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Abstract. Deep Reinforcement Learning (RL) is a promising technique
towards constructing intelligent agents, but it is not always easy to under-
stand the learning process and the factors that impact it. To shed s ome
light on this, we analyze the Latent State Representations (L SRs) that
deep RL agents learn, and compare them to what such agents should
ideally learn. We propose a crisp de�nition of 'ideal LSR' based on a
bisimulation metric, which measures how behaviorally similar states are.
The ideal LSR is that in which the distance between two states i s pro-
portional to this bisimulation metric. Intuitively, forming suc h an ideal
representation is highly favorable due to its compactness and generaliza-
tion properties. Here we investigate if this type of representati on is also
desirable in practice. Our experiments suggest that learning representa-
tions that are close to this ideal LSR may improve upon generaliz ation
to new irrelevant feature values and modi�ed dynamics. Yet, we sh ow
empirically that the extent to which such representations are le arned
depends on both the network capacity and the state encoding, and that
with the current techniques the exact ideal LSR is never formed.

Keywords: Deep Reinforcement Learning ´ Bisimulation Metrics.

1 Introduction

Recent years have seen a surge of algorithms and architectures for deepRein-
forcement Learning (RL), many of which have shown remarkable successfor
various problems. Yet, little work has attempted to relate the performance of
these algorithms and architectures to what the resulting deep RL agents actually
learn, and whether this corresponds to what we suppose they should ideally
learn. Such a comparison may allow for both an improved understanding ofwhy
certain algorithms or network architectures perform better than others and the
development of methods that speci�cally address discrepancies between what
is and what should be learned. We thus explore empirically the Latent State
Representations (LSRs) a deep RL agent forms of its environment to seewhether
these match our theoretical expectations.

When we speak of what a deep RL agent learns, we mean the internal
representation that a neural network forms of the environment. That is, the
activation patterns that arise in each hidden network layer as the result of feeding
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2 N. Albers et al.

(histories of) observations to the network. As the observation space is potentially
very large and the capacity of an RL agent is limited, an agent has to learn what
to attend to when creating this internal representation. A robot that is trained
to �ght �res in a residential area, for instance, might learn that certai n features
such as the house colors do not matter. If so, it will map two observations that
di�er only in this feature to the same activation pattern. The house color will
then no longer in
uence the action choices, as the agent has learned to ignore it.

Among the desirable properties of such an LSR are that it should make only
necessary distinctions between (histories) of observations, allowthe agent to
learn to act optimally, and enable generalization to new irrelevant feature values
and modi�ed dynamics. An LSR that has these properties is one in which the
Euclidean distances between states are proportional to a bisimulationmetric [6],
which measures how "behaviorally di�erent" [7] states are. As such an LSR makes
only those distinctions that are needed for the prediction of the nextreward and
state [12], we call it the Coarsest Markov State Representation(CMSR). It is
this CMSR that we suppose a deep RL agent should ideally learn. Our main
contribution is that we propose a way to measure the degree to which the CMSR
is learned, and use this measure to gain insights into the learning process of deep
RL agents using Deep Q-Networks (DQNs) [22] as example. Moreover, we show
empirically that learning closer to the CMSR may lead to better generalization
to new irrelevant feature values and modi�ed dynamics. These evaluations are
based on di�erences in the Markovianity of LSRs that either occur naturally or
are obtained via a novel auxiliary loss that pushes a DQN to learn the CMSR.

2 Related Work

Exploring the Learning of Deep RL Agents. Our main goal is to contribute
to a better understanding of the learning process of deep RL agents.To this end,
we propose using measures based on bisimulation metrics that quantitatively
denote how Markov an LSR is. Other research has used saliency maps [13] or
t-SNE plots [22][25], the latter of which we also use as supporting evidence. These
approaches result in �gures that are easy to understand, but they do notproduce
quantitative measures to e�ectively summarize the characteristics of an LSR.
Instead, to compare state representations, one has to look at multiple images and
deduce based on domain knowledge what an agent has learned. An alternative isto
plot the test performance [16] or state-action values for certain states [22] during
training. Yet, in contrast to our approach, these approaches do not say anything
about whether an agent has actually learned or simply memorized [14], the latter
of which may hinder generalization. Although o�ering some improvement, this
also holds for measuring out-of-distribution generalization [4][26]. The reason
is that such out-of-distribution generalization may be good even if the agent
has largely memorized. Lastly, to the best of our knowledge, no prior workhas
analyzed the learning process by computing how similar to the CMSRan LSR is.

Representation Learning Based on Bisimulation Metrics. To inves-
tigate the properties of LSRs that are more similar to the CMSR, we design
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Using Bisimulation Metrics to Analyze and Evaluate LSRs 3

an auxiliary loss based on bisimulation metrics. Related work in this regard is
presented by [25], who also propose learning LSRs based on bisimulation metrics.
Yet, while [25] create an LSR in which distances between states correspond to how
behaviorally di�erent they are under a varying policy, we take all actions into
consideration. Thus, an LSR learned by means of the approach of [25] potentially
makes fewer distinctions than are needed to predict the reward and next state for
all actions. Such an LSR hence generalizes to only a subset of the changes made to
the dynamics that still allow for generalization based on the LSR that we propose
to learn. In a similar vein to [25], [1] also base their approach on� -bisimulation
metrics. Another related work is the one by [11]. Yet, whereas the Euclidean
distances in our proposed LSR areproportional to the distances assigned by a
bisimulation metric, the Euclidean distances between states in the LSR learned
by means of the auxiliary loss of [11] provide an upper bound to bisimulation
metric-based distances. Lastly, [23] employ the more general notion ofMDP
homomorphism metrics for representation learning. MDP homomorphism metrics
di�er from bisimulation metrics in that actions are also abstracted.

Representation Learning Based on Other Notions. The auxiliary loss
we design introduces a bias to the learning. Several other approaches to bias
the representation learning of deep RL agents have been proposed. For example,
[17] and [8] put forward auxiliary losses based on predicting the next reward or
the discount factor. Such methods tend to be successful in practice, but do not
have strong theoretical foundations. Other work such as [19] is based on forming
a model of the environment as auxiliary task. Yet, this tends to not work well
for high-dimensional observations with large amounts of irrelevant information.
Furthermore, rather than biasing the learning of deep neural networks by means
of auxiliary losses, other work has proposed di�erent models to learn more useful
representations such as by incorporating ideas from symbolic reasoning[10]. For
instance, [24] constrain neural networks to capture typical characteristics of
relational reasoning. Another approach to learning more useful representations is
to speci�cally focus on factors that may hurt generalization. [16], for example,
improve generalization by reducing the non-stationarity an agent encounters
during training. Moreover, [15] adapt to RL several regularization techniques from
the context of classi�cation that are based on injecting noise during training.

3 Background

Markov Decision Process. An in�nite-horizon Markov Decision Process (MDP)
is a tuple hS; A; P; R; 
 i where S and A describe the space of Markov states and
possible actions, respectively,P : S � A ! � (S) is the transition function such
that P(s0js; a) 2 [0; 1] is the probability of arriving in state s0 after taking action
a in state s, R : S � A ! R is the reward function such that R(s; a) is the
instant reward for taking action a in state s, and 0 � 
 � 1 is a discount factor.
The goal of an agent in an MDP is to learn an optimal policy � � : S ! � (A)
that maximizes the expected cumulative (discounted) rewardE

� P 1
t 
 t r t

�
for

acting in the given environment. The Q-value function Q� : S � A ! R describes
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the expected cumulative reward for taking action a in state s and executing �
thereafter. The expected cumulative reward for taking an actiona in a state s and
following an optimal policy afterwards is given by Q� (s; a), where Q� = max� Q� .

Bisimulation Metrics. Bisimulation metrics [6] are based on the notion of
stochastic bisimulation [12], which considers states as equivalent if and only if
they have the same expected reward and the same transition distribution over
all other abstract states for all actions. Such states that are equivalent under
the notion of stochastic bisimulation are calledbisimilar . Bisimulation metrics
can be regarded as a quantitative version of stochastic bisimulation in that they
assign a distance of zero only to bisimilar states, and that if the parameters of
two bisimilar states are altered on a small scale, the metric distancebetween the
two states will stay small. Thus, bisimulation metrics can be seenas a measure
of behavioral similarity [ 7]. Theorem 4.5 in [6] de�nes one bisimulation metric
df ix that considers states as equivalentif and only if they are bisimilar. Given
F : M ! M , where M is the set of all semimetrics onS that assign distances of
at most 1, this df ix is de�ned as the least �xed point of the following equation:

F (d)(s; s0) = max
a2 A

�
cR jR(s; a)  R(s0; a)j + cT TK (d)

 
P(s; a); P(s0; a)

� �
: (1)

cR and cT are two positive one-bounded constants andTK (d) is the Kantorovich
distance. It is df ix that Euclidean distances in the CMSR are proportional to.

4 Markovianity of LSRs During Learning

Here we analyze the LSRs deep RL agents naturally form of their environments
and how they compare to what such agents should ideally learn.

4.1 Methodology

Measuring Characteristics of LSRs. We propose using Pearson correlation
coe�cients 1 to gain insights into the learning process. These correlation coef-
�cients are based on (components of) bisimulation metrics one the one hand,
and the Euclidean distances between the activations states are mappedto in a
network layer on the other hand. Let zi ; zj be the activations si ; sj are mapped
to in a network layer, dE (zi ; zj ) the Euclidean distance ofzi and zj , dB (si ; sj )
the distance ofsi and sj for some bisimulation-based measure, anddE and dB

averages. Then the Pearson correlation coe�cientr dB is:

r dB =

P jSj 2
i =0

P jSj 1
j = i +1 (dE (zi ; zj )  dE )(dB (si ; sj )  dB )

q P jSj 2
i =0

P jSj 1
j = i +1 (dE (zi ; zj )  dE )2

q P jSj 2
i =0

P jSj 1
j = i +1 (dB (si ; sj )  dB )2

:

(2)
Using measures based on or inspired by bisimulation metrics fordB leads to

the Pearson correlation coe�cients that are de�ned in Table 1. These correlation
1 The Pearson correlation coe�cient measures the linear correlatio n of two variables.
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Using Bisimulation Metrics to Analyze and Evaluate LSRs 5

Table 1. Correlation coe�cients (CCs) based on Equation 2 and their int erpretations.
r d f ix and r Rew are based on (components of) bisimulation metrics, and r Q � replaces
the immediate reward in r Rew by Q� .

CC dB Interpretation

r d f ix df ix (si ; sj ) Similarity of representation to CMSR.
r Rew maxa2 A jR(si ; a)  R(sj ; a)j Degree of clustering based on rewards.
r Q � maxa2 A jQ� (si ; a)  Q� (sj ; a)j Similarity to Q� -irrelevance abstraction.

coe�cients allow us to analyze the degrees to which the CMSR is learned, states
are grouped based on instant rewards, and states are clustered based on Q-values
in an LSR. Moreover, we can formally de�ne the CMSR based onr df ix , which is
obtained by letting dB in Equation 2 be the bisimulation metric df ix

2.

De�nition 1 (Coarsest Markov State Representation (CMSR)). The
CMSR is a representation for which the following holds:

r df ix = 1 : (3)

Theoretical Properties of the CMSR. We suppose that a deep RL agent
should ideally learn the CMSR. This is due to several desirable theoretical
properties of this representation. These theoretical properties arise because 1) the
CMSR makes the lowest number of distinctions that still enables the prediction
of the reward and next state [12], and 2) Euclidean distances between states in
the CMSR are proportional to how behaviorally di�erent states are. Thi s leads
to the following advantageous characteristics of the CMSR:

{ Feasibility of Learning � � . If an agent can predict the next reward and state
for each action, an LSR is said to beMarkov and the agent may �nd an
optimal policy based on (histories of) observations3 [21]. If, however, the
reward and next state cannot be predicted based on the LSR, the agent in
the most general case cannot learn an optimal policy.

{ Indi�erence to Irrelevant Features . The CMSR does not distinguish observa-
tions that refer to the same state in the abstract MDP. That is, the CMSR
treats as equivalent two observations that di�er only in features that are
irrelevant for predicting next states and rewards. This is especially important
for domains with high-dimensional observations such as images.

{ Generalization to Modi�ed Dynamics. If a subset of the features required
for predicting the reward and next internal state for an original domain is
su�cient for predicting the reward and next internal state after mo difying
the dynamics, the distinctions the CMSR makes for the original domain

2 Computed via the MCFZIB solver [9].
3 While representing an optimal policy may require solely a coarser abstraction of the

state space, such a representation may not su�ce for learning an optimal policy [ 21].
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su�ce to learn the Q-values of such a modi�ed domain. Moreover, since the
Euclidean distance between two states in the CMSR varies smoothly as their
parameters are changed, the CMSR is likely to still be useful if small such
changes are made. This is important, as dynamics are commonly estimated
and domain shifts may arise in problems such as robotics [15].

Q� -irrelevance Abstraction. We suppose that LSRs should ideally be
similar to the CMSR. Yet, the output layer of a DQN is pushed to represent Q-
values, which may also cause LSRs to do so. We call an LSR in which the Euclidean
distances between activations are proportional to the Euclidean distances between
the corresponding Q-values aQ� -irrelevance abstraction. This de�nition is based
on generalizing the levels of state abstraction by [18] to the Euclidean space in
which the activations in network layers fall. As non-bisimilar states may have the
same Q-values, such an LSR may make fewer distinctions than the CMSR and
hence no longer preserve the one-step model. Thus, aQ� -irrelevance abstraction
may not have the theoretical properties of the CMSR. We measure the extent to
which a Q� -irrelevance abstraction is formed via the correlation coe�cient r Q � .

Domain. Our results presented here are based on a modi�ed version of the
fully observable Gridworld 3x3 domain [5], but supporting results from Gridworld
5x5, FrozenLake 8x8 from OpenAI Gym and the partially observable Hallway
domain are described in [2]. In Gridworld 3x3, the state is a combination of the
agent's position on a 3x3 grid and its orientation. Apart from the ground state,
the agent's observations in our domain version contain a super
uous feature f S ,
which can take 5 possible values sampled uniformly at random. This creates 5
behaviorally identical or bisimilar states out of each ground state. The agent can
choose from the deterministic actionsf forward; rotate g. The reward is 1 for
reaching the goal location in the center of the grid and 0 otherwise.

State Encoding. We one-hot encode the ground states, and use 3 di�erent
ways of encodingf S (Table 2). The encodings vary in the degree to which bisimilar
states are encoded similarly, as mirrored by the encoding-based value for r df ix in
Table 2. Thus, the encodings have di�erent e�ects on the initial LSR, which may
impact the �nal LSR and its similarity to the CMSR.

4.2 Analysis of the Learning Process

In the following, we now use our proposed correlation coe�cients and t-SNE
[20] plots to shed light on the natural learning process of deep RL agents. Fig. 1
shows that the learning process consists of three overlapping learning phases:

1) States are grouped based on multi-step rewards . Since the target
network provides the estimates of the Q-values of next states during training, it
is not surprising that the activations of states with the same n + 1-step rewards
tend to be grouped together, wheren is the number of times the target network
has been updated. Fig. 1-1 shows the hidden activation patterns right after the
DQN has been initialized4. At this point, any clustering is incidental in that it
4 Since the encoding off S is lower-dimensional than the one of the ground state, the

t-SNE plot shows one cluster for each value for f S rather than for each ground state.
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Using Bisimulation Metrics to Analyze and Evaluate LSRs 7

Table 2. State encodings and their de�nition of the super
uous feature f S . We also
show the value for r d f ix based on the encoded states.

Encoding f S r d f ix

Norm (N) f S 2 f 0; 0:25; 0:5; 0:75; 1g 0.251
One-hot (OH) f S 2 f [1; 0; 0; 0; 0]; [0; 1; 0; 0; 0]; [0; 0; 1; 0; 0]; [0; 0; 0; 1; 0]; [0; 0; 0; 0; 1]g 0.087
Original (O) f S 2 f 0; 1; 2; 3; 4g 0.015

Fig. 1. r Rew , r d f ix , r Q � and t-SNE plots of the activations observations are mapped to
during training for the LSR of a 2-layer DQN for the OH-encoding. Th e hidden layer
size is 50 and the target network is updated every 50 episodes. All observations di�ering
solely in f S are drawn in the same color in the t-SNE plots and the coloring scheme
for the ground states is shown on the left. Bisimilar ground state s are shown in the
same color. The vertical lines mark the episodes for which we showt-SNE plots. The 3
non-black lines thereby indicate 1) the �rst time the agent reac hes the goal in each of
100 test episodes, 2) the �rst time the agent has learned � � and 3) convergence to� � .

depends on the state encoding5 and network initialization. In Fig. 1-2, we see that
the DQN has formed a separate cluster for those states that have an immediate
reward of 1 (dark green). The target network has not yet been updated, so
all other states, which have an immediate reward of 0, should not yet fall into
separate clusters. Also note that the yellow curve (r Rew ) is now at its maximum.
This is expected, becauser Rew measures the degree of similarity between the
current LSR and a representation that clusters states together if andonly if they
have the same immediate reward. After the target network has been updated
once, a new separate cluster is formed for those states that have a non-zero
two-step reward (Fig. 1-3, dark pink). This is accompanied by a drop inr Rew , as
states are now no longer distinguished solely based on their immediaterewards.

2) The LSR becomes more similar to the CMSR . This pattern is
mirrored by the increase in the green curve (r df ix ) at the beginning of training.
However, the exact CMSR is not learned, asr df ix is never equal to 1.

5 The impact of the state encoding is discussed in the next section.
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(a) OH-encoding. (b) N-encoding. (c) O-encoding.

Fig. 2. Mean peak and �nal r d f ix and �nal r Q � with 95%-con�dence intervals for the
LSRs of 2-layer DQNs for di�erent state encodings and hidden laye r sizes. The vertical
lines indicate the smallest hidden layer sizes for which 1) the agent always arrives at the
goal in 100 test episodes and 2) the DQN converges to� � at least 1 out of 5 times. Each
curve is labeled with the Pearson correlation of the respective correlation coe�cient
and the hidden layer sizes that are large enough for the DQN to learn � � at least 1 out
of 5 times.

3) States are increasingly clustered based on Q-values , as visualized
by the step-wise increase in the gray curve (r Q � ), after an initial plateau. Ulti-
mately, r Q � reaches a value near 1 when the DQN converges to� � . At the same
time, r df ix decreases for this domain as the inter-cluster distances become more
and more di�erent from those of the CMSR6. This is shown near episode 200,
where r df ix begins to decrease whenr Q � strongly increases again. The �nal LSR
is thus less similar to the CSMR for this domain than during the second phase.

This analysis suggests that while a DQN does naturally form the CMSR to
some degree, the exact CMSR is not learned. Instead, states are at some point
clustered based on Q-values rather than bisimilarity, which may cause the LSR to
become less similar to the CMSR. Given the useful theoretical properties of the
CMSR, the latter might have negative consequences for a network's generalization
ability. We examine this impact on the generalization performance in Section 5.

4.3 Factors Impacting the Learning Process

When training a DQN, one has to make a plethora of choices such as for the
network architecture and the state encoding. Commonly, we make such choices
primarily based on average returns. However, the decisions we make might also
impact the LSRs that are formed. We therefore analyzed how di�erent factors
impact the learning process described above. We �nd that the extent to which
LSRs become similar to the CMSRduring and still are at the end of training
depends on the network capacity and state encoding. This is discussed below.

Network Capacity. The dark green curve (peak r df ix ) in Fig. 2(a) shows
that the LSR becomes most similar to the CMSRduring training for hidden
layer sizes just to the right of the second vertical line. These hidden layer sizes

6 The decrease inr d f ix is related to the network capacity, discussed in the next section.
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are necessary for the DQN to be able to converge to� � . For larger hidden layers,
the LSR becomes progressively less similar to the CMSR during training. This is
captured by the value of  0:118 for the Pearson correlation coe�cient between
peak r df ix and su�ciently large hidden layer sizes (Fig. 2(a)). The reason for this
pattern is that larger hidden layers make a network more 
exible, and thus allow
the network to converge to the true Q-values even if less similar tothe CMSR is
learned in the hidden layer during training. Such large networks hence learn the
Q-values without grouping behaviorally equivalent observations together.

The LSR at the end of training, however, is more similar to the CMSR for
larger hidden layers. This is indicated by the bright green curve (�nal r df ix )
and the corresponding Pearson correlation coe�cient of 0:272 with respect to
su�ciently large hidden layer sizes in Fig. 2(a). The reason is that DQNs with
smaller hidden layers eventually need to largely cluster states based on Q-values
in their hidden layers due to their lower 
exibility. Otherw ise, their output layers
cannot represent the true Q-values. Thus, while DQNs with smallerhidden layers
initially learn closer to the CMSR, their LSR is ultimately further abstracted
towards a Q� -irrelevance abstraction. The latter is supported by the observation
that the �nal values for r Q � (gray curve) are higher for smaller hidden layers,
which is captured by the Pearson correlation coe�cient of  0:199 between the
�nal values for r Q � and su�ciently large hidden layer sizes in Fig. 2(a).

State Encoding. The CMSR is formed to a lesser degree during learning
if it is more di�cult and less necessary to be learned. Based on the three dark
green curves (peak r df ix ) in Fig. 2, we can see that the LSRs become most similar
to the CMSR during learning for large hidden layers for the N-encoding and
least similar for the O-encoding. The reason for this pattern is that bisimilar
states have the most similar encodings in the N- and the least similar ones in
the O-encoding (seer df ix in Table 2). Hence, for the latter encoding it is most
di�cult to group bisimilar states together in the LSR. Thus, as the net work
capacity increases and it therefore becomes less necessary to learnthe CMSR,
the CMSR is progressively less formedduring learning for state encodings that
make it more di�cult to do so. This also impacts the LSRs present at the end of
training, as mirrored by the three bright green curves (�nal r df ix ) in Fig. 2.

Given that both the network capacity and the state encoding impact the
degree to which the CMSR is formed, it is important to make a considerate choice
of the network architecture and state encoding if learning the CMSRis desired.

5 Practical Usefulness of the CMSR

While the theoretical advantages are apparent, we will now investigate whether
striving to learn the CMSR is also useful in practice. To obtain LSRs that are
very similar to the CMSR, we introduce a bisimulation-based auxiliary loss that
pushes a network to form the CMSR as LSR.

Bisimulation-based Auxiliary Loss. We calculatedf ix (si ; sj ) for all si ; sj 2
S; i 6= j . During training, we then compute an auxiliary loss based on the premise
that we want the Euclidean distances between the activations of statesto be
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(a) Hidden layer size of 10. (b) Hidden layer size of 20. (c) Hidden layer size of 65.

Fig. 3. Average percentage of optimal actions learned by 2-layer DQNs with di�erent
hidden layer sizes for the O-encoding, trained with and withou t the auxiliary loss.
Optimal actions returned by the DQN for each non-terminal ground st ate are measured
for 1; 000 values for f S sampled uniformly at random from an interval that is i times as
large as the one used during training. The value i is shown on the x-axis. 95%-con�dence
intervals based on 10 repetitions are shown.

proportional to their distances assigned by the bisimulation metricdf ix . In other
words, we want that dE (zi ; zj ) is equal to d�

E (zi ; zj ) = dmax
E � df ix (si ; sj ), where

dmax
E is a hyperparameter for how far apart the activations of non-bisimilar states

should be. We thus compute a target activationz�
i for all si 2 S:

z�
i = zi +

1
2

�
X

j 6= i

 
d�

E (zi ; zj )  dE (zi ; zj )
� zi  zj

jj zi  zj jj
; (4)

where jjzi  zj jj is the length of the vector zi  zj . Note that the unit-length
vector zi  zj

jj zi  zj jj betweenzi and zj is multiplied by half of the amount by which
dE (zi ; zj ) should change. The idea behind this is that if zi and zj should be
pulled apart or closer together, both are moved by half the total amount in the
respective direction. Based on this, we minimize the MSE between zi and z�

i for
all si 2 S. We found this approach to work better than directly minimizing the
MSE betweendE and d�

E .

5.1 Generalization to New Irrelevant Feature Values

The �rst type of generalization we consider is the one to new values of irrelevant7

features. We train 2-layer DQNs for Gridworld 3x3 with and without the au xiliary
loss. At test time, we sample 1; 000 values for the super
uous featuref S randomly
from an interval that is i times as large as the one used during training, where
i 2 f 1; 2; 4; 6; 8; 10; 25; 50; 100; 500; 1000g. For each sampled value forf S , we
compute the optimal action returned by the trained DQN and compare it to � � .

Fig. 3 reveals that if the auxiliary loss is used, the generalization to new
values for f S tends to be better than if no auxiliary loss is used. This makes
sense, as using the auxiliary loss causes the LSR to ignoref S to a larger extent
(Fig. 4). However, Fig. 3 shows that there are two exceptions to the observation
that introducing the auxiliary loss improves upon the generalization. These are 1)
the generalization to very large intervals and 2) DQNs with large hidden layers:

7 Irrelevant features are not required for predicting the next reward and i nternal state.
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Very Large Intervals. Generalization to values for f S sampled from very
large intervals tends to be better if LSRs that are not entirely indi� erent to f S are
closer to aQ� -irrelevance abstraction. Notice that while introducing the auxili ary
loss leads to improved generalization for small and moderately sized intervals,
it deteriorates the generalization for very large intervals. This can beexplained
by the fact that even though the LSRs learn to ignore f S to a larger extent
when we apply the auxiliary loss, they do not do so entirely. At the same time,
the Euclidean distances between the activations of states withdi�erent optimal
actions are on average more similar to those between the activations of states
with the same optimal actions in the CMSR than in a Q� -irrelevance abstraction
for this domain8. Hence, that for very di�erent values for f S an observation is
mapped to a latent representation that causes the DQN to return a sub-optimal
action is less likely if the DQN learns closer to aQ� -irrelevance abstraction. Yet,
this only holds because the DQNs do not learn theprecise CMSR.

DQNs with Large Hidden Layers. One would expect DQNs with varying
hidden layer sizes to generalize similarly well if the LSRs are very close to the
CMSR. Yet, using the auxiliary loss tends to lead to worse generalization to large
intervals for large hidden layers (Fig. 3(c)) than for smaller ones (Fig.3(a) and
3(b)). The reason is that the LSRs of DQNs with large hidden layers becomeless
similar to the CMSR again towards the end of training for our settings for the
auxiliary loss. More precisely, we decay the weight of the auxiliary loss during
training and continue to train even after the weight has become 0. This continued
training after the auxiliary loss is no longer applied causes the LSRs of larger
DQNs to increasingly distinguish observations based onf S again and hence to
generalize worse to large intervals. Thus, for large DQNs to have an LSR thatis
very similar to the CMSR by the end of training, it is not su�cient to apply the
auxiliary loss only until close to the CMSR is formed. Instead, the auxiliary loss
needs to be applied longer, if not during the entire training.

Worse generalization hence only arises when the exact CMSR is not formed.
Moreover, even then it only occurs when either extremely di�erent values for f S

are sampled or the auxiliary loss is stopped too soon for very large DQNs.

5.2 Generalization to Modi�ed Dynamics

Here we now explore a second type of generalization, namely the one to modi�-
cations of the dynamics that do not make formerly irrelevant features relevant.
2-layer DQNs with hidden layer sizes between 3 and 60 are trained each10 times
on Gridworld 3x3, and subsequently retrained after modifying the transition
function. We reset the output-layer representation before and holdthe LSR �xed
during retraining. Based on Fig. 5, we �nd that the following three factors impact
the generalization to the modi�ed domain:
8 Non-terminal ground states have mean Euclidean distances of 0:175 and 0:333 to other

non-terminal ground states with the same and di�erent optimal a ctions, respectively,
in a Q� -irrelevance abstraction for Gridworld 3x3. In the CMSR, however, t he mean
Euclidean distances to non-terminal ground states with the sa me and di�erent optimal
actions are 0:141 and 0:144, respectively, if dmax

E = 1.
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