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ffect of dislocation core fields on discrete dislocation plasticity
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A B S T R A C T

Discrete dislocation plasticity is a modeling technique that treats plasticity as the collective motion of
dislocations. The dislocations are described through their elastic Volterra fields, outside of a cylindrical core
region, with a few Burgers vectors of diameter. The contribution of the core fields to the dislocation dynamics
is neglected, because it is assumed that their range is too short to be of influence. The aim of this work is to
assess the validity of this assumption.

In recent ab-initio studies it has been demonstrated that the dislocation core fields are significant up to a
distance of ten Burgers vector from the dislocation line. This is a longer range influence than expected and can
give rise to changes in the evolving dislocation structure and in the overall response of a plastically deforming
body. It is indeed experimentally observed that dislocations pile up against strong interfaces, and that the
spacing between dislocations at the front of these pile-ups can be less than ten Burgers vectors.

In this work, 2-D discrete dislocation plasticity simulations are performed to investigate the effect of core
fields on edge dislocation interactions. The results of the simulations, which include core fields for the first
time, show indeed that dislocations that are very closely spaced experience additional glide or climb due to
core fields. The effect is however negligible when compared to glide and climb due to Volterra fields or due
to the external load.
. Introduction

Discrete dislocation plasticity (DDP) simulation is a numerical tech-
ique appropriate to model the plastic behavior of metals at the mi-
rometer scale (Kubin et al., 1992; der Giessen and Needleman, 1995;
honiem and Sun, 1999; Ghoniem et al., 2000; Weygand et al., 2002;
modeo and Ghoniem, 1990). It helped to shed light on plasticity
ize effects in thin films (Nicola et al., 2006, 2003; Ayas et al., 2012;
enugopalan and Nicola, 2019), micropillars (Wei et al., 2019; Huang
t al., 2017; Chang et al., 2016; Fan et al., 2012), contact defor-
ation (Fivel et al., 1997; Zhang et al., 2014), crack-growth under
onotonic and cyclic loading (Shin et al., 2005; Reddy et al., 2013;
eshpande et al., 2003), and the climb assisted formation of dislocation
ell structures (Wu and Zaiser, 2020; Xia and El-Azab, 2015). In DDP
imulations, plasticity is modeled as the collective motion of discrete
islocations that are described through the Volterra elastic fields in an
therwise continuum domain Hirth and Lothe (1968). It is however
ell-known that the dislocation fields deviate from the elastic Volterra
escription for distances smaller than few atomic spacings from the
islocation line, due to the non-linearities and perturbations associated
o the atomic nature of the dislocation (Eshelby et al., 1953; Clouet

∗ Corresponding author at: Department of Industrial Engineering, University of Padova, I-35131, Italy.
E-mail address: lucia.nicola@unipd.it (L. Nicola).

1 Both authors contributed equally.

et al., 2009). The DDP simulations performed until now used the
Volterra fields with a cut-off at the core and neglected the fields a
dislocation core might exert on neighboring dislocations. The Volterra
fields are used, along with their image fields, to compute the Peach–
Koehler force which controls the dislocation dynamics. The core fields
are neglected, following the assumption that their field of influence is
too short-ranged to affect significantly the evolution of the dislocation
structure and therefore the global mechanical response of the solid. The
goal of this work is to test the validity of this assumption, by performing
2-D DDP simulations with and without core fields on selected cases.

It is experimentally observed that dislocations form long pile-ups
against the barriers along their path, such as grain or phase boundaries
and precipitates. The dislocations at the front of the pile-up can be
very densely packed. They exert both a stress at the barrier against
which they pile up and a long range back-stress. The back-stress has
opposite sign to the resolved shear stress that gave rise to the pile-up
itself, and often hinders the further nucleation of dislocations from the
dislocation source, leading to strain hardening of the material (Yang
et al., 2016). Given the importance of pile-ups in determining the
plastic response of micron-scale objects, it is of importance to analyze
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whether neglecting core fields in the computation of the Peach–Koehler
force in DDP simulations affects the dislocation structure. Specifically,
core fields of neighboring dislocations might contribute to additional
glide of the dislocations in a pile-up but, even more importantly, to
their climb on different planes. A change in the length and density
of pile-ups might have an impact on the global response of the metal
crystal at room or high temperature. Dislocation climb has been in-
cluded in two-dimensional discrete dislocation plasticity simulations
(2D-DDP) (Davoudi et al., 2012; Danas and Deshpande, 2013; Ayas
et al., 2014, 2015) and has resulted in a softer material response and
less pronounced size effects. In recent years, several ab-initio studies
considered the effect of the dislocation core through EAM potentials
(Clouet et al., 2009; Henager and Hoagland, 2000, 2005; Walker et al.,
2005a,b; Clouet, 2011). These studies showed that when subtracting
fields of the Volterra contribution from the ab-initio calculations, one
obtains a closed-form residual dislocation core field. Henager and
Hoagland (2005) found that for separation distances between dislo-
cations even up to 50𝑏 (where 𝑏 is the magnitude of Burgers vector)
the core fields are comparable to the Volterra fields. The study of
Kuan and Hirth (1976) suggested that the equilibrium spacing between
dislocations in a pile-up and the stress fields at the head of a pile-up
are affected by the dislocation core fields. Their numerical investigation
on the behavior of dislocation pile-ups at the interface of a bi-material
couple revealed that by including the effects of dislocation core in
the computation of dislocation interactions, the spacing between the
dislocations is reduced around the tip of a pile-up. As a consequence,
the stress concentration at the tip of the pile-up is slightly enhanced.

Core effects in the plastic deformation of an FCC crystal might arise
from full or partial dislocation core (Wei and Peng, 2017; Peng et al.,
2019). Herein we will focus on full dislocations, because considering
the presence and motion of partials is not appropriate in the 2D-DDP
framework. The plane of analysis in 2D-DDP is the (110) plane of the
FCC crystal, the only plane where straight dislocations can glide and
give the same slip traces that would be provided by slip on a three-
dimensional FCC crystal (Rice, 1987), while partials have a Burgers
vector < 𝑎∕6(112) > and move on the {111} plane. This means that
neither the Burgers vector nor the slip direction would be contained in
the plane of analysis of the simulations. The two-dimensional simula-
tions, moreover, have as the main scope to track the collective motion
of the discrete dislocations which provide plasticity. The presence and
motion of dislocation partials are expected to have a negligible effect
in the plastic response of the solids studied with 2D-DDP.

Herein, we only consider the core effects from the straight full
dislocations that nucleate and glide on the ⟨110⟩ direction of an FCC
crystal. To this end, we perform simulations including the analytical ex-
pressions for the core fields derived by Henager and Hoagland (2005),
who represented the core fields in a linear-elastic continuum framework
as cylindrical dilatations caused by a line defect. This line defect is
represented by unequal force dipoles. The representation is a general-
ization of the one proposed by Nabarro (1967), who considered the core
as the center of dilatation with cylindrical symmetry: the long-range
field corresponding to these couples is equivalent to that produced by
a two-dimensional elliptical inclusion inserted into a circular hole.

2. Elastic core fields of dislocations

The core of a dislocation produces a net dilatation of the linear elas-
tic isotropic continuum in which the dislocation is embedded (Gehlen
et al., 1972). Following Henager and Hoagland (2005), this expansion
is modeled by a pair of unequal force couples without moments (refer to
Fig. 1), which act at the dislocation line. The corresponding long-range
linear elastic displacement fields are

�̃�Core
1 =

𝑀2 cos(𝜃)
4𝜋𝜇𝑟

[ 2𝛼(1 − 𝛽) + 𝛽(𝛼 − 1) cos(2𝜃)],

�̃�Core =
𝑀2 sin(𝜃) [ 2(1 − 𝛽) + 𝛽(𝛼 − 1) cos(2𝜃)].

(1)
2

2 4𝜋𝜇𝑟
Fig. 1. Pair of orthogonal force couples used to represent the core of a dislocation.

Here, 𝑀1(N), 𝑀2(N) are the forces in the couples acting along the 𝑥1
and 𝑥2 directions, respectively and 𝛼 is the ratio 𝑀1∕𝑀2. The material
point at which the fields are computed is identified by vector 𝑟, with
𝜃 = tan−1(𝑥2∕𝑥1). The elastic properties of the medium where the
dislocations are embedded are the shear modulus 𝜇 and the Poisson’s
ratio 𝜈, with 𝛽 = 1∕2(1 − 𝜈). The values of 𝑀1 and 𝑀2 were evaluated
by Henager and Hoagland (2005) through comparison with ab-initio
calculations. From the core displacements, the core stress fields are
determined using linear elasticity

̃ core
11 = −

(𝑀1 +𝑀2)(1 − 𝛽) cos(2𝜃)
2𝜋𝑟2

+
(𝑀2 −𝑀1)𝛽(cos(2𝜃) + cos(4𝜃))

2𝜋𝑟2
,

̃ core
22 =

(𝑀1 +𝑀2)(1 − 𝛽) cos(2𝜃)
2𝜋𝑟2

+
(𝑀2 −𝑀1)𝛽(cos(2𝜃) − cos(4𝜃))

2𝜋𝑟2
,

̃ core
12 = −

(𝑀1 +𝑀2)(1 − 𝛽) sin(2𝜃)
2𝜋𝑟2

+
(𝑀2 −𝑀1)𝛽 sin(4𝜃)

2𝜋𝑟2
.

(2)

In Fig. 2 the normal components of the edge dislocation stress fields
are presented, while in Fig. 3a the variation of the normal fields along
the positive 𝑥1-axis is shown with and without core contribution. A
vector plot of the displacement field from both the core and Volterra
contributions are shown in Fig. 3b.

3. 2D-DDP formulation in brief

The goal of discrete dislocation plasticity is to compute at each time
increment of the simulation the solution of a boundary value problem
for a crystalline metal subject to external loading and containing a
given density of dislocations. The displacement, stress field and strain
field in the solid are calculated using superposition of: (i) the (̃) fields
of the dislocations and (ii) the smooth image (̂) fields which ensure
that the boundary conditions are satisfied,

𝑢𝑖 = �̂�𝑖 + �̃�𝑖, 𝜀𝑖𝑗 = �̂�𝑖𝑗 + �̃�𝑖𝑗 , 𝜎𝑖𝑗 = �̂�𝑖𝑗 + �̃�𝑖𝑗 . (3)

The image fields are here obtained by solving a linear elastic boundary
value problem using the finite element method. The (̃) dislocation
fields, instead, are provided by their analytical description. Considering
that the dislocation fields are linear elastic the contribution of all the
𝑁 dislocations at a point can be obtained as a sum over 𝑁 ,

�̃�𝑖 =
𝑁
∑

𝐼=1
�̃�(𝐼)𝑖 , �̃�𝑖𝑗 =

𝑁
∑

𝐼=1
�̃� (𝐼)
𝑖𝑗 , �̃�𝑖𝑗 =

𝑁
∑

𝐼=1
�̃�(𝐼)𝑖𝑗 . (4)

The motion of the dislocations is assumed to be driven by a combina-
tion of glide and climb. Following Ayas et al. (2012), we consider the
motion of an edge dislocation from location A at time 𝑡 to location C
at time 𝑡+𝛥𝑡 (see Fig. 4). The displacement from A to C is decomposed
into a climb-only, �̄�, (from location A at time 𝑡 to location B at time
𝑡 + 𝛥𝑡c) and a glide-only, �̆�, component (from location B at time 𝑡 + 𝛥𝑡c
to location C at time 𝑡 + 𝛥𝑡). The displacement rate ̇̃𝑢𝑖 is calculated as

̇̃𝑢𝑖 =
1
𝛥𝑡

[�̆�(𝑡+𝛥𝑡)𝑖 − �̆�(𝑡)𝑖 ] + 1
𝛥𝑡

[�̄�(𝑡)𝑖 − �̄�(𝑡+𝛥𝑡c)𝑖 ]. (5)

In case the motion of the edge dislocation from A to C occurs by first a
glide step followed by a climb step, then Eq. (5) needs to be modified
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𝑢

𝑢

Fig. 2. The stress fields of an edge dislocation in an infinite linear isotropic domain when including both Volterra and core fields: (a) 𝜎11, (b) 𝜎22. The infinite domain is taken
to have the elastic properties of aluminum (Henager and Hoagland, 2005).
Fig. 3. (a) Normal components of the edge dislocation stress fields with core (Vol+core) and without core (Vol) contribution along the positive 𝑥1-axis, (b) vector plot of the
displacement field of an edge dislocation when considering both Volterra and core contributions.
𝜎

by swapping the order of the �̆�𝑖 and �̄�𝑖 terms. Within time integration,
the order of these events cannot be resolved and hence, the arbitrary
assumption we will make is that glide precedes climb when an edge
dislocation is gliding in the direction of its Burgers vector whereas the
order is reversed when the dislocation glides in the direction opposite
to its Burgers vector. This convention ensures no net contribution to ̇̃𝑢𝑖
is made by vibratory motions of the dislocations. In Eq. (5), the climb
components of the displacement field �̄�𝑖 are given as

̄1 =
𝑏
4

sign(𝑥1, 𝑥2), (6)

̄2 = 0, (7)

where 𝑏 is the magnitude of the Burgers vector of the edge dislocation,
while 𝑥1 and 𝑥2 are the coordinates of the material point measured in
the local coordinate system of the dislocation. The main change of the
model used in this work, compared to previous climb-assisted disloca-
tion dynamics simulations, is that the component of the displacement
field �̆�𝑖 in Eq. (5) contains the contribution from core fields in addition
to the Volterra fields i.e.,

�̆�𝑖 = �̆�Vol
𝑖 + �̆�Core

𝑖 . (8)

3.1. Constitutive rules

As typical in discrete dislocation plasticity simulations, the dis-
location dynamics are controlled by constitutive rules, inspired by
nanoscale phenomena, based on the Peach–Koehler force. The glide and
3

Fig. 4. Sketch of the combined glide and climb of an edge dislocation during its motion
from location A at time 𝑡 to location C at time 𝑡+𝛥𝑡. The motion involves first climbing
to the intermediate location B at time 𝑡 + 𝛥𝑡c and then gliding to the final position C
at time 𝑡 + 𝛥𝑡.

climb components of the Peach–Koehler force 𝑓 (𝐼) on dislocation 𝐼 are
calculated as

𝑓 (𝐼)
g =

(

�̂�𝑖𝑗 +
∑

𝐽≠𝐼
�̃�(𝐽 )𝑖𝑗

)

𝑏(𝐼)𝑗 𝑚(𝛼)
𝑖 ,

𝑓 (𝐼)
c = −

(

�̂�𝑖𝑗 +
∑

𝐽≠𝐼
�̃�(𝐽 )𝑖𝑗

)

𝑏(𝐼)𝑗 𝑠(𝛼)𝑖 ,

(9)

respectively. The stress field (�̃�(𝐽 )𝑖𝑗 ) due to the combined Volterra and
core contributions of dislocation 𝐽 at the position of dislocation 𝐼 is

̃ (𝐽 )𝑖𝑗 = �̃�Vol
𝑖𝑗 + �̃�Core

𝑖𝑗 (10)

The Burgers vector of dislocation 𝐼 is 𝑏(𝐼)𝑗 . The unit vector normal to slip
system 𝛼 is indicated by 𝑚(𝛼) and the unit vector in the slip direction is
𝑖



Mechanics of Materials 165 (2022) 104137N. Irani et al.

H
m
N
𝜏
d
s
f

3

𝐸
a
0
𝑟
f

s
e
𝜏
m
M
𝐵
t
a
c
v
d
t
(
c

3

s
t
e
r
s

C
r
F

H
l
t
c
t
t
c
f
t

s
c
c
o

𝑠(𝛼)𝑖 . The glide and climb velocities of dislocation 𝐼 have a linear relation
with the glide and climb components of the Peach–Koehler force, albeit
with a different drag coefficient:

𝑣(𝐼)g = 1
𝐵g

𝑓 (𝐼)
g ; 𝑣(𝐼)c = 1

𝐵c
𝑓 (𝐼)

c . (11)

ere, new dislocation pairs are generated by Frank–Read sources,
imicked by discrete point sources, randomly distributed in the crystal.
ucleation occurs when the resolved shear stress on a source exceeds
nuc𝑏 for a time period 𝑡nuc. The Burgers vector of the freshly nucleated
islocations is aligned with 𝑠(𝛼). Opposite signed dislocations on slip
ystem 𝛼 annihilate when they are closer than 𝐿e, the critical distance
or annihilation.

.2. Reference parameters

In this work, an isotropic crystal is modeled with Young’s modulus
= 70 GPa and Poisson’s ratio 𝜈 = 0.33, representative values for

luminum. The dislocations have a Burgers vector of magnitude 𝑏 =
.25 nm and the core radius is taken to be twice the Burgers vector,
𝑐 = 2𝑏. The core radius is the distance below which the Volterra stress
ield is cut-off to avoid the singularity typical of an elastic solution.

In all calculations, the crystal is initially dislocation-free. The
ources nucleate a dipole when the resolved shear stress acting on them
xceeds a critical value of 𝜏nuc𝑏 for a period of time 𝑡nuc = 10 ns;
nuc for the sources is taken to have a Gaussian distribution with a
ean source strength 𝜏nuc = 50 MPa and a standard deviation of 10
Pa. The drag coefficient for glide 𝐵g is 10−4 Pa s. The parameter
c/𝐵g which governs the climb rates relative to the glide rates is

aken as 104. This parameter was chosen following the work of Danas
nd Deshpande (2013), wherein a numerical expression for the climb
oefficient 𝐵c was proposed as a function of temperature, equilibrium
acancy concentration and vacancy diffusion coefficient. The critical
istance for annihilation is 𝐿𝑒 = 6𝑏. A time step of 𝛥𝑡 = 0.5 ns is used
o update the dislocation structure. Following Henager and Hoagland
2005), the magnitude of line force couples used for the description of
ore fields in aluminum are 𝑀1 = 0.6 N and 𝑀2 = 0.3 N.

.3. Simulation test cases

To assess the effect of core fields on the evolution of dislocation
tructures in 2-D DDP simulations, we start with two simple but illus-
rative case studies where a single dislocation source is active, and the
ffect of core fields can be most easily identified. Next, we move to a
ealistic scenario; where a thin layer with multiple active sources and
lip systems are loaded in tension.

ASE 1: A dislocation source in an infinite single crystal that is sur-
ounded with impenetrable boundaries is subjected to pure shear (see
ig. 5)

�̇�11 = −�̇�22 = (𝐶11 − 𝐶12)�̇�0 (12)

ere, 𝐶𝑖𝑗 are the elastic constants. The crystal contains a single dis-
ocation source on a slip plane that is inclined by 45◦ with each of
he loading directions. This is a special case as it nicely isolates the
ontribution of core forces in that dislocation climb cannot occur unless
he core fields are accounted for. The external applied load acts only
angentially to the slip system and does not contribute to the climb
omponent of the Peach–Koehler force. Similarly, the Volterra fields
rom dislocations gliding on the same slip plane contribute only to
4

he glide component of the Peach–Koehler force. Thus, a dislocation 𝑥
Fig. 5. Schematic representation of shear loading on a infinite body containing a
dislocation source on a slip plane oriented at 45◦. A dislocation dipole is also indicated.

Fig. 6. Schematic representation of a thin film loaded in tension. The slip plane, the
nucleation sources and the dislocations formed are also indicated.

on a plane with this orientation, when subjected to pure shear, can
experience climb only if it originates from the core fields of neighboring
dislocations. However, once an initial dislocation has climbed out of
the slip plane, the other dislocations can contribute to further climb
through the Volterra fields.

CASE 2. The only difference with CASE 1 is that the slip plane is in-
clined by 60◦ with the 𝑥1− direction instead of 45◦. In contrast to CASE
1, a dislocation on a plane with this orientation, will experience climb
from the external applied load. Thus, the initial climb can originate
from the dislocation core fields and/or the external load.

CASE 3. A single crystal thin film with length 𝑙 = 2.5 and length to
width ratio 𝑙∕𝑤 = 2.5 is strained under tension in the 𝑥1 direction; a
schematic representation of the film is shown in Fig. 6.

The thin film has passivation layers of thickness 0.1𝑤 on all its
urfaces. The passivation layers have the same elastic properties as the
rystal but are made impenetrable to the dislocations. The thin film
ontains a source density of 25/μm2. Sources are uniformly distributed
n three slip systems that are oriented at 0◦, 60◦ and 120◦ with the
-axis, which is representative of an FCC crystal.
1



Mechanics of Materials 165 (2022) 104137N. Irani et al.

v

𝜀

c

4

4

T
p
F
t
c
o
o
f
a
a
V
w
p
c
c

a

t
n
f
u
a
s
b
c
o
f
i
f
r
s

c
p
V
t
l

𝑀
i

4

f
s
f
d

t
w
s

c
T
c
w
p

For the Cases 1–3, the stress–strain response of the crystals to
loading is evaluated in terms of nominal stress

𝜎nom = 1
𝑤 ∫

𝑤

0
𝜎11(𝑥1 = 𝑙)d𝑥2 (13)

ersus nominal strain,

nom =
𝑢(𝑥1 = 𝑙, 𝑥2 = 0) − 𝑢(𝑥1 = 0, 𝑥2 = 0)

𝑙
. (14)

To evaluate the effect of core fields on 2-D DDP simulations, we
onsider the following possible scenarios:

(i) glideVol − no climb: climb is not allowed by setting 𝐵𝑔∕𝐵𝑐 ≈ 0
and dislocations are described only through Volterra fields.

(ii) glideVol+core − no climb: climb is not allowed and the core fields
are used along with the Volterra fields in the description of
the dislocations, and therefore in the computation of the glide
component of the Peach–Koehler force. This particular case is
chosen to demonstrate the effect of core forces in the glide
direction.

(iii) glideVol - climbVol: climb is active and only the Volterra fields
are used in the description of the dislocations.

(iv) glideVol+core - climbVol+core: climb is active, both Volterra and
core fields are considered in the description of dislocations.

. Results

.1. CASE 1

The crystal is strained to 𝜖nom = 0.02, at a strain rate of 1000∕s.
he stress–strain response and the increase in dislocation density are
resented in Fig. 7. As expected, the stress–strain response shown in
ig. 7a is the same if the dislocations are not allowed to climb or if
hey can climb owing only to the Volterra fields. This is because the
limb component of the Peach–Koehler force due to the Volterra fields
f dislocations aligned on the same slip plane is zero for the current
rientation of the slip system. In all the cases, the dislocations nucleate
rom the single Frank–Read source, glide on the slip plane and pile-up
gainst the impenetrable wall. Also, the differences between the curves
re negligible for the cases where the dislocations can glide due to the
olterra fields only or due to both Volterra and core fields. However,
hen the dislocations can also climb due to the core fields, the crystal
resents a softer stress–strain response. Consistently, in Fig. 7b one
an see that the crystal has the highest dislocation density when the
omponent of climb from both the core fields are accounted for.

The effect of core fields on the distribution of stresses resolved
5

long the slip plane and perpendicular to the slip plane are illustrated,
ogether with the corresponding dislocation structure, at an applied
ominal strain 𝜀nom = 0.02 in Fig. 8. For the case without the core
ields (i.e Fig. 8a and Fig. 8b), two long and dense dislocation pile-
ps form against the impenetrable boundaries. These pile-ups cause
strong back-stress on the nucleation source, thereby leading to the

train hardening observed in Fig. 7a. Fig. 8c and Fig. 8d illustrate that
y allowing climb due to both Volterra and core fields (glideVol+ core -
limbVol+ core), the dislocation pile-ups vanish. As a result, the response
f the material is also much softer. This is because, by adding the core
ields the dislocations climb on to neighboring slip planes. Once the
nitial dislocations have climbed due to the core fields, the Volterra
ields take over and push them further away. This leads to a significant
eduction of the back-stress created by the dislocation pile-ups on the
ource and allows for additional plastic deformation.

In Fig. 9, the ratio of Volterra and core components to the total
limb force is presented for each dislocation leaving the original slip
lane in the simulation where the dislocations climb due to both
olterra and core fields (glideVol+ core - climbVol+ core). It is apparent

hat with increasing dislocation density the Volterra fields, which are
ong ranged, prevail over the short ranged core fields.

The effect of core fields is also evaluated for a copper lattice, where
1 = 1.2 N, 𝑀2 = 0.6 𝑁 and 𝑏 = 0.215 nm. The trend is found to be

dentical to the case of an aluminum crystal and thus is not shown here.

.1.1. CASE 2
As can be seen in Fig. 10, the stress–strain response of the crystal

or all the simulations that include climb showed the same extent of
oftening irrespective of whether the climb is driven only by Volterra
ields, or both the Volterra and core fields. Similarly, the dislocation
ensity is higher for all cases that include climb.

The effect of core fields on the distribution of stresses resolved along
he slip plane and perpendicular to the slip plane are illustrated along
ith the corresponding dislocation structure at an applied nominal

train 𝜀nom = 0.02 in Fig. 11. From these figures, it is clear that as
long as the climb mechanism is active the dislocation pile-ups break
loose and disappear. Again, irrespective of whether Volterra fields
(glideVol - climbVol) or both the Volterra and core fields (glideVol+ core -
limbVol+ core) are considered, the final dislocation structure is similar.
his is an indication that the contribution of core fields to the dislo-
ation climb is insignificant and can safely be neglected for the cases
here the contribution from Volterra fields and/or applied loading are
resent.
Fig. 7. Case 1: Pure shear of a crystal embedded in an infinite solid containing a source on a slip plane oriented at 45◦ with the 𝑥1- axis. (a) Nominal stress 𝜎nom and (b) increase
of the dislocation density 𝜌disl during loading. The motion of the dislocations is assumed to be a result of either pure glide: glideVol − no climb and glideVol+ core − no climb; or a
combination of glide and climb: glideVol - climbVol and glideVol+ core - climbVol+ core.
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Fig. 8. Case1: (a) shear stress resolved on the slip plane, 𝜎rs, and (b) perpendicular to the slip plane, 𝜎rc, for the simulation where dislocations are only described through the
Volterra fields (glideVol - climbVol); (c) shear stress resolved on the slip plane, 𝜎rs, and (d) perpendicular to the slip plane, 𝜎rc, for the simulation where dislocations are described
through both Volterra and core fields (glideVol+ core - climbVol+ core). The applied nominal strain is 𝜀nom = 0.02.
Fig. 9. The ratio of the Volterra to the core component of the total climb force, acting
on each dislocation (ithdisl) leaving the original slip plane. 𝑛disl is the total number of
dislocations that have climbed out of the original slip plane. The data points are
connected through a continuous line as guide to the eye.

4.1.2. CASE 3

The thin film is loaded in tension at a strain rate of 1000∕s. The
stress–strain response and the increase in the dislocation density are
presented in Fig. 12 as average over ten realizations. These realizations
differ only in the location and strength of the sources which are taken
out of a normal distribution with a mean source strength = 50 MPa
and standard deviation of 10 MPa. The stress–strain response is in line
6

with that observed in CASE 2: allowing for climb leads to a significant
decrease in strain hardening.

The effect of core fields on the distribution of stresses resolved
along the 60◦ slip plane and perpendicular to the 60◦ slip plane are
illustrated along with the corresponding dislocation structure at an
applied nominal strain 𝜀nom = 0.02 in Fig. 13.

It is indeed possible to see from these figures that as long as disloca-
tion climb is allowed, dislocations travel long distances away from their
original planes and accumulate along the impenetrable boundaries.
Also, we see dislocations walls forming especially with dislocations on
the horizontal slip planes, which is a low energy configuration. Addi-
tionally, the dislocation structure is only mildly affected when climb is
also driven by the core fields. This again confirms that the contribution
of core fields to the dislocation climb can safely be neglected for the
cases where the contribution from Volterra fields and/or an external
loading inducing climb are present.

Simulations were performed also for thin films with smaller dimen-
sions, but not reported here for brevity. The expected size effect was
found, less pronounced when climb was allowed, but no significant
effect of core fields.

5. Conclusions

In this work simulations are performed to assess whether and to
which extent accounting for dislocation core fields in the description
of dislocations affects the results of dislocation dynamics simulations.
This study demonstrates that the contribution of the core fields in
determining the plastic response of crystals under loading modeled
through 2D-DDP is negligible: it does neither affect significantly the
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Fig. 10. Case 2: Pure shear of a crystal embedded in an infinite solid containing a source on a slip plane oriented at 60◦ with the 𝑥1- axis. (a) Nominal stress 𝜎nom and (b) increase
of the dislocation density 𝜌disl during loading. The motion of the dislocations is assumed to be a result of either pure glide: glideVol − no climb and glideVol+ core − no climb; or a
combination of glide and climb: glideVol - climbVol and glideVol+ core - climbVol+ core.
Fig. 11. Case 2: (a) shear stress resolved on the slip plane, 𝜎rs, and (b) perpendicular to the slip plane, 𝜎rc, for the simulation where dislocations are only described through the
Volterra fields (glideVol - climbVol); (c) shear stress resolved on the slip plane, 𝜎rs, and (d) perpendicular to the slip plane, 𝜎rc, for the simulation where dislocations are described
through both Volterra and core fields (glideVol+ core - climbVol+ core). The applied nominal strain is 𝜀nom = 0.02.
stress–strain response, nor the evolution of the dislocation distribution.
This is because dislocation climb is driven at small dislocation densities
by the external load resolved normal to the slip plane, and at large
densities also by the Volterra stress field of the dislocations. The only
special case we found where adding core to Volterra fields leads to
completely different results than considering Volterra fields alone, is
the extremely simplified scenario where a crystal under pure shear
contains only a dislocation source on a slip plane oriented at 45◦ with
the loading direction.
7

Therefore, we can conclude that the core effects can be neglected
in problems where plasticity is driven by glide and climb of edge
dislocations that can be modeled by 2D-DDP. The conclusions of this
work cannot however be extended to 3D-DDP, given that in three
dimensions core fields might affect junction formation between dis-
location loops. Additionally, core fields could alter the formation and
propagation of partial dislocations, which are not modeled in the two-
dimensional framework. The effect of core fields on the dynamics of
three-dimensional dislocation networks can be an interesting avenue
for future research.
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Fig. 12. Case 3: Stress–strain response of a thin film with multiple sources and obstacles distributed on three sets of slip planes oriented at 0◦, 60◦ and 120◦ (a) Nominal stress 𝜎nom
and (b) increase of the dislocation density 𝜌disl during loading. The motion of dislocations are assumed to be a result of pure glide: (glideVol−no climb) and (glideVol+ core−no climb).
A combination of glide and climb: (glideVol - climbVol) and (glideVol+ core - climbVol+ core).
Fig. 13. Case 3: Distribution of the resolved shear stress (a) along the slip plane oriented at 60◦ with the loading direction, 𝜎rs, and (b) perpendicular to it (𝜎rc) for simulations
accounting for Volterra fields only (glideVol - climbVol); Distribution of the resolved shear stress (c) along the slip plane oriented at 60◦ with the loading direction, 𝜎rs, and (d)
perpendicular to it (𝜎rc) for simulations accounting for both Volterra and core fields (glideVol+ core - climbVol+ core). The applied nominal strain is 𝜀nom = 0.02.
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