyber security solutions have started to deploy big data analyt-
ics to correlate security events across multiple data sources, providing, amongst
others, early detection of suspicious activities. According to a recent survey [3],
90% of those working in cyber security are certain that in a few years Cyber
Data Analytics will play a critical role in their field.

Methods employed in the field of Cyber Data Analytics are predominantly
based on Machine Learning (ML). Significant amounts of data is needed to train
the ML models. While one could generate such data synthetically through sim-
ulations, data generated from operational plants is likely to offer more realistic
scenarios and challenges to algorithms for training ML models. However, con-
cerned about the safety and privacy of their plants and customers, plant owners
are often reluctant to share their data. Though a number of CPS testbeds have
been created, e.g., [10,20], the majority of these contain simulated and emulated
components. In addition, according to [1], none of the available testbeds openly
share data for research and education.

To support research and education in the design of secure CPS, iTrust, a Cen-
tre for Research in Cyber Security [13], which belogs to the Singapore University
of Technology and Design (SUTD), designed and built three testbeds, that are
functional replicas of their larger counterparts. These testbeds are Secure Water
Treatment (SWaT), Water Distribution (WADI), and Electric Power Intelligent
Control (EPIC). Although the testbeds are scaled down replicas, they contain
the essential elements of fully operational critical infrastructure that support
cities. The data generated at these testbeds is available [14] for use in research
and education.
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A recent survey summarized several public datasets from the ICS domain,
that can be used for cyber security research [4]. Morris describes datasets with
data collected from power systems, gas pipelines, water storage systems and
energy management systems [24]. The majority of the Morris datasets [21-23],
along with others such as [6,15], contain only network traffic data. The most
related data is contained in the Morris-1 dataset [27]; it has been used to apply
machine learning to anomaly detection at the power system’s process level. We
have not found any evidence that the datasets described above, have been down-
loaded at a large scale, been applied in research competitions or have been used
for educational purposes, as is the case for the iTrust datasets.

The aim of this paper is to showcase how the availability of data from live
ICS, as well as from realistic simulations, contributes to research and education
in the field of cyber security. Towards this end we describe how the dataset from
SWaT, a live water treatment plant, has been used to construct an innovative
anomaly detection method. In addition we show how simulated data from an
international competition around a fictional C-Town water distribution system,
has been used effectively in cyber security education.

Contributions: (a) A summary of the impact of six publicly available datasets
from operational ICS in both research and education. (b) A case study to under-
stand the impact of using data from ICS for constructing a machine learning
model for anomaly detection. (¢) A case study to understand the impact of
using data from ICS on the learning outcomes in a cyber data analytics class.

Organization: The remainder of this work is organized as follows. Realistic
datasets available for education and research are described in Sect.2. Two
datasets, namely the SWaT and the BATADAL datasets, are described in detail
in this section. A case study about the use of ICS datasets for research is shown
in Sect. 3. Section 4 illuminates our datasets’ education value by showcasing the
use of the BATADAL dataset in a cyber data analytics course taught at Delft
University of Technology. Our conclusions are reported in Sect. 5.

2 Description of Datasets

2.1 Overview

The testbeds hosted at iTrust are used for research, experimentation and train-
ing, aimed at the design of secure critical infrastructure. As a contribution to
the on-going effort to improve the security of legacy and new critical infrastruc-
ture, iTrust generates a large amount of data from the testbeds. The data so
generated is made available to researchers across the world!. In this section we
briefly discuss the six datasets that are currently made available by iTrust, and
which can be downloaded upon request. Of these, two datasets, namely SWaT
[19] (Secure Water Treatment) and BATADAL (BATtle of Attack Detection
Algorithms) [31], were used to showcase the use of real-life data for research and
education in cyber security.

! https://itrust.sutd.edu.sg/research/dataset /.
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Secure Water Treatment (SWaT) Dataset. The data collected from the
testbed consists of 11 days of continuous operation. Seven days’ worth of data was
collected under normal operation while 4 days’ worth of data was collected while
the testbed was under attack. During the data collection, all network traffic,
sensor and actuator data were stored in the historian.

S317 Dataset. An event named SUTD Security Showdown (S3) has been orga-
nized consecutively for two years since 2016. S3 has enabled researchers and prac-
titioners to assess the effectiveness of methods and products aimed at detecting
cyber attacks launched in real-time on SWaT. During S3, independent attack
teams design and launch attacks on SWaT while defence teams protect the plant
passively and raise alarms upon attack detection, but are refrained from block-
ing the attacks. Attack teams are scored according to how successful they are in
performing attacks based on specific intents while the defence teams are scored
based on the effectiveness of their methods to detect the attacks.

WADI Dataset. Similar to the SWaT dataset, the data collected from the
Water Distribution testbed consists of 16 days of continuous operation, of which
14 days’ worth of data was collected under normal operation and 2days with
attack scenarios. During data collection, all network traffic, sensor and actuator
data were collected.

EPIC Dataset. The data collected from the EPIC testbed consists of 8 sce-
narios under normal operation, where for each scenario, the facility is running
for about 30 min. Sensor and actuator data were collected and recorded in an
Excel spreadsheet, while network traffic was saved in “pcap” files.

Blaq_0 Dataset. Blaq_0 Hackathon was first organized in January 2018 for
SUTD undergraduate students. Independent attack teams design and launch
attacks on the EPIC testbed. Attack teams were scored according to how suc-
cessful they were in performing attacks based on specific intents.

BATADAL Dataset. This dataset is not based on real-life data though is
considered realistic as it was constructed using the de facto standard simulation
tool for water distribution system modeling, namely the open source software
package EPANET [28]. This dataset was constructed for the BATtle of Attack
Detection Algorithms (BATADAL), a competition to objectively compare the
performance of algorithms for the detection of cyber attacks on water distribu-
tion systems [31].

The datasets became available in 2016. As of August 30, 2019, a total of 450
download requests were received and processed. The requests originated from
52 countries, 88% of the requests originated from universities and research insti-
tutes. The remaining 12% came from industry. Given the distribution in Table 1,
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SWaT dataset is the most requested. Note that some requests were for down-
loading multiple datasets and hence the sum of entries in the downloads column
in Table 1 is more than 450.

Table 1. Downloads of iTrust datasets

Dataset Number of downloads
SWaT 412
S317 165
WADI 178
EPIC 147
Blaq-0 81
BATADAL| 95

2.2 SWaT Testbed and the Dataset

SWaT is a scaled down water treatment plant with a small footprint that pro-
duces 5 gallons/minute of doubly filtered water. The SWaT dataset was collected
over 11 days of continuous operation. The first 7 days of data was collected under
normal operation (without any attacks) while the remaining 4 days of data were
collected with 36 designed attack scenarios. All network traffic and physical
data (sensor and actuator) were collected. We focus on the detection of attacks
through the analysis of physical data, hence the network traffic data is ignored.
The physical data was recorded from 22/12/2015 4:00:00 PM to 2/1/2016 2:59:59
PM. The dataset contains a total of 53 columns: 1 for timestamp, 1 for label
(“Attack” and “Normal”), and the remaining 51 are numeric values showing
recorded data from 51 sensors and actuators. The sensors and actuators were
sampled every second. The description of all 36 attack scenarios can be found
on the iTrust website?.

2.3 BATADAL Event and the Dataset

Recently Taormina et al. [30] have enhanced EPANET with a Matlab® toolbox,
which enables the user to design cyber-physical attacks (CPAs) and then assess
their impact on the hydraulic behavior of water distribution systems. This tool-
box is dubbed epanetCPA. Using data generated with epanetCPA, Taormina
et al. [31] organized the BATtle of Attack Detection ALgorithms (BATADAL).
BATADAL makes use of the fictional C-Town water distribution network, first
introduced for the Battle of the Water Calibration Networks by Ostfeld et al.
[26]. C-Town is based on a real-world medium-sized network which contains 388
nodes, 429 pipes, 7 tanks, 11 pumps, and one actionable valve. The BATADAL

2 https:/ /itrust.sutd.edu.sg/dataset/.
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dataset consists of three subsets. The first set contains six months of data, whose
characteristics (no attacks) can be used to study the normal system operations
and is labeled accordingly. The second set consists of three months of data. This
dataset contains three attacks, leading to anomalous low levels in one tank, high
levels in another tank and overflow in the same tank. In this set, all data are
also labeled. The third set consists of only unlabeled data, while the system was
running both under normal operations and during attack.

3 Case Study: Using SWaT Data to Construct a Machine
Learning Model for Anomaly Detection

One of the drawbacks of general machine learning approaches is that the usage
of high-dimensional data leads to opaque models. In this section, we discuss
TABOR [17], a novel machine learning model for detecting cyber intrusions of
ICS. TABOR is explainable due to its graphical nature, which is based upon
the use of Timed Automata (TA) and Bayesian Networks (BNs). The TA is
learned as a model of regular behavior of sensor signals, such as fluctuations
of water levels in tanks. The BN is learned to discover dependencies between
sensors and actuators. As a result, the model is easily readable and verifiable for
experts and system operators. Any detection results are tractable and localizable
to abnormal nodes in the model. The workflow of TABOR is as follows:

1. Sub-processes of the entire ICS are modeled. Sets of sensors and actuators in
the ICS are partitioned into groups according to their locally governing PLCs
for the sake of dimension and complexity reduction.

2. Signals from the sensors and actuators are symbolically represented. By doing
s0, on one hand, the large amount of continuous data is further compressed; on
the other hand, meaningful symbols lay the foundation of learning insightful
state machine models.

3. The states in the TA are associated with other actuator’s states by causality
inference using the BN. For example, the status (open or closed) of pumps
are associated with the changes of the water level.

4. In the detection phase, irregular patterns and dependencies that do not adhere
to the learned model from normal behavior, are considered anomalies.

Figure 1 shows the TA learned from the water level sensor LIT101 in the sub-
process P1. In the SWaT system, the function of P1 is just raw water supply and
storage - pumping raw water into the tank and pumping the water out to the next
sub-process. In Fig. 1 we can observe some repeating regular behaviors such as the
state transition path S0—S1—52— 54— S7—S1 with the events: 3 (SU, water level
Slowly goes Up)—4 (QU, water level Quickly goes Up)—2 (SC, water level Stays
Constant)—1 (QD, water level Quickly goes Down)—3 (SU, water level Slowly goes
Up) are discovered by the model. This typical loop is essentially a complete descrip-
tion of how the raw water flows into the empty tank until it is full and then flows out
of the tank onto the next sub-process. The timed information is used for construct-
ing branches with timed-varied behaviors, but with the same symbolical represen-
tation. For instance, due to the different control strategies, the water level may stay
for a short or long time at its highest level.
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[601, 2460] 3, 0.44, #39

[2461, 2640] 3, 0.51, #45

[0, 2640] 4, 0.95, #82 [0, 600] 3, 0.06, #5

10,2640] 3, 0.07, #5

[0, 2640] 1, 1.0, #10

Fig. 1. Timed automaton learned from LIT101. S is the sink state, which is introduced
due to fact that some sequences in the training data have very low frequencies of
occurrence.

Figure 2 shows the learned BN representing the causalities among the sensors
and actuators in P1. In the figure, dependencies are represented by arrows. The
conditional probability distribution shows the probability distribution of a node
given its parents.

In the testing phase, the new incoming data are represented by discrete events
and then they are executed in the TA and BN models. Any abnormal events i.e.,
invalid transition/state in the TA and zero probability in the BN, are reported
as anomalies. The explanation and localization of such detection results are
achieved by identifying the nodes, where the anomalies occur. The explanation
can be verified by the scenarios description of the SWaT dataset, where the
ground-truth (starting/ending time of attacks and names of sensors/actuators
under attacks) of every attack scenario is discussed in detail.

Thanks to the public availability of the SWaT dataset, it is possible to directly
compare the detection performance and training/testing runtime with two pub-
lished papers, whose detection methods are based upon deep neural networks [9]
and SVM [12], in which exactly the same dataset was used. The results demon-
strate that TABOR outperforms the other two methods in terms of effectiveness
and efficiency.

4 Case Study: Using BATADAL Data in a Cyber Data
Analytic Course

Since 2016 Delft University of Technology is offering a cyber data analytics course
as part of the Data Science & Technology Track for the master’s degree in
Computer Science. The course provides a theoretical and practical background
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P(v=1) P(v=2) P(v=1) P(v=2)
0.4890 0.5110 0.4890 05110

P(v=1)

Mvior | PL=) | Ple=2) MVI01POT| P(=1) | Pl=2) | P=3) | Plu=4)
! ! 0 11 0 1 0 0

2 0 ! 21 0 0 0.0521 | 0.9479
12 0.9479 | 0.0521 0 0
22 0 0.0444 | 0.9556 0

Fig. 2. Bayesian network learned from P1. The first column and the second row of
the table about LIT101 indicates that given both MV101 and P101 are closed, the
probability that water level quickly decreases (QD) is 0. Note that the actuators’ states:
open and closed, are denoted as 2 and 1, respectively.

for applying data analytics in the field of cyber security. In 2018, about 150
students registered for the course, which contained an assignment based on the
BATADAL dataset. As part of the assignment, the students were asked to apply
a machine learning method to detect cyber attacks on the water distribution
system.

This section describes the assignments based on the BATADAL dataset and
the outcomes based on submissions by the students. A total of 51 student groups
took the BATADAL assignment. The results from the groups were scored in the
same way as in the BATADAL competition. The score is the average of the time
to detect an attack and the detection accuracy [31]. The Time-To-Detection
(TTD) is the time needed by the algorithm to recognize a threat and is defined
as the difference between the time t; at which the attack is detected and the
time g at which the attack started:

TTD = t, — to. (1)

Score Strp is defined as follows to evaluate the performance of the detection
algorithm for several attacks,

1 < TTD;
=1-— 2
Strp m 2 At (2)

where TTD; is the TTD score in i—th attack, At; is the duration of i—th
attack scenario and m is the total number of attack scenarios. Note that for
the BATADAL competition m = 7.
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The detection accuracy Scps is defined as the mean of true positive rate
(TPR) and true negative rate (TNR):

TPR+TNR

Scm = 5 (3)
Finally, the overall score is computed as the average Strp and Scas:
S S
g 2TTD ;— oM (4)

Surprisingly, one group of students achieved a competitively high score, namely
S = 0.924. This group used a combination of results from a discrete Markov
model and PCA (Principal Component Analysis). This implies that the student
group would be placed fourth among the experienced participants in the original
BATADAL competition [31], see Table 2.

Table 2. BATADAL competition ranking

Place | Team Attacks detected | Score (S)
1 Housh and Ohar | 7 0.970
2 Abokifa et al. 7 0.949
3 Giacomoni et al. | 7 0.927
4 Student group 7 0.924
5 Brentan et al. 7 0.894
6 Chandy et al. 7 0.802
7 Pasha et al. 7 0.773
8 Aghashahi et al. | 7 0.534

A survey was conducted to assess how the students valued the use of the
BATADAL dataset in their assignment. The students were asked to answer five
questions related to the use of the real-life data. Because the number of respon-
dents was low (21 students) we have refrained from using a Likert five-point scale.
Instead, the respondents simply answered either “yes” or “no” to the questions.
They were also allowed to give comments on their answers.

The following five questions were addressed to the students:

Q1: It is important that during the course we use real-life data.

Q2: The use of real-life data increases my understanding of the models we
learn in the course.

Q3: I have used real-life data from the cyber domain before.

Q4: T would like to apply the models we learn in the course to more real-life
data.

Q5: Machine learning techniques are promising to solve real-life cyber security
problems.
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A vast majority of the students (86%) agree with the importance of using
real-life data (Q1). One student commented: “because in practice we will also
use real-life data.” Opinions were mixed for Q2 (57%-43%), which polls whether
using real-life data increases understanding of the ML models taught in the class.
One student feels there is no correlation while another finds real-life data more
interesting and hence pushes to study harder. A majority of the students (76%)
had not used real-life data from the cyber domain prior to coming to this course
(Q3). One student comments that this is a really nice addition to the cyber secu-
rity track. A majority of the students (76%) would like to apply the taught ML
models to more real-life data (Q4). One student deems this important because
“techniques are categorized based on their efficiency for certain datasets.” Lastly,
a majority of the students (95%) find ML techniques promising to solve real-
life cyber security problems. The results in this section indicate how the use of
real-life data augments education in cyber security.

5 Summary and Conclusions

Data analytics and machine learning classes have sprung up across the research
community and many universities. Researchers and instructors in their classes
often make earnest attempts to obtain realistic datasets to conduct research and
to teach the students. Unfortunately, there are few known ICS datasets available
for use. iTrust makes available several such datasets, two of which were used in
this work. The objective of the study reported here was to understand how the
use of realistic datasets from live and simulated ICS enhance the research and
student learning.

An analysis of the results from the two offerings answer some, though not
all, questions a researcher or an instructor may pose. First, based on the fruitful
research outcome using a live dataset such as SWaT, researchers appreciated a
practical platform to develop and test their algorithms. The competition among
variate machine learning techniques boosts the flourish of advanced intrusion
systems protecting critical CPSs. Second, based on the responses from the survey,
we can claim that students appreciated the use of realistic data from an ICS, the
simulated BATADAL dataset. However, we do not have any statistical evidence
that supports, or does not support, a claim that the use of live data enhances
learning of data analytic techniques used in this study. However, we believe that
the use of data from an operational plant, SWaT in this study, enhances student
motivation and hence learning. Details of SWaT plant are public [14] and thus
the students can discuss the pros and cons of using machine learning techniques
in detecting process anomalies in a physical context. Such discussions also add
to student’s knowledge of how ICS operates and the inherent vulnerabilities that
could be exploited leading to process anomalies.

Given the above conclusions, we believe that this work is a step towards a
more detailed study that would focus on a better understanding of the impact of
using live ICS data on research and student learning. Such a study would require
both live ICS data as well as synthetic data. A significant amount of synthetic
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data is already available in the public domain, e.g. the “Electrical Grid Stability
Simulated Data” from UC Irvine [32]. Such data can be used, along with live
datasets available from iTrust, to conduct a deeper study with research and
educational objectives similar to those in the study reported here.
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