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ABSTRACT

Motivated by the trend of realizing full screens on devices such as
smartphones, in this work we propose through-screen sensing with
visible light for the application of fingertip air-writing. The system
can recognize handwritten digits with under-screen photodiodes
as the receiver. The key idea is to recognize the weak light reflected
by the finger when the finger writes the digits on top of a screen.
The proposed air-writing system has immunity to scene changes
because it has a fixed screen light source. However, the screen is a
double-edged sword as both a signal source and a noise source. We
propose a data preprocessing method to reduce the interference of
the screen as a noise source. We design an embedded deep learning
model, a customized model ConvRNN, to model the spatial and
temporal patterns in the dynamic and weak reflected signal for
air-writing digits recognition. The evaluation results show that our
through-screen fingertip air-writing system with visible light can
achieve accuracy up to 91%. Results further show that the size of
the customized ConvRNN model can be reduced by 94% with less
than a 10% drop in performance.
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1 INTRODUCTION
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Figure 1: Proposed through-screen visible light sensing (tar-
geted application in this work: air-writing digit recognition).

The COVID-19 pandemic has changed our lifestyles. We are
trying to avoid physically touch objects in our daily lives, such
as avoiding touching the buttons in the elevator and ATM with
our fingers. In this case, touchless mid-air controllable devices
are becoming more and more popular. Researchers have studied
deploying cameras to realize touchless interactions such as air-
writing digit recognition [1]. Although promising, using cameras
brings high energy consumption and privacy safety issues. Other
researchers combine the ubiquitous ambient light to realize the
preliminary air-writing digit recognition [6, 13, 14]. The principle
of these systems comes from identifying the shadow caused by the
moving object that blocks the light source. However, this application
scenario faces a big challenge: the light sources in real life is complex
and changeable, making these systems not that reliable in many
practical scenarios. Although some lightweight algorithms in [13,
14] and machine learning methods in [6] have been proposed to
improve the robustness of the recognition system based on ambient
light, but still, they cannot cover all ambient light scenes.

Recently, the new trend toward narrow-bezel and even no-bezel
(i.e., full-screen) smartphone designs to deploy more sensors (am-
bient light sensor, camera) under the screen. This motivates us to
leverage the screen as the light source and the under-screen sensors
as the receiver to enable through-screen sensing such as air-writing
recognition by using the reflection of the finger on the screen light,
as depicted in Figure 1. The benefit of this design is that the screen
light source is fixed and that no additional external light source is
required. Nevertheless, we still face several challenges as described
below.
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Firstly, people from different regions of the world write digits
with different shapes, which significantly increases the types of dig-
its to be recognized. Currently, there is a dataset LightDigit [8] for
air-writing digit recognition based on blocked light. However, the
recognition based on blocked light and reflected light is different. In
the blocked light scenario, the receiver detects the shadow changes
caused by the finger’s movement that blocks the light source. In the
reflected light scenario, the receiver recognizes handwritten digits
by detecting the light emitted from the light source to be reflected
by the finger. In this work, we study through-screen air-writing
digit recognition where we exploit the reflection of light by our
fingers. We propose a signal flip method for the data collection and
this could allow us to extend and reuse the LightDigit dataset.

The second challenge is that the screen is not only a fixed light
source for the through-screen air-writing system but also a strong
noise source. Theoretically, there should be no change in the bright-
ness of the screen at full brightness. However, from our experiments,
this is not always true. We often observe that the brightness of the
screen fluctuates sharply even at full brightness. Thus, we pro-
pose a data preprocessing method to reduce the interference of
screen noise source. The process is performed by detecting and
removing useless abnormal values in the signal, smoothing and
filtering the residual interference signal to recover the weak signal
characteristics of the light reflected by the finger.

The third challenge we encounter is recognizing handwritten dig-
its from weak reflected signal characteristics on resource-constrained
embedded devices. In this work, we design an embedded deep learn-
ing model ConvRNN, which is a customized convolution-recurrent
neural architecture for better control of pattern recognition. Our
model can learn the spatial and temporal patterns in the dynamic
and weak reflected signal for air-writing digits recognition. Further,
we apply knowledge distillation for model compression to meet
with the limited resources on embedded devices.

2 BACKGROUND
2.1 Transparent OLED screen

The OLED screen has a sandwich structure, where is an organic
light-emitting layer between the anode and cathode. The organic
light-emitting layer emits light on both sides, and the anode usually
uses transparent material to display the contents of the screen.
When the cathode is also made of a transparent material such as
transparent indium tin oxide, a transparent screen can be formed.
Meanwhile, external light can pass through the entire OLED screen.

2.2 Air-writing digit with reflected light

When deploying simple photodiodes to recognize air-writing digits,
the relative position of fingers and light source is paramount. It can
be divided into two cases according to blocked light and reflected
light (cf. Figure 2). When it comes to blocked light, the light source
is generally placed above the finger (ceiling, high wall area), and
then the photodiode at the bottom place (table, low wall area) will
be utilized to sense the shadow changes caused by the movement
of the finger blocking the light source; When it comes to reflected
light, the light source is usually placed between the finger and the
receiver, one application scenario is to surround a circle of LEDs
on the sensing area as light sources [11]. Thus, the photodiode of
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Figure 2: Air-writing digit based on blocked light (left) and
reflected light (right).

the sensing area can detect the light emitted from the light source
to be reflected by the finger. However, there is a special scene that
uses sensors under the newly emerging and popular full-screen
and transparent OLED screen as the receiver and the screen as the
light source for the reflected light in the sensing scene. As shown in
Figure 1, the screen not only serves as a signal source of reflected
light from the finger but also as a fixed strong interference source.
It also brings us great challenges in air-writing digit recognition.

2.3 The LightDigit dataset

Recently, there is a new air-writing digits dataset LightDigit [8] by
an individual going through 70000 images in the MINTS dataset
[5] and replicating them with air-writing and ambient light to
obtain the time-series information. Especially, the air-writing of
each type is simulated 120 times, and each time lasts for 5 seconds.
As a result, a dataset with 20880 instances of air-writing digits is
built in LightDigit. Each instance consists of 9 X 100 X 5 = 4500
points (number of channels X sampling frequency X seconds). Also,
five feature dimensions for air-writing digits are defined as: Height
(small and large), Width (small and large), Inclination (vertical and
inclined), Shape (27 shapes for digits 0-9), and Time Sequence. Thus,
there are a total of 174 different types of air-writing digits for the
digits 0-9 in LightDigit by combining the first four features and
removing some impossible types of handwritten numbers.

2.4 Embedded deep learning model

Machine learning provides a variety of methods to automatically
capture feature patterns from massive data. In particular, Deep
learning is expert at extracting feature representations from low-
level features (e.g., pixels) through multi-layer neural networks.
Specialized neural architectures have been designed for represen-
tation learning from different types of data, e.g., convolutional
networks for learning spatial features from image data [12] and
recurrent networks for learning temporal features from time series
data [16] [4] [7]. The latest development in further optimization of
network architectures includes, e.g., the residual connection [10] to
improve the effectiveness of model training, the model compression
technologies [9] [2] to lightweight the model size and the attention
mechanism [3] to focus selectively on certain relevant parts of the
input. Our work presents a working embedded sensing system for
air-writing digits recognition, with a dataset for model training, one
deep learning models, that are compressed by the state-of-the-art
knowledge distillation method.
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Figure 3: The hardware prototype of the proposed through-
screen visible light sensing of air-writing digits.

3 SYSTEM DESIGN

3.1 System architecture

We design an embedded sensing system to recognize mid-air hand-
written digits by utilizing the screen light without any additional
light source. The key enabler of through-light sensing is simple: the
reflected screen light can pass through the transparent OLED screen
and could be detected by the photodiodes. The user moves his/her fin-
ger above the screen to draw digits, reflecting the light emitted by
the screen. Then the reflected light will go through the transparent
screen and can be detected by the under-screen photodiode array
with the existing screen light interference. Thus, the whole system
consists of four parts: transparent OLED screen, moving fingers, pho-
todiode (PD) array, and sensing algorithm, as shown in Figure 3. The
received superimposed light signal is translated by our designed
embedded deep learning model and output the recognized number
on the monitor.

o Transparent OLED screen. The screen emits light to the fin-
gers and generates corresponding reflected light, which can
be cast to the sensor through this transparent screen.

e Moving fingertips. It is the object whose trajectory will be
sensed. When a person draws a digit with fingers in the front
of the transparent OLED screen, the movement of the finger
will reflect the light emitted from the OLED screen towards
the photodiode array. The corresponding dynamic reflection
light, implicitly carrying the shape of the digit, will be cast
on the photodiode array.

o Photodiode array. We leverage M photodiodes, that are placed
in a VM x VM array, to detect the dynamic shadows. In each
sampling slot, the M photodiodes are sampled sequentially,
and the sampled data is sent to the sensing algorithm as the
input for recognizing the air-writing digit.

o Sensing algorithm. We design an embedded deep learning
model to recognize the air-writing digits. This part includes
the method we design to pre-process the captured data.
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Figure 4: The comparison of datasets: (a) blocked light dataset;
(b) reflected light dataset.
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Figure 5: The captured visible light signal at the one of the
photodiodes: (a) When the screen is full brightness (no finger
at the top of the screen); (b) When the screen is full brightness
and digit ‘0’ is handwritten in the air; (c) When the screen
is full brightness and digit ‘0’ is handwritten in the air (pro-
cessed data).

3.2 Data collection and processing

The dataset is mainly composed of two parts: blocked light dataset
and reflected light dataset. In the blocked light dataset, the dataset
mainly contains the characteristics of shadow (Troughs in the re-
ceived light signal) changes caused by users’ finger movement to
block the light source due to the light source is above the finger.
However, in the reflected light dataset, since the light source is
between the finger and the receiver, the received superimposed
light signal (Crests in the received light signal) is enhanced due
to the composed of the reflected light of the finger and the light
emitted by the screen. The comparison of two kinds of datasets
is shown in Figure 4. Currently, there is a LightDigit dataset for
mid-air handwritten digit recognition. It contains a total of 20880
data.

As for the reflected light dataset, we collected from 3 recruited
participants, and each digit gesture of participant in the dataset
takes a fixed time of 5 seconds to be collected. In order to generalize
and reuse the existing blocked dataset, we have made the following
transformation to collected data. We denote the raw data stream
from channel m as a vector x,;, = [xm,1, Xm,2, - * , Xm,n] and create a
zero vector with the same time step as Oy, = [Om,1, Om2, -+ *  Omynl.
Next, we get a flipped vector (O, — x,,) and we use minmaxscaler
tool to obtain normalized flipped vector ym n = [Ym,1, Ym,2, - - » Ym,n]
to set the same light intensity range for subsequent signal process-
ing: i) Outliers reset to remove significantly abnormal values due
to improper operation; ii) Data smoothing to reduce the output
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fluctuates caused by noise interference; iii) Action signal synchro-
nization and extraction to extract the effective signal segment from
the data stream. Especially when the screen is at full brightness,
the received signal does not remain stable but fluctuates sharply
due to the instability of the control circuit current as shown in
Figure 5(a), which cannot be caught by the naked eye but can be
detected by our designed photodiode array. Compared with the
stable ambient light signal, the screen signal can be regarded as a
severe noise interference signal for the reflected weak light signal.
Also, the screen light is used as both a noise source and a light
signal source, the intensity of which is several orders of magnitude
of the intensity of the reflected light from finger movement. Thus,
we first consider removing the abnormally downward peak point
of the screen (The lower part of the sampled signal in Figure 5(b)).
Note that because the screen light is also used as the light signal
source, the reflected light signal from the finger is also very weak at
this time, and it is not enough to support the detection of the char-
acteristics of the finger movement. Similarly, when the screen light
signal fluctuates at the average intensity, the stronger/weaker of the
screen noise signal will also make the reflected light brought by the
finger stronger/weaker. Therefore we need to smoothly filter the
interference of the screen noise signal (The upper part of the sam-
pled signal in Figure 5(b)). We then consider using a Savitzk-Golay
filter [17] is shown as follows:

+w
Um1 = Z kiyiyi »

i=—w

1

where w represents the window size, and k; represents the smooth-
ing coefficient. Here, to remove the interference noise signal of the
screen as much as possible and obtain more stable filtered data, we
set a large smoothing coefficient k;. As shown in Figure 5(c), we can
observe some weak reflected light characteristics caused by mid-air
digital handwriting from the processed data. The next step is to
integrate these processed data containing feature values into a data
format as Dyxn = [§195 - - - Y] and input into our customized
neural network.

To evaluate our system, we consider three realistic scenarios:

1) Cold-Start: The training set is the LightDigit dataset [8], and
the test set contains is the newly collected reflected light dataset.
Without any prior knowledge of the reflecting light within the
training set, this scenario is extremely challenging and can help
test the utility of the reflected light dataset.

2) Within-Subjects: Considering that the designed system may
be used in some large organizations with fixed user groups, the
system has the authority to access the handwritten digital database
of users. Thus, we shuffle the newly-collected reflected data from
each participant and split it into training (80%) and test (20%) in
our experiment. In addition, the training set is augmented with the
LightDigit dataset.

3) Between-Subjects: Here, a typical and tougher scenario where
the system has got to recognize digits from participants never
seen historically is considered to evaluate system performance
in some places that often receive external visitors. In this scenario,
we split the reflecting light data by participants, using data from
67% people for training and therefore the rest 33% for the test
dataset. We build three versions of the training-test data, each with
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a random participant within the test set, which enables us to use
cross-validation to get stable leads to the experiment. Similarly, the
training set is additionally augmented with the LightDigit dataset.

3.3 Embedded deep learning model

Next, we will introduce our customized deep learning model. It
takes the previously processed data Dy n as input to output the
recognition results of air-writing digits. The model is mainly de-
signed according to the characteristics of data (e.g., time, spatial,
local, global characteristics, etc.). In addition to model design, we
also consider model compression technology to make our model
more lightweight.

3.3.1 Customized ConvRNN model. Overall, our data is a long
time series with temporal dependencies among the time points.
Recurrent neural layers, e.g., GRU [4], can capture long-term tem-
poral features; they apply the gating mechanism to balance the
importance of past time step information and current time step
information. Such layers are therefore suitable for our scenario.
Note that in theory, a bidirectional recurrent neural layer is more
suitable for our recognition task. For example, many people write
the digit ’5’ in two directions, i.e., from the top to the bottom and
vice versa, or write the digit 0" clockwise and counterclockwise.
Yet, our empirical results show that the bidirectional GRU does not
give higher performance than a uni-directional one. This is likely
due to the additional information in data that contains strict one-
directional patterns, e.g., the information from the period when the
finger enters the sensor board to the beginning of writing the digit
and the information from the period when finger ends writing to
moving out the sensor board. Apart from GRU, we further consider
convolutional layers to capture the spatial pattern of data across
the M channels. We divide the multi-channel data Dp;xn into k
chunks with D Mx N and each chunk is connected with a convolu-

tion neural layer. We then use a pooling layer to synthesize the data
information, and connect it to the recurrent layer mentioned earlier.
The output of the recurrent layer will be fed to the full connection
layer; and then through the softmax layer, we get the recognition
result, the probability prediction of digits 0-9. The overall model is
shown in Figure 6.

3.3.2  Model Compression. We compress the customized ConvRNN
model using knowledge distillation. The key idea is to transfer the
knowledge learned from complex models to lightweight models,
while improving the performance of the lightweight models as
much as possible without increasing the number of parameters.
The original complex model is commonly known as the teacher
model and the lightweight model is commonly known as the student
model. The transfer of knowledge from the teacher model to the
student model is done by leveraging the output of the teacher model
as additional supervision signals to train the student model. The
learning objective of the student model becomes

Loss = CE(y, p) + aCE(q, p) , (2)
where CE denotes cross-entropy; CE(y, p) measures the loss be-
tween the true label y and the predicted label p from the student
model, and CE(q, p) measures the loss between the pseudo label
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Figure 6: Architecture of the customized ConvRNN model.

q from the teacher model and the predicted label p from the stu-
dent model; & is a hyperparameter that controls the strength of
knowledge distillation.

4 PERFORMANCE EVALUATION

4.1 Experiment setup

Preparation of collecting the reflecting dataset. The LightDigit dataset
[8], a blocked light dataset, is regarded as the primary training
dataset to recognize the digits data drawn under reflected light
in our system. In this case, we need to adjust the finger posture.
The reason is that when we write digits with our fingers under
blocked light, in most cases, the full shadow of the fingers will be
projected to the photodiode array by the light source. To emulate
this effect, when we write digits under reflected light, we will spread
our fingers as horizontally as possible, as shown in Figure 2.
Hyperparameter setting. Optimal hyperparameters are searched
separately for each scenario. We empirically set optimal parameters
based on a head-out validation set containing 10% of the test data
on Within-Subjects and Between-Subjects scenarios. For the Cold-
Start scenario, we use 10% of the training set (i.e., the LightDigit
set) as the validation set to strictly simulate the situation where
no real data is accessible by the system. For the learning rate, we
apply a grid search in {107, 1073,1072, 107}. The number of filters
in CNN and that of hidden units in GRU are explored from {8, 16,
32, 64, 128, 256} and {32, 64, 128, 256, 512, 1024}, respectively. Model
training is performed using Adagrad [15] with mini-batches of size
128. The dropout rate is selected from the set {0.0, 0.1, 0.2, 0.3}.
Metrics. Accuracy and Macro F1-score (MF1s) [18] are chosen
to evaluate the system performance. Accuracy illustrates the per-
centage of correct classifications over all the data instances. MF1s
specifically considers the performance concerning individual digit
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classes and takes into account class imbalance by weighting equiv-
alently the results from different classes before aggregation.

4.2 Impact of the finger height

Because the light emitted from the transparent OLED screen to
the finger will be diffusely reflected to the photodiode array by
the finger, the height of the finger will determine the range of
diffuse light. In order to explore the best diffuse reflection range, we
experimented with the height of the finger. In order to find the best
finger height, we increase 5 mm from close to the screen (0 mm)
until we find the finger height with the highest performance. An
implementation detail is that we find a fixed participant to test the
performance under Within-Subjects and Cold-Start scenarios with
different heights of fingers. Note that we didn’t use the Between-
Subjects scenario because there are too few people to do cross
validation. After taking the models under these two scenarios to
train and adjust parameters respectively, the final results are shown
in Table 1. We can clearly observe that the accuracy of Cold-Start
and Within-Subjects scenarios increases with the rising of the finger
height before 10 mm; After 10 mm, the accuracy will drop suddenly.
This is mainly because if the finger height becomes too high, the
range of light reflected by the finger will increase, which will lead
to the main features of air-writing digits becoming more and more
blurred. In this case, we use 10 mm as our default finger height.

4.3 Performance in all scenarios

We train the model and adjust the hyperparameters for each sce-
nario, and the final results are shown in the Table 2. First, by observ-
ing the performance of the model under the Cold-Start scenario,
it has achieved about 61% accuracy and MF1 score. Although this
value is not particularly high, considering the huge difference be-
tween our main training dataset (blocked light dataset) and test



AlChallengeloT 21, November 15-17, 2021, Coimbra, Portugal

Table 1: Performance of ConvRNN under different finger’s
heights (averaged over 10 runs in each configuration result).

Height Cold Start Within Sub.
Accuracy MF1s ‘ Accuracy MF1s
0 mm 37.91% 0.3252 81.67% 0.7658
5 mm 56.61% 0.529 80.36%  0.7974
10 mm  60.92%  0.6037 | 91.41%  0.9123
15mm  2836%  0.2664 | 58.21%  0.5859

Table 2: Performance of ConvRNN in three scenarios (aver-
aged over 10 runs in each configuration result).

Scenarios ConvRNN
Accuracy MF1s #Parameters
Cold Start 60.92% 0.6037 1257482
Within Sub. 91.41% 0.9123 1157386
Between Sub. 72.68% 0.7030 1257482

dataset (reflected light dataset), we can prove the utility of the
blocked light dataset. Then taking a look at the model in the Within-
Subjects scenario, and the accuracy has reached more than 91%,
which verifies the effectiveness of our model in processing this kind
of time series data. The performance of the Between-Subjects sce-
nario is between the former two scenarios, about 72%. We did error
analysis by generating a confusion matrix and dynamic graphs of
data and found that although we chose the best height of fingers
as much as possible, the light emitted from the transparent OLED
screen would still be diffused to many photodiodes, resulting in an
increase in the misclassification rate. We leave this problem to be
solved in the future.

As for parameter quantity, Cold-Start and Between-Subjects
scenarios share the same set of hyperparameters, and the Within-
Subjects scenario has fewer CNN filters. This proves that the huge
variation between datasets leads to more filters to learn more ab-
stract features.

4.4 Effectiveness of model compression

To evaluate the effectiveness of knowledge distillation skill on the
customized deep learning model, we gradually reduce the number
of parameters of the layer which utilize plenty of hidden units. In
the model, since the GRU layer usually applies most neural units
to store previous information, we mainly reduce the weight of the
model by adjusting the number of neural units of the GRU layer.
Figure 7 shows the comparison of the accuracy of the model
after distillation and that of the non-distillation under the same
amount of parameters. Note that in the performance of the previous
Subsection 4.3, the well-trained models have 512 hidden units, so
the number of hidden units in this subsection is reduced from 256
to 16, halved in each step. The corresponding parameter quantities
are shown in Table 3. By looking at the distillation performance of
Cold-Start and Between-Subjects scenarios, their performance is
maintained in a stable state when the number of hidden units is big-
ger or equal to 128. This can be well explained by observing the data
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Figure 7: Performance of the customized ConvRNN: distilled
vs. non-distilled. The number of parameters under different
numbers of hidden units is shown in Table 3.

Table 3: The number of parameters (No. params) for different
number of hidden units (No. units) in ConvRNN.

No. units | 256 128 64 32 16

Cold Start | 436746 173834 79242 41162 24426
Within Sub. | 385802 147466 65162 33226 19562
Between Sub. | 436746 173834 79242 41162 24426

compositions in three scenarios. There is bare or no reflected light
data in the training datasets of Cold-Start and Between-Subjects
scenarios. In this case, almost all the information obtained by the
models are from the blocked light dataset. This can easily cause
the model to learn a lot of less valuable information, so the per-
formance of the model will not fluctuate after removing this less
valuable information. If we sacrifice 10% performance, we find that
the number of hidden units will be reduced to 64, and about 94% of
the parameters will be reduced in three scenarios. The reduction for
the Within-Subjects scenario is completely acceptable because of its
high accuracy. For the other two scenarios, we prefer to select 128
hidden neural units, which will reduce the number of parameters
by 86%.

5 CONCLUSION

In this work, we designed a through-screen air-writing digit recog-
nition system based on reflected light. The main working principle
is that the transparent OLED screen emits light as the light source,
and then part of the reflected light from the near-range finger will
be perceived by the under-screen photodiode array as input to the
ConvRNN deep learning model to do the digit recognition. We
utilize the existing blocked light dataset LightDigit to train the pro-
posed ConvRNN model and follow our proposed data preprocessing
procedure to make collected data suitable for our test set. Finally, we
validated the system performance by carrying out experiments and
performing analyses in different scenarios. Also, the effectiveness
of knowledge distillation in model compression is verified.
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