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Abstract. Global intermodal transportation involves the movement of
shipments between inland terminals located in different continents by
using ships, barges, trains, trucks, or any combination among them
through integrated planning at a network level. One of the challenges
faced by global operators is the matching of shipment requests with
transport services in an integrated global network. The characteristics
of the global intermodal shipment matching problem include acceptance
and matching decisions, soft time windows, capacitated services, and
transshipments between multimodal services. The objective of the prob-
lem is to maximize the total profits which consist of revenues, travel
costs, transfer costs, storage costs, delay costs, and carbon tax. Travel
time uncertainty has significant effects on the feasibility and profitability
of matching plans. However, travel time uncertainty has not been con-
sidered in global intermodal transport yet leading to significant delays
and infeasible transshipments. To fill in this gap, this paper proposes
a chance-constrained programming model in which travel times are
assumed stochastic. We conduct numerical experiments to validate the
performance of the stochastic model in comparison to a deterministic
model and a robust model. The experiment results show that the stochas-
tic model outperforms the benchmarks in total profits.

Keywords: Global intermodal transportation · Shipment matching
problem · Travel time uncertainty · Chance-constrained programming

1 Introduction

With the increasing volumes of global trade and the trend towards time-sensitive
shipments, efficient global transportation becomes increasingly important in
global supply chains [18]. Intermodal transportation is the provision of efficient,
effective, and sustainable transport services thanks to the horizontal and ver-
tical collaboration among players [15]. However, implementing intermodality in
global transport is still challenging from several aspects, including: the design of
collaboration contracts and pricing strategies that ensure fairness and attractive-
ness among players at the strategic level [8]; integrated service network design
c© Springer Nature Switzerland AG 2020
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Fig. 1. A global intermodal matching platform.

that determines service frequencies and time schedules at the tactical level [12];
and integrated transport plan that assigns specific shipments with transport ser-
vices under a dynamic or stochastic environment at the operational level [15].
This paper investigates a global intermodal shipment matching (GISM) problem
under travel time uncertainty at the operational level.

With the development of digitization in the logistics industry, increasing
matching/booking platforms have appeared in freight transportation [13], such
as Uber Freight and Quicargo. We consider a platform owned by a global opera-
tor that receives shipment requests from shippers and receives transport services
from carriers, as shown in Fig. 1. The global operator could be a logistics service
provider or an alliance formed by multiple carriers, such as Maersk and COSCO
Shipping lines. A shipment request is defined as a batch of containers that must
be transported from its origin to its destination within a specific time window.
For example, shipment r1 consists of 30 containers which require to be trans-
ported from origin terminal 1 to destination terminal 5 with a release time of
Jan 1, 9:00, and a lead time of 840 h. A transport service is characterized by its
mode, origin, destination, time schedule, and free capacity. For example, ship
service s1 with capacity 200 TEU (twenty-foot equivalent unit) will depart from
terminal 1 on Jan 2, 11:00, and arrive to terminal 5 with an estimated travel
time of 680 h. The platform aims to provide optimal acceptance and matching
decisions in a global intermodal network. A match between a shipment request
and a transport service represents that the shipment will be transported by the
service from the service’s origin to the service’s destination. The platform com-
bines the matched services into itineraries to provide integrated transport for
global shipments. For instance, shipment r2 will be transported by barge service
s2 from origin terminal 2 to transshipment terminal 1 and by ship service s1
from transshipment terminal 1 to destination terminal 5. The objective of the
platform is to maximize the total profits which consists of revenues and costs.
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Due to travel time uncertainty and the utilization of multimodal services, the
matches made for accepted requests might become suboptimal or even infeasi-
ble at transshipment terminals. Thanks to the development in data analytics,
probability distributions of uncertainties are often available to transport systems
[3]. However, while stochastic approaches that incorporate stochastic informa-
tion of travel times in decision-making processes have been well investigated in
vehicle routing problems [2,9] and inland intermodal transport planning [1,6],
the stochastic approach for the GISM problem under travel time uncertainty is
still missing. This paper contributes to the literature by developing a chance-
constrained programming model to set confidence levels of chance constraints
regarding infeasible transshipments in a global intermodal network.

In the literature, most similar to our work are the work of Demir et al. [1] and
Guo et al. [4]. Demir et al. [1] investigated an inland intermodal service network
design problem with travel time uncertainty. In comparison to [1], this paper con-
siders fixed time schedules of multimodal services in a global network, and develops
a model that integrates acceptance and matching decisions. Guo et al. [4] stud-
ied an inland intermodal shipment matching problem with request uncertainty. In
comparison to [4], this paper considers travel time uncertainty in a global inter-
modal network.

The remainder of this paper is structured as follows. In Sect. 2, we provide a
detailed problem description, followed by a mathematical formulation in Sect. 3.
In Sect. 4, we develop the Chance-constrained programming model. In Sect. 5,
we present the experimental results. Finally, in Sect. 6, we provide concluding
remarks and directions for future research.

2 Problem Description

Let N be the set of terminals. Each terminal i ∈ N is characterized by its
loading/unloading cost lcm

i , loading/unloading time ltmi with mode m ∈ M =
{ship, barge, train, truck}, and storage cost per container per hour cstoragei .
We assume terminal operators provide unlimited loading/unloading and storage
capacity to the global operator.

Let R be the set of shipment requests. Each request r ∈ R is characterized
by its container type CTr (i.e., dry or reefer), origin terminal or, destination
terminal dr, container volume ur, release time T

release
r (i.e., the time when the

shipment is available for transport process), lead time LDr, freight rate pr, and
delay cost cdelayr . The due time of request r is T

due
r = T

release
r + LDr.

Let S be the set of services. Each service s ∈ S is characterized by its mode
MTs ∈ M , origin terminal os, destination terminal ds, total free capacity Us,
free capacity Uk

s in terms of container type k ∈ K = {dry, reefer}, estimated
travel time ts, travel cost cs, and generation of carbon emissions ek

s for container
type k. We consider ship, barge and train services as time scheduled services with
scheduled departure time TDs and scheduled arrival time TAs for s ∈ Sship ∪
Sbarge ∪ Strain. Each truck service consists of a fleet of trucks that have flexible
departure times. We define TDrs as a variable that indicates the departure time
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of service s ∈ Struck with shipment r ∈ R. Moreover, different services with the
same mode might be operated by the same vehicle. For two successive services
operated by the same vehicle, transshipment is unnecessary at the intermediate
terminal. Let lsq be equal to 0 if services s and q are operated by the same
vehicle, and service s is the preceding service of service q, 1 otherwise.

In practice, travel time uncertainties are quite common resulting from
weather conditions and traffic congestion [1]. In this paper, we use common
assumption that the travel times

[
t̃s

]
∀s∈S

are continuous random variables fol-
lowing normal distributions, and are statistically independent [2]. Let t̃s ∼
N(μs, σ

2
s), in which μs is the mean travel time between terminal os and ter-

minal ds, and σs is the corresponding standard deviation. Due to the travel time
uncertainties, the actual departure and arrival time of service s ∈ S are also
uncertain. The distribution of the departure time of service s is based on the
distribution of the arrival time of its preceding service; the distribution of the
arrival time of service s is based on the distributions of the departure and travel
time of service s. For vehicle v ∈ V , we define the itinerary of vehicle v as the
sequence of services that the vehicle operated, and define In

v as the nth service
of vehicle v. Therefore, the departure time of service s = In

v follows normal
distribution given by:

T̃Ds ∼ N(TDI1
v

+
∑

j∈{1...n−1}
μIj

v
+

∑

j∈{1...n−1}
2ltMTv

d
I
j
v

,
∑

j∈{1...n−1}
σ2

Ij
v
),

where MTv is the mode of vehicle v. We denote T̃Ds ∼ N(μ+
s , σ+

s
2). Similarly,

the arrival time of service s = In
v follows the normal distribution given by:

T̃As ∼ N(TDI1
v

+
∑

j∈{1...n}
μIj

v
+

∑

j∈{1...n−1}
2ltMTv

d
I
j
v

,
∑

j∈{1...n}
σ2

Ij
v
).

We denote T̃As ∼ N(μ−
s , σ−

s
2).

Travel time uncertainty of services in a global intermodal network may lead to
infeasible transshipments in addition to the commonly studied outcome of late or
early delivery at destinations [9,14]. An illustrative example is shown in Fig. 2. A
shipment is planned to be transported by a train service from its origin terminal
to port A, by a ship service from port A to port B, and by two barge services
from port B to its destination terminal according to fixed time schedules. The
outcomes of travel time uncertainty in global intermodal transportation include
late delivery at destination terminal under realization 1 which causes delayed
costs, early delivery at destination terminal under realization 2 which causes
storage costs, and infeasible transshipment at port B under realization 3 which
requires re-planning from port B to destination terminal.

The objective of the platform is to maximize the total profits by optimizing
acceptance and matching decisions over a given planning horizon T . The total
profits consist of revenues received from shippers, travel costs paid to carriers,
transfer costs and storage costs paid to terminal operators, delay costs paid to
shippers, and carbon tax charged by institutional authorities.

The notation used in this paper is shown in Table 1.
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Fig. 2. Possible outcomes of travel time uncertainty in global transport.

Table 1. Notation.

Sets:

N Terminals N

K Container types, K = {dry, reefer}
R Shipment requests

Rk Requests with container type k ∈ K

M Modes, M = {ship, barge, train, truck}
V Set of vehicles V = V ship ∪ V barge ∪ V train ∪ V truck

S Services, S = Sship ∪ Sbarge ∪ Strain ∪ Struck

S+
i Services departing at terminal i, S+

i = S+ship
i ∪ S+barge

i ∪ S+train
i ∪ S+truck

i

S−
i Services arriving at terminal i, S−

i = S−ship
i ∪ S−barge

i ∪ S−train
i ∪ S−truck

i

Deterministic parameters

T Length of the planning horizon

α Confidence level

CTr Container type of request r ∈ R, CTr ∈ K

or Origin terminal of request r ∈ R, or ∈ N

dr Destination terminal of request r ∈ R, dr ∈ N

ur Container volume of request r ∈ R

T
release
r Release time of request r ∈ R

T
due
r Due time of request r ∈ R

pr Freight rate of request r ∈ R

LDr Lead time of request r ∈ R, LDr = T
due
r − T

release
r

cdelayr Delay cost of request r ∈ R per container per hour overdue

MTs Mode of service s ∈ S, MTs ∈ M

os Origin terminal of service s ∈ S, os ∈ N

(continued)
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Table 1. (continued)

Deterministic parameters

ds Destination terminal of service s ∈ S, ds ∈ N

Us Free capacity of service s ∈ S

Uk
s Free capacity of service s ∈ S regarding container type k ∈ K

cs Travel cost of service s ∈ S per container

ek
s Carbon emissions of service s ∈ S per container with type k ∈ K

MTv Mode of vehicle v ∈ V

In
v The nth service of vehicle v ∈ V \V truck, In

v ∈ S\Struck

TDs Scheduled departure time of service s ∈ S\Struck

TAs Scheduled arrival time of service s ∈ S\Struck

ts Estimated travel time of service s ∈ S

lsq Binary variable; 0 if services s and q are operated by the same vehicle, and

Service s is the preceding service of service q, 1 otherwise

lcmi Loading/unloading cost per container at terminal i ∈ N with mode m ∈ M

ltmi Loading/unloading time at terminal i ∈ N with mode m ∈ M

cstoragei Storage cost at terminal i per container per hour

cemission Activity-based carbon tax charged by institutional authorities

M A large number used for binary constraints

Random variables

t̃s Travel time of service s ∈ S, t̃s ∼ N(μs, σ2
s)

T̃Ds Departure time of service s ∈ S\Struck, T̃Ds ∼ N(μ+
s , σ+

s
2
)

T̃As Arrival time of service s ∈ S\Struck, T̃As ∼ N(μ−
s , σ−

s
2
)

Variables

yr Binary variable; 1 if request r ∈ R is accepted

xrs Binary variable; 1 if request r ∈ R is matched with service s ∈ S, 0 otherwise

zrsq Binary variable; 1 if request r ∈ R is matched with service s ∈ S, xrs = 1

And service q ∈ S, xrq = 1, 0 otherwise

TDrs Departure time of truck service s ∈ Struck with request r ∈ R

fri Transshipment cost of request r ∈ R at terminal i ∈ N per container

w̃ri Storage time of request r ∈ R at terminal i ∈ N

T̃
delay
r Delay of request r ∈ R at destination terminal dr ∈ N

3 Mathematical Formulation

Let yr be the binary variable which is 1 if request r ∈ R is accepted, otherwise
0. We use the binary variable xrs to represent the match between request r ∈ R
and service s ∈ S. A match between request r and service s means shipment
r will be transported by service s from terminal os to terminal ds. Due to the
travel time uncertainty, the transport plan might become infeasible and requires
re-planning. Therefore, the costs generated by accepted requests are uncertain
and hard to estimate. We use C̃r(x) to denote the random cost generated for
request r ∈ R which consists of travel costs, transfer costs, storage costs, delay
costs, and carbon tax. The mathematical formulation of the GISM problem is:

P0 max
y,x

∑

r∈R

pruryr −
∑

r∈R

C̃r(x) (1)
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subject to

yr ≤
∑

s∈S+
or

xrs, ∀r ∈ R, (2)

yr ≤
∑

s∈S−
dr

xrs, ∀r ∈ R, (3)

∑

s∈S+
i

xrs ≤ 1, ∀r ∈ R, i ∈ N\{dr}, (4)

∑

s∈S−
i

xrs ≤ 1, ∀r ∈ R, i ∈ N\{or}, (5)

∑

s∈S−
or

xrs ≤ 0, ∀r ∈ R, (6)

∑

s∈S+
dr

xrs ≤ 0, ∀r ∈ R, (7)

∑

s∈S+
i

xrs =
∑

s∈S−
i

xrs, ∀r ∈ R, i ∈ N\{or, dr}, (8)

∑

r∈R

xrsur ≤ Us, ∀s ∈ S, (9)

∑

r∈Rk

xrsur ≤ Uk
s , ∀s ∈ S, k = reefer, (10)

T
release
r + ltMTs

or
≤ TDrs + M(1 − xrs), ∀r ∈ R, s ∈ S+truck

or
, (11)

T
release
r + ltMTs

or
≤ T̃Ds + M(1 − xrs), ∀r ∈ R, s ∈ S+

or
\S+truck

or
, (12)

T̃As + ltMTs
i + lt

MTq

i ≤ T̃Dq + M(1 − xrs) + M(1 − xrq), ∀r ∈ R,

i ∈ N\{or, dr}, s ∈ S−
i \S−truck

i , q ∈ S+
i \S+truck

i , lsq = 1,
(13)

TDrs + t̃s + ltMTs
i + lt

MTq

i ≤ T̃Dq + M(1 − xrs) + M(1 − xrq), ∀r ∈ R,

i ∈ N\{or, dr}, s ∈ S−truck
i , q ∈ S+

i \S+truck
i ,

(14)
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T̃As + ltMTs
i + lt

MTq

i ≤ TDrq + M(1 − xrs) + M(1 − xrq), ∀r ∈ R,

i ∈ N\{or, dr}, s ∈ S−
i \S−truck

i , q ∈ S+truck
i ,

(15)

TDrs + t̃s + ltMTs
i + lt

MTq

i ≤ TDrq + M(1 − xrs) + M(1 − xrq), ∀r ∈ R,

i ∈ N\{or, dr}, s ∈ S−truck
i , q ∈ S+truck

i .
(16)

Constraints (2–3) ensure that request r ∈ R will not be accepted by the
platform if there is no matching possibilities. Constraints (4–5) ensure that at
most one service transports request r departing from or arriving to a termi-
nal. Constraints (6–7) are designed to eliminate subtours. Subtours might be
formed since in one OD pair, there exist services in both directions. Constraints
(8) ensure flow conservation. Constraints (9) ensure that the total container
volumes of requests matched with service s do not exceed its total free capac-
ity. Constraints (10) ensure that the total volumes of reefer containers matched
with service s cannot exceed its free capacity on reefer slots. Constraints (11–12)
ensure that the departure time of service s minus loading time must be earlier
than the release time of request r, if request r will be transported by service s
depart its origin terminal. Here, M is a large enough number which ensures the
time compatibility between shipment r and service s when binary variable xrs

equals to 1, but leaves the constraints “open” if xrs is 0. Constraints (13–16)
ensure that the arrival time of service s ∈ S−

i plus loading and unloading time
must be earlier than the departure time of service q ∈ S+

i if request r will be
transported by service s entering terminal i and by service q leaving terminal i.

4 Chance-Constrained Programming Model

In the literature, different techniques have been developed to deal with travel
time uncertainty: deterministic, stochastic, and robust programming [14]. While
deterministic programming considers average travel times and robust program-
ming considers minimum and maximum travel times, stochastic programming
considers the probability distributions of travel times. Chance-constrained pro-
gramming (CCP) is one of the major stochastic approaches to solve optimization
problems under travel time uncertainty [9]. In this section, we develop a CCP
model to approximate stochastic constraints (12–16) and random cost C̃r(x) for
request r in model P0. The CCP model does not take into account the correction
costs caused by the re-planning of requests.

Under the CCP, each stochastic constraint will hold at least with probability
α, where α is referred to as the confidence level provided by the platform. A high
α means the matches have a low probability causing infeasible transshipments.
When α = 0.5, the CCP model becomes a deterministic model; when α = 1,
the CCP model becomes a robust model. The objective is to maximize expected
total profits while ensuring that the probability of infeasible transshipments does
not exceed α. The formulation of the CCP model is:
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P1 max
y,x

∑

r∈R

pruryr −
(

∑

r∈R

∑

s∈S

csxrsur +
∑

r∈R

∑

i∈N

friur

+
∑

r∈R

∑

i∈N

cstoragei E(w̃ri)ur +
∑

r∈R

cdelayr E(T̃delay
r )ur

+
∑

k∈K

∑

r∈Rk

∑

s∈S

cemissionek
sxrsur

⎞

⎠

(17)

subject to constraints (2–11),

P{Trelease
r + lt

MTs
or

≤ T̃Ds + M(1 − xrs)} ≥ α, ∀r ∈ R, s ∈ S
+
or

\S
+truck
or

, (18)
P{T̃As + lt

MTs
i + lt

MTq
i ≤ T̃Dq + M(1 − xrs) + M(1 − xrq)} ≥ α,

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−
i \S

−truck
i , q ∈ S

+
i \S

+truck
i , lsq = 1, (19)

P{TDrs + t̃s + lt
MTs
i + lt

MTq
i ≤ T̃Dq + M(1 − xrs) + M(1 − xrq)} ≥ α,

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−truck
i , q ∈ S

+
i \S

+truck
i , (20)

P{T̃As + lt
MTs
i + lt

MTq
i ≤ TDrq + M(1 − xrs) + M(1 − xrq)} ≥ α,

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−
i \S

−truck
i , q ∈ S

+truck
i , (21)

P{TDrs + t̃s + lt
MTs
i + lt

MTq
i ≤ TDrq + M(1 − xrs) + M(1 − xrq)} ≥ α,

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−truck
i , q ∈ S

+truck
i , (22)

fri =
∑

s∈S
+
i

xrslc
MTs
i , ∀r ∈ R, i = or, (23)

fri =
∑

s∈S
−
i

xrslc
MTs
i , ∀r ∈ R, i = dr, (24)

fri =
∑

s∈S
+
i

∑

q∈S
−
i

(
lc

MTs
i + lc

MTq
i

)
zrsqlsq, ∀r ∈ R, i ∈ N\{or, dr}, (25)

zrsq ≤ xrs, ∀r ∈ R, s ∈ S, q ∈ S, (26)
zrsq ≤ xrq, ∀r ∈ R, s ∈ S, q ∈ S, (27)
zrsq ≥ xrs + xrq − 1, ∀r ∈ R, s ∈ S, q ∈ S, (28)
E(w̃ror ) ≥ E(T̃Ds) − lt

MTs
or

− T
release
r + M(xrs − 1), ∀r ∈ R, s ∈ S

+
or

\S
+truck
or

, (29)
E(w̃ror ) ≥ TDrs − lt

MTs
or

− T
release
r + M(xrs − 1), ∀r ∈ R, s ∈ S

+truck
or

, (30)
E(w̃ri) ≥ E(T̃Dq) − E(T̃As) − lt

MTs
i − lt

MTq
i + M(xrs − 1) + M(xrq − 1), (31)

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−
i \S

−truck
i , q ∈ S

+
i \S

+truck
i ,

E(w̃ri) ≥ E(T̃Dq) − TDrs − E(t̃s) − lt
MTs
i − lt

MTq
i + M(xrs − 1) + M(xrq − 1), (32)

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−truck
i , q ∈ S

+
i \S

+truck
i ,

E(w̃ri) ≥ TDrq − E(T̃As) − lt
MTs
i − lt

MTq
i + M(xrs − 1) + M(xrq − 1),

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−
i \S

−truck
i , q ∈ S

+truck
i , (33)
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E(w̃ri) ≥ TDrq − TDrs − E(t̃s) − lt
MTs
i − lt

MTq
i + M(xrs − 1) + M(xrq − 1),

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S
−truck
i , q ∈ S

+truck
i , (34)

E(w̃rdr ) ≥ T
due
r − E(T̃As) − lt

MTs
dr

+ M(xrs − 1), ∀r ∈ R, s ∈ S
−
dr

\S
−truck
dr

, (35)
E(w̃rdr ) ≥ T

due
r − TDrs − E(t̃s) − lt

MTs
dr

+ M(xrs − 1), ∀r ∈ R, s ∈ S
−truck
dr

, (36)
E(T̃

delay
r ) ≥ E(T̃As) + lt

MTs
dr

− T
due
r + M(xrs − 1), ∀r ∈ R, s ∈ S

−
dr

\S
−truck
dr

, (37)
E(T̃

delay
r ) ≥ TDrs + E(t̃s) + lt

MTs
dr

− T
due
r + M(xrs − 1), ∀r ∈ R, s ∈ S

−truck
dr

, (38)

where fri is the planned loading and unloading cost of request r at terminal
i; E(w̃ri) is the expected storage time of request r at terminal i; E(T̃delay

r ) is
the expected delay in delivery of request r at destination terminal dr; P is the
probability measure; zrsq is a binary variable which equals to 1 if request r has
to transfer between service s and q, 0 otherwise; E(T̃Ds) = μ+

s , E(T̃As) = μ−
s ,

E(t̃s) = μs.
The objective function P1 is to maximize the expected total profits which

consist of total revenues, travel costs, transfer costs, storage costs, delay costs
and carbon tax. Constraints (18–22) ensure that the possibility of feasible trans-
shipment at terminals will be higher than the confidence level α. Constraints
(23–25) calculate the loading costs at origin terminals, the unloading costs at
destination terminals, and the loading and unloading costs at transshipment
terminals. Constraints (26–28) ensure that binary variable zrsq equals to 1 if
xrs = 1 and xrq = 1, 0 otherwise. Constraints (29–36) calculate the storage
time at origin, transshipment, and destination terminals. Constraints (37–38)
calculate delayed time at destination terminals.

To solve the CCP model, the traditional method is to convert the chance
constraints into their corresponding deterministic equations. Based on the prop-
erties of normal distributions, chance constraints (18–22) can be linearized as:

T
release
r + ltMTs

or +M(xrs − 1) − μ+
s

σ+
s

≤ φ−1(1 − α), ∀r ∈ R, s ∈ S+
or

\S+truck
or

, (39)

ltMTs
i + lt

MTq

i +M(xrs − 1) +M(xrq − 1) − (μ+
q − μ−

s )√
(σ+

q )2 + (σ−
s )2

≤ φ−1(1 − α),

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S−
i \S−truck

i , q ∈ S+
i \S+truck

i , lsq = 1,

(40)

TDrs + ltMTs
i + lt

MTq

i +M(xrs − 1) +M(xrq − 1) − (μ+
q − μs)√

(σ+
q )2 + (σs)2

≤ φ−1(1 − α),

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S−truck
i , q ∈ S+

i \S+truck
i ,

(41)

TDrq − ltMTs
i − lt

MTq

i +M(1 − xrs) +M(1 − xrq) − μ−
s

σ−
s

≥ φ−1(α),

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S−
i \S−truck

i , q ∈ S+truck
i ,

(42)

TDrq − TDrs − ltMTs
i − lt

MTq

i +M(1 − xrs) +M(1 − xrq) − μs

σs
≥ φ−1(α),

∀r ∈ R, i ∈ N\{or, dr}, s ∈ S−truck
i , q ∈ S+truck

i ,

(43)

where φ−1 is the inverse function of standardized normal distribution.
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5 Numerical Experiments

We evaluate the performance of the CCP on the GISM problem in comparison
to a deterministic approach (DA) which uses average travel times (i.e., α = 0.5)
and a robust approach (RA) which considers the maximum and minimum travel
times (i.e., α = 1). Compared with the CCP, the DA is a risk neutral approach in
which decision makers are indifferent to uncertainties, and the RA is a risk averse
approach that seeks guarantee. The approaches are implemented in MATLAB,
and all experiments are executed on 3.70 GHz Intel Xeon processors with 32 GB
of RAM. The optimization problems are solved with CPLEX 12.6.3.

Unless otherwise stated, the benchmark values of coefficients are set as
follows: loading cost (unit: e/TEU) lcshipi = 18, lcbargei = 18, lctraini = 12,
lctrucki = 12 for i ∈ N ; loading time (unit: hours) ltshipi = 12, ltbargei = 4,
lttraini = 2, lttrucki = 1 for i ∈ N ; storage cost (unit: e/TEU-h) cstoragei = 1 for
i ∈ N ; carbon tax (unit: e/kg) cemission = 0.07.

We consider a global intermodal network that consists of two terminals in
Europe and three terminals in Asia that are connected by Suez Canal Route
(SCR), Northern Sea Route (NSR), and Eurasia Land Bridge (ELB), as shown
in Fig. 3. Compared with the SCR, the NSR has a shorter travel time but a
higher travel cost caused by ice-breaking fees [11]. With the implementation of
IMO 2020 regulations, shipping liner companies are required to use low-sulfur
fuels on the sea, which in turn increases travel costs in the SCR and the NSR
[10]. As an alternative, the ELB becomes more and more competitive thanks to
its shortest travel time. However, without subsidies from governments, the ELB
is still the most expensive route.

We consider 18 services operating on the network: 8 in Asia, 6 in Europe, and
4 connecting Asia and Europe as presented in Table 2. The hinterland-related
data is adapted from the work of [5]; the intercontinental-related data is adapted
from the works of [7,16,17]. We consider 6 shipment requests received by the
platform at time 0. The detailed request data is shown in Table 3. Compared

Fig. 3. The topology of a global intermodal network.
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Table 2. Service data.

with reefer shipments (requests 1, 3, 5), dry shipments (requests 2, 4, 6) have
longer lead times, lower freight rates, and lower delay costs.

5.1 Impact of Different Objective Functions

The effects of objective functions are tested under a deterministic environment
without travel time uncertainties, i.e., mean of travel times μs = ts, standard
deviation σs = 0, ∀s ∈ S. We set the confidence level α = 0.5 for the CCP
model, and therefore φ−1(α) = φ−1(1 − α) = 0.

Table 3. Request data.

Requests Container

type

Origin Destination Container

volume

(TEU)

Release

time

Lead time

(h)

Freight

rate

(e/TEU)

Delay

cost

(e/TEU-

h)

1 Reefer Shanghai Rotterdam 5 100 720 4000 20

2 Dry Shanghai Rotterdam 5 100 840 3500 17.5

3 Reefer Wuhan Rotterdam 5 100 600 4500 22.5

4 Dry Wuhan Rotterdam 5 100 960 3000 15

5 Reefer Chongqing Duisburg 5 100 480 5000 25

6 Dry Chongqing Duisburg 5 100 1080 2500 12.5

The results generated under different objective functions are shown in
Table 4. Under cases 1 to 6, all the requests are accepted. Comparing case 6
with cases 1 to 5, the total profit is the highest. It means that considering the
trade-off among logistics costs, delays, and emissions is very important. While
cases 1 to 6 are designed to minimize different costs, case 7 aims to maximize the
total profit that consists of revenue and total costs. Compared with cases 1 to 6,
the total profit is significantly higher under case 7. Comparing case 6 and case
7 shows that it may be necessary to reject the requests that are not profitable.
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Table 4. Impact of different objective functions.

Cases Objective

function

Total

profits

Revenue Travel

costs

Transfer

costs

Storage

costs

Delay

costs

Carbon

tax

Rejections Delay

(TEU-h)

Emission

(kg)

1 Travel

costs

−67978 112500 48061 2040 6914 113163 10300 0 4945 147146

2 Transfer

costs

−34695 112500 50677 1320 8890 74925 11383 0 3416 162611

3 Storage

costs

−47333 112500 59413 2400 4814 81063 12144 0 3482 173483

4 Delay

costs

1590 112500 63648 1560 9317 21439 14947 0 873 213529

5 Carbon

tax

−67375 112500 72030 2040 8367 89363 8076 0 3773 115366

6 Total

costs

4946 112500 63282 2100 5983 21439 14750 0 873 210711

7 Total

profits

13107 87500 53249 1980 4743 3364 11057 1 150 157957

5.2 Comparing Deterministic, Stochastic, and Robust Approaches

To investigate the differences between solutions generated by the CCP, DA, and
RA under travel time uncertainty, we set the mean of travel times μs = ts for
s ∈ S, standard deviation of travel times σs = 0.1ts for s ∈ S\Struck, σs = 0.5ts
for s ∈ Struck. Besides, we let 0.9ts be the fixed lower bound for travel times of
service s ∈ S. Under the realization of travel times as shown in Table 5, barge
service 2 is delayed, the transfers between barge service 2 and ship service 15 and
16 are therefore becoming infeasible. Regarding the CCP, we set the confidence
level α = 0.7, and therefore φ−1(α) = 0.524, φ−1(1 − α) = −0.524.

Table 5. The realization of travel times.

Service. ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Actual travel time 98 99 89 101 40 36 23 21 18 15 7 7 3 4 631 537 384 657

Actual departure time 144 250 144 241 144 144 1010 750 910 750 350 350 350 518

Actual arrival time 242 349 233 342 184 180 1028 765 917 757 981 887 734 1175

Due to travel time uncertainty, the planned profits are different from the
actual profits. Table 6 shows the results received before the realization of travel
times. We note that the DA generates the highest planned profits with the lowest
number of rejections and the highest delay in deliveries. In comparison, the CCP
takes into account the trade-off between feasibility and profitability. It rejects
requests 3 to 6 which might be non-profitable under travel time uncertainties
and chooses rail service 6 instead of barge services 3 and 4 for request 2. The
RA is the most conservative approach which has the lowest planned profits
and the highest number of rejections. Regarding the results received after the
realization of travel times, Table 7 shows that the DA generates the lowest actual
profits due to infeasible transshipments at Shanghai Port for requests 4 and 6.
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Table 6. Results received before the realization of travel times.

Approaches Planned Rejection Delay Planned itinerary of requests

profits (TEU-h) 1 2 3 4 5 6

DA 13107 1 150 3,4,17,10 16 4,17,14 2,15 1,2,15,9

CCP 6553 4 0 6,17,10 16

RA 4217 5 0 16

Table 7. Results received after the realization of travel times.

Approaches Actual Infeasible Rejection Delay Actual itinerary of requests

Profits Transshipments (TEU-h) 1 2 3 4 5 6

DA −438 2 1 911 3,4,17,10 16 4,17,14 2,18 1,2,18,13

CCP 6533 0 4 0 6,17,10 16

RA 4151 0 5 0 16

In comparison, the CCP has the highest actual profits thanks to the rejection of
non-profitable requests 4 and 6. Compared with the DA and the CCP, the RA
is the safest approach which avoids the possibility of infeasible transshipments
but loses the opportunity to get higher profits.

The difference among the deterministic, stochastic, and robust solutions is
graphically represented in Fig. 4. Under the DA, request 5 is rejected; requests
1 and 3 with reefer shipments are assigned to the ELB; requests 2, 4, 6 with
dry shipments are assigned to the SCR and NSR. Due to travel time varia-
tions, requests 4 and 6 switch from service 15 to 18 at Shanghai Port. Under
the CCP, request 1 arrives Chongqing terminal by using rail service 6 which is

Fig. 4. Comparison of deterministic, stochastic and robust solutions.
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faster than barges services 3 and 4. Under the RA, all the requests that require
transshipments at terminals are rejected.

6 Conclusions and Future Research

In this paper, we investigated a stochastic shipment matching problem in global
intermodal transport. The problem is stochastic since the uncertainties in travel
times are incorporated. We developed a chance-constrained programming (CCP)
model to address travel time uncertainties. We conducted experiments to val-
idate the performance of the CCP in comparison to a deterministic approach
(DA) in which decisions are made based on estimated travel times and a robust
approach (RA) in which decisions are made based on maximum and minimum
travel times. The experimental results indicate that the CCP increases total
profits by 1591.55% in comparison to the DA and by 57.38% in comparison to
the RA under the designed case.

This research can be extended in several promising directions. First, due
to the computational complexity, we only conducted small experiments in this
paper, future research can be extended to large-scale instances by designing
efficient algorithms that benefit from parallelization and distributed structure.
Second, this paper used fixed settings of parameters, conducting sensitivity anal-
ysis of parameters is a promising future research direction. Third, due to the
fluctuation of freight rates in spot markets, future requests are quite uncertain.
Combining travel time uncertainty with spot request uncertainty in global inter-
modal transport planning deserves further research.
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