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ABSTRACT

The rise in popularity of machine learning (ML), and deep learning

in particular, has both led to optimism about achievements of artifi-

cial intelligence, as well as concerns about possible weaknesses and

vulnerabilities of ML pipelines. Within the software engineering

community, this has led to a considerable body of work on ML

testing techniques, including white- and black-box testing for ML

models. This means the oracle problem needs to be addressed. For

supervised ML applications, oracle information is indeed available

in the form of dataset ‘ground truth’, that encodes input data with

corresponding desired output labels. However, while ground truth

forms a gold standard, there still is no guarantee it is truly cor-

rect. Indeed, syntactic, semantic, and conceptual framing issues in

the oracle may negatively affect the ML system’s integrity. While

syntactic issues may automatically be verified and corrected, the

higher-level issues traditionally need human judgment and manual

analysis. In this paper, we employ two heuristics based on informa-

tion entropy and semantic analysis on well-known computer vision

models and benchmark data from ImageNet. The heuristics are

used to semi-automatically uncover potential higher-level issues

in (i) the label taxonomy used to define the ground truth oracle

(labels), and (ii) data encoding and representation. In doing this, be-

yond existing ML testing efforts, we illustrate the need for software

engineering strategies that especially target and assess the oracle.
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1 INTRODUCTION

In traditional software systems, oracles (e.g., test assertions) are

used to specify what the expected output for a given input should

be. The problem of determining whether a test passes or fails is

referred to as the oracle problem, which is a well-known challenge

in the software engineering community and has been widely dis-

cussed and investigated in the related literature [1]. These days,

more and more software systems include machine learning (ML)

components, or implement full ML decision pipelines. In such cases,

new challenges arise with regard to the oracle problem [26, 28].
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Many present-day ML systems are based on supervised tech-

niques, in which the learning of relevant patterns is based on

datasets with many examples of inputs and desired correspond-

ing outputs. Commonly, such datasets are partitioned into at least

a training and test set. Together with this, the practitioner will

specify the desired ML model (e.g., a deep neural network with

a pre-specified architecture, along with the desired optimization

criterion). From a software engineering perspective, this model

pre-specifies unweighted decision-making logic. During training,

based on the data in the training set, the weights of the model will

iteratively be optimized. As a consequence, after successful training,

a program should have been learned that, based on a given input,

will yield the desired output as well as possible.

With scalable decision-making being the ultimate goal in many

ML scenarios, a successful ML model should be able to generalize,

i.e., making correct decisions for unseen input that is sufficiently

similar to its training data. This is why it is common practice to

not train on all available data, but to at least hold out a test set

(and in some cases, a validation set, to be used during intermediate

development). As the partitions originate from the same dataset,

data points within them can be considered to be sufficiently similar.

As the training procedure did not observe the samples in the vali-

dation and test sets, they can be considered as ‘unseen’ data to the

trained model, but we do know upfront what the corresponding

desired output should be.

In conclusion, supervised ML systems treat the oracle problem

in a different way than traditional software systems. In traditional

software systems, testing is used to assess whether the system

behaves as intended. At that testing moment, the developer will

need to establish the oracle. In case a test-driven development

paradigm [3] is followed, this will be before the software is written,

but the oracle alternatively may only be defined after the software

is written. Furthermore, the source of the oracle can be completely

independent of the creator of the software.

In contrast, in supervised ML systems, the existence of oracle

data—in the form of training and test data—is a hard requirement

for the system to be able to be built, and the realization of the

software will be intimately tied to what this data reflects. Thus,

while a supervised ML system is in the progress of being trained

and evaluated, one could argue there is no oracle problem, and

we know exactly what the system should output, according to the

‘ground truth’ as specified in the dataset. The dataset thus defines

the gold standard against which the ML system will be assessed.

Of course, this does not guarantee that generalization will work

as intended. Indeed, on unseen data, even powerful deep learn-

ing based ML systems have been observed to make mistakes that

humans would not make, e.g., because of sensitivity to so-called

adversarial examples [9, 16]. This problem has been acknowledged

in both the ML and software engineering communities. From a
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software engineering perspective, in these situations, the oracle

problem re-emerges, and may provide even harder challenges on

‘what should be correct’ than in classical software systems [28].

To address this problem, in a similar fashion as in classical soft-

ware systems, the software engineering community has proposed

testing techniques for ML systems. Ben Braiek and Khomh [4], as

well as Zhang et al. [28], provide extended overviews of such ML

testing approaches in the recent literature. For example, research

effort has been devoted to defining and assessing testing methods

to reach high code coverage for ML models (e.g., [25]), increasing

the quality of test data with mutation testing (e.g., [13]), testing the

implementation of ML pipelines (e.g., [18]), and revealing defects

using metamorphic relations (e.g., [15]).

Returning to the gold standard datasets on which ML systems

will initially be trained and evaluated, by design, a perfectly trained

ML system will perfectly match this gold standard. However, the

gold standard is not actually guaranteed to be perfect. At a syntactic

level, data values may be inconsistently or invalidly encoded, and

in need of cleaning, verification, and sanity checking before they

realistically can be used in ML pipelines; multiple proposals have

emerged to (semi-)automatically address this problem [2, 11, 12, 21].

Beyond this, at a semantic and more conceptual level, human

judgment of ground truth may have been partially erroneous, po-

tentially inconsistent, or even ethically undesired to become part

of an automated decision pipeline, e.g., because it may encode

biased or offensive assessments [7, 23, 24, 27]. Such issues raise

questions on the true quality of the oracle, will have a serious

influence on what an ML system will infer, and, from an experimen-

tal validity perspective, may cause systems to not actually learn

what they are supposed to learn [24]. Recognizing that these issues

indeed are present—and conceptually problematic to a given ML

use case—requires yet another step of human judgment. Therefore,

they typically are only identified after qualitative manual analysis.

Considering the typical scale of real-life datasets, it is, however,

unrealistic that pure qualitative analysis will be able to yield truly

comprehensive and systematic findings.

In this work, we will focus on ImageNet [8], a classical large-

scale dataset that has played a key role in advancing ML success

in the computer vision domain. More specifically, we focus on the

ImageNet data partition used in the 2012 ImageNet Large-Scale

Visual Recognition Challenge, which has grown into a standard

reference benchmark for new computer vision ML models. Propos-

ing two heuristics, based on information entropy and semantic

analysis, and examining the outputs of multiple classical ML vision

models, we surface various potential oracle issues. As we will show,

these issues occur with regard to label taxonomy and information

representation. As we will argue, for certain ML use cases, these

could be explicitly harmful to a practical system’s integrity.

2 THE IMAGENET USE CASE

ImageNet is a well-known, large-scale hierarchical image data-

base [8]. It has partially been inspired byWordNet, awell-established

lexical database of English words grouped in sets of synonyms,

called synsets [14]. Seeking to provide visual illustrations of Word-

Net synsets, ImageNet provides a large-scale visual ontology to

the computer vision community. For this, millions of images were

collected from the Internet and labeled through crowdsourcing.

As ImageNet developed, multiple academic benchmark initia-

tives were run on its content [20]. Out of these, the 2012 ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC2012) has been

of particular significance, as this was the year in which deep learn-

ing techniques—more specifically, large-scale convolutional neural

networks—started becoming successful. Ever since, deep learning

techniques have become omnipresent in computer vision, and the

ILSVRC2012 classification challenge has become a standard refer-

ence for reporting ML performance.

The ILSVRC2012 classification challenge focused on classify-

ing images into one out of a thousand object categories. Formally

framed, image input data x should be mapped to one of the image

class IDs {0, . . . , 999}, corresponding to the 1000 categories of in-

terest. For each image in the dataset, a single ground truth label is

available. However, in practice, many deep networks will output a

distribution vector ŷ = [ŷ0 · · · ŷ999], with ŷi = P(y = i |x), i.e., the
probability of each of the class IDs being evidenced, given input x.

The ILSVRC2012 challenge provided a training set of more than

1.2 million images, a validation set of 50K images for use during

development, and a test set of 100K images, for which ground

truth labels were released at the end of the challenge. As for the

reference status of ILSVRC2012, commonly reported ‘results on

ImageNet’ in ML literature typically refer to the results obtained

on the ILSVRC2012 object classification challenge. The authors of

many successful deep architectures offer pre-trained weights that

were trained on the ILSVRC2012 training set, and report reference

performance on the ILSVRC2012 validation set. This performance

is typically expressed through an accuracy measure, expressing the

fraction of images for which the ground truth class is identified as

the highest-probability class (top-1 accuracy), or among the five

highest-probability classes (top-5 accuracy). The latter measure

has been suggested as a more robust measure, capable of dealing

with the phenomenon that many images may depict more than one

object, even though each image only bears a single class label [20].

3 SURFACING POTENTIAL ORACLE ISSUES

In this section, we describe how we will surface potential oracle

issues in the ground truth, considering two heuristics and a com-

parison technique inspired by differential testing.

3.1 Alternative models as alternative experts

Differential testing is a well-established technique aimed at com-

paring the output of alternative implementations against the same

input. Disagreements in the test execution output across the al-

ternatives expose potential defects in the implementations. For

example, in the context of ML implementations, CRADLE [18] uses

differential testing to find bugs in deep learning libraries through

cross-backend validation.

In this work, we apply a strategy inspired by differential testing

to surface potential dataset oracle issues. Multiple alternative ML

models can be trained on the same data; as they were optimized

through a data-driven programming paradigm [28], a model that is

reported to perform well can be assumed to adequately reflect the

main patterns in the data it was trained on. Therefore, if multiple
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alternative models with strong reported performance disagree with

the ground truth in consistent ways, rather than signifying this is a

problem in either of the models, this may signify there is a problem

with the ground truth.

We re-emphasize that this strategy targets a different aspect of an

ML pipeline than traditional differential testing. Traditional differ-

ential testing, as e.g. applied in [18], focuses on testing alternative

implementations of the same model. Therefore, for such methods,

the data and model needs to be fixed, while variations will be exam-

ined in backend libraries. In our case, we will fix the data and the

backend libraries, but vary the models. With model performance

being reported as an overall accuracy number, two models with

identical performance are not guaranteed to have made identical

judgments. That is, two models with a top-5 accuracy of 0.9 will

both have recognized the correct category for 90% of the tested data

instances, but it is not guaranteed that the 90% that each model got

correct considers the exact same sample. Therefore, metaphorically,

each strong-performing model can be seen as an expert on the data,

but different experts may be focusing on different salient aspects

of the same data. Hence, if multiple experts disagree on the same

input, they may be pinpointing alternative salient aspects of it. Yet,

if they disagree in consistent ways, other aspects may be salient

than the ones that are formally encoded.

Considering our current dataset of focus, the ILSVRC2012 data

in ImageNet, the traditional top-1 and top-5 accuracy performance

metrics only care about the presence of the ground truth class in the

top-1 or top-5 of a model prediction. However, as discussed in the

previous section, typical present-day deep learning models actually

give a richer output than that: for each image input, they will yield

a probability distribution vector, indicating the model’s confidence

for all possible object classes that can be predicted for. We use

this to deepen our understanding of the judgments of our different

models: a model that has 0.99 confidence on a single class is ‘more

sure’ of observing that particular class than a model yielding more

uniformly distributed probabilities for multiple classes at once.

This notion can be numerically expressed through the Shannon

entropy, which is a traditional measure of information content:

H (ŷ) = −
∑

i

P (y = i |x) log2(P (y = i |x)) (1)

Smaller values of H (ŷ) indicate there is less information content
in ŷ; in other words, the probabilities will be concentrated over

fewer object classes, and model predictions can thus be assumed

to be confident and predictable. In contrast, larger H (ŷ) indicate
higher information content in ŷ: probabilities will be distributed

over more object classes, and outcomes thus are less clear-cut. By

computing and analyzing H (ŷ) for predictions made by different
models, we have a heuristic that can help us uncovering possible

oracle issues, in particular in relation to ambiguity and observability

of object classes.

3.2 Semantic Analysis

When creating the ground truth, design decisions should bemade on

what classes and labels should be represented. For certain problems,

the labels are very straightforward. For example, in defect predic-

tion, a class (or method) is either defective or non-defective.

These two labels are mutually exclusive. However, for other prob-

lems, choosing the appropriate labels is more complicated. For

example, in image recognition, an image can contain multiple ob-

jects. Furthermore, the same objects can have alternative labels

(e.g., synonyms). In this case, engineers may choose to use only

one label or to allow using multiple labels for the same picture,

e.g., for the different objects in the image or considering possible

synonyms.

This design choice will affect how the oracle information will

be represented in the ML pipeline. Generally, the information in

an ML pipeline takes numerical forms, and will be processed by

mathematical frameworks. When considering ML classification

tasks, typically, the different possible object classes will be implicitly

modeled as being independent and equivalent. However, in the

real world, there may be different relations between object classes.

Considering ImageNet, the original purpose of the ImageNet dataset

indeed was to offer a hierarchical visual ontology; furthermore, the

WordNet knowledge source that drove the ImageNet development

explicitly encodes relations between the entities inside of it.

Depending on the ultimate ML use case, being explicitly aware of

these relationships may be of importance. When only considering

the traditional ILSVRC2012 focus on ‘whether an object of class i
is present in an image’, this may be less relevant. However, when

moving towards broader visual understanding and reassessments of

the trustability of existing oracles, certain classification ‘mistakes’

may be more logical and explainable in comparison to the ground

truth than others.

With WordNet including synsets and connections between them,

according to various semantic relations, we can use it to uncover

possible ambiguities in our data labels. For the sake of our analysis,

we use the 1000 ILSVRC2012 class label names as queries to the

WordNet database, and then search for pairs of class labels charac-

terized by three semantic relations: (1) synonyms, (2) homonyms,

and (3) meronyms. In our context, synonyms are pairs of class labels

that are treated separately in IlSVRC2012, but that have the same

meaning. Synonyms can lead to ambiguities in data labels, as the

same object in an image might be labeled differently by different hu-

man validators. Homonyms are pairs of class labels that are spelled

and pronounced the same, but that have different meanings. The

labels of homonyms should be appropriately stored when building

the datasets to avoid future misinterpretations. Finally, meronyms

are pairs of labels linked by a ‘part of’ relation. Meronyms may

lead to ambiguities, since an image that contains one object/label

might also contain objects relating to the other paired label.

4 ORACLE ISSUES IN IMAGENET

4.1 Approach

Using the techniques discussed in the previous section, we focus

on semi-automatically surfacing oracle issues.

In choosing our ‘expert’ models, we choose four well-known

deep vision models: vgg16 [22], vgg19 [22], ResNet50 [10] and

ResNet101 [10]. For all thesemodels, we use the pre-trainedweights
as released by the original authors after training on the ILSVRC2012

training set, and as released through Keras [6]. More specifically,

we run the models using Anaconda Python 3.5.6, Keras 2.2.2, and

a Tensorflow 1.10.0 backend. All models require input data to be

485



Relationship #Count Pairs

Homonyms 6 <crane (bird), crane
(machine)>, <cardigan
(jacket), Cardigan (dog)>,
<polecat (skunk), polecat
(fitch)>, <sunglass (convex
lens), sunglasses (shades)>,
<maillot (tank suit), maillot
(dance suit)>, <gong
(tam-tam), gong (bell)>

Synonyms 11 <loggerhead turtle,
Caretta>, <cock, hammer>,
<fly, wing>, <coil,
ringlet>, <tub, bathtub>,
<projectile, missile>,
<screen, shield>, <harp,
harmonica>, <drum, barrel>,
<laptop, notebook>, <corn,
acorn>

Meronyms 2 <palace, castle>, <castle,
stone wall>

Table 1: Semantic relationships between labels in the Ima-

geNet ILSVRC2012 dataset.

224 × 224 × 3 pixels in dimension. For this, we follow the cropping

procedure from [19]1, which was shown to reproduce the valida-

tion performance results reported in Keras. On the ILSVRC2012

validation data, each of the models has a top-5 accuracy > 0.9.

We run the 4 models on all 50K data instances in the ILSVRC2012

validation set, and compute and analyze the Shannon entropy H (ŷ)
for each of the predictions. Following the concept of understanding

how our models may ‘agree to disagree’ with the official ground

truth, we focus our analysis on situations in which none of the four

deep vision models manage recognizing a ground truth class amidst

the top-5 predictions. This holds for 2269/50K images (4.5%) in the

validation set.

To understand whether these mistakes are true mistakes, or may

be explained by oracle issues, we consider what types of classifi-

cation mistakes are being made, and if they may be explainable,

considering potential semantic relations between different object

classes. For this, we use the results of our semantic analysis of the

1000 object class categories in WordNet. A full summary of found

relations is given in Table 1: as can be seen, the ILSVRC2012 classes

are indeed not fully independent, and certain classes may logically

get ‘confused’ for one another.

4.2 Findings

If for a given image, all models fail to recognize the ground truth

class in the top-5, while showing high entropy in their predictions,

this may suggest no clear object class is present in the image. Exam-

ining H (ŷ) for all models, we indeed observe this, and illustrate a
particular outlier in Figure 1. Here, due to the cropping procedure,

1https://github.com/calebrob6/imagenet_validation/

(a) Original (b) Cropped

Figure 1: Image ILSVRC2012_val_00017853, class kneepad,
original vs. cropped version. Borders drawn for clarity.

(a) Original (b) Cropped

Figure 2: Image ILSVRC2012_val_00006594, class bucket.

the informative visual content of the image has been removed, and

all models were confronted with a white patch.

If for a given image, all models fail to recognize the ground truth

class in the top-5, while showing low entropy and consistency in their

predictions, this may suggest another object class is more salient than

the labeled ground truth. For example, we observe this in Figure 2,

for which all models predict the baseball class with 1.0 confidence,
instead of the (less visually salient) ground truth class bucket.
If for a given image class, multiple models consistently have prob-

lems recognizing the ground truth class in the top-5, the image class

may not visually stand out. Counting top-5 errors per image class,

the hardest categories are velvet (18/50 images never have a cor-
rect top-5 prediction, e.g. see Figure 3), spotlight and letter
opener (in both cases 16/50 images never have a correct top-5 pre-
diction). Indeed, other, more visually consistent and recognizable

classes will likely coincide with these classes in images; for example,

velvet is a material, rather than a truly recognizable object.
If two classes are consistently confused by the models, they may

have been synonyms, homonyms, or meronyms.We also performed

an analysis of top-1 confusions, counting frequency occurrences

of <ground truth, predicted class> pairs over all models. The most

common confusions are laptop being ‘confused’ 114 times for

notebook (synonym), and maillot, tank suit being ‘confused’
102 times for maillot (homonym), the latter confirming an earlier
reported ‘data bug’ in ILSVRC2012 [17]. At the same time, looking

at associated prediction confidences, the models do not always

consider close semantic concepts to be truly close; e.g., see the

strongly varying prediction confidence levels for classes laptop
and notebook in Figures 4 and 5.
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(a) Original (b) Cropped

vgg16 vgg19 ResNet50 ResNet101
wallet (0.4160) doormat (0.3504) doormat (0.8952) purse (0.7394)
doormat (0.2878) purse (0.2684) pencil box (0.0293) pencil box (0.0984)
purse (0.1625) wallet (0.1115) purse (0.0206) doormat (0.0975)

pencil box (0.0482) pencil box (0.0934) chest (0.0082) backpack (0.0143)
mailbag (0.0204) mailbag (0.0402) mailbag (0.0054) chest (0.0101)

(c) Predictions

Figure 3: Top-5 classifications for velvet image ILSVRC2012_val_00000433.

(a) Original (b) Cropped

vgg16 vgg19 ResNet50 ResNet101
laptop (0.9592) laptop (0.9796) laptop (0.9954) laptop (0.9984)
notebook (0.0346) notebook (0.0191) notebook (0.0042) notebook (0.0015)

iPod (0.0024) iPod (0.0004) space bar (0.0002) space bar (0.0000)
hand-held computer (0.0011) desktop computer (0.0002) computer keyboard (0.0000) mouse (0.0000)

modem (0.0007) space bar (0.0001) mouse (0.0000) computer keyboard (0.0000)

(c) Predictions

Figure 4: Top-5 classifications for laptop image ILSVRC2012_val_00007373.

(a) Original (b) Cropped

vgg16 vgg19 ResNet50 ResNet101
notebook (0.7222) notebook (0.7327) notebook (0.7230) notebook (0.8161)
laptop (0.1866) laptop (0.1178) laptop (0.1689) laptop (0.1492)

desktop computer (0.0244) desktop computer (0.0459) desktop computer (0.0420) modem (0.0100)
space bar (0.0097) space bar (0.0243) space bar (0.0239) space bar (0.0091)
solar dish (0.0092) hand-held computer (0.0152) mouse (0.0059) desktop computer (0.0041)

(c) Predictions

Figure 5: Top-5 classifications for laptop image ILSVRC2012_val_00002580.

4.3 Good performance vs. visual understanding

Our analysis surfaces various oracle issues, that globally hint at

issues with label taxonomies and problems with data encoding and

representation. Considering the original setup and context of the

ILSVRC2012 data, as an academic benchmark focused on assessing

the presence of certain object classes in images, this is not neces-

sarily a problem. As we showed in the previous subsection, many

‘mistakes’ made by our examined models can be explained by a

human and may not be true errors, rather signifying cases in which

the oracle may need to be reinterpreted. However, given the inter-

est in deploying well-performing models in real-world scenarios,

we want to point out that there still are conceptual discrepancies

between very good model performance based on the ILSVRC2012

data, and true visual understanding for safety-critical applications.

Models may exist that may yield even better performance than our

currently examined models within the ILSVRC2012 context and its

representation and evaluation framework, but that may never be

acceptable in practical scenarios, e.g. in automated computer vision

components for self-driving cars.

ILSVRC2012 is no balanced representation of the real world.Where

ImageNet seeks to provide a comprehensive visual ontology, the

ILSVRC2012 benchmark made particular benchmark-motivated

choices in picking the classes to be recognized. For example, as

ILSVRC2012 focused both on general and fine-grained classifica-

tion, the latter was facilitated with more than 100 out of the 1000

object classes corresponding to sub-species of dogs (e.g. miniature
poodle, standard poodle). However, it would be unrealistic to

assume that over 10% of our real-world visual observations consider

sub-species of dogs.

Image classes in IlSVRC2012 are not independent. However, in the

way they are mathematically represented, it is implied they are.With

only one ground truth label per image, mathematically, the ‘ideal’

y for a given image will be a one-hot encoded vector, with yi = 1.0

for the i corresponding to the ground truth class, and yi = 0.0

otherwise. In other words, classes are framed as independent. Thus,

mathematically, a miniature poodle would be considered equally
far away to a beer bottle as to a standard poodle.
Maximum likelihood criteria will nudge models towards treating

the classes as independent. During the training of an ML classifica-

tion pipeline, the common criterion to optimize for is the likelihood

of the ground truth class, which should be maximized. With a sin-

gle ground-truth label being available per image, the best result in

terms of optimization therefore is to have a prediction confidence

of 1.0 for a single class (and thus, a probability of 0.0 for other

classes), even if multiple classes are present. Thus, while a beach
wagon typically contains more than one car wheel, if the first class
was the ground truth, optimization is considered to have succeeded

better if an ML system classifies beach wagon with 1.0 confidence,
thus being ‘blind’ to the possible presence of car wheels.

Traditional final success assessment ignores prediction confidence.

As noticed before, traditional ILSVRC2012 evaluation only cares

about the presence of the ground truth class in the top-1 or top-5:

whether the predicted probability for a ground truth label is 1.0

or 0.1 does not matter, as long as the class is present. Hence, a
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theoretical system that would always output a 0.99 probability of

an image containing a triceratops, but that would still predict
the ground truth class within the top-5 (at a probability < 0.01),

would be considered a perfect system according to top-5 accuracy.

The machine may not ‘see’ what the human annotator saw. Hu-

man annotators saw full images at different dimensions, but neural

networks need to work with standardized dimensions, leading for

an image to be cropped before prediction. As we showed, it is not

guaranteed that the object of interest is still visible in the crop.

5 CONCLUSION

In this paper, we have surfaced various oracle issues in ILSVRC2012.

That errors and ambiguity exist in ImageNet data has been recog-

nized for long [17, 22, 23], but as an academic benchmark focused

on object classification, the presence of the right class in the top-5

has in the past years been seen as sufficient to consider the classifi-

cation task solved. However, the oracles we currently have at hand,

and the representation and evaluation frameworks we currently

employ within ML, may be insufficient when considering the de-

ployment of ML components in real-world application scenarios.

In safety-critical applications (e.g. self-driving cars), a system with

100% top-1 accuracy on ILSVRC2012 should not exist at all, as it will

treat ambiguous recognition problems as unambiguous, and may

even have been incentivized to only recognize one class at a time.

The computer vision community has only started reacknowledging

this very recently (after the reviewing phase of this article), and

now is revisiting the need to take possible class hierarchies and the

severity of mistakes into account [5].

The higher-level, more conceptual oracle issues we addressed are

not trivially identifiable; furthermore, whether they will be harmful

in a practical ML application scenario will always require human

judgment. Still, with our currently proposed approach, we illus-

trated how heuristics and comparisons of alternative models can

be of assistance. They enable semi-automated analysis approaches,

that can cover a wider search range, and that can prioritize potential

issues more systematically than a human can achieve alone.

Towards the software engineering community, we want to em-

phasize that this community has commonly been confronted with

situations where human judgment on ‘what is correct’ is required,

yet non-trivial to scale up. In particular, we want to liken the way

in which we analyze different model judgments to the philosophy

behind differential testing. Taking this comparison further, we fore-

see interesting future interdisciplinary collaboration opportunities,

e.g. towards automated test case generation and prioritization. In

this, as we showed, in ML scenarios, the focus of attention may

not only be limited to testing and improving software systems, but

even the oracles that fundamentally drive them.
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