

Delft University of Technology

Smart grid co-simulation with MOSAIK and HLA
A comparison study
Steinbrink, C.; van der Meer, A.A.; Cvetkovic, M.; Babazadeh, D.; Rohjans, S.; Palensky, P.; Lehnhoff, S.

DOI
10.1007/s00450-017-0379-y
Publication date
2018
Document Version
Final published version
Published in
Computer Science - Research and Development

Citation (APA)
Steinbrink, C., van der Meer, A. A., Cvetkovic, M., Babazadeh, D., Rohjans, S., Palensky, P., & Lehnhoff, S.
(2018). Smart grid co-simulation with MOSAIK and HLA: A comparison study. Computer Science -
Research and Development, 33(1-2), 135-143. https://doi.org/10.1007/s00450-017-0379-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00450-017-0379-y
https://doi.org/10.1007/s00450-017-0379-y

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Comput Sci Res Dev (2018) 33:135–143
https://doi.org/10.1007/s00450-017-0379-y energieinformatik2017

The Swiss-German-Austrian Research Summit on Energy Informatics

SPECIAL ISSUE PAPER

Smart grid co-simulation with MOSAIK and HLA: a comparison
study

C. Steinbrink1 · A. A. van der Meer2 · M. Cvetkovic2 · D. Babazadeh1 ·
S. Rohjans3 · P. Palensky2 · S. Lehnhoff1

Published online: 4 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract Evaluating new technological developments for
energy systems is becoming more and more complex. The
overall application environment is a continuously growing
and interconnected cyber-physical system so that analytical
assessment is practically impossible to realize.Consequently,
new solutions must be evaluated in simulation studies. Due
to the interdisciplinarity of the simulation scenarios, vari-
ous heterogeneous tools must be connected. This approach
is known as co-simulation. During the last years, different
approaches have been developed or adapted for applica-
tions in energy systems. In this paper, two co-simulation
approaches are compared that follow generic, versatile con-
cepts. The toolmosaik, which has been explicitly developed
for the purpose of co-simulation in complex energy systems,
is compared to the High Level Architecture (HLA), which

B C. Steinbrink
steinbrink@offis.de

A. A. van der Meer
a.a.vandermeer@tudelft.nl

M. Cvetkovic
m.cvetkovic@tudelft.nl

D. Babazadeh
babazadeh@offis.de

S. Rohjans
sebastian.rohjans@haw-hamburg.de

P. Palensky
p.palensky@tudelft.nl

S. Lehnhoff
lehnhoff@offis.de

1 OFFIS – Institute for Information Technology, Oldenburg,
Germany

2 Delft University of Technology, Delft, The Netherlands

3 Hamburg University of Applied Sciences, Hamburg, Germany

possesses a domain-independent scope but is often employed
in the energy domain. The comparison is twofold, consider-
ing the tools’ conceptual architectures as well as results from
the simulation of representative test cases. It suggests that
mosaik may be the better choice for entry-level, prototypi-
cal co-simulation while HLA is more suited for complex and
extensive studies.

Keywords Co-simulation ·mosaik ·HLA · Cyber-physical
energy systems

1 Introduction

The evaluation of new planning, operation and control
designs in the energy domain requires thorough analysis.
In the recent years, the overall character of the domain has
turned to the field of cyber-physical energy systems (CPES)
with smart grids as one of its most prominent concepts. This
development leads to complex, interdisciplinary setups that
are infeasible to handle with purely analytical evaluation.
Since testing new approaches in laboratories or in the field is
too inflexible and expensive for early development stages, it
is an established procedure to conduct co-simulation before-
hand. This technique is defined as the coordinated execution
of two or more simulation models that differ in their repre-
sentation as well as in their runtime environment [1].

The first co-simulation implementations havemostly been
focused on analysis of the interaction between power system
and communication network simulation models [2–5]. How-
ever, besides this direct coupling of two tools, more generic
co-simulation approaches have been developed during the
last years. They are called co-simulation frameworks because
one of their integral parts is a middleware that is responsible
for data exchange and temporal synchronization of sev-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-017-0379-y&domain=pdf

136 C. Steinbrink et al.

eral simulation models. Many prominent examples for such
frameworks are either based on the Ptolemy II software [6]
(e. g. theBuildingControlsVirtual Test Bed [7]) or on various
implementations of the High-Level Architecture standard
(HLA) for distributed simulation systems [8] (e. g. C2WT-
TE [9]). A rather new example for a CPES co-simulation
framework is the tool mosaik that has been developed at
the Oldenburg Institute for Information Technology, OFFIS
[10,11]. In contrast to Ptolemy- or HLA-based systems, it
features a more concise set of functionalities, and is aimed
at being easy to apply for users from different domains.

Due to the complex character of co-simulation frame-
works, it can be difficult forCPES researchers to assesswhich
tool suits their needs. This paper is aimed at facilitating this
task via a thorough comparison of mosaik, as a light-weight
tool on the one hand, and an implementation of HLA, as a
representation of the popular standard on the other hand. This
comparison is based on both, the particular architectural con-
cepts of the tools as well as results from a simulation study
implementing a representative CPES setup.

The remainder of this paper is structured as follows: Sect. 2
features a discussion of co-simulation in CPES in general
as well as mosaik and HLA in particular. The conceptual
tool comparison is conducted in Sect. 3, followed by the
co-simulation study described in Sect. 4. Section 5, finally,
concludes the paper.

2 Co-simulation in cyber physical energy systems

Co-simulation in CPES is a complex topic that involves var-
ious aspects. A comprehensive overview of the fundamental
concepts is provided in [12]. Some of themost basic concepts
are summarized in the following.

A co-simulation setup typically consists of indepen-
dently executable simulators that represent different com-
ponents/domains of the simulated system. Furthermore,
interfaces are implemented to connect the simulators to
the framework, as well as a middleware that organizes the
communication between the simulators. This middleware
can either include a so-called master algorithm that orga-
nizes the complete co-simulation process—or only a set of
communication services so that the co-simulation process
emerges from the interaction of the simulators. The temporal
synchronization of simulators may either be realized in an
iterative manner or non-iteratively (explicitly). Since CPES
co-simulation often involves closed source and other black
box simulators, explicit coupling schemes are usually more
widely applied. In these schemes, simulators are either han-
dled one after the other (serial) or in parallel.

Since CPES co-simulation involves various different
research domains, the demand for standardization is high,
especially for the interfacing of simulators. A popular stan-

dard is the Functional Mock-up Interface (FMI) [13] that
allows embedding of simulators in so-called Functional
Mock-up Units (FMU). Due to the standard’s popularity, it
is supported by several tools as well as specifically designed
toolboxes (e. g. [14]).

Mosaik and HLA, the tools discussed in this paper, both
follow the presented understanding of co-simulation. Their
specific designs are reviewed in the following.

2.1 MOSAIK

The mosaik framework has been designed specifically for
CPES/smart grid research with a special focus on the flexible
creation of large-scale system configurations that may serve
for testing of control strategies [15].

The architecture of mosaik consists of a simulator
management module (sim-manager) and a scheduler. The
sim-manager enables data exchange with simulators by
establishing TCP connections with them. The scheduler, on
the other hand, coordinates the exchange of data between all
connected simulators based on a common simulation clock.
In its current state, the scheduler provides discretely-timed,
explicit simulator coupling.

The mosaik system is completed by two APIs for user
interaction: the Component-API and the Scenario-API. The
Component-API has to be implemented for each simulator
that is connected tomosaik. It sets up a TCP socket and orga-
nizes the data exchange with mosaik in the JSON format.
Various versions of the API are available for different pro-
gramming languages like Java, Python, or MATLAB. This
way, model developers may implement the interface in the
language that is most suitable for their simulator. The imple-
mentation itself is conducted by providing ameta description
for the simulator: a high-level description of the provided
simulation models as well as their variables. Furthermore, a
small number of interface functions have to be implemented
that are used by mosaik to control the simulator. Note that
non-simulator components like database or data analysis sys-
tems may be integrated into mosaik using the same API. A
mapping between the Component-API and FMI also allows
the integration of FMUs into mosaik co-simulation [16],
[17].

The Scenario-API, finally, provides a set of commands
that allows users to instantiate model entities from the inte-
grated simulators and establish connections between them.
The mosaik user is to employ these functions in a scenario
script that may then be executed to run the co-simulation
process.

2.2 High level architecture

HLA is a general-purpose architecture for distributed simu-
lation. It has been developed in the mid-nineties following

123

Smart grid co-simulation with MOSAIK and HLA: a comparison study 137

an initiative of the United States Department of Defense for
the purpose of combat simulation coupling [18]. The first
standardization of HLA came in the year 2000 when IEEE
declared it as the IEEE standard 1516 for modeling and sim-
ulation [19]. Since then, the HLA capabilities have been
expanded. Its current version can be found under the IEEE
standard 1516.2-2010 [20].

HLAhasbeendesigned for couplingof highly autonomous
simulators while giving ample control to the user. Using the
HLA terminology, these simulators are referred to as fed-
erates while the entire co-simulation setup is referred to as
a federation. The communication between federates is real-
ized via a message-bus, the so-called Runtime Infrastructure
(RTI). Through seven groups of services, HLA provides syn-
chronization of federates and message passing via the RTI.
For description of the exchanged data, HLA demands the
specification of Simulation Object Models (SOM) on the
federate level and a Federation Object Model (FOM) on
the federation level. These structures are defined using the
Object Model Template (OMT). Finally, HLA specifies a set
of ten design rules for the creation of federations (rules 1–
5) and federates (rules 6–10). The synchronization of the
entire federation depends on the combination of the partic-
ular synchronization mechanisms provided by its federates.
Thus, various synchronization mechanisms can be imple-
mented with the proper invocation of HLA services, some of
which will be tested later in this paper.

HLA is capable of synchronizing time-stepped and dis-
crete event simulators. The first type of simulators are not
event-responsive. When a time-stepped simulator reaches a
synchronization point, it updates its coupling variables based
on the latest message that is intended for it (while any mes-
sage in between synchronization points except the latest one
is not received). The second type of simulator, the event-
responsive simulators, is interrupted in its time-progression
if there is a message intended for it. Using the corresponding
synchronization mechanism, an event-responsive simulator
receives all messages that come its way. With HLA, the sim-
ulators can choose one or the other type of operation with
every step forward that they take.

Finally, the publisher-subscriber mechanism of HLA
results in loose coupling between simulators, which allows
simple topological reconfiguration of the simulated system
during runtime.

3 Conceptual tool comparison

In terms of their conceptual architectures, HLA and mosaik
display some structural analogies. In both setups, the simu-
lated system is divided into subsystems that are represented
by federates (HLA) or simulators (mosaik), respectively.
The data exchange between the subsystems is managed by

a central instance: the RTI in HLA on the one hand, and
mosaiks software core on the other hand, consisting of the
sim-manager and the scheduler. Furthermore, the communi-
cation between the RTI and the federates is handled via a
number of standardized function calls, similar to the connec-
tion between mosaik and its simulators.

Aside from these architectural similarities, however, HLA
and mosaik imply workflows of different nature for their
users. There are typically two types of tasks a user may
assume when working with a co-simulation environment.
The first one is the integration of a new component into
the environment. The second one is the creation of a
co-simulation study employing the already integrated com-
ponents. Both of these tasks require different specification
and implementation work in HLA and mosaik.

Integration of new simulators into mosaik requires, as
mentioned before, implementation of the Component-API.
This involves the specification of the meta description and
the implementation of interface functions. For integration of
new federates into HLA, on the other hand, a SOM has to be
specified and a so-called federate ambassador implemented
that employs RTI services.

Mosaik’s meta description is a very high-level simulator
representation that simply specifies the simulation models
that may be instantiated from the simulator, their parameters
that may be adjusted by the user, and their attributes that may
serve for data exchange with other simulators. No specifica-
tion of units, data types or variability is given for the attributes
(in contrast to the FMI standard). Instead, users are expected
to care for attribute compliance themselves when coupling
simulators. The SOM of HLA, in contrast, is much more
extensive. Similar to the meta description, it includes infor-
mation about objects and attributes provided by the federate.
However, the SOM descriptions are much more detailed,
incorporating information about data types, units, resolution,
accuracy, and so forth.

For the interaction between mosaik and a simulator, four
interface functions are needed that have to be implemented
by the user. They are then called by the mosaik software
core to assume the basic tasks of (1) initializing a simula-
tor, (2) instantiating and parameterizing simulation models,
(3) providing input and advancing the simulator in time, (4)
and requesting the simulator’s output data. In contrast, HLA
provides a much wider range of functions for the coordina-
tion between federates and the RTI which allows for more
nuanced interfacing. The functions are not implemented by
the user but provided by the RTI as services. The more than
20 services are grouped into clusters like federation manage-
ment, object management or time management. In order to
employ the desired services, the user has to implement the
already mentioned federation ambassador that sends calls to
the RTI and receives callbacks from it.

123

138 C. Steinbrink et al.

Another major purpose of the discussed systems is the
create of executable co-simulation setups. For the creation
of a co-simulation scenario in mosaik, the user has to write
a scenario script in Python, employing commands from the
Scenario-API. This script should specify which integrated
simulators are used, how many model entities are instan-
tiated, and how they are interconnected. Furthermore, data
values have to be given for the parameterization of simula-
tors and model entities, as well as the length of the simulated
time period. The interconnections may be guided by rules
that allow filtering by entity types or previously made con-
nections. This way, even complex connections between large
model entity sets can be established with only a few lines of
code.

Co-simulation experiments in HLA are less centrally
defined than in mosaik. As indicated before, HLA feder-
ates are more autonomous thanmosaik simulators, and thus,
retainmore control over the simulation process. For example,
they possess functionalities to dynamically connect to or dis-
connect from a running simulation. Thisway, a co-simulation
experiment is strongly defined by the configuration of the
individual federates. Nevertheless, the HLA specifies a fed-
eration also via some central structures. The most important
structure for setting up a federation is a FOM. Like the SOM,
it is based on the OMT, but while the SOM describes the
attributes and objects of a single federate, the FOMdescribes
all attributes and objects that may be used for data exchange
within the federation. SOMs are in some sense subordinate to
the FOM. In general, a FOM is designed for a specific appli-
cation domain and can be reused for new simulations in the
same domain. Aside from a FOM, federations may be com-
plemented by so-called federation agreements or scenarios
definitions for documentation purposes, but these concepts
are not specified by HLA rules or official templates.

All in all, mosaik and HLA both follow the common
structure of co-simulation systems possessing individual
simulator components that communicate via a message bus.
This is reflected in the schematic architectural overview
in Fig. 1. Similarities are given in the form of a com-
munication hub (red, striped), component interfacing and
description (green, solid), and some specification of com-
ponent interaction (blue, dotted). Nevertheless, the concepts
also differ in some key design principles. As indicated
above, a HLA federate is potentially more versatile than
a mosaik simulator and can intervene with the simulation
flowmore autonomously. Accordingly, the course of the sim-
ulation execution is more loosely defined in HLA than in
mosaik in order not to limit the capabilities of the federates.
While mosaik demands a scenario script that specifies fixed
interconnections between simulators, HLA merely defines
common data structures via the FOM. All other aspects of
the federation execution are defined by the federate behaviors
and publication-subscription scheme for data exchange.

Fig. 1 Architecture overviews of mosaik and HLA

The main differences and similarities between mosaik
and HLA are also reflected in the ten design rules for feder-
ates and federations that are part of the HLA standard. The
first five rules represent requirements for the design of fed-
erations. Their notions are largely mirrored by mosaik. The
rules 2–4 especially illustrate the architecture of the HLA.
They postulate:

– All objects in the federation shall belong to federates and
not to the RTI.

– Data exchange during federation execution shall happen
exclusively between federates and the RTI.

– Communication between federates and theRTI shall only
be executed via the services defined in the standard.

All of these principles are also true for mosaikwhen replac-
ing the terms “federate” and “RTI” with “simulator” and
“sim-manager”, respectively. This underlines the basic archi-
tectural similarity between the two concepts. In contrast, the
HLA rules 6–10 specify the federate design and illustrate
some of the major differences between mosaik and HLA.
These rules grant a lot of autonomy to federates. For example,
they shall be able to update their conditions for data exchange

123

Smart grid co-simulation with MOSAIK and HLA: a comparison study 139

Table 1 Overview of comparison between mosaik and HLA

Category mosaik HLA

Communication Handled by Sim-Manager; simulators are called Handled by RTI; federates send requests and receive
callbacks

Components Simulators with limited capabilities; user
implements interface functions

Very flexible federates; user employs RTI services

Time synchronization Organized by scheduler; discrete time, variable step
size

Individually defined for the federates

Data exchange Users take care of exchange validity Validity defined by SOMs and FOM

Simulation configuration Defined in executable script via Scenario-API Defined via individual federate message
subscriptions

or transfer ownership of objects between each other. Such
concepts are not stipulated in mosaik. Furthermore, feder-
ates have more power over their time management in HLA.
Instead of being externally stepped like in mosaik, they may
request time advancement at the RTI. Depending on the type
of request, timing may be negotiated between federate and
RTI, allowing for more elaborate options for temporal cou-
pling.

In summary, the conceptual comparison reveals that HLA
provides a more versatile co-simulation framework than
mosaik. Its federates may possess a wider variety of capa-
bilities than mosaik simulators so that more different forms
of interaction are possible. This is especially true for time
synchronization. Since HLA allows for negotiation of time
advancement, iterative coupling is possible, which so far is
not provided by mosaik. However, it has to be noted that
the versatility of HLA comes at the cost of a more complex
implementation process. Since mosaik’s Component-API is
more concise than its HLA equivalent, its usage is easier
to learn. Furthermore, creating an executable co-simulation
study in mosaik requires only one script with the help of the
Scenario-API. The corresponding process in HLA is more
loosely defined and typically requires individual configura-
tion of the federates. Therefore, deciding between the usage
of mosaik and an implementation of HLA entails a trade-
off between a flat learning curve (mosaik) and a wider field
of application (HLA). In addition, it has to be considered
whether simulators are to be treated as black boxes or should
be freely configurable. The former point follows the mosaik
philosophy while the latter stands of the HLA design. The
conceptual comparison of the two systems is summarized in
Table 1.

4 Co-simulation study

It has been stated above that the HLA design allows for more
types of simulator coupling than mosaik. Therefore, com-
paring the two systems in the context of a co-simulation study
can be misleading when being based on incomparable syn-

chronization schemes. However, if analogous schemes are
selected, results produced with mosaik and HLA should be
equivalent to each other. Studying this hypothesis is the pur-
pose of this section. Two simulators have been coupled using
only those schemes that are applicable in HLA as well as in
mosaik. Such a limitation is reasonable since selection of
the coupling scheme is influenced by capabilities and lim-
its of the simulators in question. In other words, simulators
are assumed here that are not compatible with HLA’s more
elaborate coupling approaches and thus may just as well be
handled by mosaik.

As a HLA implementation the software tool CERTI [21]
has been used, version 3.5.1. Just as mosaik, it follows an
open source licensing model. The employed mosaik version
is 2.3.0.

4.1 Test system configuration

The capabilities of mosaik and HLA will be compared by
simulating the storm control of awind turbine generator. This
protection mechanism is engaged when the blade tip speed,
and hence rotor frequency violates a threshold value, which
commonly equals the rotor speed at rated power output. The
test system is shown in Fig. 2. Although such a small system
does not call for advanced modeling or simulation methods,
the system contains both continuous and discrete behavior,
and thus is considered a good and comprehensible example
for the comparison of mosaik and HLA.

Fig. 2 Elementary wind turbine model (plant) with active pitch regu-
lation (controller)

123

140 C. Steinbrink et al.

It consists of a wind power model simulating a sud-
den wind gust, a turbine shaft model, a second-order plant
model of the electromechanical conversion, a discrete pitch
controller, and a servo mechanism for blade pitching. In
case the rotor speeds exceeds 110% of the rated value, the
pitch controller enables the servo mechanism βset. The servo
mechanism on its turn gradually increases the pitch angle β,
decreasing the turbine shaft power.

Engaging the servo mechanism is a sudden event based
on the physical behavior of the wind turbine. From a co-
simulation viewpoint, it is interesting to see how such an
event is processed between different simulators/federates.
Therefore, the test system is split into a plant simulator pro-
ducing the event and a controller simulator, which responds
to it, using βset as an interface attribute.

4.2 Co-simulation setup

The plant as well as the controller simulation model have
been created in Modelica and exported as FMUs. A mono-
lithic reference simulation has been conducted using the
combination of both models within Modelica.

As mentioned in Sect. 2, the basic, non-iterative cou-
pling between two simulators may either be serial or parallel.
These are the only options for simulator coupling supported
by mosaik whereas HLA may also allow extensions like
stepping negotiation or look-ahead calculations (if they are
supported by the simulators in question). A look-ahead can
be implemented in HLA by making the RTI time lag behind
the simulator time by one step.More explanation on this topic
will follow further below.

Aside from the general synchronization mechanism, the
temporal resolution (i.e. the time step size) of the individ-
ual simulators plays a crucial role in their coupling. Both,
mosaik and HLA, allow simulators to employ adaptive time
step-sizes. For the sake of comparability, however this exam-
ple study utilizes a fixed time step-size. Two basic cases of
discretely timed co-simulation are examined: (1) both sim-
ulators have the same step size, and (2) the simulators have
different step sizes. Combining these setups with the two
synchronization options, six test cases (TC) have been estab-
lished and realized with both, mosaik as well as HLA (see
Table 2). In the serial setup (TC4-6), the plant simulator is
always stepped before the controller.

Table 2 Test cases for system comparison

Parallel setup Serial setup

Both step sizes: 0.02 s TC1 TC4

Both step sizes: 0.015 s TC2 TC5

Plant step size: 0.02 s,
Controller step size: 0.015 s

TC3 TC6

4.3 Results

The behavior of the simulated system is characterized by the
wind power (and hence shaft speed) exceeding the specified
thresholdwhich leads to a responseof the controlmechanism.
The shaft power (in p.u. of the actual wind power) reaching
the turbine is plotted over time in Fig. 3a. It can be seen
that the turbine input increases quickly during the first two
simulated seconds until the threshold is reached (gray, dashed
line). After that, the interference of the controller leads to a
decrease of the wind power reaching the turbine.

Next to the threshold crossing, two more events can be
defined, related to this system behavior. For one, the infor-
mation of the threshold crossing reaches the controller to
trigger it. The final event is the response of the controller.
In the monolithic simulation with a temporal resolution of
0.001 s, these three events are processed within the same
time step. In the co-simulation setups, in contrast, this is not
necessarily possible since the system is split between the
plant and the controller. In fact, the conducted co-simulation

(a)

(b)

Fig. 3 Calculated wind power input to the turbine for different
(co-)simulation setups. Full plot (a) and zoomed-in around the time
of the event (b). Co-simulation is conducted with the setup of TC4

123

Smart grid co-simulation with MOSAIK and HLA: a comparison study 141

Fig. 4 Timing of events in the conducted co-simulation test cases

experiments reveal that the timing of the events depends on
the employed synchronization scheme in combination with
the temporal resolution of the simulators. Figure 4 displays
the time stamp of the three discussed events for every con-
ducted test case. Each time stamp is indicated by an ×. It
can be seen that the time stamps produced by the monolithic
simulation (Sim) are 2.419 for all three events. Since this
is no multiple of the resolutions of the separate simulators,
none of the co-simulation test cases could reproduce these
time steps. Even more so, the events cannot be processed
within the same time step for some test cases due to the data
exchange between the simulators.

A number of interesting observations can be made when
comparing the time stamps of the events for the different
test cases. First of all, the serial synchronization setup with
a time step of 0.02 s (TC4) produces the best output of all
the analyzed co-simulation setups. This can be explained by
the order of the events. Since the plant simulator registers
the first event and then triggers the controller, all events can
be processed within the same time step if the co-simulation
setup features a serial scheme that advances the plant before
the controller. Interestingly, test cases with a time step size
of 0.015 s tend to reproduce the timing of the events less
accurately despite the higher resolution. This is explained by
the fact that the actual event times are closer to a multiple
of 0.02 s than of 0.015 s. In other words, due to the system’s
dynamics, a higher temporal resolution does not necessarily
lead to more accurate results—if it is not at least a magni-
tude higher. Another interesting observation is the fact that
all test cases conducted with mosaik reproduce the event
times slightly better than those conducted with HLA. The
explanation for this lies in the type of HLA services used
for this comparison. So-called non-zero look-ahead services
have been used. These services stipulate that a non-zero look-

ahead time must be provided by the federate to the RTI in
order to step forward in time. Under such rules, the message
sent by one simulator to another will take non-zero time to
be delivered to its destination. Thus, while mosaik allows for
a message to be sent and delivered at the same time instance,
the particular set of HLA services used for this comparison
adds a delay of one time step between the time the message
is sent and the time it is delivered.

The discrepancy between themosaik and the HLA results
can also be seen in Fig. 3b (zoom). For both co-simulation
systems, the results of TC4 are compared with those of the
monolithic simulation (red, continuous line). While none of
the co-simulation systems is able to reproduce the simula-
tion results perfectly, themosaik results (green, dashed line)
approximate them more closely than the HLA results (blue,
dash-dotted line). However, this is only true for a HLA setup
that displays similar limitations as mosaik. As mentioned
before, HLA federates may be equipped with more capa-
bilities than mosaik simulators. Introducing the ability to
conduct look-ahead operations into the federate design leads
to a HLA setup that matches the output of the mosaik co-
simulation (black, dotted line, that is overlaid on top of the
green, dashed line). After all, the look-ahead is able com-
pensate the non-zero look-ahead aspect of the HLA services.
Furthermore, it has to be noted that newer versions of HLA
include zero look-ahead services and thus should be able
to match the mosaik results without the need to implement
look-ahead operations.

5 Conclusion

The presented work gives a concise overview of structural
similarities anddifferences between theHLAand themosaik

123

142 C. Steinbrink et al.

concept in the context of co-simulation. CPES researchers
that seek to employ co-simulation may use the work as a
guideline to decide which tools suits their needs. One major
difference between mosaik and HLA lies in the interfacing
of simulators (or federates, respectively). HLA federates are
generally more autonomous and powerful than mosaik sim-
ulators which allows for more versatile coupling, but at the
same time leads to a higher interfacing effort. Next to this
aspect, the two systems differ in the way they specify inter-
action between simulators/federates. In HLA, users define
federations that may involve complex interactions but are
time-consuming to set up, requiring a FOM to specify all
valid interaction types and exchanged data, and user devel-
oped scripts to invoke the RTI services in an appropriate
order. Mosaik, on the other hand, requires users to define
scenarios that only allow for basic data exchange. However,
they are easily established and allow large-scale topology
changes with a set of simple commands.

The conducted co-simulation experiments reveal that a
setup with an older HLA version may produce less accu-
rate results than mosaik if both systems employ only basic
synchronization schemes. The difference results from non-
zero look-ahead services being employed in the HLA setup.
However, this discrepancy may be reconciled by implement-
ing a look-ahead in the federates or using a current version
of HLA that provides zero look-ahead services. The general
accuracy that may be achieved with co-simulation depends
strongly on the behavior of the simulated system in combi-
nation with the employed synchronization scheme and the
temporal resolution of the simulators.

Both framework instances used in this study follow an
open source licensing model and are thus freely available
to researchers and possibly even customizable. As indicated
before, a variety of HLA implementations exist, some of
which are commercial solutions and might thus come with a
greater user comfort.

In summary, mosaik allows for an easier entry into co-
simulation while HLA is more versatile and powerful on
the long run. Therefore, researchers may want to employ
mosaik in early stages of a co-simulation study when large
numbers of different simulators and topologies need to be
tested. HLA, on the other hand, may be applied for more
mature studies that require extensive control over simulator
coupling for the sake of output accuracy. In future work, a
modular approach for simulator interfacing may be devel-
oped that supports the transition between the two styles of
co-simulation by allowing gradual extension of the same
interface. Since standardization is an important aspect for
acceptance and usability of such an approach, FMI should be
utilized further for interfacing. Next steps in the work with
HLA and mosaikwill involve work with more sophisticated
simulators as well as comparison of scalability in terms of
system size and temporal resolution. For some versions of

both framework concepts, studies have already been con-
ducted that demonstrate the capability to host simulations
with several thousand entities [22,23]. However, the associ-
ated findings are not necessarily up to date and can hardly be
compared due to differences in the setup and employed sim-
ulators. Palminitier and colleagues have established a simple
scalability test for the CERTI HLA implementation [24].
They evaluate the scaling of its performance in regard to
problem size and computing resources. An analogous eval-
uation setup can be established for mosaik. Implementing
such a benchmarking framework and deriving a comparative
performance analysis of the discussed co-simulation tools is
part of future work.

Acknowledgements This work is supported by the European Com-
munitys Horizon 2020 Program (H2020/2014-2020) under project
“ERIGrid” (Grant Agreement No. 654113).

References

1. Schlögl F, Rohjans S, Lehnhoff S,Velasquez J, SteinbrinkC, Palen-
skyP (2015) International symposiumon smart electric distribution
systems and technologies (EDST). IEEE, pp 516–521

2. Lin H, Sambamoorthy S, Shukla S, Thorp J, Mili L (2011) IEEE
PES innovative smart grid technologies (ISGT). IEEE

3. Godfrey T, Mullen S, Griffith DW, Golmie N, Dugan RC, Rodine
C (2010) First IEEE international conference on smart grid com-
munications (SmartGridComm)

4. GeorgH,Müller SC,DorschN,RehtanzC,WietfeldC (2013) IEEE
international conference on smart grid communications (Smart-
GridComm). IEEE, pp 576–581

5. Mets K, Verschueren T, Develder C, Vandoorn TL, Vandevelde L
(2011) IEEE 16th international workshop on computer aided mod-
eling and design of communication links and networks (CAMAD).
IEEE, pp 61–65

6. PtolemaeusC (ed) (2014) Systemdesign,modeling, and simulation
using Ptolemy II. Ptolemy.org

7. WetterM (2011) Co-simulation of building energy and control sys-
tems with the Building Controls Virtual Test Bed. J Build Perform
Simul 4(3):185

8. Dahmann JS, Fujimoto RM,Weatherly RM (1997) Proceedings of
the 29th conference onWinter simulation. IEEEComputer Society,
pp 142–149

9. Neema H, Sztipanovits J, Burns M, Griffor E (2016) Workshop
on modeling and simulation of cyber-physical energy systems
(MSCPES). IEEE

10. Schütte S, Scherfke S, Tröschel M (2011) IEEE first international
workshop on smart grid modeling and simulation (SGMS). IEEE,
pp 55–60

11. Rohjans S, Lehnhoff S, Schütte S, Scherfke S, Hussain S (2013)
4th IEEE/PES innovative smart grid technologies Europe (ISGT
EUROPE). IEEE

12. Palensky P, Van Der Meer AA, López CD, Joseph A, Pan K (2017)
Cosimulation of intelligent power systems: fundamentals, soft-
ware architecture, numerics, and coupling. IEEE Ind ElectronMag
11(1):34

13. Blochwitz T, Otter M, Arnold M, Bausch C, Clauß C, Elmqvist
H, Junghanns A, Mauss J, Monteiro M, Neidhold T, Neumerkel
D, Olsson H, Peetz JV, Wolf S (2009) 8th international modelica
conference, pp 173–184

123

Smart grid co-simulation with MOSAIK and HLA: a comparison study 143

14. Widl E, Müller W, Elsheikh A, Hörtenhuber M, Palensky P (2013)
Workshop on modeling and simulation of cyber-physical energy
systems (MSCPES)

15. Schütte S (2013) Simulation model composition for the large-scale
analysis of smart grid control mechanisms. Ph.D. Carl von Ossiet-
zky University of Oldenburg

16. Rohjans S,Widl E,MüllerW, Schütte S, Lehnhoff S (2014) Gekop-
pelte simulation komplexer energiesysteme mittels mosaik und
FMI. At-Automatisierungstechnik 62(5):325

17. van der Meer AA, Palensky P, Heussen K, Morales Bondy DE,
Gehrke O, Steinbrink C, Blank M, Lehnhoff S, Widl E, Moyo
C, Strasser TI, Nguyen VH, Akroud N, Syed MH, Emhemed A,
Rohjans S, Brandl R, Rohjans AM (2017) Workshop on modeling
and simulation of cyber-physical energy systems, Pittsburgh, PA

18. Dahmann JS, Fujimoto RM,Weatherly RM (1998) Winter simula-
tion conference. Proceedings (Cat. No. 98CH36274), Washington,
DC, vol 1, pp 797–804. doi:10.1109/WSC.1998.745066

19. IEEE standard for modeling and simulation (M & S) high level
architecture (HLA)—object model template (OMT) specification
(2000). IEEE Std 1516.2-2000

20. IEEE standard for modeling and simulation (M & S) high level
architecture (HLA)—object model template (OMT) specification

21. Noulard E, Rousselot JY, Siron P (2009) Spring simulation inter-
operability workshop (2009)

22. Sonnenschein M, Appelrath HJ, Lehnhoff S, Mayer C, Uslar M,
Nieße A, Tröschel A, Hofmann L, Kurrat M, Mertens A (2012)
VDE-Kongress 2012 - Intelligente Energieversorgung der Zukunft

23. Brito AV, Negreiros AV (2013) III Brazilian symposium on com-
puting systems engineering

24. Palmintier B, Krishnamurthy D, Top P, Smith S (2017) Workshop
on modeling and simulation of cyber-physical energy systems,
Pittsburgh, PA

123

http://dx.doi.org/10.1109/WSC.1998.745066

	Smart grid co-simulation with MOSAIK and HLA: a comparison study
	Abstract
	1 Introduction
	2 Co-simulation in cyber physical energy systems
	2.1 MOSAIK
	2.2 High level architecture

	3 Conceptual tool comparison
	4 Co-simulation study
	4.1 Test system configuration
	4.2 Co-simulation setup
	4.3 Results

	5 Conclusion
	Acknowledgements
	References

