
 
 

Delft University of Technology

Improving the Evolutionary Optimization of Interplanetary Low-Thrust Trajectories Using a
Neural Network Surrogate Model

Stubbig, L.J.; Cowan, K.J.

Publication date
2021
Document Version
Final published version
Published in
Advances in the Astronautical Sciences

Citation (APA)
Stubbig, L. J., & Cowan, K. J. (2021). Improving the Evolutionary Optimization of Interplanetary Low-Thrust
Trajectories Using a Neural Network Surrogate Model. In R. Wilson, J. Shan, K. Howell, & F. Hoots (Eds.),
Advances in the Astronautical Sciences (Vol. 175). Article AAS 20-658 (Advances in the Astronautical
Sciences; Vol. 175).
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



5127

AAS 20-658 

IMPROVING THE EVOLUTIONARY OPTIMIZATION OF 
INTERPLANETARY LOW-THRUST TRAJECTORIES USING 

A NEURAL NETWORK SURROGATE MODEL 

Leon Stubbig* and Kevin Cowan† 

Building on recent advances in the fields of low-thrust trajectory optimization based on shaping
methods, Artificial Neural Networks, and surrogate models in Evolutionary Algorithms, an
investigation into a novel optimization routine is conducted. A flexible Python tool to evaluate
linked trajectories in a two-body model based on hodographic shaping is implemented and
used to develop a novel evolutionary optimization approach where a Genetic Algorithm is
assisted in finding new candidate solutions by an online surrogate. The algorithm and different
surrogate designs are experimentally investigated on two example problems based on the Dawn
trajectory and the GTOC2 problem. Employing the surrogate yields new candidate solutions
that improve the population’s fitness especially when the surrogate is used to approximate
the shaping computation. Additionally, the use of a surrogate pretrained on a general data
set of low-thrust transfers is tested and found to considerably improve the initial quality of
the model, meaning that more good candidate solutions are found early on, accelerating the
algorithm’s convergence.

INTRODUCTION

Low-thrust propulsion systems have gained popularity in recent years not only for Earth-orbiting satellites

but also for interplanetary missions where their increased efficiency enables missions previously not feasible.

Examples include NASA’s Dawn mission which concluded in 2018 after a post-launch velocity increment,

ΔV , of almost 11 km s−1, the highest of any spacecraft flown to date.1 The design of low-thrust trajectories

is more complex than for chemically propelled spacecraft because low-thrust engines have to be operated

almost continuously to accumulate the required ΔV . The change in velocity can therefore no longer be
approximated as a discrete event and continuous methods mainly derived from optimal control theory have to

be employed.2 As these methods are computationally intensive and require a good initial guess for convergence,

so-called shaping methods have been developed specifically for the preliminary design phase. The first shape

that was recognized to be a suitable representation of a low-thrust transfer was the exponential sinusoid,3

followed by a variety of other shapes and methods. Shaping methods efficiently generate transfers by assuming

an analytical function that satisfies the applicable boundary conditions and evaluating the dynamics of the

problem afterwards, avoiding excessive iterations and computation time. The generated transfers are inherently

sub-optimal but are very useful as an initial guess for local optimization and, depending on the chosen shaping

function, have been shown to yield realistic thrust profiles well suited for a preliminary exploration of the

design space.

The ambitious nature of modern space missions, which often involve multiple flybys, target bodies, and

science goals, further complicates the preliminary mission design phase. Multiple trajectory phases have to be

linked, greatly increasing the number of mission concepts that have to be considered. The total missionΔV
then depends on each phase being flown as efficiently as possible and every improvement in one phase allows

for an increase in the total science return, e.g. by increasing the length of scientific observations at another
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target. A variety of evolutionary optimization algorithms are successful in finding global optima.4,5 This class

of algorithms does not require gradient information and is built around populations of candidate solutions that

are evaluated and ‘evolved’ to create new, more capable solutions. By balancing local and global exploration

chances are high that the global optimum can be found. Here, a classical Genetic Algorithm (GA) is employed

to develop the approach, which can be extended to other population-based algorithms in future work.

The goal of this work is to improve the preliminary optimization of linked low-thrust trajectories by

including an approximate model in evolutionary optimization. This approach is known in literature as surrogate

modeling.6 The main idea is to make use of previous fitness evaluations by constructing an approximation of

the computationally expensive fitness function. The model can potentially be used at a variety of places in the

optimization algorithm, the most straightforward being the replacement of the original, costly fitness function

for parts of the evolution. Another possibility is to evaluate the surrogate for new candidate solutions to be

fed back into the original population. There are many options to construct the surrogate, ranging from simple

linear fits to intricate statistical models. Here, we investigate the use of Artificial Neural Networks (ANNs). In

the wake of the recent boom in Machine Learning (ML) ANNs have been heavily developed7,8 and represent a

promising approach to extract the maximum of information from the available data set.

The paper is structured as follows: First, the astrodynamical model used to represent the individual low-

thrust transfers and the approach to building linked trajectories are introduced. Then, the data-driven surrogate

approach based on ANNs is presented. The global optimization algorithm is shown in the following section,

showcasing several possible applications for the surrogate. Finally, the constructed algorithm is applied to two

example problems and conclusions are drawn.

ASTRODYNAMICS MODEL

In this work, the hodographic shaping method9 is employed to represent interplanetary low-thrust transfers.

This method was developed to facilitate the rapid, preliminary computation of low-thrust trajectories. In

comparison to other shaping methods, it is particularly suited for the development of three-dimensional (3D),

linked, trajectories because it allows to satisfy 3D boundary conditions at departure and arrival on position,

velocity, and Time of Flight (ToF). It therefore enables the straightforward construction of multi-phase

trajectories when combined with functions to evaluate ephemerides and flybys in a linked conics approach,

see the example trajectory in Figure 1. We implemented the time-driven version9 of the shaping method in

a software tool for preliminary low-thrust mission design that was written in Python to provide an interface

to the available stack of optimization and data science/ML packages. This section presents the implemented

astrodynamics models that can be flexibly combined to build linked trajectories.

departure planet
x0, t0,V∞

shaped transfer
x0,x1, N1

→ ΔV1

swingby
x1, t1, rp, β
→ x′

1

shaped transfer
x′
1,x2, N2

→ ΔV2

rendezvous
x2, t2

Figure 1. An example trajectory with one flyby and rendezvous
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In hodographic shaping, the low-thrust trajectory is represented by three velocity functions in cylindrical

coordinates. Each of these velocity functions V� describes the velocity’s time evolution in this direction (er,
eθ, or ez) and is assembled by a variable number of analytically integrable and differentiable base functions vi
which are multiplied by shape coefficients ci:

V� =

n∑
i=1

civi(t), (1)

where t is time and n is the number of base functions. Radius r, vertical distance z, and polar angle θ can be
computed from the respective base function by analytical integration. Similarly, the respective accelerations

are calculated by analytically differentiating the base function. The values of 3 coefficients per velocity

function are determined from the boundary conditions on position, velocity, and ToF, while any additional free

parameters have to be chosen by an optimization algorithm. Here, we follow the original implementation9 in

using a total of 6 free parameters, i.e. n = 5, and the recommended base functions∗. The hodographic shaping
method then computes the ΔV necessary to fly a transfer assuming a two-body system and taking the initial

and final state vectors, the number of heliocentric revolutions N , and the ToF as input.

The orbital models are kept simple and follow the capabilities (and limitations) of the chosen shaping

method in a linked conics approach. The orbit’s initial characteristic energy C3 provided by the launch vehicle

is applied to the departure planet’s velocityVp to compute the initial velocity condition of the interplanetary

transferV1:

V∞ =
√

C3, V∞ = V∞

⎛
⎝sinϕ cos θ1
sinϕ sin θ1

cosϕ

⎞
⎠ , V1 = Vp +V∞, (2)

where V∞ is the spacecraft’s hyperbolic excess velocity and azimuthal angle ϕ and polar angle θ1 denote
the impulsive shot’s direction in spherical coordinates attached to the spacecraft. As the Sphere of Influence

(SOI) is small in comparison to the scale of interplanetary trajectories, its size is assumed to be negligible.

Additionally, the launch vehicle’s burn time is assumed to be short, leading to the used approximation where

any V∞ is applied instantly as an impulsive shot at the departure position.

Planetary flyby maneuvers are implemented in a similar fashion.10 The flyby planet’s SOI is assumed to be

small and the change in velocity is assumed to happen over a short time. To compute the spacecraft’s velocity

after the flyby its heliocentric velocity in Cartesian coordinatesVin at the location of the flyby is projected

into the planetocentric reference frame:11

Ṽin = Vin −Vp, (3)

where the tilde denotes velocities in the Cartesian planetocentric frame. The angle between incoming and

outgoing planetocentric velocity, the turn angle δ, is then computed from the eccentricity of the flyby hyperbola

e:

e = 1 +
rp
μp

Ṽ2
in, δ = 2arcsin

(
1

e

)
, (4)

where rp is the periapsis of the flyby hyperbola and μp is the planet’s gravitational parameter. The planetocen-

tric outgoing velocity Ṽout is then computed from the turn angle and the orientation of the flyby plane β, the
latter being an input parameter that is measured in the B-plane between the aiming point B, the planet, and a
plane parallel to the ecliptic passing through the planet:11

Ṽout = Ṽin (i cos δ + j cosβ sin δ + k sinβ sin δ) , (5)

where i, j, and k are unit vectors defined as:

i =
Ṽ

|Ṽ| , j =
i×Vp

|i×Vp| , and k = i× j. (6)

∗Vr = Vθ = C Pow Pow2 PSin05 PCos05 and Vz = CosR5 P3CosR5 P3SinR5 P4CosR5 P4SinR5
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Finally, the outgoing velocity is projected back into the heliocentric reference frame:

Vout = Ṽout +Vp, (7)

yielding the spacecraft’s Cartesian velocity in the heliocentric frameVout. Powered flybys are not considered

as the low-thrust propulsion system is assumed to have a negligible effect on the spacecraft’s state during the

relatively short duration of the flyby.

These models are complemented by functions to convert positions, velocities, and state vectors between the

cylindrical reference frame used during shaping and the Cartesian frame employed for flybys and impulsive

shots. Ephemerides are pulled from NASA’s planetary data system12 using ESA’s Pykep package∗. Dwell
times at planetary bodies are represented by an orbit following behavior. Here, the spacecraft is assigned the
same state vector as the body it is visiting while not expending any energy.

MACHINE LEARNING MODEL

During the evolution of a population-based optimization algorithm the fitness function is evaluated many

times. In the conventional use case these data points get discarded as soon as a population member is replaced.

Some algorithms exist where the use of a history of previous evaluations has been proved to be beneficial.

For example, in Particle Swarm Optimization (PSO) each particle keeps track of the best previously visited

position in the search space which is then used to guide its path in the following generations. The classical GA,

as well as many other optimization algorithms, does not employ such a feature and we manually construct a

surrogate model to make use of the data points generated by the continuous evaluation of the fitness function.

As mentioned before, there is a variety of ways to construct a model from data. Previous research on

surrogate assisted optimization has mainly been done on polynomial models, Gaussian Process Regression

(Kriging), Artificial Neural Networks (ANNs), and Support Vector Machines.13 After fitting the model to

the available data set it provides a means to approximate the fitness function of new solution vectors. In

this section, the approach to building this model is described, while the following section showcases the

optimization approach and the model’s use case therein.

A data set generated by the application of the astrodynamics model described in the previous section will

generally consist of a set of parameters describing the trajectory (Departure and arrival dates, V∞, ToF, flyby

parameters) related to figures of merit (ΔVi, ΔVtotal, max. thrust). While it is necessary to reduce the size

of the input vector as much as possible for the optimization run, i.e. to avoid redundant inputs, this is not

automatically true for the ML model. For example, a linked trajectory’s timing is efficiently encoded using a

departure date and the ToFs of subsequent phases, meaning that the first transfer’s arrival date coincides with

the second transfer’s departure date. The initial and final state vectors are then derived from ephemerides and

possibly impulsive shots or the flyby model linking the transfers. The ML model may however benefit from

the full state vectors as inputs as the conversion from date to state vector is non-trivial but computationally

fast. We therefore experimented with building predictive models for different inputs sets, termed feature
engineering in ML.

The most straightforward model is trained directly on the optimization’s parameter vector. In case of the

first example problem, which is derived from the Dawn mission, the parameter vector consists of the launch

date, the initial V∞, the arrival velocity at the flyby planet, the flyby distance and plane angle, the ToF of each

transfer as well as the duration of the stay at Vesta (11 real inputs). Evaluating the trajectory, i.e. computing

the optimization problem’s fitness function, yields a total ΔV necessary to fly this mission. An initial data set

to develop the model is created by running a random search using uniformly distributed input parameters from

the set bounds. This data set is split into training, validation, and test sets, where training and validation sets

are employed during model creation and the model’s performance is evaluated on the test set. This approach

aims to avoid overfitting to any of the individual data sets and to measure generalization ability on previously

unseen data.14

∗D. Izzo, esa/pykep, Version 2.3, 2019, https://esa.github.io/pykep/
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To assess a model’s predictive quality, two figures of merit are computed. The first one is Mean Absolute

Percentage Error (MAPE):

MAPE =
100%

n

n∑
i=1

∣∣∣∣ai − fi
ai

∣∣∣∣ , (8)

where fi are predictions, ai are the true values and n is the number of test samples.

The second figure of merit is derived from the models’ application: In order to guide a population-based

algorithm, the model needs to distinguish good from bad candidate solutions more than accurately predict

the correct output value to guide the algorithm towards convergence. Thus, we define a sorting accuracy
which represents the ratio of samples whose prediction correctly placed them at the top of the test set. In the

following, we use a measure of “Top 25 out of 100” meaning that the reported sorting accuracies are the share

of the best 25 samples that the predictive model correctly placed in the top 25 out of a total of 100 test samples.

The features in the data set have different ranges and units, necessitating scaling.14 For example, the

departure date is given as a Modified Julian Date 2000, while the flyby plane’s angle is given in radians.

Scaling is therefore necessary to generate model coefficients of a similar scale, which enables faster learning

in ANNs.14 The two standard options for scaling are Standardization and Normalization: Standardization

removes the mean and scales the data to unit variance. This approach presumes that the data follows a

normal distribution which cannot be guaranteed here. It was therefore chosen to use the other option of linear

normalization to input and output features:

xscaled =
x− xmin

xmax − xmin
(max−min) + min, (9)

where xmin and xmax are the per-feature minimum and maximum values, respectively, and [min,max] is the
range of the scaled data. The input features are scaled to a range of [0, 1], and the output values are scaled to

[-1, 1]. The values for xmin and xmax can be automatically extracted from the data set or manually set. The

latter was done if the range of input features was known a priori from the bounds of the optimization problem.

For cases where the bounds of variables are not known the maximum and minimum values are determined

from the data itself.

A linear regression model∗ is fit to subsets of the initial data set using a least-squares fit and serves as a
baseline for more sophisticated models. The performance of the linear regression model is shown in Figure 2.

It can be seen that linear regression provides a poor fit, even for a large number of samples. The maximum

achieved sorting accuracy is 60%, while the MAPE of the regression reaches 37% for a sample size of 2000.

Note that the reported samples size is the full data set which was split into training and validation sets at a ratio

of 80/20. Regarding the model’s performance, it is especially of interest that the model does not improve after

increasing the number of training samples beyond 500, clearly indicating that a linear model is not sufficient

for the data at hand. The linear relationship is simply not flexible enough to represent the non-linear nature of

this problem.

In the following, we therefore investigate the use of Artificial Neural Networks (ANNs) on the given

regression problem. ANNs have a long history dating back to the 1950s but received a renewed interest in the

past decade when advances in training and initialization algorithms made it possible to train deep networks

consisting of multiple hidden layers.7 Neural Networks now represent the best solution to many problems in

ML ranging from pattern recognition to natural language processing, with a variety of specialized flavors and

architectures. They have also been used in the area of surrogate modeling,16 where they are recommended for

high-dimensional problems with limited amounts of data.13 In comparison to other methods, they are very

flexible in input and output shapes, size, and computational effort. Here, we rely on a classical fully-connected,

feed-forward ANN to perform the non-linear regression task of estimating the necessary ΔV to fly a certain

trajectory. A feed-forward ANN consists of an input layer, a variable number of hidden layers, and an output

layer. The number of nodes, called neurons, in the input and output layers is determined by the regression

problem, while the number of neurons in the hidden layers is flexible. In recent years a number of software

∗Normalization and the linear model have been implemented using the scikit-learn package (MinMaxScaler and LinearRegression)15
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Figure 2. Regression accuracy of a linear regression model

frameworks have been published that allow for a fast implementation of ANNs. Here, we use the Keras API∗

in combination with the Theano backend†.

In order to define a suitable network architecture, several parameters were set a priori based on literature and

preliminary experiments. Firstly, the search for a suitable ANN was restricted to feed-forward neural networks

with a low to medium number of layers. As the task is a non-linear regression on a comparatively small,

structured data set, there is no need for a specialized deep architecture. Keeping the number of free parameters

in the network to a reasonable size also affects the time needed for training and is one of the measures taken

against overfitting, which is a common problem especially when training a large network on a limited amount

of data. The network’s weights are randomly initialized using the uniform Glorot method, where each weight

is drawn from a uniform distribution between limits depending on the number of neurons in the connected

layers.17 Each bias is initialized as zero.

The Rectified Linear Unit (ReLU) has been shown to learn faster than other activation functions7 and is used

in all hidden layers. The activation of the output layer is chosen to be linear, in order to not restrict the range

of the regression output. The ANN is trained using the Adaptive Moment Estimation (Adam) optimizer.18 It is

used with a Mean Squared Error (MSE) loss, a batch size of 10, and an 80/20 split of training and validation

data. To combat overfitting we employ early stopping with a patience of 130 epochs‡, meaning that training is
stopped once the validation error does not improve for more than 130 epochs. The returned model is then the

one that exhibited the minimal validation error. The learning rate is reduced periodically employing a similar

heuristic: If the validation loss does not improve for more than 50 epochs the learning rate is reduced by 80%,

augmenting local convergence during training. Reducing the learning rate when the loss plateaus also allows

to start training at a learning rate of 5× 10−3, which is higher than the default of 1× 10−3 and accelerates the

initial learning.

Finally, the relationship between the number of hidden layers, neurons per hidden layer and the size of the

training data set is investigated in a grid search. We vary the ANN architecture from 1 to 5 hidden layers of

size 16 to 128. The size of the data set is increased from 50 to 1500 samples, showing the performance gain

that can be expected when more data becomes available. Each architecture was trained 5 times from random

initial states with different seeds and averaged to show performance and training time. Looking at the MAPE

and sorting accuracy shown in Figure 3 it is apparent that more data is the single most important factor in

increasing the model’s performance. In comparison to the linear model, the ANN is able to heavily profit from

more data and reaches MAPEs below 15% for most medium and large architectures. ANNs with 1 and 2

hidden layers perform worse in terms of MAPE while deeper architectures perform fairly similar. The number

of hidden layers had a bigger effect on performance than the number of neurons per layer. It was decided to

perform most experiments with an ANN of 3 hidden layers with 64 neurons each (3/64). Staying at the lower

∗F. Chollet et al., Keras, Version 2.2.4, 2019, https://keras.io
†Theano Development Team, Theano, Version 1.0.3, 2019, http://deeplearning.net/software/theano/
‡An epoch has passed once the ANN was trained on each training example once.
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end of possible network sizes significantly reduces the time needed for training to converge and is therefore

beneficial for the setting at hand. For example, using 1000 samples the 3/64 network concluded training on

average after 44 s while a bigger 3/128 network needed about 5 times as long (199 s∗) to converge. During
online use of the surrogate, the ANN was trained from scratch for each new data set. In practice, it is also

possible to start with a trained model and only train a few more epochs when new data becomes available. As

the training is already performed in batches and new data comes from the same distribution the network then

increases its performance. This approach is especially valuable for larger data sets and was employed when a

pretrained model was used during the optimization.

Figure 3. Resulting regression errors and sorting accuracy of the ANN architecture grid search

After choosing the 3/64 architecture, we test the model’s robustness with regard to the fixed parameters.

This is done by varying batch size and learning rate around the chosen values. The results are reported in

terms of regression error and sorting accuracy in Figure 4. It can be seen that the chosen values for the initial

learning rate (5× 10−3) and batch size (10) perform well especially for sample sizes of 500 and above. A

bigger batch size or smaller learning rate would overall reduce the accuracy of the trained model. For smaller

data sets a small gain in accuracy could be gained by smaller batch sizes. Here, we stick to one architecture in

order to keep the approach consistent.

As shown in the following, it can also be beneficial to train on other features in the data set than the plain

candidate solutions. For example, the relationship between the date and a planet’s state is non-linear but can

be implemented as a fast lookup of tabulated ephemeris data. Training directly on state vectors can therefore

simplify the estimation problem, thus reducing the amount of necessary training data, while requiring very

little computational effort. This approach is taken when the ANN is used to estimate the cost of a single

transfer. Here, the initial and final state vectors in cylindrical coordinates as well as the ToF are chosen as

inputs. This way we include the prior knowledge of the main features that determine the cost of a transfer. It

is also beneficial that the cylindrical state is nearly periodic over the course of an orbit, meaning the model

mainly has to interpolate between known values. The polar angle θ is encoded as cos θ and sin θ, in order to
provide two continuous input features. As the number of input/output parameters and the type of problem are

very similar we are using the same ANN architecture found above for these related problems as well.

In conclusion, using Artificial Neural Networks to build non-linear regression models is a flexible and

performant method that easily outperforms the baseline linear method, c.f. Figures 2 and 3, and is able to

quickly improve when more data is available.

∗All reported computation times are from a current laptop (CPU: Intel Core i7-7700HQ@2.8GHz, GPU: Nvidia Quadro M1200)
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Figure 4. Investigation of the chosen ANN architecture’s robustness for variations in
learning rate and batch size

OPTIMIZATION APPROACH

The optimization process is structured in two nested loops. The inner loop optimizes the free parameters of

the shaping functions defining each individual low-thrust transfer. Here, the Nelder-Mead simplex algorithm

was chosen after several algorithms were tested. The outer loop performs the global optimization, i.e. setting

the departure date, flight times, and parameters that define the linked trajectory. There, a classical GA was

chosen and used to test different ways to include the ML model. Both optimization loops are presented here.

Shape Optimization

The shaping method takes the initial and final state vectors that correspond to a given departure date, ToF,

and N as inputs. It then computes the trajectory’sΔV . As mentioned above, we chose to employ two Degrees
of Freedom (DoF) in each velocity function, totaling six free parameters. These parameters are determined

by a Nelder-Mead simplex algorithm (NM), following the original paper which investigated the use of the

Differential Evolution (DE) and NM algorithms, and found that the latter performs favorably.9 This result was

confirmed in the preparations for this work where 10 global and derivative-free local optimization algorithms

were run on a representative example transfer (Earth→Mars, N = 2, departure date = 9985..10075 mjd2000,

ToF = 1010..1100 days). It was found that the problem is well suited for local optimizers,19 especially as

the lowest-order solution represents a suitable initial guess that is always available. NM consistently found

the optimum in fewer fitness evaluations than similar algorithms. It was therefore decided to stick to NM to

determine the free parameters in the hodographic shaping method.

The NM stopping criterion was set to a relative fitness tolerance of 10−3 and a maximum number of fitness

evaluations of 104. Using an initial guess of 0 for each of the six free parameters, corresponding to the

lowest-order solution that already satisfies the boundary conditions, the optimizer converges within 400 to

1000 iterations, not triggering the limit of function evaluations. The optimization of an individual transfer

takes about 0.15 s to 0.3 s running on a single thread.

Global Trajectory Optimization

A GA was chosen to develop the surrogate assisted optimization tool. As the surrogate is applied on the level

of individual fitness function evaluations the approach is also applicable to more advanced algorithms while

having a straightforward behavior simplifies the development and serves as a baseline for future extensions.
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GAs have successfully been applied to the optimization of shaped, low-thrust trajectories for example by

Wall and Conway.20 Extended versions using a surrogate model have not yet been used in the context of

shaped trajectory optimization. We use the GA provided by Pygmo∗ which is “rather classical”, encoding
the parameter vector in a so-called chromosome, and using selection, crossover, and mutation operations in

combination with an elitist reinsertion strategy: After the genetic operators have been applied the combined

pool of parent and offspring candidate solutions is sorted and the best are selected to form the new population.

The GA has several control parameters. Similar to the ML model search a number of these have been

chosen a priori while other have been explored by running the algorithm on an example problem with different

settings: The selection scheme is a ‘tournament’ with a size of 2. This means that the algorithm chooses the

best out of two random parent individuals for reproduction. The crossover method is ‘exponential’ with a

probability of 0.9. In this method, a random point is selected in the parent chromosome and the partner genes

are inserted from there with the set probability until it stops. Both of these choices follow the default settings

in Pygmo. The mutation scheme was set to ‘uniform’ to increase the population’s diversity in comparison to

for example drawing mutations from a Gaussian distribution.

Suitable settings for mutation probability and population size were found by averaging 5 runs of the first

example problem, see the Dawn Problem below, each with different settings to show the expected convergence

behavior. The results are shown in Figure 5, including a random search for comparison. The random search

was set up drawing random values from uniform distributions within the problem bounds to explore the search

space and to generate the data set used to develop the model. The number of generations computed for each

setting was adapted to compute 3000 evaluations of the fitness function in total. Similar to the GA the shown

plot is the average of 5 runs, taking the best individual solution as the optimum which gets updated as the

random search progresses. It can be seen that small population sizes, as well as high mutation probabilities,

are beneficial for the GA to converge. We therefore use a population size of 10 and a mutation probability of

10% in the outer loop of the Dawn example problem. The same analysis was done for the second example, the

Asteroid problem, leading to a population size of 50 and a mutation probability of 10%.

Figure 5. Comparison of different GA settings for population size and mutation
probability, average of 5 runs each, optimizing the Dawn Problem

Including the Surrogate, Model Management, and Evolution Control

The GA converges to a good solution by combining individuals from the current generation to create new

candidate solutions and keeping a random element in the crossover and mutation steps in order to globally

explore the search space. As only better solutions are reinserted into the population the top solution improves

over the generations. An interesting idea to improve the search for an optimum is to keep track of previous

function evaluations and to build an approximate model using ML techniques, for example, based on the ANN

presented earlier.6, 13, 21 This approximate model is often called surrogate and makes it possible to utilize the

∗F. Biscani and D. Izzo, esa/pagmo2, Version 2.10, 2019, https://doi.org/10.5281/zenodo.1045336
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information generated from previous function evaluations during the optimization, for example, to speed up

convergence or to reduce the computational burden of a large number of fitness function computations. In

spacecraft trajectory optimization, the first steps to include a surrogate model have been undertaken in the

context of high-thrust missions using DE22 and orbit transfers with constant thrust.23

The successful application of such a surrogate model approximating the fitness function depends on its

accuracy to represent the original fitness landscape. The location of local optima is thereby more important

than the absolute value of the approximation. Especially the existence of false optima introduced by the

surrogate may throw the optimization off track and hinder convergence. It is therefore important to include

a strategy for model management and controlled evolution which mainly includes the regular inclusion of

the original fitness function to avoid the convergence towards a false optimum. There are many approaches

to manage the inclusion of the surrogate, e.g. replacing the fitness function, filtering candidate solutions, or

generating new solution.6,13, 21 Here, we present the approach developed for the given problem of optimizing

linked low-thrust trajectories.

One of the challenges of a model that is trained on previous fitness function evaluations is the small size

of the data set and the resulting poor initial quality of the surrogate, likely including false optima. During

preliminary tests that used both original and surrogate evaluations in parallel, it was observed that a single false

optimum in the surrogate was enough to derail the optimization as individuals with unrealistic small fitness

values are never reevaluated with the original fitness function. The latter is a wanted behavior of the GA as it

saves computational effort over time. We therefore chose a conservative approach to evolution control: The

surrogate is trained in regular intervals on the growing data set and searched using a variety of optimization

algorithms. Then, the best solutions found during the surrogate search are reevaluated using the original

fitness function. Only if a solution is better than the previous GA population it gets reinserted, following the

elitist reinsertion strategy of Pygmo’s GA implementation. Then the GA continues with the original evolution,

increasing the size of the data set and converging towards the true optimum. After a set number of generations,

a sequence, a new ANN is trained and searched, potentially resulting in new candidate solutions.

As the evaluation of the surrogate is computationally cheap (about 120 μs per fitness evaluation vs. about

2.3 s for a fitness evaluation with 3 transfers), a total of 4 local (Cobyla, Bobyqa, Nelder-Mead, and Subplex)

and 6 global optimization algorithms (GA, DE, DE1220, Particle Swarm Optimization (PSO), and Artificial

Bee Colony (ABC)) are employed during the surrogate search to find new optima in the approximate model.

Each local algorithm is run 3 times with different, random starting points in a multistart approach, totaling 17

different optimization runs. Each run is performed with default parameters which can be found in the Pygmo

and NLopt documentations. The local algorithms are run until convergence with an absolute tolerance of 10−2

or a maximum of 5000 fitness evaluations. The global algorithms are run with a population size of 20 for 200

generations except for ABC which uses more fitness evaluations in the scouting phase24 and is run for 100

generations. In terms of computational effort, one original fitness evaluation takes as long as running 3 local or

2 global optimizers using the surrogate. The total effort of searching for new candidate solutions utilizing the

surrogate is therefore about 7 original fitness evaluations plus the effort of reevaluating the resulting candidates

using the original fitness function.

The initial lack of data was identified as a major problem, see the Results section below, which is why

we also investigated the use of a pretrained surrogate. Here, the surrogate is trained on a general data set

containing precomputed low-thrust transfers. The more general, i.e. unrelated to the optimized trajectory, this

data set is, the more easily it can be used for a variety of problems and does not have to be recomputed for each

specific mission design problem. Pretraining improves the model’s initial quality immensely but includes the

additional effort of computing a general data set and pretraining the ANN. During the optimization the model

is then only incrementally trained, meaning that it is not replaced but allowed to adapt to the region of interest

by executing some optimization epochs on the new data. We observe incremental training times of 5 s to 60 s

on the CPU, while pretraining a new model is a larger computational effort that is better suited for the GPU.

Pretraining took in the order of 10min for the two presented case studies. To avoid forgetting of previously

seen data this incremental training is started at a lower initial learning rate of 10−4. The learning rate is reduced
on the detection of a validation loss plateau and training is stopped early as before. Both approaches, the fully

online generation of the surrogate and the optional use of a pretrained model, are shown in Figure 6.
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Figure 6. The augmented GA using an ANN surrogate to find new candidate solutions

We are exploring three different points of approximation for the surrogate: The first approach is to replace

the full fitness function evaluation by the surrogate, with the ML model being trained directly on the candidate

solution vectors of the previous generations. This approach, termed full surrogate, is the most general and
readily translates to other problems. We also test two other strategies that are adapted to the problem at hand in

order to incorporate prior knowledge about problems concerning interplanetary transfers. The focus is therefore

put on the computationally expensive part of the fitness function, i.e. the inner ΔV computation of individual

low-thrust legs of the linked trajectory. The first approach is to replace the general shape optimization by an

ML model, i.e. to train a general transfer surrogate, the other is to replace each transfer by a separate model,
termed individual transfer surrogate. The advantage of the first one being the availability of more online
training data, while a model estimating individual transfers has to learn a problem that is valid for a smaller

input parameter space, therefore reducing the approximation problem’s difficulty. An extension on the latter

approach is the use of a model that is pretrained on a general set of similar transfers, which is also investigated.

RESULTS

The presented approach is applied to two example problems that utilize low-thrust propulsion to explore the

solar system. The first one is derived from the Dawn mission and involves a launch at Earth, a flyby at Mars, a

stay at Vesta, and a transfer to Ceres. The second example is a simplified version of the problem posed for

the second Global Trajectory Optimization Competition (GTOC2). It consists of four consecutive visits at

different asteroids with a minimum stay time. Both problems and the results are presented here.
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The Dawn Problem

The first example problem is inspired by NASA’s Dawn mission which explored (4) Vesta and (1) Ceres

in the asteroid belt. The spacecraft was launched in September 2007 and left Earth’s SOI with a C3 of

11.3 km2 s−2.25 Propulsion was achieved with three xenon ion engines with a specific impulse of 3100 s

producing a maximum thrust force of 91mN. With the spacecraft’s launch mass of 1300 kg this translates

to an initial maximum thrust acceleration at of 7× 10−5 m s−1 per thruster. Dawn’s trajectory was designed

with a duty cycle of 95%, meaning that the continuous thrust imposed in the shaping model is a reasonable

approximation. The mission’s trajectory, including thrust (blue) and coast periods (black), is presented in

Figure 7. After launch, the spacecraft used its low-thrust propulsion system to reach Mars, where an unpowered

flyby was performed in February 2009 yielding a velocity change of 2.6 km s−1.26 The low-thrust transfer

continues and Vesta is reached for a rendezvous in July 2011. The science phase in orbit around Vesta lasted

one year until Dawn performed a transfer to Ceres which lasted from July 2012 to February 2015. Table 1

lists the flight and stay times as well as the boundary conditions defining the trajectory phases. In total the

spacecraft achieved a ΔV of 11 km s−1, including the interplanetary transfers and proximity operations.

Figure 7. The trajectory of the Dawn mission26 Figure 8. Optimized Dawn problem

Table 1. The Dawn mission: Phases and dates26

Transfer 1 Transfer 2 Stay 1 Transfer 3

Departure body Earth Mars Vesta Vesta

Arrival body Mars Vesta Vesta Ceres

Departure condition Orbit injection Flyby Orbit following Rendezvous

Arrival condition Flyby Rendezvous Orbit following Rendezvous

Revolutions [ ] 0 1 – 0

Departure date [calendar date] 01 Sep 2007 12 Feb 2009 05 Sep 2011 01 Jul 2012

Departure date [mjd2000] 2800 3330 4265 4565

ToF [days] 530 935 300 945

An optimization problem was derived from Dawn’s trajectory. Its free parameters and the corresponding

bounds are presented in Table 2. Corresponding to the Dawn mission N was fixed to 0, 1, and 0 for transfers 1,

2, and 3, respectively.

As shown before, see Figure 5, the GA converges well on this problem. The overall best solution of

11.8 km s−1 was found during one of the runs with a population size of 10 and a mutation probability of 5%

after 2860 fitness function evaluations. All 5 runs reached fitness values below 15 km s−1 within 1400 fitness
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Table 2. Optimization parameters of the Dawn Problem

Parameter Unit Lower bound Upper bound Best GA result

Departure date mjd2000 2500 3500 2782.2

ToF 1 days 300 700 407.6

ToF 2 days 700 1100 1099.1

Stay 1 days 200 600 559.2

ToF 3 days 700 1100 912.7

Orbit insertion V∞ ms−1 1.5× 103 5× 103 2.42× 103

Mars arrival velocity (radial) m s−1 −5× 103 5× 103 −2.21× 103

Mars arrival velocity (tang.) m s−1 1× 104 5× 104 2.17× 104

Mars arrival velocity (vert.) m s−1 −5× 103 5× 103 −6.37× 101

Flyby radius rp m r♂ + 1.5× 105 r♂ + 1× 107 r♂ + 4.71× 105

Flyby plane rotation angle β rad 0 2π 2.71

evaluations. The resulting trajectory is shown in Figure 8 and the corresponding parameter values are included

in Table 2. It can be seen that the optimizer converges to a slightly earlier launch date. ToF 1 and 3 are

chosen shorter while ToF 2 and the stay time at Vesta are longer in the optimized solution than the original

trajectory. ToF 2 is close to the imposed upper boundary which was kept as is to not overly increase the total

flight time. The maximum thrust acceleration is 2× 10−4 m s−2, which is 70% of the initial thrust acceleration

of two Dawn ion engines. The thrust is therefore achievable by current technology without having imposed

any upper limit during the optimization. The total ΔV is in the same order of magnitude as the original

mission with Transfers 1, 2, and 3 contributing 2.46 km s−1, 5.76 km s−1, and 3.57 km s−1, respectively. Of

course, this is only a rough comparison as the real mission had to deal with many more constraints, a full

dynamical environment, and also included the science operations at both bodies. Overall we conclude that

the optimization approach based on a linked conics approximation and hodographically shaped low-thrust

transfers is able to capture the character of the original trajectory while being rapidly computed, and therefore

represents a suitable approach to preliminary low-thrust trajectory optimization.

Full surrogate As a first augmentation approach, the surrogate is trained solely on data from the GA. One

sequence was chosen to be 200 fitness evaluations, split into the evolution of a population of 10 individuals

for 20 generations. The mutation probability was set to 10%. Figure 9 shows the evolution of 5 runs. Here,

the dots indicate the minimum value found during the surrogate utilization (training, finding new candidate

solutions, reevaluating using the original fitness function). It can be seen that the reevaluated candidate

solutions are never better than the current champion in the GA population. In fact, during these 5 runs the best

model solution was never good enough to be reinserted into the original population. This means that the GA

evolution is unaffected by the use of the surrogate and would converge similarly without any augmentation. We

attribute this mainly to the lack of available data. The 200 data points available after the first sequence are not

enough to construct a useful approximation of the fitness function and, while the model improves as more data

becomes available, it never catches up with the improvements found by the GA. The 11-dimensional fitness

function is highly non-linear, especially due to the Mars flyby. There are also interdependencies between the

variables as a longer ToF in one phase shifts the departure and arrival dates of later phases, making it a difficult

problem to learn on limited data.

General transfer surrogate The case is similar for the general transfer surrogate, which is trained on
the inputs to the shaping method and estimates the cost of the low-thrust transfers with one model. The

convergence of 5 runs is shown in Figure 10. The number of reinsertions into the original populations are

indicated with a number next to the found minimum. Here, this occurred early during run 5 where the surrogate

search resulted in an improvement of the global optimum. The candidate solutions found using the surrogate

are better, consistently finding solutions below 25 km s−1 starting with the second sequence, but are generally

not good enough to increase the fitness of the original population. The average MAPE and sorting accuracy of

the final model are 23.1% and 67.2%, respectively.
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Figure 9. Full surrogate applied to the Dawn problem (Pop. 10, Gen. 20, Seq. 10)

Figure 10. General transfer surrogate applied to the Dawn problem (Pop. 10, Gen. 20. Seq. 10)

Individual transfer surrogate A separate model is trained for each transfer, reducing the problem complex-

ity. Especially the estimation for Transfer 3 improves, as the rendezvous conditions at departure and arrival

simplify the approximated function. The effect is smaller for Transfers 1 and 2, which have more diverse

boundary conditions due to orbit injection and the Mars flyby. The models’ average final MAPE are 32.3%,

11.2%, and 2.4% for Transfers 1, 2, and 3, respectively. The corresponding sorting accuracies reach 75.2%,

89.6%, and 96.0%. The algorithm’s convergence is shown in Figure 11. Occasional reinsertions happen, but

the general effect on the GA is small.

Figure 11. Individual transfer surrogate applied to the Dawn problem (Pop. 10, Gen. 20, Seq. 10)

Pretrained individual transfer surrogate Here, the initial quality of the surrogates is improved by pretrain-

ing the ANN on a data set comprised of transfers from Earth to Mars, Mars to Vesta, and Vesta to Ceres. We

used the data from the random searches that were used to develop the ANN model. This data set was deemed to
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be general enough for a proof of concept as the range for the departure date comprises more than two synodic

periods between Earth and Mars with the later epochs being additionally shifted by the ranges in the ToF and

stay time at Vesta. As the data set is now much larger than during the online cases and the computational effort

of pretraining the model is detached from the actual optimization run, the ANN was slightly increased in size

to an architecture of 3/124. The used data set has a size of 15 000 trajectories of which 100 are used for the

computation of MAPE and sorting accuracy. The remaining trajectories are split into training and validation

sets at a ratio of 90/10. Based on this much larger data set the regression MAPE of the pretrained surrogate is

greatly improved in comparison to the online generated variants: It reaches 3.5%, 2.2%, and 0.1% for models

1, 2, and 3, respectively. The sorting accuracy reaches 100% for all three models.

The algorithm was then run with a population size of 10 and 5 generations per sequence, see Figure 12.

It can be seen that the surrogate improves the champions especially after the first sequence where all runs

receive a new champion. Note that the minimum found during the random search was 16.6 km s−1, meaning

that the surrogate evaluation yields better results than a linear interpolation would. The surrogate also keeps

improving due to the incremental training between sequences and more reinsertions keep improving the fitness

of the original population after the following sequences. Furthermore, all runs converge to good optima below

12.5 km s−1 which was not the case during the runs of the original GA or the full surrogate approach.

Figure 12. Pretrained individual transfer surrogate applied to the Dawn problem
(Pop. 10, Gen. 5, Seq. 10)

The Asteroid Problem

As a second example, we apply the presented optimization to a multiple asteroid rendezvous mission,

derived from the problem created by JPL for GTOC2∗. The problem was to visit one asteroid out of 4 groups

with a low-thrust mission in a given time-frame. The asteroid orbits are shown in Figure 13. All competition

solutions visited an asteroid from Group 4 first and then went outwards to Groups 3, 2, and 1. We disregard

the outer problem of finding a suitable sequence of asteroids to visit and concentrate on finding a low ΔV
trajectory for given sequences. We also optimize directly for ΔV and not for the original fitness function

which was the final mass over total ToF.

Previous work applied the spherical shaping method27 to the winning trajectories of GTOC2,28 keeping

launch dates as well as ToFs and stay times constant. V∞ was set to zero for the shaped solutions. Recreating

these trajectories using the hodographic shaping method yields the results listed in Table 3 and shown in Figure

14 for the winning solution. It can be seen that the hodographic shaping method performs significantly better

than the spherical method while not reaching the quality of the fully optimized winning solutions.

Table 4 lists the parameters of the example problem derived from the GTOC2 setting. The asteroid sequence†

as well as the N of each transfer (0, 0, 0, 0) are fixed and the optimizer is tasked to find optimal values for

∗A. Petropoulos, Problem Description for the 2nd Global Trajectory Optimization Competition, 2006
†SPK IDs: 3258076, 2000060, 2000058, 2002959; Pykep indices: 815, 300, 110, 47
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Figure 13. The GTOC2 asteroids Figure 14. The recreated 1st trajectory

Table 3. Fixed solutions of the Asteroid problem

Winners28 N ΔVtotal Spherical28 ΔVtotal Hodographic ΔVtotal

GTOC 1st 1, 2, 0, 0 20.1 km s−1 Shaping 1 41.78 km s−1 Shaping 1 39.56 km s−1

GTOC 2nd 0, 3, 0, 0 19.4 km s−1 Shaping 2 49.49 km s−1 Shaping 2 27.78 km s−1

GTOC 3rd 1, 2, 0, 0 23.3 km s−1 Shaping 3 46.08 km s−1 Shaping 3 33.81 km s−1

the departure date, flight and, stay times as well as magnitude and direction of the injection impulsive shot.

The bounds for the departure window are set to 10 years. The bounds for ToFs are kept wide, shifting towards

longer durations for later transfers, while the stay times are kept close to the minimum time of 90 days set in

the competition. The parameters of the best solution found, see Table 4, yielded a total ΔV of 26.9 km s−1.

Table 4. Optimization parameters of the Asteroids problem

Parameter Unit Lower Bound Upper bound Best result

Departure Date mjd2000 5479 9129 8311.5

ToF 1 days 100 1700 106.8

Stay 1 days 90 110 90.0

ToF 2 days 200 1900 517.1

Stay 2 days 90 110 102.1

ToF 3 days 400 1900 1299.5

Stay 3 days 90 110 90.0

ToF 4 days 600 2000 1096.6

Injection magnitude V∞ ms−1 0 3.5× 103 3.22× 103

Injection angle ϕ rad 0 π 2.19

Injection angle θ1 rad 0 2π 2.91

Full surrogate The surrogate assisted optimizations are again conducted with sequences of 200 fitness

function evaluations. The case is similar to the application of the full surrogate optimization to the Dawn

problem: Even though the surrogate’s quality improves as more data becomes available, it not high enough to

assist the optimization, see Figure 15.
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Figure 15. Full surrogate applied to the Asteroid problem (Pop. 50, Gen. 4, Seq. 10)

General transfer surrogate More reinsertions are observed when the surrogate is trained to approximate

the cost of the low-thrust transfer, see Figure 16. This is partially due to the larger population size resulting in a

higher chance for medium quality solutions to be better than some member of the GA population. But we also

observe a number of very useful reinsertions where the reinsertion leads to a new champion, e.g. after each of

the first 3 sequences of Run 1. Another aspect that leads to better results here in comparison to the Dawn case

is that the transfers are more homogeneous: Only one departure includes an impulsive shot and there are no

flybys. Additionally, there are four transfers per trajectory, resulting in more and better training data.

Figure 16. General transfer surrogate applied to the Asteroid problem (Pop. 50, Gen. 4, Seq. 10)

Individual transfer surrogate The results for the third variation of surrogate inclusion are shown in Figure

17. Similar to the general transfer surrogate useful candidate solutions are found in the surrogate especially in

the beginning. But, reinsertions happen more slowly than for the general transfer surrogate and the overall

algorithm does not reliably converge below 34 km s−1. The suspected reason is again the reduced initial quality

of the model due to less training data as there are now four models, each trained on samples from one transfer.

Pretrained general transfer surrogate Following the previous results, the pretrained approach is applied

to the general transfer surrogate. Here, a new data set is created based on shaped transfers between separate

from the predefined sequence in the optimization problem. Transfers are computed between random bodies

from Earth to Group 4, Group 4 to 3, 3 to 2, and 2 to 1, with 110 000 samples per group resulting in a data set

of 440 000 samples. The departure date is set to a range of [5479, 12053], representing the first 18 years of

the competition window, and the ToF is varied in large windows of [50, 600] days for the first two transfers

and [300, 1500] and [400, 1500] days for the two transfers further away from the Sun. The Earth to Group 4

transfer included a maximum V∞ at launch of 3.5 km s−1 with ϕ in [1/6π, 5/6π] and θ1 in [0, 2π], while the
other three transfers have rendezvous boundary conditions. Due to the random inputs, some transfers have

physically very unfavorable conditions leading to highΔV (and a few NaN) values. We therefore filter the

database for transfers below 1000 km s−1, leaving 438 526 sample transfers. As previously the network was
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Figure 17. Individual transfer surrogate applied to the Asteroid problem (Pop. 50, Gen. 4, Seq. 10)

expanded to an architecture of 3/128 and the data set was split into training and validation sets at a ratio of

90/10. Training lasted for 275 epochs in 20min on the GPU and the ANN reached a MAPE of 14.6% and

sorting accuracy of 88%.

The algorithm is then run with sequences of 2 generations and its convergence is shown in Figure 18. The

surrogate search after the first sequence results in a new champion for all runs and continues to produce useful

solutions up until the 5th sequence. The result is a reliable convergence of all runs below 30 km s−1 within 850

fitness function evaluations.

Figure 18. Pretrained general transfer surrogate applied to the Asteroid problem
(Pop. 50, Gen. 2, Seq. 10)

Average convergence

The average convergence for the different implementations of the algorithm are shown in one plot together

with the classical GA for both test cases. For the Dawn case, see Figure 19, there is on average little influence

for all three versions of the online surrogate approach. The pretrained case, however, converges much faster,

as the first surrogate search consistently leads to new champions and considerably improves the overall fitness

of the population. Beyond 500 fitness function evaluations all approaches behave similarly, slowly converging

towards 12 km s−1.

Figure 20 shows the average convergence of the different approaches on the Asteroid problem. Here, both

the general transfer surrogate and the individual transfer surrogate converge faster than the unassisted GA

due to new solutions found utilizing the surrogate. These are visible as steps in the plots at 200, 400 and

600 fitness evaluations. The individual transfer surrogate does not converge to the same optimum within the

observed 2000 fitness evaluations, the reason for which is unclear. An interference from the surrogate can

be ruled out due to the taken approach to evolution control: If no better solutions are found during surrogate

utilization, the original GA evolution is not affected. The pretrained general transfer surrogate assisted GA
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Figure 19. Averaged convergence of the investigated algorithms on the Dawn problem

converges the fastest, with a large step towards the minimum after the first sequence at 50 fitness evaluations.

The surrogate’s influence is less visible afterwards, but the plot of individual runs, see Figure 18, showed that

the surrogate keeps supplying new candidate solutions until the third sequence, making this approach the most

promising for future research.

Figure 20. Averaged convergence of the investigated algorithms on the Asteroid problem

CONCLUSION

A flexible Python tool for preliminary optimization of interplanetary low-thrust trajectories was developed.

It was employed in the development of a surrogate-assisted evolutionary optimization approach using an

Artificial Neural Network to approximate the problem’s fitness function and find new candidate solutions that

are reinserted into the original population following an elitist strategy. Different ways to design the surrogate

were investigated. The full surrogate approach of directly modeling the relationship between candidate solution

and fitness suffers from the initially small size of the data set. Concentrating on the computationally expensive

parts of the fitness function, the ΔV computation, and thereby simplifying the approximated problem and

using more specialized transfer surrogates, leads to better results as more useful new solutions are found

especially early on, increasing the overall fitness of the population. Extending the online approach with a

pretrained model that was trained on a general data set consisting of shaped transfers improves the initial

quality of the model greatly, consistently yielding new best solutions. The pretrained model continues to be

useful by being incrementally trained on the new data points becoming available during the optimization run,

allowing the surrogate to adapt to the region of interest.
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We conclude that the inclusion of a surrogate can improve the evolutionary optimization of low-thrust multi-

phase trajectories and especially the availability of a pretrained model can greatly speed up the preliminary

search for trajectories. For future work we recommend the further investigation of Machine Learning surrogates

in this context.
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