

Delft University of Technology

AS-level BGP community usage classification

Krenc, Thomas; Beverly, Robert; Smaragdakis, Georgios

DOI
10.1145/3487552.3487865
Publication date
2021
Document Version
Final published version
Published in
IMC 2021 - Proceedings of the 2021 ACM Internet Measurement Conference

Citation (APA)
Krenc, T., Beverly, R., & Smaragdakis, G. (2021). AS-level BGP community usage classification. In IMC
2021 - Proceedings of the 2021 ACM Internet Measurement Conference (pp. 577-592). (Proceedings of the
ACM SIGCOMM Internet Measurement Conference, IMC). ACM. https://doi.org/10.1145/3487552.3487865

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3487552.3487865
https://doi.org/10.1145/3487552.3487865

AS-Level BGP Community Usage Classification
Thomas Krenc

Naval Postgraduate School
tkrenc@nps.edu

Robert Beverly
Naval Postgraduate School

rbeverly@nps.edu

Georgios Smaragdakis
TU Delft

g.smaragdakis@tudelft.nl

ABSTRACT
BGP communities are a popular mechanism used by network op-
erators for traffic engineering, blackholing, and to realize network
policies and business strategies. In recent years, many research
works have contributed to our understanding of how BGP com-
munities are utilized, as well as how they can reveal secondary
insights into real-world events such as outages and security attacks.
However, one fundamental question remains unanswered: “Which
ASes tag announcements with BGP communities and which remove
communities in the announcements they receive?” A grounded un-
derstanding of where BGP communities are added or removed can
help better model and predict BGP-based actions in the Internet
and characterize the strategies of network operators.

In this paper we develop, validate, and share data from the first
algorithm that can infer BGP community tagging and cleaning be-
havior at the AS-level. The algorithm is entirely passive and uses
BGP update messages and snapshots, e.g. from public route collec-
tors, as input. First, we quantify the correctness and accuracy of the
algorithm in controlled experiments with simulated topologies. To
validate in the wild, we announce prefixes with communities and
confirm that more than 90% of the ASes that we classify behave as
our algorithm predicts. Finally, we apply the algorithm to data from
four sets of BGP collectors: RIPE, RouteViews, Isolario, and PCH.
Tuned conservatively, our algorithm ascribes community tagging
and cleaning behaviors to more than 13k ASes, the majority of
which are large networks and providers. We make our algorithm
and inferences available as a public resource to the BGP research
community.

CCS CONCEPTS
• Networks→ Network protocols; Network management.

KEYWORDS
Border Gateway Protocol (BGP), BGP communities.

ACM Reference Format:
Thomas Krenc, Robert Beverly, and Georgios Smaragdakis. 2021. AS-Level
BGP Community Usage Classification. In ACM Internet Measurement Con-
ference (IMC ’21), November 2–4, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3487552.3487865

IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9129-0/21/11.
https://doi.org/10.1145/3487552.3487865

1 INTRODUCTION
Border Gate Protocol (BGP) communities [16], an optional transi-
tive attribute attached to routing announcements, are widely used
to communicate information and actions within and between Au-
tonomous Systems (ASes). The flexibility to define communities,
tag routes with communities, and automatically take a prescribed
action on aggregates of tagged routes, has enabled a variety of
common uses including traffic engineering, remote triggered black-
holing (RTBH) [4], and other custom network policies and business
strategies [7].

Community values are simply byte strings, and there is no glob-
ally defined semantic to these values beyond a handful with spe-
cial meaning. ASes define particular community values either for
internal network use, e.g. to tag the geographic location where pre-
fixes are received, or for signaling to peers, e.g. to request AS path
prepending. While it is a general convention that the high-order
bytes of the community are set to the AS Number (ASN) of the
entity defining the community meaning, the low-order bytes are set
according to each network’s policy. And while some networks pub-
licly publish their community conventions, many networks do not.
Thus, for both operational and research purposes, it is often difficult
to understand the intent of communities that are seen attached to
routes, for instance at route collectors.

Even more fundamentally, the macro-level community usage
behavior of different ASes is unknown. As BGP announcements
propagate, individual ASes may arbitrarily ignore, add, modify,
or remove communities. In this paper, we develop, validate, and
employ a passive algorithm to infer per-AS community usage. At its
core, our algorithm implements a system of constraints that groups
ASes according to those that do or do not tag announcements with
communities, namely, tagger and silent ASes, as well those that
remove or ignore communities in updates, namely, cleaner and
forward ASes. When our algorithm has conflicting information, for
instance due to complex per-peer selective behavior, it labels the
AS as undecided, and if it cannot make any inference, none.

We first characterize the coverage and accuracy of our algorithm,
along with the sensitivity of its parameters, using simulations of
large AS topologies. We then validate a subset of our inferences
by using the PEERING testbed [23] to announce a prefix under our
control into the BGP. Using data from three large route collectors,
we show that our algorithm correctly infers the community usage
behavior of 90% of the ASes we predict, for those ASes in observed
paths.

Understanding per-AS community usage behavior is important
to not only measurement research that utilizes communities, but
also in uncovering important properties of operational networks in
the wild. For instance, work on measuring community propagation
and security [26], community-driven routing load and unnecessary
updates [15], community-based outage detection [8] and blackhol-
ing [11], and hijack detection schemes [24] can all benefit from a

577

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

grounded per-AS understanding of BGP community usage behavior.
Thus we see our work filling an important gap for the measure-
ment and network research community, akin to AS relationship
inference [3, 9]. Our contributions include:

• A novel passive algorithm to infer per-AS BGP community
usage behavior.

• Analysis of simulated and real-world experiments demon-
strating the coverage, accuracy, and sensitivity of our algo-
rithm.

• Application of our algorithm to data from four major route
collectors.

• We make our algorithm and database of community usage
behavior publicly available to the network measurement
community [5].

The remainder of this paper is organized as follows: In Section 2
we introduce related work in this area and provide background
information on BGP and BGP communities in Section 3. In Section 4
we introduce the data sets that we use throughout this work and the
sanitation steps involved. In Section 5, we present our mental model
and derive constraints to implement in to the inference algorithm. In
Section 6 we evaluate its performance using generated ground truth
data sets. In Section 7 we present our classification results using
publicly available routing information. We conclude in Section 8.

2 RELATEDWORK
As the Internet’s inter-domain routing glue, the BGP [19] is critical
protocol in the operation of the network. It is therefore natural
that the behavior, evolution, stability, and security of BGP have
been extensively analyzed, e.g. [6, 12, 17, 27] to name a few studies.
Similarly, the adoption of BGP communities [16] has driven research
into the ways in which communities are used, as well as how they
can reveal important properties and events in the Internet.

Benoit et al. provided the first taxonomy of BGP communities [7].
Since then, community usage has continued to increase. Specifically,
among more than 78,000 unique regular communities observed in
the recent routing data we analyze, there are more than 6,300 dis-
tinct high-order two-byte values – indicative of the wide variety
of use and breadth of adoption. Giostas et al. provided one of the
first examples of using communities as a measurement tool, by
leveraging observed activity of blackhole communities to estimate
the prevalence, frequency, and duration of denial-of-service at-
tacks [11]. Subsequent work used communities as a proxy to detect
peering infrastructure outages [8].

Further motivating our work, Streibelt et al. explored the po-
tential attack vectors using BGP communities, and their feasibility
due to a general lack of community filtering [26]. Streibelt’s work
showed that the lack of common understanding in community val-
ues, combined with their transitive property, leads to communities
propagating further than intended. As a result, malicious actors in
the BGP system can potentially blackhole or re-route traffic.

Moreover, while Streibelt et al. explore the extent to which com-
munities propagate, they do not attempt to determine whether
individual ASes are taggers (or silent). Similarly, Streibelt exam-
ines filtering and propagation of communities on a per-edge basis
in the AS graph, but do not reconcile conflicting information or
make per-AS filtering classifications. Our algorithm holistically

takes into account filtering and tagging behaviors and is specifi-
cally tuned to make precise inferences. Last, whereas prior work
was entirely inferential, we use lab experiments, simulations, and
live announcements to validate and understand the limits of our
approach.

Also closely related and motivating our investigation, Krenc
et al. explore the BGP update message load and impact due to
communities [15] and permissive propagation. In particular, Krenc’s
longitudinal study finds a large number of unnecessary updates
that could be avoided, benefiting security and performance, with
stricter community filtering by providers.

Our algorithm could thus usefully be combined with these prior
efforts to provide a richer understanding of both which ASes are
filtering too permissively, as well as which ASes are vulnerable to
attack or contributing to unnecessary routing traffic.

3 BACKGROUND
The Internet consists of more than 70K Autonomous Systems (AS).
An AS comprises one to multiple networks under the same adminis-
trative control and it is identified by the AS Number (ASN), a 16-bit
integer value. As with many resource identifiers in the Internet, the
ASN is a scarce resource which limits the number of public ASes
in the Internet to 216. Today, while not all 16-bit ASNs are actively
routed, the 16-bit address space is allocated. In order to allow more
ASes to participate in the Internet, the ASN address space has been
expanded to 32 bits [28].

ASes exchange traffic with each other to allow communication
among all Internet users. Thereby, the traffic flow is determined
by contractual business relationships between pairs of ASes. In
the following, we explain how ASes exchange routing information
via the Border Gateway Protocol (BGP) and introduce the BGP
community attribute, which allows ASes to signal information
across the AS level graph.

3.1 Border Gateway Protocol
Business relationships are implemented using the Border Gate-
way Protocol, often based on the size and the traffic volumes of
the involved ASes. There exist two primary types of business re-
lationships: peer-to-peer and provider-customer. ASes typically
form peer-to-peer relationships when both networks have a similar
volume of traffic to exchange. On the other hand, in a customer-
provider relationship, one of the ASes is the customer who pays the
provider to exchange traffic. This is typically the case, e.g., when a
small network requests transit to the global Internet via a larger
network.

Geographically close ASes can interconnect directly at conve-
nient locations and thus potentially circumvent transit costs and
keep traffic local. Popular peering locations are Internet Exchange
Points (IXP) which provide a shared infrastructure, large hubs in
metropolitan areas, for hundreds of ASes to exchange traffic di-
rectly, either publicly or privately. In order to facilitate multi-lateral
peering, IXPs offer router servers as value added service [20]. Also,
IXPs offer remote peerings where no physical presence by the AS
is required [10]. Given the multitude of possibilities two ASes can

578

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA

interconnect, it is little surprising that they can have different busi-
ness relationships at different locations which further increases the
complexity of relationships [9].

In order for an AS to become globally reachable, it sends pre-
fix announcements – encapsulated in BGP update messages – to
neighboring ASes, which in turn forward the prefix announce-
ments to their neighbors, and so on. The path a prefix is forwarded
along is called the AS path. An AS path 𝑝 is a sequence of 𝑛 ASNs:
𝐴1,𝐴2, . . . ,𝐴𝑛 , while each ASN corresponds to the AS that has
forwarded the announcement.

For purposes of exposition in this paper, for any AS path 𝑝 and
AS 𝐴𝑥 ∈ 𝑝 , we distinguish between upstream ASes of 𝐴𝑥 , i.e., all
ASes𝐴𝑖 ∈ 𝑝, 𝑖 < 𝑥 , and downstreamASes, i.e., all ASes𝐴 𝑗 ∈ 𝑝, 𝑗 > 𝑥 .
We refer to 𝐴1 as the collector peer, or simply peer AS,

and 𝐴𝑛 as the origin AS, while the announcement originates at
𝐴𝑛 and is forwarded upstream towards 𝐴1.

Our inference algorithm relies on views of BGP routes, in partic-
ular AS paths and community attributes, which we obtain via public
route collector “looking glasses,” (Section 4). Peer ASes forward
announcements to route collectors, where the announcements are
archived and made publicly accessible to, e.g., network operators
to monitor or debug their routing configurations.

We further distinguish between leaf and transit ASes: Given a set
of AS paths 𝑃 , AS 𝐴𝑥 is a leaf AS, 𝑖 𝑓 �𝑝 ∈ 𝑃 with 𝐴𝑥 ∈ 𝑝 ∧ 𝑥 ≠ |𝑝 |.
Conversely, 𝐴𝑥 is a transit AS, 𝑖 𝑓 ∃𝑝 ∈ 𝑃 with 𝐴𝑥 ∈ 𝑝 ∧ 𝑥 < |𝑝 |. In
other words, a leaf AS only originates prefixes but never forwards
other prefixes, because it has no downstream neighbors. transit ASes
on the other hand forward announcements from downstream ASes.

3.2 BGP communities
The BGP Communities Attribute [16] is appended to updates and
is used to aggregate routes with common properties. It is a variable
length attribute and can store multiple communities. Also, the com-
munity attribute is a transitive attribute which allows communities
to be propagated across multiple ASes.

A regular BGP community is simply a 32-bit integer that is de-
noted in the form 𝛼 :𝛽 , where typically 𝛼 represents the AS that
defines the value 𝛽 . Thus, every AS can define its own values with-
out collisions. Note that this convention applies only to encoding
16-bit ASNs. In order to accommodate 32-bit ASes as well, the BGP
Large Communities Attribute has been introduced [13]. A large
community is a 3𝑥32-bit integer denoted in the form 𝛼 :𝛽 :𝛾 , while 𝛼
represents a 32-bit ASN and 𝛽 and 𝛾 are additional 64 bits for the
community value. For simplicity, we refer to 𝛼 in both community
variants as the upper field in the remainder of this work1. In order
to determine the community usage of 32-bit ASes, in this work we
consider large communities as well. Note that 16-bit ASes can also
use large communities.

Source of communities: Communities can be used to simply
convey meta information, e.g., the location where an announce-
ment has been received. In the following example, AS 𝑍 propagates
information to the upstream AS 𝑋 :

𝑋
𝑍 :∗←−−− 𝑍

1RFC8092 calls the field the Global Administrator.

𝑍 :∗ is also referred to as informational community [25]. How-
ever, communities are not always set by the AS that defines it. For
example, communities can instruct other ASes to perform a certain
task, e.g., blackholing or path prepending. In the following example,
AS 𝑍 instructs AS 𝑋 to perform a specific action on the announced
routes, indicated by the value defined by AS 𝑋 :

𝑋
𝑋 :∗←−−− 𝑍

Here, 𝑋 :∗ is also referred to as action community.
We note that the source of communities can be ambiguous: Some

ASes define communities (action and informational) using a non-
public ASN instead of their own in the upper field, e.g., ASes with
a 32-bit ASN using regular (32-bit) communities, or they use stan-
dardized, well-defined communities [2, 16]. Further, while route
servers at IXPs utilize communities as well, their ASN typically
does not appear in the AS path which further obfuscates the source
those communities.

Because the community attribute is an optional attribute, and
BGP provides no mechanisms to validate the source, any AS along
the AS path may add, modify or delete communities. Thus, it is not
guaranteed that the upper field corresponds to the tagging AS.

Our visibility into the BGP system is limited by available col-
lectors and the ASes to which they peer. Since we cannot reliably
determine the source of a community, we at a minimum require its
upper field to be present in the associated AS path. For that purpose,
we group communities based on the upper field in relation to the
position of the upper field in the AS path. We define the following
community source groups:

• A peer community is a community where the upper field
corresponds to the peer ASN in the AS path, i.e., 𝐴1.

• In a foreign community, the upper field does not equal the
peer’s ASN, but any other ASN in the AS path, i.e., 𝐴𝑖 , 𝑖>1.

• stray is a community with the upper field representing a
public ASN, but the ASN is not in the AS path.

• private is a community with the upper field representing
a non-public ASN, i.e., private, reserved, not assigned or
allocated, etc.

Note, a peer community in given AS path 𝑝1 can appear as a foreign
community in AS path 𝑝2.

Our inference algorithm, which we introduce in Section 5, nec-
essarily ignores stray and private communities, since there is no
indication as to which AS set those communities without additional
knowledge beyond what is available in a BGP announcement. For
peer and foreign communities, we assume the community was set
by the AS that corresponds to the upper 2 bytes (or upper 4 bytes) of
the community. We consider all community types when we verify
the correct functioning of our inference method in Section 7.2.

3.3 Community usage
We define community usage to describe the way ASes generally
configure their routers to tag routes with communities or filter
them, irrespective of the semantic meaning of community values.

3.3.1 Mental Model. In order to better understand community
usage in the wild, we distinguish ASes according to their individual
community usage. To start with, we ask for two basic properties: (1)
whether or not an AS adds its own communities to the community

579

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

attribute of an announcement, and (2) whether or not it cleans
existing communities received in the announcement (set by other
ASes along the AS path). We refer to the first property as tagging
behavior and the second property as forwarding behavior.

Since any AS along the AS path can arbitrarily modify the com-
munity attribute, we narrow down the two properties to reflect
consistent behavior, as described in Section 3.2. For the tagging
behavior, we define a tagger AS that defines and sets informational
communities internally in a consistent and automated fashion and
forwards them on external BGP sessions. The counterpart, a silent
AS, does not set its own communities or does not forward them on
external sessions. In addition, we specify the forwarding behavior
to reflect the forwarding of communities set by taggers. Thereby,
a forward AS forwards communities on external sessions set by
other taggers. Conversely, a cleaner is an AS that does not forward
communities on external sessions. In summary:

• tagging behavior
– tagger : A tagger AS adds its own communities in a consis-
tent and automated fashion, i.e., informational communi-
ties, and forwards them on external links.

– silent: A silent AS may use its own communities internally,
but it does not forward them on external links.

• forwarding behavior
– forward: A forward AS does not remove communities
added by other tagger ASes and forwards them on ex-
ternal links.

– cleaner : A cleaner AS removes communities set by other
tagger ASes, either upon receiving or upon forwarding on
external links.

Every AS has a tagging and forwarding behavior, e.g. an AS
can be tagger and forward at the same time (but not tagger and
silent at the same time). Note, that our definitions do not exclude
the possibility that communities are used only AS-internally and
filtered upon reannouncing. However, this case is difficult to classify
and requires AS-specific insights that go beyond the scope of this
work.

3.3.2 Formal Model. To capture the tagging behavior of AS 𝐴 we
define a function that returns a non-empty community set with
communities 𝐴:∗ if 𝐴 is a tagger and an empty community set if 𝐴
is a silent AS:

tagging(𝐴) =
(
𝐴:∗, 𝑖 𝑓 𝑖𝑠_tagger(𝐴)
∅, 𝑖 𝑓 𝑖𝑠_silent(𝐴)

Analogously to the tagging function, we define a forwarding
function that captures the forwarding behavior of AS 𝐴:

forwarding(𝐴, 𝑖𝑛𝑝𝑢𝑡) =
(
𝑖𝑛𝑝𝑢𝑡, 𝑖 𝑓 𝑖𝑠_forward(𝐴)
∅, 𝑖 𝑓 𝑖𝑠_cleaner(𝐴)

Here, the function returns the community set input from a neigh-
boring AS if 𝐴 is a forward, and an empty community set if 𝐴 is a
cleaner AS. Thus, the combined community set output of AS 𝐴 is
simply the union of the tagging and forwarding functions:

output(𝐴) = tagging(𝐴) ∪ forwarding(𝐴, input(𝐴))
When, for example, the tagging and forwarding functions for

AS 𝐴 return an empty set (because 𝐴 is a silent and cleaner AS)
then the community set output output(𝐴) will be empty as well.

In Section 5, we discuss implications of our mental model and
introduce an inference method that classifies the community usage
behavior of an AS 𝐴, based on its community set output output(𝐴).
3.3.3 Selective tagging. Thus far, we assume that ASes employ a
uniform community usage policy for all BGP peers. The simplest
form of community configuration is to enable or disable tagging
and forwarding behaviors identically for all neighbors. Naturally,
more complex configurations exist. A large AS with sessions to
multiple ASes may perform different actions for different neighbors,
e.g. based on the business relationship. For instance, some ASes con-
figure their BGP to only propagate communities (e.g. geolocation
communities) to customers or to BGP collectors, but not to peers or
providers. Depending on the visibility afforded by different route
collectors, our algorithm can discover such selective community
usage behavior. However, as our primary goal is to definitively
classify those ASes with consistent behavior with high precision,
our algorithm labels these instances as undecided.

In a worst case scenario, a peer AS is configured to not forward
any communities to the collectors but to customers or peers. Our
algorithm can potentially misclassify this behavior as silent, which
can have a detrimental impact on the inferences of other ASes, as
we will discuss in Section 5.4. We explore the performance of our
algorithm in the presence of consistent and selective community
behaviors in Section 6.

4 DATA SETS
Our inferences and analyses utilize AS path / community set pairs,
which we denote as the tuple (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚). We obtain these tuples
from public BGP collectors2.

Archived BGP update messages contain only a subset of all ASes
and AS paths. There exist a significant number of ASes that do not
appear in update data because they do not re-announce their routes
frequently. These stable ASes and paths can only be found in RIB
snapshots, which are also available from route collectors. Similarly,
updates capture the intermediate changes to the routing system
which are not available from RIBs. In this work we consider the
combined use of archived updates and RIB snapshots.

4.1 Download and sanitation
Wedownload RIBs aswell as updates encoded in theMulti-Threaded
Routing Toolkit (MRT) format from three major route collector
projects: RIPE [21], RouteViews [22], and Isolario [14] for the com-
plete day May 19, 2021. While we focus mostly on this date, we also
download and analyze other data sets; each time at day granularity.
We also obtain PCH [18] updates, however, PCH does not provide
RIBs that include the community attribute. To avoid impairing our
inferences due to missing stable ASes from RIBs, we exclude the
PCH data set from most of our analyses.

Before analyzing the routing data, we first filter and transform it
so as not to impart unintentional bias into our results. We remove
routing information that includes unallocated prefixes or ASNs

2BGP collectors used: RIPE: rrc00-26, RouteViews: route-views{2,3,4,6}, amsix,
chicago, chile, eqix, flix, gorex, isc, kixp, jinx, linx, napafrica, nwax, phoix, telxatl,
wide, sydney, saopaulo, sg, perth, peru, sfmix, siex, soxrs, mwix, rio, fortaleza, gixa,
bdix, bknix, uaeix, Isolario: Alderaan, Dagobah, Korriban, Naboo, Taris, PCH: 236
collectors.

580

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA

Input data RIPE RouteViews Isolario 𝑑𝑀𝑎𝑦21 PCH
Entries total 2,242M 4,679M 2,088M 9,010M 532M
incl. RIB entries 1,022M 3,160M 1,275M 5,458M 0

Uniq. (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) 46M 30M 16M 77M 1M
AS numbers 79,192 80,097 78,454 80,651 77,082
After cleaning 72,737 72,837 72,625 72,951 67,541
incl. Leaf ASes 60,418 60,838 60,834 60,420 56,703
incl. 32-bit ASes 31,147 31,193 31,082 31,239 29,077

Collector peers 525 291 108 766 1,304
Communities 12,133M 16,513M 11,056M 39,703M 2,185M
incl. large 2,614M 2,196M 2,283M 7,093M 660M

Unique communities 75,681 73,720 67,816 84,186 35,804
incl. large 4,147 4,605 3,581 5,326 3,383

Uniq. upper field (regular) 5,904 6,091 5,713 6,385 3,303
Uniq. upper field (large) 378 357 358 384 884
Uniq. upper field (both) 6,160 6,340 5,958 6,643 4,292
w/o private 5,660 5,739 5,474 6,025 3,931
w/o stray 4,316 4,373 4,189 4,579 2,574

Table 1: Data sets overview: RIBs + updates for collector projects RIPE, RouteViews, Isolario, PCH in May 19, 2021. 𝑑𝑀𝑎𝑦21
represent the aggregation of RIPE, RouteViews, and Isolario. PCH is treated separately due to missing communities in RIB
snapshots.

using current allocation information from the regional registries.
We further remove AS_SETs from AS paths which usually occur
when routes are aggregated. Also, we prepend the Peer AS Number
from every MRT message to the AS path, if the first ASN (𝐴1) does
not equal the Peer AS Number [1]. This is the case for route servers
at IXPs which typically do not participate in the routing decision
process, but still can modify the community attribute. Finally, we
remove path prepending from AS paths by collapsing identical
ASNs in succession.

In Section 7 we provide inference results for each individual
collector project. However, for the majority of our analyses, we
consider the aggregated data set of RIPE, RouteViews, and Isolario.
In the remainder of this work, we refer to this data set as 𝑑𝑀𝑎𝑦21. In
Section 5 we use the AS paths from the aggregated data set 𝑑𝑀𝑎𝑦21
in order to generate ground truth data sets to validate the algorithm.

4.2 Data overview
Table 1 provides an overview of the available data sets. Each of
the three data sets – RIPE, RouteViews, and Isolario– provide us
with Billions of entries with around 45% obtained from RIBs in
the case of RIPE, 67% RouteViews, and 61% Isolario. Note that the
route collector projects employ different update file binnings and
snapshot intervals. There are more than 9B entries in the aggregate
𝑑𝑀𝑎𝑦21, of which we extract 77M unique (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) pairs.

Overall, the number of distinct ASes observed in RIPE, Route-
Views, and Isolario are comparable: we find approximately 72K
ASes which consist of ∼60K leaf ASes and ∼12K transit ASes. Fur-
thermore, there exist around 31K 32-bit ASNs in the data set. An
AS can be a leaf AS and 32-bit AS at the same time. Regarding the
number of collector peers, PCH has the highest number followed
by RIPE, RouteViews, and Isolario. Note that a peer AS can peer at
multiple BGP collectors.

Lastly, looking at the communities, we observe ∼40B commu-
nities in 𝑑𝑀𝑎𝑦21, of which around 7B stem from the large commu-
nity attribute. Overall, there are 84K unique communities. Those
communities exhibit 6,643 unique upper fields in both community
variations, while regular communities contribute 6,385 unique up-
per fields and large communities 384. Recall from Section 3.2 that
16-bit ASNs can also be encoded in large communities. Interest-
ingly, PCH shows the highest number of unique upper fields in
large communities.

As mentioned in Section 3.2, our inference method has no use
for private and stray communities. When we discard communities
where the upper field resemble a private ASN, 6,025 remain. When
we further discard communities where the upper field is never in
the corresponding AS path (i.e. stray), we end up with 4,579 unique
upper fields. Those are candidates for tagger ASes.

5 INFERENCE METHOD
While some ASes publicly document their community definitions,
there is no documentation as to how those ASes generally set com-
munities on external sessions, e.g., consistent or selective tagging,
and whether or not they filter communities set by other taggers.
Thus, the community usage has to be inferred. The purpose of the
inference method is to infer the BGP community usage per AS by
observing the community set output.

Recall from Section 3.3 that it is possible to utilize the commu-
nity set output output(𝐴) of an AS 𝐴 to make statements about
its community usage. Ideally, the more ASes that propagate their
community set output to BGP collectors the better the visibility
on the community usage of non-peer ASes. Unfortunately, only a
small fraction of ASes (∼1,751 in 𝑑𝑀𝑎𝑦21 ∪ PCH) peer with BGP
collectors. The determination of community usage behavior of the
remaining ASes is thus not trivial. Therefore, we devise an infer-
ence method that infers community usage only by utilizing the
community set output of BGP collector peers.

581

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

In Section 5.1 we state the implications of our mental model on
the inference algorithm, which we detail in Sections 5.2 through
5.6. Also, we provide a discussion of our column-based approach in
Section 5.7. In Section 6 we verify the functioning of the algorithm
by generating and using customized ground truth data sets with
known community usage behavior.

5.1 Implications from mental model
As mentioned above, our inference method is limited to the com-
munity set output of collector peers, i.e., given a collector 𝐶 , an AS
path 𝑝 , and the community set output(𝐴1) of the peer AS, such that:
𝐶,𝐴1,𝐴2, . . . ,𝐴𝑛 |output(𝐴1). The tagging function of any peer AS
𝐴1 can be directly observed in its community set output, because
output(𝐴1) = tagging(𝐴1) ∪ forwarding(𝐴1, input(𝐴1)). Consider
the following example where ASes 𝑋 and 𝑌 peer with collector 𝐶:

𝐶
𝑋 :∗←−−− 𝑋

𝐶
∅←− 𝑌

Assuming that every AS uses its own ASN in the upper field of
the community, we can safely conclude that in this context AS 𝑋 is
a tagger and 𝑌 is a silent AS.

Further, it is possible to use output(𝐴1) to infer the commu-
nity usage of any AS 𝐴𝑥∈𝑝 . Note that input(𝐴𝑥) is the commu-
nity set output of downstream neighbor 𝐴𝑥+1, i.e.: input(𝐴𝑥) =
output(𝐴𝑥+1). Since output() is recursive, output(𝐴1) can contain
information about the community usage of downstream ASes. How-
ever, the information can be ambiguous or hidden, as wewill explore
next.

5.1.1 Noise. The simplest form of ambiguity stems from the fact
that any AS along the AS path can arbitrarily modify the commu-
nities in the community attribute. The resulting noise can lead to
a wrong perception of community usage. Consider the following
example:

𝐶
𝑌 :∗←−−− 𝑋

?←− 𝑌
?←− 𝑍

Without additional information beyond what exists in BGP data
we are not able to determine the source of community 𝑌 :∗. There
are multiple interpretations: (a) AS 𝑌 might have tagged the route
with an informational community to indicate the ingress location.
(b) AS 𝑍 might have used an action community defined by AS 𝑌 to
instruct 𝑌 to perform a specific action on that route. (c) AS 𝑋 could
have unconventionally defined and set this community.

If AS 𝑌 is a visible tagger AS (not hidden behind a cleaner AS),
then (b) and (c) will not impact our classification. If, however, 𝑌 is a
silent AS, (b) and (c) can lead to a misclassification of AS 𝑌 to be a
tagger . In Section 6.4 we show that noise, e.g. caused by (b) and (c),
has no significant impact on the inference of tagger and forward
behaviors, but on the inference of silent and cleaner behavior. To
minimize misclassifications, we allow an AS to be labeled undecided,
if it cannot be clearly assigned silent or tagger .

5.1.2 Hidden behavior. Other forms of ambiguity emerge when
the tagging and forwarding behavior is hidden behind a cleaner AS,
or when there are no downstream tagger ASes to illuminate the
forwarding behavior of upstream ASes. Let us look at an example
where AS 𝑋 has a downstream tagger 𝑍 :

𝐶
𝑍 :∗←−−− 𝑋

𝑍 :∗←−−− 𝑍

If we see the community 𝑍 :∗ at collector𝐶 , we can conclude that
AS 𝑍 is a tagger while AS 𝑋 is silent. More importantly, the fact
that we can observe 𝑍 :∗ allows us to conclude that 𝑋 is a forward
AS (and not a cleaner AS). But it is not always as trivial. Consider
now the following example:

𝐶
∅←− 𝑋

?←− 𝑍

Not knowing a priori that 𝑍 is a tagger (𝐶 receives an empty
community set), it is impossible for us to tell, whether (a) AS 𝑍 is
silent and 𝑋 is a forward AS, or whether (b) AS 𝑍 actually adds
communities which are then removed by cleaner 𝑋 .

These kind of ambiguities exacerbate the identification of consis-
tent behavior as we show next. Consider the simplified sequence of
updates at collector 𝐶 , where 𝑋 is a forward and 𝑌 is a cleaner AS:

𝐶
𝑍 :∗←−−− 𝑋

?←− 𝑍

𝐶
∅←− 𝑌

?←− 𝑍

𝐶
∅←− 𝑌

?←− 𝑍

From the collectors point of view, one could conclude that 𝑍 is
a tagger because we observe and count the community 𝑍 :∗. One
could also count the two occurrences where 𝑍 appears silent (∅).
Given a configurable threshold, 𝑍 can then be classified either
tagger or silent. However, this approach comes with two problems.
First, finding the optimal threshold to work in the wild requires
ground-truth which is not available. Second, the approach does not
consider the possibility that 𝑌 is a cleaner AS, erroneously counting
those instances as silent.

Since our goal is to identify consistent behavior with high pre-
cision, it is not sufficient to simply count the occurrences of com-
munities (or the absence thereof). In addition to the existence of
communities, our approach requires 𝑋 and 𝑌 to be a forward AS in
order to count the behavior of AS 𝑍 . Assuming that 𝑋 is a forward
AS and 𝑌 is a cleaner in the above example, we consider only the
first update for counting, leading to the classification of 𝑍 as tagger .

5.1.3 AS-level periphery. Another form of hidden behavior shown
by leaf ASes (as defined in Section 3.1). Leaf ASes have no down-
stream ASes and thus no input() to determine their forwarding
behavior. We consider leaf ASes useful since their tagging behavior
can still help to illuminate the forwarding behavior of upstream
ASes.

5.2 Conditions
In order to deal with ambiguous or hidden information, and subse-
quently minimize wrong inferences, in the following we define con-
ditions that fit our mental model and are required when counting
the community usage per AS, see Section 5.3. If the conditions are
not true, we cannotmake any statement about the community usage
of anAS𝐴𝑥 , given a (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) pair𝐶,𝐴1,𝐴2, . . . ,𝐴𝑛 |output(𝐴1).

Cond1: 𝑖𝑠_forward(𝐴𝑖) |∀𝐴𝑖 , 𝑖<𝑥

In order to make any statement about AS 𝐴𝑥 ∈ 𝑝𝑎𝑡ℎ we need to
make sure that all upstream ASes 𝐴𝑖 , with 𝑖<𝑥 are forward. Con-
versely, when a single upstream AS is a cleaner , e.g., if 𝐴𝑥−1 is a

582

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA

cleaner AS, then output(𝐴𝑥) is hidden. Thus, 𝐶𝑜𝑛𝑑1 must be ful-
filled in order to determine the forwarding and tagging behavior of
AS 𝐴𝑥 (forwarding(𝐴𝑥 , 𝑖𝑛𝑝𝑢𝑡) and tagging(𝐴𝑥)).

Cond2: 𝑖𝑠_forward(𝐴 𝑗)∧𝑖𝑠_tagger(𝐴𝑡) |∀𝐴 𝑗∃𝐴𝑡 , 𝑥< 𝑗<𝑡

In order to determine the forwarding behavior of AS𝐴𝑥 , an addi-
tional condition is required. Recall from Section 5.1.1 that in order
to determine the forwarding behavior of an AS, it requires input
from a downstream tagger , here 𝐴𝑡 . Thus, if there are no down-
stream taggers, or the downstream taggers are hidden by a cleaner,
we cannot make any statement about the forwarding behavior of
𝐴𝑥 . For example, assume 𝑖𝑠_silent(𝐴𝑥+1) ∧ 𝑖𝑠_cleaner(𝐴𝑥+1) is true,
then output(𝐴𝑥+1) = ∅ and forwarding(𝐴𝑥 , ∅) = ∅.
5.2.1 Race conditions. Under certain topological conditions, both
the tagging and forwarding behavior of ASes cannot be determined.
Consider the following scenario: AS𝑋 is the only upstream provider
of AS 𝑌 , while 𝑌 is the only downstream AS of 𝑋 .

𝐶
?←− 𝑋

?←− 𝑌

In order to infer the forwarding behavior of AS 𝑋 , at least one
downstream AS is required, here AS𝑌 , to be a visible tagger (𝐶𝑜𝑛𝑑2).
However, to count the tagging behavior of AS 𝑌 in the first place, it
requires all upstream ASes, here AS 𝑋 , to be forward (𝐶𝑜𝑛𝑑1). Thus,
AS 𝑋 requires pre-existing knowledge about AS 𝑌 and vice versa
which our inference method cannot resolve.

5.2.2 Summary. The community set output(𝐴1) allows us to de-
termine the tagging and forwarding behavior of ASes 𝐴𝑖 ∈ path
𝑝 . However, noise, as well as silent and cleaner ASes that hide in-
formation about other ASes, can lead to ambiguities. In order to
minimize wrong inferences, the tagging function requires 𝐶𝑜𝑛𝑑1,
and the forwarding function requires both, 𝐶𝑜𝑛𝑑1 and 𝐶𝑜𝑛𝑑2 to be
true. However, race conditions can occur which leaves some ASes
without class, i.e., none. In Section 6.4 we measure the impact of
race conditions on our inference coverage.

5.3 Counting community usage
In order to infer the community usage per AS, we observe and count
pattern that satisfy requirements derived from the implications in
Section 5.1. Given input 𝐶,𝐴1,𝐴2, . . . ,𝐴𝑛 |output(𝐴1), we increase
the class counter for a given AS 𝐴𝑥 if the following conditions hold
true:

• tagging
– t[𝐴𝑥] ++ 𝑖 𝑓 𝐶𝑜𝑛𝑑1 ∧ 𝐴𝑥 :∗ ∈ output(𝐴1)
– s[𝐴𝑥] ++ 𝑖 𝑓 𝐶𝑜𝑛𝑑1 ∧ 𝐴𝑥 :∗ ∉ output(𝐴1)

• forwarding
– f[𝐴𝑥] ++ 𝑖 𝑓 𝐶𝑜𝑛𝑑1 ∧ 𝐶𝑜𝑛𝑑2 ∧ 𝐴𝑡 :∗ ∈ output(𝐴1)
– c[𝐴𝑥] ++ 𝑖 𝑓 𝐶𝑜𝑛𝑑1 ∧ 𝐶𝑜𝑛𝑑2 ∧ 𝐴𝑡 :∗ ∉ output(𝐴1)

Note that 𝐶𝑜𝑛𝑑1 drops out if 𝑥=1, i.e., it is trivial to determine
the tagging function of peer ASes. Also, if conditions for forwarding
counters f[] and c[] are met, the conditions for tagging counters
are met as well. If𝐶𝑜𝑛𝑑1 or𝐶𝑜𝑛𝑑2 are not met, none of the counters
is increased. Based on those counters, we can query the tagging
and forwarding behavior of 𝐴:

• tagging
– 𝑖𝑠_tagger(𝐴) = t[𝐴]

t[𝐴]+s[𝐴] ≥ tagger_𝑡ℎ𝑟𝑠ℎ

– 𝑖𝑠_silent(𝐴) = s[𝐴]
t[𝐴]+s[𝐴] ≥ silent_𝑡ℎ𝑟𝑠ℎ

• forwarding
– 𝑖𝑠_forward(𝐴) = f[𝐴]

f[𝐴]+c[𝐴] ≥ forward_𝑡ℎ𝑟𝑠ℎ

– 𝑖𝑠_cleaner(𝐴) = c[𝐴]
f[𝐴]+c[𝐴] ≥ cleaner_𝑡ℎ𝑟𝑠ℎ

For example, an AS A is a tagger if the share of t[𝐴] exceeds
the tagger threshold. Recall from Section 3.3 that a tagger is an AS
that sets its own communities in a consistent manner. Thus, we
want the threshold to be as high as possible, but at the same time
allow for exceptions, e.g., 99%. We explore different thresholds in
Section 6.

5.4 Selective behavior
Not all ASes have a uniform tagging and forwarding behavior. An
AS may add own and remove other communities selectively, e.g., on
a per-session basis or based on the business relationship. Selective
tagging can lead to a contradicting perception of community usage,
i.e., the tagger counter t[𝑍] for a given AS 𝑍 is increased in one
instance, the silent counter s[𝑍] for the same AS may be increased
in a another. Consider the following two updates, where 𝑋 and 𝑌
are forward ASes:

𝐶
𝑍 :∗←−−− 𝑋

𝑍 :∗←−−− 𝑍

𝐶
∅←− 𝑌

∅←− 𝑍

We assume that AS 𝑍 is a selective tagger which adds communi-
ties only to customers, here AS 𝑋 , but not to peers (AS 𝑌). Based
on that observation we increase the tagger and silent counters for
the same AS 𝑍 . When both tagging counters t[𝑍] and s[𝑍] are
such that neither 𝑖𝑠_tagger(𝑍) nor 𝑖𝑠_silent(𝑍) is true, we simply
classify 𝑍 as undecided, see Section 5.5.

While undecided ASes invalidate𝐶𝑜𝑛𝑑1 and𝐶𝑜𝑛𝑑2 and thus exac-
erbate further inferences, misclassifications due to selective tagging
can lead to further misclassification, as we show next. Consider
the following scenario, where AS 𝑍 always tags routes toward the
collector using its own communities, but never to any other AS:

𝐶
𝑍 :∗←−−− 𝑍

𝐶
∅←− 𝑋

∅←− 𝑍

If there are sufficient occurrences of the first update in the input
data, AS 𝑍 will be classified as tagger . Now, assume that the algo-
rithm attempts to determine the forwarding behavior of 𝑋 using
the second update. If there are sufficient occurrences visible, the
algorithm will classify 𝑋 as cleaner , because 𝑖𝑠_tagger(𝑍) is true,
and the community 𝑍 :∗ is not present.
5.4.1 Conclusion. Selective community usage is the root cause
that lead to a limited view of community usage behavior. They can
invalidate conditions 𝐶𝑜𝑛𝑑1 and 𝐶𝑜𝑛𝑑2 and thus exacerbate the
counting. Subsequently, the missing counts of one AS can have a
detrimental impact on the counting of another AS, etc. In Section 6.4
we show how our algorithm deals with selective tagging.

5.5 Classification
After the counting is done, we determine the community usage
behavior, i.e., the tagging and forwarding behavior of AS𝐴 like this:

𝑔𝑒𝑡_𝑐𝑙𝑎𝑠𝑠 (𝐴) = 𝑔𝑒𝑡_tagging(𝐴) | |𝑔𝑒𝑡_forwarding(𝐴)

583

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

 1 2 3 ... N

Count tagging:

L
= input list
 {(path,comm)}

= information flow
 (counters)

Count forwarding:

Path index:

Figure 1: Inference algorithm workflow. Two passes over in-
put (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) tuples: 1) to count tagging behavior and
2) to count forwarding behavior for each AS. Tuples are it-
erated per column (AS path index), starting with left-most
ASes (𝐴1). Knowledge from one iteration is transferred to
the next.

𝑔𝑒𝑡_tagging(𝐴) =




n, 𝑖 𝑓 t[𝐴] + s[𝐴] == 0

𝑒𝑙𝑠𝑒



t, 𝑖 𝑓 𝑖𝑠_tagger(𝐴)
s, 𝑒𝑙𝑖 𝑓 𝑖𝑠_silent(𝐴)
u, 𝑒𝑙𝑠𝑒

𝑔𝑒𝑡_forwarding(𝐴) =




n, 𝑖 𝑓 f[𝐴] + c[𝐴] == 0

𝑒𝑙𝑠𝑒



f, 𝑖 𝑓 𝑖𝑠_forward(𝐴)
c, 𝑒𝑙𝑖 𝑓 𝑖𝑠_cleaner(𝐴)
u, 𝑒𝑙𝑠𝑒

The function 𝑔𝑒𝑡_𝑐𝑙𝑎𝑠𝑠 (𝐴) returns a two-character string which
indicates the inferred tagging (first character) and forwarding (sec-
ond character) behavior of AS 𝐴.

Both indicators can assume n (none) if the respective counters
are zero. Recall, when any of the required conditions 𝐶𝑜𝑛𝑑1 or
𝐶𝑜𝑛𝑑2 cannot be fulfilled, none of the counters are increased. Thus,
it can occur that all counters for an AS result in zero. When both
tagging counters t[𝐴] and s[𝐴] for a given AS 𝐴 are zero, there is
not enough information to make any decision about the tagging
behavior of 𝐴. The same applies to forwarding counters.

When tagging counters are available, the resulting tagging in-
dicator can be t (tagger), s (silent), or u (undecided). Similarly, the
forwarding indicator can be either f (forward), c (cleaner), or u.
Note, that the resulting class depends on the thresholds that are
used during counting, see Section 5.3.

The resulting two-character string for AS 𝐴 can range among tf
(tagger-forward), sc (silent-cleaner), or nu (none-undecided).

5.6 Algorithm
Considering the requirements for counting community usage (see
Section 5.3) we note that counting each class depends on pre-
existing knowledge of other ASes in the AS path, i.e., 𝐶𝑜𝑛𝑑1 and
𝐶𝑜𝑛𝑑2. In particular counters c[] and f[] require for conditions to
hold true for upstream ASes as well as downstream ASes. Fortu-
nately, it is trivial to count the tagging behavior of peer ASes (𝐴1),
which can be used as initial knowledge to feed follow-up infer-
ences. In order to meet the conditions 𝐶𝑜𝑛𝑑1 and 𝐶𝑜𝑛𝑑2 as often
as possible, we design an algorithm that generates pre-existing
knowledge by iterating over the input data a total of two times, in
a column-based fashion (as opposed to row-based), see Figure 1.

Iterating the data by column, i.e., the path index, we can utilize the
recursive output of 𝐴1 and apply the conditions as the algorithm
progresses to higher indices. To show a sample implementation
of the algorithm, we provide the corresponding pseudo code in
Listing 1 in the appendix.

In the following, we describe the steps of the algorithm in detail.
Given as input 𝐿 = {(path,comm)}, a list of AS path and community
set tuples, where 𝑝𝑎𝑡ℎ = 𝐴1,𝐴2, . . . ,𝐴𝑛 and 𝑐𝑜𝑚𝑚 = output(𝐴1),
we begin with counting the tagging behavior of peer ASes:

• path index 1
– count tagging We begin by counting the tagging behav-
ior at path index 1, i.e., 𝐴1 of every AS path. For that, we
increase the tagger counter 𝑡 [𝐴1] 𝑖 𝑓 𝐴1:∗ ∈ output(𝐴1).
Otherwise, we increase the silent counter 𝑠 [𝐴1]. Note that
𝐶𝑜𝑛𝑑1 drops out at path index 1, since there are no up-
stream ASes.

– count forwarding Next, we use the previously obtained
tagging counters to fulfill 𝐶𝑜𝑛𝑑2 of forwarding counters
𝑖 [] and 𝑐 [], and count the forwarding behavior at path
index 1. We increase the forward counter 𝑖 [𝐴1] 𝑖 𝑓 𝐴𝑡 :∗ ∈
output(𝐴1). Else, we increase the cleaner counter 𝑐 [𝐴1].

• path index 𝑖 > 1 (𝐶𝑜𝑛𝑑1 kicks in)
– count tagging We use forwarding counters from previ-
ous steps to fulfill 𝐶𝑜𝑛𝑑1 and count the tagging behavior
at path index 𝑖 . We increase 𝑡 [𝐴𝑖], 𝑖 𝑓 𝐴𝑖 :∗ ∈ output(𝐴1).
Otherwise, we increase 𝑠 [𝐴𝑖].

– count forwarding We use forwarding and tagging coun-
ters from previous steps to fulfill 𝐶𝑜𝑛𝑑1 and 𝐶𝑜𝑛𝑑2 and
count the forwarding behavior at path index 𝑖 . We increase
𝑖 [𝐴𝑖], 𝑖 𝑓 𝐴𝑡 :∗ ∈ output(𝐴1). Otherwise, we increase 𝑐 [𝐴𝑖].

Summary: In essence, the inference method iterates over the
input list 𝐿 two times, i.e., 2 ∗ (𝑁 ∗ |𝐿 |), where 𝑁 corresponds to
the maximum path index. For each path index (column) we first
count the tagging behavior, then the forwarding behavior.With each
iteration over a path index, the gained knowledge is transferred to
the next iteration. We note that at high path indices the number of
ASes that need to fulfill 𝑐𝑜𝑛𝑑1 increase, and thus, the probability of
inference decreases. Although the maximum observed path length
in the input data is 19 (after cleaning), we observe that the algorithm
stops increasing counters, e.g., due to missing information, typically
at around 𝑁=7.

5.7 Discussion
In order to apply rules that require pre-existing knowledge and
at the same time traverse the input data efficiently, we chose an
approach that considers both. Instead of traversing the entire paths
one by one (row-based), in our approach we traverse all paths by
the path index (column-based), starting with the collector peer.
Recall, output(𝐴1) is recursive and thus can contain the community
output of other ASes along the path.

Row-based: In a row-based approach, each path is processed
separately and independently from the other paths. Thus, the coun-
ters for observing communities (or the lack thereof) associated with
an AS path cannot be connected to observations in other paths.
Inferences can be made based on the counters only after all paths
are processed. In order to achieve our objectives, i.e., classifying

584

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA

consistent behavior with high precision, additional refinement and
optimization steps would be required.

Further, since the row-based approach counts observations with-
out pre-existing knowledge about the ASes in the AS path, it is
susceptible to misclassification, e.g. due to noise or hidden behavior.
Also, since there is no ground truth information available about
the community usage in the wild, finding the right threshold to
adjust the precision is not possible. In the appendix, we provide
pseudo-code that serves as an example for a row-based approach,
see Listing 2.

Column-based: Like the row-based approach, our column-based
approach allows us to count while we traverse the AS paths. How-
ever, in addition it can generate pre-existing knowledge at one path
index and used it at later indices. This further enables us to imple-
ment rules, i.e. 𝐶𝑜𝑛𝑑1 and 𝐶𝑜𝑛𝑑2 that base on our mental model,
on every AS path. Thus, our algorithm is able to identify

• ASes which behavior is hidden behind a cleaner AS and
• ASes that are not illuminated by a downstream tagger .

Both abilities allow us not only to minimize misclassification,
but also they increase the robustness of inferences in the presence
of noise. In Section 6 we show that our algorithm avoids misclassifi-
cations and that it classifies less than 0.5% of ASes that are actually
hidden.

6 VERIFICATION OF ALGORITHM
In this section, we apply the algorithm to different scenarios in
controlled simulations, in order to verify that it performs according
to our expectations. We generate multiple data sets with known
community usage behavior. Therefore, we take all available AS
paths from RIPE, RouteViews, and Isolario (𝑑𝑀𝑎𝑦21), assign roles to
each AS, e.g., tf (tagger-forward), sc (silent-cleaner), and compute
the community output of each peer AS (output(𝐴1)), according to
our mental model in Section 3.3. Thus, we have an AS path substrate
from real-world BGP data augmented with known community us-
age behavior per AS. Specifically, we know which AS’s behavior is
consistent (tagger , forward, ...) and selective and which behavior is
always hidden and thus cannot be inferred. Further, each scenario
uses the AS paths from 𝑑𝑀𝑎𝑦21 as substrate. Thus, each generated
data set includes 72,951 ASes among which 60,420 are leaf ASes and
766 are collector peers. All presented results were inferred using a
threshold of 99% in order to increase the inference counters.

6.1 Consistent behavior
To test our algorithm against the average and extreme cases, we
generate ground truth data sets with different settings in the com-
munity usage behavior of ASes. Initially, we consider consistent
behavior of ASes, e.g., a tagger adds communities towards all BGP
neighbors (including collectors), irrespective of the business rela-
tionship.

• alltf: To test how the algorithm performs under optimal
conditions, in this scenario we maximize the visibility of
communities by assigning the role tf to all ASes. This way
the tagging and forwarding behavior of all ASes becomes
visible.

• alltc: In this scenario we test the opposite case, i.e., where
the visibility of communities is minimized. Therefore, the
role tc is assigned to all ASes.

• random: Since there exist no ground truth information re-
garding the community usage of ASes, we create an average
case scenario, where all roles tf , tc, sf , and sc are uniformly
assigned at random among all ASes, i.e., 25% are tf , 25% tc,
25% sf , and 25% sc.

Intuitively, the algorithm should perform best in the alltf sce-
nario and perform worst in the alltc scenario. Note, since each AS
behaves consistently, the tagging and forwarding behavior, if not
hidden, will be inferred correctly, irrespective of the threshold.

In order to better understand the sensitivity of our inference
method, we add additional communities to the generated ground
truth data sets that stress the ability of the algorithm to infer the
tagging and forwarding behavior of ASes correctly.

• noise: First, to test the tagging behavior inference, we let
around 50% of all ASes set communities using the ASN of
their upstream neighbor in the upper field, simulating action
communities. Second, to test the forwarding inference, we
add a community with the upper field corresponding to the
ASN of the originator.

These two noise sources occur with a 5% probability, such that
each affected AS can exhibit inconsistent behavior. In the next
section, we introduce additional scenarios in which we explore the
selective behavior of ASes.

6.2 Selective behavior
Since not all ASes exhibit a consistent community usage behavior,
their tagging and forwarding counters may lead to an undecided
inference, or even to a misclassification, see Section 5.4. In order
to test how the algorithm reacts to selective behavior, we use the
random scenario with consistent behavior and modify around 50%
of the assigned tagger ASes to selectively tag routes based on the
business relationship:

• random-p: In this scenario, the selective tagger ASes do not
set communities on provider links, but on all other links, i.e.,
peers, customers and collectors.

• random-pp: In this scenario, the selective tagger ASes do
not set communities on provider and peer links; only towards
and customers and collectors.

For our convenience, we use CAIDAs business relationship in-
ferences [3] to augment the ground truth data sets with the corre-
sponding behavior. For example, a selective tagger AS𝐴𝑥 in scenario
random-pp adds a community towards its neighbor 𝐴𝑥−1, only if
𝐴𝑥−1 is a customer of 𝐴𝑥 . Since, we create a hypothetical scenario,
we do not rely on the accuracy of the business relationship infer-
ences.

Other than that, the parameters of the random scenario of Sec-
tion 6.1 are used. Since in random-p and random-pp the propagation
of communities is limited, the algorithm is expected to perform
worse compared to the random scenario.

585

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

tagging forwarding full classification partial classification none / undecided
scenario rec. prec. rec. prec. tc sc tf sf tn sn nc nf nn u* *u uu
consistent behavior:
alltc 1.00 1.00 0.82 1.00 578 0 0 0 188 0 0 0 72,185 0 0 0
alltf 0.96 1.00 0.83 1.00 0 0 10,427 0 59,570 0 0 0 2,954 0 0 0
random 0.93 1.00 0.70 1.00 1,295 1,298 1,319 1,295 20,558 20,613 0 0 26,573 0 0 0
random+noise 0.55 1.00 0.45 1.00 459 242 1,256 618 20,067 3,282 1 1 27,808 17,518 1,288 412
selective behavior:
random-p 0.42 0.86 0.39 0.97 623 766 403 482 7,275 13,513 1 1 48,980 622 270 16
andom-pp 0.18 0.89 0.18 0.94 329 399 134 169 3,484 5,817 0 1 62,035 286 288 12

Table 2: Classification results and performance using scenarios with consistent and selective behavior. The numbers represent
mean values from 10 iterations per random scenario. Thresholds 99%, ground truth data substrate: 𝑑𝑀𝑎𝑦21, 72,951 ASes (60,420
leafs, 31,239 32-bit, 766 collector peers), in May 19, 2021.

6.3 Results
In Table 2 we present the classification results for the scenarios with
consistent behavior (random, alltf, alltc), and those with selective
behavior (random-p, random-pp). In each random scenario, we use
10 different ground truth data sets, each generated with a different
(random) distribution of roles (tf , tc, sf , sc). Since, the resulting
inferences are comparable in all 10 variations, we only show the
mean values in the table.

For simplicity, we calculate the recall by considering only tagging
and forwarding behaviors that are not selective, hidden or missing
(i.e., forwarding behavior at leaf ASes). Thereby, the false negatives
include cases where the tagging or forwarding behavior was not
inferred, i.e., none, or the inference results in undecided.

Let us first look at scenarios with consistent behavior:

• Precision and recall: All scenarios with consistent behav-
ior (including random+noise) show a precision of 100%, i.e.,
there is no wrong inference of tagging and forwarding behav-
ior. Also, the recall is relatively high when inferring tagging
(93-100%) and forwarding (70-82%). However, the recall in
the case of random+noise is low, i.e., 55% for tagging and
45% for forwarding behavior.

• full classification: In the random scenario, the algorithm
yields around 1,300 inferred ASes for each of the assigned
roles, i.e., both, the tagging and forwarding behaviors were
inferred. Further, in the alltc scenario 578 ASes are tc and in
the alltf scenario 10,427 ASes are tf .

• partial classification: A significant amount of ASes have
an inferred tagging behavior but no forwarding behavior.
∼20K ASes are identified as tagger and ∼20K as silent in the
random scenario.

• none / undecided: Looking at the number of not classified
ASes, the algorithm performs best in the alltf scenario, and
worst in the alltc scenario, as expected. Notably, the ran-
dom+noise scenario leads to undecided behavior in particular
the tagging behavior is affected, see u* (tagging is undecided).

Next, we look at the selective behavior of ASes, i.e., random-p and
random-pp. Compared to the simple random scenario, the selective
behavior of ASes lead to an increase of undecided inferences in
the case of tagging and forwarding, see u* (tagging is undecided)
and *u (forwarding is undecided) in Table 2. Note that undecided
behavior exacerbates the inference of other ASes, see Section 5.4.

0.00 0.05 0.10 0.15

0
.0

0
.4

0
.8

false positive rate

tr
u

e
 p

o
si

tiv
e

 r
a

te

tagging
forwarding

threshold

50

60

70

80

90

100

0.00 0.05 0.10 0.15

0
.0

0
.4

0
.8

false positive rate

tr
u

e
 p

o
si

tiv
e

 r
a

te

tagging
forwarding

threshold

50

60

70

80

90

100

Figure 2: ROC curves show effects when changing threshold.
In scenario random-p (left) taggers add communities on cus-
tomer and peering links, and in scenario random-pp (right)
taggers add communities on customer links only (increased
difficulty). Performance not sensitive to threshold.

Unsurprisingly, the distribution of inferences is skewed compared to
the simple random scenario. Also, when we consider the none cases
as a performance metric, we find that the algorithm still performs
better than the alltc scenario and worse than the alltf scenario.

The most important difference resulting from those scenarios is
the recall and precision. Because of selective taggers the precision of
our inference method in both scenarios is affected, i.e., 86%/99% in
the case of tagging and 97%/94% in the case of forwarding. The recall
is more affected: 42%/18% in the case of tagging and 39%/18% in the
case of forwarding. Given the increased difficulty in the random-p
and random-pp, these results are expected.

6.3.1 Performance under different thresholds. Selective tagging be-
havior can lead to a contradicting perception of community usage,
i.e., the tagger counter t[𝑍] for a given AS 𝑍 is increased in one
instance, the silent counter s[𝑍] for the same AS may be increased
in a another. In the following, we show how the sensitivity and
specificity of our inferences change when different thresholds are
used to infer the tagging or forwarding behavior of an AS.We repeat
the inference method on both scenarios, random-p and random-pp,
for every threshold between 50% and 100%.

Figure 2 show the ROC curves for the tagging and the forward-
ing inferences, for the scenarios random-p (left) and random-pp
(right), respectively. The false positive rate is on the x-axis and
the true positive rate on the y-axis. As we can see, by increasing
the threshold from 50% to 100% the specificity increases and the

586

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA

sensitivity decreases. However, those are minute changes: The false
positive rate decreases from 10% to 1% in case of the tagging classi-
fier, and from 1% to 0% in case of the forwarding classifier. These
results indicate that the inferences are not very sensitive to the
threshold, in particular when inferring the forwarding behavior.
Also, the true positive rate decreases by ∼20% in both cases. Since
the difficulty in scenario random-pp is increased, the number of
undecided ASes increase as well. Thus, we observe a lower true
positive rate compared to random-p.

6.4 Scenario Impact
In this section, we explain the impact of the different scenarios
on the inference of tagging and forwarding behavior, respectively.
Thereby, we contrast the assigned roles against classification results
with the help of confusion matrices, as provided in the tables below.
Where necessary, we also include the information (hidden) if the
assigned role is hidden (Section 5.1.2), and (leaf) if the forwarding
behavior is assigned to a leaf AS (Section 5.1.3). Recall that each
scenario uses the AS paths from 𝑑𝑀𝑎𝑦21 as substrate which includes
72,951 ASes, among which are 60,420 leaf ASes and 766 collector
peers. In the following we provide a selection of results. For a
complete list, see Tables 5 and 6 in the appendix.

alltf: Let us consider the scenario alltf where all ASes are as-
signed the role tagger-forward and the visibility is maximized:

assigned roles: classification result:
alltf: tagger silent undecided none
tagger 69,997 0 0 2,954

The algorithm is able to attribute a correct tagging behavior
to more than 95% of the ASes. For the remaining 2,954 ASes, the
algorithm cannot generate pre-existing knowledge for neighboring
ASes due to a race condition; A limitation of our algorithm as
described in Section 5.2.1. Thus, there are no counters and the
inference returns none.

When we look at the forwarding behavior in the same scenario,
we see that more than 60K ASes are leaf ASes, and are therefore
not attributed a forwarding behavior:

assigned roles: classification result:
alltf: forward cleaner undecided none
forward 10,427 0 0 2,104
forward (leaf) 0 0 0 60,420

Given those ASes that are not leaf, the algorithm is able to cor-
rectly classify more than 83% (10,427) as forward.

alltc: In this scenario, all ASes are tagger-cleaner . Since all ASes
are cleaners, we correctly infer the tagging behavior of all 766
collector peers:

assigned roles: classification result:
alltc: tagger silent undecided none
tagger 766 0 0 0
tagger (hidden) 0 0 0 72,185

The remaining ∼72K ASes are hidden behind the those peers
and thus fall into none. Next, we look at the forwarding behavior in
the same scenario:

assigned roles: classification result:
alltc: forward cleaner undecided none
cleaner 0 578 0 124
cleaner (hidden) 0 0 0 11,829
cleaner (leaf) 0 0 0 60,420

From the 766 tagger collector peers, 578 are followed by other
collector peers in the AS-level graph. Recall, the algorithm first
determines the tagging behavior of all peers, and then uses them
as downstream taggers to determine their forwarding behavior. 124
peer ASes (as well as 11,829 transit ASes) are never followed by
another peer AS, thus they fall into none. The remaining 64 peer
ASes appear as leaf and are included in the set of 60,420 leaf ASes.

random: Next, we look at the tagging behavior in the random
scenario where, due to lack of ground truth, we assign roles uni-
formly at random. Since there are 72,951 ASes in the data set, each
tagging role (tagger , silent) occurs approximately ∼36K times:

assigned roles: classification result:
random: tagger silent undecided none
tagger 22,149 0 0 1,541
silent 0 21,966 0 1,571
skipped hidden

Given the distribution of roles in this scenario, around ∼13K
tagger ASes and ∼13K silent ASes are hidden behind a cleaner .
From the remaining ∼23K ASes, more than 90% (∼22K) are correctly
assigned to the respective class, while for ∼1.5K ASes the algorithm
fails to generate pre-existing knowledge.

random+noise: Thus far, our algorithm is able correctly infer
the tagging and forwarding behavior of ASes and avoids (mis)classifying
hidden ASes. In the following, we show how the inferences change
when the same random scenario (same seed to randomly assign
roles) is augmented with noise:

assigned roles: classification result:
random+noise: tagger silent undecided none
tagger 21,625 0 1 2,064
silent 53 3,679 17,687 2,118
tagger (hidden) 0 12 2 12,766
silent (hidden) 1 9 3 12,931

Most notably, >80% (17,687) of the silent ASes are affected by
the addition noise such that they are labeled undecided. One the
other hand, tagger ASes are minimally affected compared to the
random scenario (524 correct inferences less). Also, we observe 53
misclassifications and classifications where the behavior is hidden.

Similar to silent ASes in the case of tagging behavior, cleaner
ASes are also affected by noise:

assigned roles: classification result:
random+noise: forward cleaner undecided none
forward 2,294 0 63 1,134
cleaner 1 738 1,647 1,153
skipped hidden and leaf

Here, 1,647 (or ∼68%) of cleaner ASes are labeled undecided com-
pared to the random scenario.

random-p: Lastly, we consider the random scenariowhere around
50% of the tagger ASes are randomly chosen to tag selectively, i.e.,

587

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

not on provider links but on all other links (including collectors).
This results in the following distribution of tagging roles: selective
∼18K, tagger ∼18K, and around 36K silent ASes.

assigned roles: classification result:
random-p: tagger silent undecided none
tagger 6,750 0 0 5,876
silent 0 13,445 0 11,983
selective 2,351 3,538 837 5,984
skipped hidden

In general, the number of not inferred ASes (none) increases in
all cases compared to the random scenario. Since selective ASes are
not tagging towards their providers fewer communities make it to
the collector. Regarding the visible tagger and silent ASes, there
are no misclassifications. However, almost 50% of the ASes in both
cases are not inferred. Interestingly, from the ∼12K visible selective
ASes, around 5.9K are classified either tagger or silent. Only 837
ASes are undecided.

Summary: The algorithm classifies consistent behavior with a
high precision. It avoids misclassifications of silent in presence of
noise (undecided instead), while tagger ASes are mostly unaffected.
Furthermore, the algorithm avoids classifying ASes that are hidden
or leaf ASes.

7 ANALYSIS
In the previous section, we have introduced an inference method
that allows us to infer the tagging and forwarding behaviors of
ASes. We devised an algorithm that utilizes routing information,
specifically AS paths and community attributes, and validated its
properties using customized data sets.

Next, we show the classification results when the inference
method is applied on actual, unmodified routing data, characterize
the involved ASes, and validate our inferences by actively injecting
route announcements with attached communities to the real-world
routing system.

7.1 Classification results
Table 3 summarizes the community usage classification per route
collector project and of the aggregation of RIPE, RouteViews, and
Isolario (𝑑𝑀𝑎𝑦21). We also include the inferences based on PCH
update data only. Note that the PCH data set does not include RIB
information, see Section 4. We split the statistics by tagging and
forwarding. The algorithm exhibits a similar share of identified
behavior among the three collector projects RIPE, RouteViews, and
Isolario: 717 to 809 ASes exhibit tagger behavior, 9,901 to 10,594
silent, 198 to 216 forward, and 239 to 309 ASes exhibit cleaner behav-
ior. Looking at the aggregate (𝑑𝑀𝑎𝑦21) the numbers are comparable
(860, 12,315, 271, and 417, respectively). PCH shows the least amount
of inferred classes.

Regarding the full classification, i.e., both, the tagging and the
forwarding for an AS are inferred, we see that tf (tagger-forward),
tc (tagger-cleaner), and sf (silent-forward) show similar numbers;
between 47 and 88. sc (silent-cleaner) is the most common with 129
to 173 inferred ASes. The aggregated data set shows an increase

Input data RIPE RouteViews Isolario 𝑑𝑀𝑎𝑦21 PCH
tagging:
tagger 723 717 809 860 521
silent 10,594 9,902 9,901 12,315 2,214
undecided 778 827 902 994 286
none 60,642 61,391 61,010 58,782 64,520
forwarding:
forward 201 198 216 271 173
cleaner 285 309 239 417 133
undecided 216 137 146 308 85
none 72,035 72,193 72,024 71,995 67,150
tagger-forward 51 70 79 84 68
tagger-cleaner 58 64 47 81 37
silent-forward 88 66 83 107 72
silent-cleaner 167 173 129 251 70

Table 3: Classification results using real BGP data (RIBs +
updates), May 19, 2021. RIPE, RouteViews, and Isolario are
comparable. Aggregated data set 𝑑𝑀𝑎𝑦21 yields most classifi-
cations. PCH includes only updates.

0
3

0
6

0
0

3
0

6
0

day 1 +2 +3 +4 +5

new stable recurring

tagger−forward

0
2

0
5

0
0

2
0

5
0

day 1 +2 +3 +4 +5

new stable recurring

tagger−cleaner
0

3
0

6
0

0
3

0
6

0

day 1 +2 +3 +4 +5

new stable recurring

silent−forward

0
1

0
0

0
1

0
0

day 1 +2 +3 +4 +5

new stable recurring

silent−cleaner

Figure 3: Impact of incrementally adding more days to the
input data. For each full classification (tf , tc, sf , sc), barplot
shows the total number of ASes (y-axis) and the number of
successive days used (x-axis). New ASes appear for the first
time in the respective full class, stable ASes appear consis-
tently since day 1 (May 19, 2021), and recurrent ASes occur
with interruptions. RouteViews data only.

compared to the individual collectors with a total of 523 fully classi-
fied ASes out of which 273 are collector peers. Next, we take a closer
look at the stability and longitudinal changes of our inferences.

7.1.1 Stability and longitudinal view. In order to better understand
how adding more data impacts our inferences, we next apply our
algorithm to a day worth of data which we incrementally increase
by a successive day for a total of 5 days, starting in May 19, 2021.
Thus, the final data set from May 23 contains data from all 5 days.
Since the inference numbers in Table 3 for the collectors and the
aggregated 𝑑𝑀𝑎𝑦21 are comparable, in the following we focus only
on RouteViews data sets.

Figure 3 shows the number of new, stable, and recurrent ASes
for each full class (tf , tc, sf , sc). We can see that except for day 1,
only few ASes are new, i.e., a maximum of 10 at day +2 in the case
of sc. Moreover, while we observe some amount of recurring ASes,
the majority (90-97%) of ASes appear stable since day 1. We are

588

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA
0

1
0
0

2
5
0

Dec'19 Jun'20 Dec'20 Jun'21

time

n
u
m

.
A

S
e
s

tagger−forward tagger−cleaner silent−forward silent−cleaner

Figure 4: Longitudinal view on community usage. For each
full classification (tf ,tc,sf ,sc), number of total ASes (y-axis)
per day plotted over a time period of 2 years, fromDecember
15, 2019 to (and including) September 15, 2021, every three
months. Aggregated data from RIPE, RouteViews, and Iso-
lario used.

silent−forward

peer

foreign

stray

private

peer ASes (sorted by number of community occurences)

silent−cleaner

peer

foreign

stray

private

tagger−forward

peer

foreign

stray

private

tagger−cleaner

peer

foreign

stray

private

co
m

m
u

n
ity

 t
yp

e
s

communities

1

3

13

48

175

637

2.3K

8.4K

30.7K

111.7K

406.5K

1.5M

5.4M

19.6M

71.2M

Figure 5: Counting different community types (y-axis) at
peer ASes (x-axis) with full classification, i.e., tf , tc, sf , and
sc. The ASes are ordered by number of communities and the
color scale is logarithmic.

confident that using our algorithm a day worth of routing data is
of sufficient granularity to provide stable inferences.

Next, we investigate how the number of fully classified ASes
(tf , tc, sf , and sc) change over time. Therefore we use aggregated
data sets, i.e., RIPE, RouteViews, and Isolario combined, one day
every three months over a time period of two years, see Figure 4.
The time period ranges from December 15, 2019 to (and including)
September 15, 2021. There is no significant increase or decrease in
the number of fully classified ASes discernible. Rather, the number
of individual ASes per class and per day are comparable to those
presented in Table 3 for 𝑑𝑀𝑎𝑦21. Overall, these results are indicative
of a stable, consistent community usage behavior throughout the
past two years, involving a small set of ASes.

7.2 Peer ASes
In the following, we take a closer look at 273 collector peers of
the 523 fully classified ASes, see Section 7.1. Since peer ASes are
connected directly to BGP collectors, their community set output
(output(𝐴1)) should be not impaired by other ASes along the path.
Specifically, we investigate whether output(𝐴1) corresponds to the
inferred tagging and forwarding behavior of a peer AS 𝐴1. For that,
we count the type of communities that are included in output(𝐴1),
i.e., peer, foreign, stray, and private, see Section 3.2.

Based on our mental model in Section 3.3, the intuition of our
approach is as follows: peer communities should only be observable
when the peer AS is a tagger . We should not be able to observe
peer communities, when the AS is silent. On the other hand, foreign
should only be visible if the peer AS is forward, and not visible
if that AS is a cleaner . Note, since our inference method discards
stray and private communities (Section 5.1), we expect to see them
independent of the peer AS classification.

Figure 5 shows four scatter plots, one for each (full) class tf (tag-
ger-forward), tc (tagger-cleaner), sf (silent-forward), and sc (silent-
cleaner). In each plot, the x-axis contains peer ASes of the corre-
sponding class, ordered by the number of total communities, and
the y-axis indicates the community types. The color palette indi-
cates the number of total communities in logarithmic scale, ranging
from 1 to 71M+.

In accordance with our expectations, we observe a large amount
peer communities in the cases tf and tc, indicated by the bottom
bar of the respective plots. We observe few to no peer communities
in the cases sf and sc. Furthermore, we observe a large amount
of foreign communities in the cases tf and sf , i.e., when the peer
ASes does not remove communities from other ASes in the AS path
(see second bottom bar). Conversely, we see only few to no foreign
communities when the peer AS is tc or sc, i.e., the AS is removing
communities form other ASes in the AS path. However, there are
also some cleaner ASes that, given the number of foreign commu-
nities, contradict their inference. Those foreign communities can
be caused, e.g., by one or multiple downstream ASes that our algo-
rithm was not able to identify as tagger (and thus invalidate𝐶𝑜𝑛𝑑2).
Last, Since we do not consider stray and private communities in
our inference method, we observe them in all classes, in particular
when the peer AS is forward, but also when it is a cleaner .

Conclusion: Overall, our observations of community usage at
collector peers align with our mental model and assure the correct
functioning of our inference method.

7.3 AS characterization
Next, we explore the characteristics of ASes based on their classifi-
cation. For that we make use of CAIDAs customer cone data sets
[3]. The customer cone of an AS includes itself and all ASes that
can be reached by only traversing customer links. Leaf ASes thus
have a customer cone size of 1. We use the customer cone size as
indicator for the size of an AS.

In Figure 6, we plot CDFs over customer cone sizes over all ASes
in 𝑑𝑀𝑎𝑦21. Starting with the tagging behavior (top plot), we see a
significant difference of cone sizes between ASes that are classified
as tagger and those that are classified as silent. ∼70% of silent ASes
have a cone size of 1, i.e., they are leaf ASes. Also, while around 10%

589

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

1 10 100 1000 10000

0
.0

0
.4

0
.8

P
ro

p
o
rt

io
n
 <

=
 x

customer cone size

tagging

tagger
silent
undecided
none

1 10 100 1000 10000

0
.0

0
.4

0
.8

P
ro

p
o
rt

io
n
 <

=
 x

customer cone size

forwarding

cleaner
forward
undecided
none

Figure 6: CDFs showing customer cone size distribution of
ASes per tagging behavior (top) and forwarding behavior
(bottom). All behaviors (except for silent, and those that are
none) are attributed to mostly larger and non-leaf ASes.

experiment date communities present communities not present
2021-05-19 6/177 (3%) 285/367 (78%)
2021-07-15 1/104 (1%) 286/365 (78%)
2021-08-15 0/61 (0%) 300/359 (84%)

Table 4: PEERING experiments: Table shows the share of
paths containing at least one cleaner AS, when a) commu-
nities are present and b) when communities are not present.
We perform three temporally uncorrelated experiments.

of silent ASes have a cone size greater than 10, it is around 50% for
tagger ASes, indicating that ASes at the edge of the AS level graph
usually do not add their own communities. Interestingly, ASes with
undecided behavior exhibit a similar distribution of cone sizes as
taggers. Lastly, ASes with no inference are mostly leaf ASes, i.e. in
∼90% of the cases. Most notably for forwarding behavior (bottom
plot), cleaner and silent ASes show a similar distribution of cone
sizes, indicating that cleaner and silent ASes are common across all
AS sizes. Again, ASes with no inference are mostly leaf ASes.

7.4 Validation of inferences
Finally, we validate our inferences with external ground truth infor-
mation obtained by injecting route announcements with consistent
use of communities. Thus, by having control over a tagger , we
check how often the observation of our communities contradicts
the inferences of AS behaviors along the corresponding AS path.
For example, given an AS path and a community set that include our
communities, the AS path must not include a cleaner AS, otherwise
the community would have been not visible (see Section 5.1). Simi-
larly, if the community set does not include any of our communities,
there must be at least one cleaner in the AS path.

We utilized the PEERING testbed to conduct our real-world
validation [23]. Using PEERING, we announce a /24 prefix via 12
available Points of Presence (PoPs) for approximately one week
beginning on May 19, 2021. To each PoP, we add a unique pair of

communities to the announcement; these communities use PEER-
ING’s 47065 ASN in the upper 2 bytes and unique values in the
lower 2 bytes. Via these PoPs, PEERING had 460 active BGP peers
in total at the time of our experiment.

We extract the relevant announcements from our data set𝑑𝑀𝑎𝑦21
by filtering for the prefix. We observe a total of 7,503 announcement
corresponding to that prefix. From the 12 community sets we have
configured, only 6 appear in around 30% of those announcements.
From the observed announcements, we extract 549 unique AS paths.
Interestingly, only 5 AS paths are not consistently attached with our
communities, i.e., they appear with and without out communities.
The remaining 544 AS paths are either always associated with
our communities or never. This indicates a consistent usage of
communities along the same path.

In order to validate our inferences, we count how often a cleaner
exists in the AS paths, when a) the corresponding community set
contains our communities and when b) the community set does
not contain our communities. We first look at 367 unique tuples
that do not include any of our communities: in 285 cases (∼78%)
at least one cleaner exists in the AS path. Further 81 cases (∼22%)
include at least one AS that exhibits undecided behavior. Only 1
AS path does not include an identified cleaner and thus contradicts
our inferences. Next, we select 177 unique AS path / community
set tuples that do contain our communities: Here, 6 (3%) AS paths
contradict our inferences, i.e., the AS path contains a cleaner AS.
However, we note that 152 AS paths (∼85%) include at least one
AS with undecided behavior. The remaining 19 AS paths include
neither. In Table 4 we show a summary of this and two additional
experiments we have performed, with similar outcome.

8 CONCLUSIONS AND FUTUREWORK
In this work, we take a step toward achieving a more grounded
understanding of BGP community usage behavior at a per-AS gran-
ularity. While our algorithm is inferential and its ability to classify
an AS’s community usage depends both upon BGP visibility and
the complexity of the AS’s policies, ours is the first work to take on
this challenging task. Furthermore, through extensive testing and
validation, we show that our algorithm has high precision – when
it does make an inference, it is generally correct.

We apply our algorithm to large-scale, real-world BGP data from
the major route collectors in order to maximize coverage and make
inferences for the most ASes possible. We characterize the ASes
exhibiting different usage behaviors and find that tagger , forward
and cleaner ASes typically have a large customer cone, while silent
are typically at the edge.

We publicly release our algorithm and inferences to the com-
munity to support related BGP and network research, including
automated community processing in networks based on inferences,
Internet modeling, and improved BGP security posture [5].

In future work, we plan to extend and improve the algorithm,
especially removing the strict assumption that community tags use
the ASN of the network that added the community. In this fashion,
we wish to identify not only whether an AS is a tagger , but also
which communities it adds. This ability will be especially useful
to differentiate signaling versus informational community, and to
support efforts directed toward automated and safe community
filtering.

590

AS-Level BGP Community Usage Classification IMC ’21, November 2–4, 2021, Virtual Event, USA

Acknowledgements
We would like to thank our shepherd, Neil Spring, and the anony-
mous reviewers for useful and constructive feedback. We would
also like to thank Italo Cunha and Ethan Katz-Bassett for provid-
ing access to the PEERING test bed. This work has been partially
funded by NSF grant CNS-1855614, the European Research Council
(ERC) Starting Grant ResolutioNet (ERC-StG-679158), BMBF BI-
FOLD 01IS18025A and 01IS18037A, and performed while the first
author held an NRC Research Associateship award at the Naval
Postgraduate School. Views and conclusions are those of the au-
thors and should not be interpreted as representing the official
policies or position of the U.S. government, the NSF, ERC, BMBF,
or NRC.

REFERENCES
[1] Larry Blunk, Craig Labovitz, and Manish Karir. 2011. Multi-Threaded Routing

Toolkit (MRT) Routing Information Export Format. RFC 6396. (Oct. 2011). https:
//rfc-editor.org/rfc/rfc6396.txt

[2] Jay Borkenhagen, Randy Bush, Ron Bonica, and Serpil Bayraktar. 2019. Policy
Behavior for Well-Known BGP Communities. RFC 8642. (Aug. 2019). https:
//doi.org/10.17487/RFC8642

[3] CAIDA. 2021. AS Relationships. https://www.caida.org/catalog/datasets/as-
relationships/. (2021).

[4] CISCO. 2005. Remotely Triggered Black Hole Filtering - Destination Based and
Source Based. Cisco White Paper, http://www.cisco.com/c/dam/en_us/about/
security/intelligence/blackhole.pdf. (2005).

[5] CMAND. 2021. AS-Level BGP Community Usage Classification. https://www.
cmand.org/communityusage/. (2021).

[6] Amogh Dhamdhere and Constantine Dovrolis. 2011. Twelve years in the evo-
lution of the internet ecosystem. IEEE/ACM Transactions on Networking 19, 5
(2011), 1420–1433.

[7] Benoit Donnet and Olivier Bonaventure. 2008. On BGP Communities. In ACM
SIGCOMM CCR. https://doi.org/10.1145/1355734.1355743

[8] Vasileios Giotsas, Christoph Dietzel, Georgios Smaragdakis, Anja Feldmann,
Arthur Berger, and Emile Aben. 2017. Detecting Peering Infrastructure Outages
in the Wild. In ACM SIGCOMM. https://doi.org/10.1145/3098822.3098855

[9] Vasileios Giotsas, Matthew Luckie, Bradley Huffaker, and k claffy. 2014. Inferring
Complex AS Relationships. In ACM IMC. https://doi.org/10.1145/2663716.2663743

[10] Vasileios Giotsas, George Nomikos, Vasileios Kotronis, Pavlos Sermpezis, Pet-
ros Gigis, Lefteris Manassakis, Christoph Dietzel, Stavros Konstantaras, and
Xenofontas Dimitropoulos. 2020. O Peer, Where Art Thou? Uncovering Remote
Peering Interconnections at IXPs. In IEEE/ACM ToN.

[11] Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel, Philipp Richter, Anja
Feldmann, and Arthur Berger. 2017. Inferring BGP Blackholing Activity in the
Internet. In ACM IMC. https://doi.org/10.1145/3131365.3131379

[12] Timothy G Griffin and Gordon Wilfong. 1999. An Analysis of BGP Convergence
Properties. In ACM SIGCOMM CCR. https://doi.org/10.1145/316194.316231

[13] Jakob Heitz, Job Snijders, Keyur Patel, Ignas Bagdonas, and Nick Hilliard. 2017.
BGP Large Communities Attribute. RFC 8092. (Feb. 2017). https://rfc-editor.org/
rfc/rfc8092.txt

[14] Isolario. 2021. Isolario project. https://www.isolario.it/. (2021).
[15] Thomas Krenc, Robert Beverly, and Georgios Smaragdakis. 2020. Keep your

Communities Clean: Exploring the RoutingMessage Impact of BGP Communities.
In CoNEXT.

[16] Tony Li, Ravi Chandra, and Paul S. Traina. 1996. BGP Communities Attribute.
RFC 1997. (Aug. 1996). https://rfc-editor.org/rfc/rfc1997.txt

[17] Vern Paxson. 1996. End-to-End Routing Behavior in the Internet. In ACM SIG-
COMM. https://doi.org/10.1145/248156.248160

[18] PCH. 2021. Packet Clearing House. https://www.pch.net/. (2021).
[19] Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway Protocol 4

(BGP-4). RFC 4271. (Jan. 2006). https://rfc-editor.org/rfc/rfc4271.txt
[20] Philipp Richter, Georgios Smaragdakis, Anja Feldmann, Nikolaos Chatzis, Jan

Boettger, and Walter Willinger. 2014. Peering at Peerings: On the Role of IXP

Route Servers. In ACM IMC. https://doi.org/10.1145/2663716.2663757
[21] RIPE. 2021. RIS - RIPE Network Coordination Centre. http://ris.ripe.net/. (2021).
[22] RouteViews. 2021. University of Oregon RouteViews project. http://www.

routeviews.org/. (2021).
[23] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. 2019.

PEERING: Virtualizing BGP at the Edge for Research. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And Technologies.
51–67.

[24] Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dimitropoulos,
Danilo Cicalese, Alistair King, and Alberto Dainotti. 2018. ARTEMIS: Neutralizing
BGP hijacking within a minute. IEEE/ACM Transactions on Networking 26, 6
(2018), 2471–2486.

[25] Job Snijders, John Heasley, and Martijn Schmidt. 2017. Use of BGP Large Com-
munities. RFC 8195. (June 2017). https://rfc-editor.org/rfc/rfc8195.txt

[26] Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja Feldmann, Cristel
Pelsser, Georgios Smaragdakis, and Randy Bush. 2018. BGP Communities: Even
more Worms in the Routing Can. In ACM IMC. https://doi.org/10.1145/3278532.
3278557

[27] Cecilia Testart, Philipp Richter, Alistair King, Alberto Dainotti, and David Clark.
2019. Profiling BGP Serial Hijackers: Capturing Persistent Misbehavior in the
Global Routing Table. In Proceedings of the Internet Measurement Conference
(IMC ’19). Association for Computing Machinery, New York, NY, USA, 420–434.
https://doi.org/10.1145/3355369.3355581

[28] Quaizar Vohra and Enke Chen. 2012. BGP Support for Four-Octet Autonomous
System (AS) Number Space. RFC 6793. (Dec. 2012). https://doi.org/10.17487/
RFC6793

A APPENDIX
1 for x = 1 , . . . , N :
2 # PHASE 1 : c oun t tagging
3 for each (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) :
4 a s s e r t (cond1)
5 t [𝐴𝑥]++ i f 𝐴𝑥 : ∗ in comm
6 s [𝐴𝑥]++ i f 𝐴𝑥 : ∗ not in comm
7 # PHASE 2 : c oun t forwarding
8 for each (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) :
9 a s s e r t (cond1 and cond2)
10 i [𝐴𝑥]++ i f 𝐴𝑡 : ∗ in comm
11 c [𝐴𝑥]++ i f 𝐴𝑡 : ∗ not in comm

Listing 1: Inference algorithm, iterating over (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚)
pairs by path index 𝑥 , where 𝑝𝑎𝑡ℎ = 𝐴1,𝐴2, ...,𝐴𝑛 , and 𝑐𝑜𝑚𝑚 =
𝑜𝑢𝑡𝑝𝑢𝑡 (𝐴1).

1 # IN IT
2 a s l i s t [] = silent | forward
3
4 # PHASE 1 : c oun t tagging
5 for each (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) :
6 for each i = 1 , . . . , n :
7 t [𝐴𝑥]++ i f 𝐴𝑥 : ∗ in comm
8 s [𝐴𝑥]++ i f 𝐴𝑥 : ∗ not in comm
9 # PHASE 2 : c oun t forwarding
10 for each (𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) :
11 for each x = n − 1 , . . . , 1 :
12 c [𝐴𝑥]++ i f 𝐴𝑥+1 not in comm
13 e l se :
14 i [𝐴 𝑗]++ for j in 1 , . . . ,𝐴𝑥+1

Listing 2: Alternative inference algorithm, iterating over
(𝑝𝑎𝑡ℎ, 𝑐𝑜𝑚𝑚) pairs without conditions, where 𝑝𝑎𝑡ℎ =
𝐴1,𝐴2, ...,𝐴𝑛 , and 𝑐𝑜𝑚𝑚 = 𝑜𝑢𝑡𝑝𝑢𝑡 (𝐴1).

591

IMC ’21, November 2–4, 2021, Virtual Event, USA Thomas Krenc et al.

assigned roles: classification result:
alltf: tagger silent undecided none
tagger 69,997 0 0 2,954

alltc: tagger silent undecided none
tagger 766 0 0 0
tagger (hidden) 0 0 0 72,185

random: tagger silent undecided none
tagger 22,149 0 0 1,541
silent 0 21,966 0 1,571
tagger (hidden) 0 0 0 12,780
silent (hidden) 0 0 0 12,944

random+noise: tagger silent undecided none
tagger 21,625 0 1 2,064
silent 53 3,679 17,687 2,118
tagger (hidden) 0 12 2 12,766
silent (hidden) 1 9 3 12,931

random-p: tagger silent undecided none
tagger 6,750 0 0 5,876
silent 0 13,445 0 11,983
selective 2,351 3,538 837 5,984
tagger (hidden) 0 0 0 5,562
silent (hidden) 0 0 0 11,082
selective (hidden) 0 0 0 5,543

random-pp: tagger silent undecided none
tagger 2,163 0 0 10,463
silent 0 4,429 0 20,999
selective 1,301 713 134 10,562
tagger (hidden) 0 0 0 5,562
silent (hidden) 0 0 0 11,082
selective (hidden) 0 0 0 5,543

Table 5: Assigned roles vs. classification results: Confusion
Matrices for tagging behavior per scenario.

assigned roles: classification result:
alltf: forward cleaner undecided none
forward 10,427 0 0 2,104
forward (leaf) 0 0 0 60,420

alltc: forward cleaner undecided none
cleaner 0 578 0 124
cleaner (hidden) 0 0 0 11,829
cleaner (leaf) 0 0 0 60,420
random: forward cleaner undecided none
forward 2,400 0 0 1,091
cleaner 0 2,433 0 1,106
forward (hidden) 0 0 0 2,750
cleaner (hidden) 0 0 0 2,750
forward (leaf) 0 0 0 30,335
cleaner (leaf) 0 0 0 30,085

random+noise: forward cleaner undecided none
forward 2,294 0 63 1,134
cleaner 1 738 1,647 1,153
forward (hidden) 0 2 2 2,746
cleaner (hidden) 0 1 0 2,750
forward (leaf) 0 0 0 30,335
cleaner (leaf) 0 0 0 30,085

random-p: forward cleaner undecided none
forward 925 75 266 1,666
cleaner 0 1,355 0 1,663
forward (hidden) 0 52 0 3,265
cleaner (hidden) 0 47 0 3,217
forward (leaf) 0 0 0 30,480
cleaner (leaf) 0 0 0 29,940

random-pp: forward cleaner undecided none
forward 221 72 279 2,341
cleaner 0 610 0 2,386
forward (hidden) 0 14 0 3,322
cleaner (hidden) 0 19 0 3,267
forward (leaf) 0 0 0 30,480
cleaner (leaf) 0 0 0 29,940

Table 6: Assigned roles vs. classification results: Confusion
Matrices for forwarding behavior per scenario.

592

