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Use of delay and sum for sparse
reconstruction improvement for
structural health monitoring

Ali Nokhbatolfoghahai1, Hossein M Navazi1 and Roger M Groves2

Abstract
To perform active structural health monitoring, guided Lamb waves for damage detection have recently gained extensive
attention. Many algorithms are used for damage detection with guided waves and among them, the delay-and-sum
method is the most commonly used algorithm because of its robustness and simplicity. However, delay-and-sum images
tend to have poor accuracy with a large spot size and a high noise floor, especially in the presence of multiple damages.
To overcome these problems, another method that is based on sparse reconstruction can be used. Although the images
produced by the sparse reconstruction method are superior to the conventional delay-and-sum method, it has the chal-
lenges of the time and cost of computations in comparison with the delay-and-sum method. Also, in some cases in
multi-damage detection, the sparse reconstruction method totally fails. In this article, using prior support information of
the structure achieved by the delay-and-sum method, a hybrid method based on sparse reconstruction method is pro-
posed to improve the computational performance and robustness of sparse reconstruction method in the case of multi-
damage presence. The effectiveness of the proposed method in detecting damages is demonstrated experimentally and
numerically on a simple aluminum plate. The technique is also shown to accurately identify and localize multi-site dam-
ages as well as single damage with low sampled signals.

Keywords
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1. Introduction

Structural health monitoring (SHM) has recently
received considerable attention as a way for increasing
the efficiency of maintenance for end users of struc-
tures. SHM can significantly reduce the maintenance
cost by replacing the periodic and scheduled mainte-
nance by condition-based maintenance (CBM), which
involves continuous real-time monitoring of in-service
structures (Balageas et al., 2006). Also, using SHM sys-
tems can help manufacturers to save weight, size, and
cost of structures by changing the design paradigm to
active safety (Giurgiutiu, 2014). SHM system tasks can
be classified into five levels, which are (1) damage
detection, (2) damage localization, (3) damage assess-
ment, (4) remaining life prediction, and (5) developing
smart structures with self-evaluating, self-healing, or
control capabilities (Stepinski et al., 2013). It is clear
that all of the SHM system tasks that are described
here are based on damage interrogation.

There are some ways of performing damage interro-
gation such as using vibrational and modal properties
(Samir et al., 2018; Zhou et al., 2017), monitoring the

local or distribution of strain over the structure (Glisic
and Inaudi, 2008; Khatir et al., 2019), and using ultra-
sonic waves. For over a half-century, using ultrasonic
waves has become a reliable and accepted method of
damage interrogation (Levine, 2014). To perform ultra-
sonic SHM in plate-like structures, the use of guided
waves, for example, Lamb waves, is an attractive
method. The Lamb waves are elastic waves that propa-
gate in thin-walled structures and were first described
by Lamb (1917). Lamb waves–based SHM systems
have some advantages such as (1) the transducers are
usually lightweight, cheap, and easily attached to the
structures; (2) as the Lamb waves can travel a long
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distance with little attenuation, the SHM systems based
on them can scan a large area of a structure with a few
transducers; (3) they involve high-frequency excitation
and ultrasonic waves with small wavelength; therefore,
they are sensitive to the small and barely visible internal
and external damage (Alleyne and Cawley, 1992); and
(4) due to high-frequency excitation, it can be well iso-
lated from low amplitude low-frequency ambient vibra-
tion (Mitra and Gopalakrishnan, 2016). However,
some drawbacks introduce challenges in the use of
Lamb waves in SHM systems such as complexities in
analyzing the Lamb waves response, due to their multi-
modal and dispersion properties (Giurgiutiu, 2005).
Early researchers in the field of Lamb waves SHM
mainly focused on the damage detection capabilities
and behavior of the Lamb waves due to their interac-
tion with damages (Alleyne and Cawley, 1992; Guo
and Cawley, 1993; Rose, 2002; Su et al., 2006; Worlton,
1956). After that, some of the damage localization
methods were developed including tomography meth-
ods (Wright et al., 1997; Zhao et al., 2011), use of
phased arrays (Giurgiutiu and Bao, 2004; Giurgiutiu
et al., 2011; Purekar et al., 2004), and sparse arrays
(Clarke et al., 2010; Michaels and Michaels, 2004;
Wang et al., 2004). Among the above-listed methods,
the use of sparse arrays of transducers is a commonly
proposed configuration because of its low cost and ease
of implementation (Clarke et al., 2010; Levine, 2014).
The delay-and-sum (DAS) method is one of the meth-
ods that is based on the sparse array configuration
(Michaels, 2008) that was introduced by Wang et al.
(2004). In his work, for the first time, he utilized base-
line signals for a sparse array and adapted a well-
known radar technique (DAS beamforming) in the con-
text of guided waves and SHM for damage detection
and localization. In addition to the DAS method, other
localization algorithms have been developed such as the
correlation-based approach (Quaegebeur and Masson,
2012), adaptive algorithms such as minimum-variance
imaging (Hall and Michaels, 2010), and statistical
approaches such as the use of maximum likelihood esti-
mation (Flynn et al., 2011).

Despite all these methods, the DAS method is the
most commonly used algorithm because of its robust-
ness and conceptual simplicity. However, the DAS per-
formance tends to be poor with a large spot size and a
high noise floor particularly in the presence of multiple
damages (Levine and Michaels, 2013). To overcome
these problems, a new imaging algorithm was devel-
oped, based on the assumption of damage sparsity of a
structure and sparse reconstruction (SR) (Golato et al.,
2016; Levine and Michaels, 2013, 2014; Sen et al., 2019;
Wang et al., 2018). In this method, the structure is
divided into some pixels, where most of them are dam-
age free, and just a sparse set of them are assumed to
contain damages. Differential signals are decomposed
into a sparse linear combination of pre-computed

signals that shows the echoes from all possible damage
locations. Using these pre-computed signals, a diction-
ary matrix is generated, and the SR techniques are
applied to achieve this decomposition (Levine and
Michaels, 2013). Although the images produced by the
SR method are superior to the conventional DAS
method (Levine, 2014), it has the challenge of the time
and the cost of computations with respect to the DAS
method, especially in applications with real-time pro-
cessing. In the SR method, the generation of the dic-
tionary matrix requires time, disk space, and a large
size of dictionary matrix increases execution time and
memory usage, while reducing the size of the dictionary
leads to a decrease in the accuracy and resolution of
images. Also, in images reconstructed through the SR
method, the spot size is typically one or two pixels;
however, detection can completely fail in the presence
of multiple damages (Levine, 2014).

In SR techniques, the conventional approach
assumes that the probability of being zero or nonzero
is the same for all elements of the unknown vector.
However, in many applications, additional prior infor-
mation is available. This prior information can provide
statistical backgrounds to assign the probability of
being nonzero to each element of unknown vectors.
Some previous works in the field of compressed sensing
have introduced the approach to the use of prior sup-
port information to optimize the SR algorithm in the
application of data recovering and face recognition
(Fan et al., 2015; Friedlander et al., 2012; Khajehnejad
et al., 2009; Needell et al., 2017).

In this article, using prior information obtained from
the robust and quick DAS method, a hybrid method is
developed based on SR and DAS methods. Using this
hybrid method, the accuracy and resolution of damage
detection are improved compared to the individual
techniques, especially in the presence of multiple dam-
ages. Besides, the computational cost and memory
usage are significantly decreased by reducing the time
sampling frequency of signals even less than Nyquist
rate.

2. Theoretical background

In this section, the theory of the Lamb wave propaga-
tion is presented, and then a summary of the mathemat-
ical theory of SR methods as well as the hybrid method
is presented.

2.1. Lamb waves

In 1917, a British mathematician Horace Lamb intro-
duced elastic waves in plates which are formed due to
the interaction of two types of bulk waves (longitudinal
and transverse waves) with the boundaries of the plate
(Lamb, 1917). A propagating Lamb wave has two
classes, symmetric and antisymmetric modes that are
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denoted as Sn and An, respectively. In this work, to pre-
vent unnecessary complexity in signal processing, a low
enough excitation frequency is chosen so that only the
S0 and A0 modes can exist and higher order modes are
eliminated. Also, for excitation of purely single-mode
Lamb waves, a pair of piezoelectric patch transducers
(PZT) transducers is used in both sides of the plate (Su
et al., 2006). For each Lamb wave mode, there is a dis-
persion curve which shows the phase and group velo-
city of the modes as a function of the multiplication of
excitation frequency and the plate’s thickness. For a
specific propagating Lamb wave mode, the far-field
shape of a cylindrically propagating wave after travel-
ing a distance d can be described as (Levine, 2014)

y tð Þ= d

dref

� ��1
2

F�1 F x tð Þf gð Þexp
�fd2pi

Cp fð Þ

� �� �
ð1Þ

where Cp(f ) is the phase velocity as a function of fre-
quency f for the given thickness of the plate, x(t) is the
excitation time function, and dref is the reference dis-
tance. Also Ffg denotes the discrete Fourier transform
and i=

ffiffiffiffiffiffiffi
�1
p

. To represent the shape of a propagating
wave at point r that is excited by the time function x(t)
at the point s regarding equation (1), propagating oper-
ator P is defined as

ys, r tð Þ=Ps!r x tð Þf g ð2Þ

Using these relationships, a wave that is excited at
point s interacts with damage at point q and is then
received by a sensor at point s and could be described
as

ys, q, r tð Þ= jjr � qjj2
dref

� ��1
2 jjq� sjj2

dref

� ��1
2

F�1 H f , us, q, uq, r

� �
� F x tð Þf g fð Þð Þexp

�i2pf jjq� sjj2
Cp fð Þ

� �	 

exp

�i2pf jjr � qjj2
Cp fð Þ

� �� �
ð3Þ

where ua, b =\(b� a) and kk2 denotes the l2-norm of a
vector. Also, H(f , us, q, uq, r) describes the interaction of
the Lamb wave with damage; however, in this work,
since there is no prior information about the type of
damage, this set is equal to 1.

2.2. SR method

SR refers to optimization techniques for solving the lin-
ear underdetermined inverse problem y=Ax to calcu-
late x, where the unknown vector x is assumed to be
sparse. Also, y is the known vector and A is the diction-
ary matrix. The imaging method based on SR in SHM
is a dictionary-based method and mainly uses the spar-
sity assumption of structural damages. In this method,
subtracted signals are used to evaluate the presence of
damage, and for each pair of actuator a and receiver r,
the subtracted signal achieved is

ya, r tð Þ= ymeasurment
a, r tð Þ � ybaseline

a, r tð Þ ð4Þ

Assuming the linear structure, the subtracted signal
is formed from the superposition of different signals
due to scatters that can exist at all p pixels of the struc-
ture. Therefore, the subtracted signal can be decom-
posed as

ya, r tð Þ=
Xp

i= 1

xiaa, i, r ð5Þ

where xi is the unknown coefficient that shows the pos-
sibility of damage presence in the pixel i. Also, the aa, i, r

is the analytically computed signal that indicates the
shape of scattering wave due to the interaction of Lamb
wave propagated from point a with a scatterer located
at point i and then received by a sensor placed at point
r and is calculated as

aa, i, r tð Þ= h t; ua, i, ui, rð Þ � Pi!r Pa!i x tð Þ½ �f g ð6Þ

where � denotes the convolution operator. This
decomposition can be done for all pairs of actuator–
sensors. Therefore, for a distributed array of N trans-
ducers, the analytically computed signals in equation
(6) are repeated for all N (N � 1) pairs of sensors that
form the linear equation y=Ax as

y1, 2 tð Þ
y1, 3 tð Þ

..

.

ya, r tð Þ
..
.

yN ,N�1 tð Þ

2
66666666664

3
77777777775

N N�1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
y

=
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..

. ..
. . .

. . .
. ..

.
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..

. ..
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where A is the dictionary matrix, y is the subtracted sig-
nals, and the unknown vector x shows the location of
damages that is assumed to be sparse. In this study, to
compensate for the effect of phase shifting, the detected
envelope of the subtracted signal and pre-computed sig-
nals is used as

y0a, r tð Þ= abs Hilbert ya, r tð Þð Þð Þ
a0a, i, r tð Þ= abs Hilbert aa, i, r tð Þð Þð Þ

ð8Þ

In this work, to solve the linear inverse problem, the
basis pursuit denoising (BPDN) method is used as was
used by Levine (2014) and Levine and Michaels (2013),
which is an l1-optimization method. This method mini-
mizes the l1-norm of the vector x to solve the optimiza-
tion problem as

x=argmin jjxjj1subject to jjy� Axjj2\s ð9Þ

where s is the user-specified parameter that acts as a
trade-off parameter between sparsity and reconstruc-
tion accuracy.

2.3. Hybrid DAS-SR method

The l1-minimization problem, which is shown in equa-
tion (9), typically does not incorporate any prior infor-
mation about the unknown vector x; however, in SHM
applications, it is possible to provide a rough estimation
of the status of the structure by performing some cheap
and quick evaluations. The DAS method is one of the
methods that could provide a rough, robust, and quick
estimation of the status of the structure. Also, in the
DAS method, the configuration of transducers and hard-
ware, the procedure of measurement signals, and some
preprocessing levels are the same as the SR method.

In the case of multi-defects, as stated by Levine
(2014), the quality of DAS images may decrease with a
large spot, but the detection by the SR method in some
cases may totally fail. Also, another comparison per-
formed by Levine (2014) shows that the DAS method is
significantly quicker and cheaper than the SR method.
The rough comparisons of these two methods can show
in some conditions (such as multi-damage existence)
the robustness of the DAS method is higher than for
SR method; however, its accuracy is lower than for SR.
Therefore, these two methods can complement each
other, and this gives rise to the idea of using the DAS
method to leverage the SR method.

To develop a hybrid DAS-SR method, we need to
define support ~T � f1, . . . , pg as a prior support esti-
mate, define weights for each pixel in the structure, and
then solve weighted l1 minimization

x=argmin jjxjj1,~w subject to jjy� Axjj2\s ð10Þ

where jjxjj1,~w is the weighted l1-norm and is calculated
as

jjxjj1,~w =
Xn

i= 1

wi xij j and wi =
w 2 0, 1½ � i 2 ~T

1 i 2 ~T
c

�

ð11Þ

where ~w= ½w1,w2, . . . ,wn� is the vector of weights
related to unknown vector x, which shows pixels of the
structure. The logic behind this formula is that choos-
ing a weight wi less than 1 will encourage xi being non-
zero in the minimizing of equation (10).

To define the support ~T and weights wi for each
pixel, we should assign a number Ei, which is related to
the probability of damage presence. To do this, here we
use the results achieved by DAS for each pixel as
follows

Ei =
1

N N � 1ð Þ
XN�1

a= 1

XN

r = i+ 1

y0a, r ta, i, rð Þ ð12Þ

where ta, i, r is the time of flight for wave propagating
from actuator a to the pixel i and then received by sen-
sor r. After finding Ei, we calculate Pi =Ei=Max(E)
and set the threshold C0 to define the support set
~T = fT1, . . . , Tig as

~Ti 2 1, . . . , pf g for i= 1, . . . , p where Pij j.C0

ð13Þ

As for each index, there is a different level of confi-
dence; we apply different weights corresponding to
each index that they are in the support. In this work, to
define weights, a relationship is proposed as follows

wi =
1+ exp 1ð Þ

1+ exp 1+ 10Pið Þ ð14Þ

Equation (14) which relates Ei to the weight wi is an
empirical relationship which is roughly estimated by con-
sidering various cases with several conditions and some
mathematical theories presented by Flinth (2016) and
Needell et al. (2017). In equation (14), lower weights are
assigned to the pixels with a higher probability of being
nonzero. In this work, for DAS calculations, we use the
formulations presented by Michaels (2008).

3. Application of the DAS-SR method

In this section, two applications of the proposed hybrid
method are studied: the first one is the application of
this method for increasing the computational perfor-
mance using low-frequency sampled signals and the
second one is the application of the hybrid method in
multi-damage detection.

3.1. Increasing the computational performance

As stated above, the main application of SHM systems
is the real-time monitoring of the status of structures.
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To perform real-time processing, computational perfor-
mance is an important issue because it could signifi-
cantly affect the cost of hardware and the operational
capability of the SHM systems. In this way, one of the
main drawbacks of the SR method is the time and cost
of computations in comparison with the DAS method.
In the SR method, the size of the dictionary matrix
plays an essential role in the computational perfor-
mance of the method, as a larger dictionary matrix
increases excitation time and memory usage, while
reducing the size of dictionary leads to a decrease in
accuracy of results. In this work, the capability of the
hybrid DAS-SR method is evaluated for working with
a reduced size dictionary matrix, by reducing the time
sampling rate of the measured and pre-computed sig-
nals, while the accuracy does not decrease.

3.1.1. Case studies. To verify the application of the
hybrid method in reducing the computational cost,
numerical simulations, as well as experimental measure-
ments, were performed on a flat 90 cm by 90 cm alumi-
num plate with 3 mm thickness. Also, to interrogate the
structure, a sparse array of eight PZT transducers was
used, and simulated damage was placed on the struc-
ture. The studied configuration is shown in Figure 1.

In the numerical simulation, the test case shown in
Figure 1 was modeled and solved in a commercial
finite-element (FE) software (Ansys Workbench 18.2)
using the Explicit Dynamic Solver. To generate the
mesh, the solid element and mapped face approach as
well as multi-zone approach were used. Also, to select a
proper mesh size and determine the average number of
node per wavelength (NPW), a mesh convergence study
was performed on the root mean square (RMS) of sig-
nal measured by PZT 1 due to excitation by PZT 5.
Table 1 shows the steps of mesh convergence study.

The maximum NPW that is shown in Table 1 is
related to the area near the crack, and the minimum
NPW is related to the area near the boundaries of the
plate. Also, the normalized RMS is the RMS value of
each signal that is normalized with respect to the maxi-
mum value of RMS among the iterations. After per-
forming mesh study for a plate with a single crack, we
used almost 1.2M elements and 1.6M nodes with the
average 25 NPW.

In addition, for the simulation of S0 propagating
mode, we have used three elements within the thickness
of the structure. Also, 5 mm horizontal cut damage
throughout the plate thickness was simulated as a
detection target. To generate Lamb waves, square PZT
transducers are modeled as a homogeneous material,
with a length/width of 10 mm and an infinitesimally
thin bonding layer with perfect bonding. The finite ele-
ment model (FEM) of the plate with the embedded
PZTs and the crack is shown in Figure 2.

In addition, experimental testing is performed on an
aluminum plate with the same configuration, as shown
in Figure 1. In the experimental setup, to simulate the
damage, a glued-in steel rod with 6 mm diameter was
used in the same position as the analytical model. Also,
the transducers were square PZT type PIC255 with the
width of 10 mm and thickness of 0.5 mm, and the
transducers were bonded on the aluminum plate using
superglue. Signal generation was carried out by wave-
form generator Agilent 33500B, and a wideband vol-
tage amplifier Agilent 33502A was used to amplify the
excitation signal. Also, the data acquisition was per-
formed using PicoScope 6402 and standard cables with
Bayonet Neill–Concelman (BNC) connectors. The
experimental setup is shown in Figure 3.

In both the experimental test and the finite element
analysis, for pure S0 Lamb wave mode generation, a
pair of PZT transducers was used in the same location
on both sides of the plate, to excite the plate with a

Figure 1. Configuration of the plate with PZT transducers and
a crack.

Table 1. Selection of mesh size.

Total number
of nodes

Minimum and
maximum
of NPW

Average
NPW

Normalized
RMS

1653103 NPW ø 5 8 0.375
NPW<50

6833103 NPW ø 8 16 0.770
NPW<85

9143103 NPW ø 10 19 0.938
NPW<110

11193103 NPW ø 14 21 1
NPW<110

13433103 NPW ø 16 23 0.992
NPW<110

15703103 NPW ø 17 25 0.998
NPW<130

NPW: node per wavelength; RMS: root mean square.
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signal with the same shape and phase. Also, to maxi-
mize the signal-to-noise ratio (SNR) of the measured
signals, a 150 kHz four-cycle Hann-windowed tone
burst is used as an excitation signal. Also, to validate
the FEM simulations, a comparison between experi-
mental measured and numerical simulated signals for
the same actuator and sensor (actuator 6 and sensor 2)
is shown in Figure 4.

The excitation signal shown in Figure 4 is normal-
ized to its maximum value and the received signals are
normalized with respect to maximum peak of direct
waves. The sampling frequency of the experimental sig-
nal is much more than FEM simulated signal and this
causes some difference in peak values. The difference
between RMS of these two signals is about 1% and the
difference between the time of flights of direct waves is
less than 0.5%.

3.1.2. Results. In this section, the images constructed
with different time sampling frequencies through DAS,
SR, and hybrid methods are compared. In Figures 5 to
9, the results obtained from the experimental tests are
shown.

As it can be seen from Figures 5 to 9, the DAS and
SR methods do not work with the signals that are

sampled less than two times of Nyquist rate; however,
the hybrid method works successfully with signals that
are sampled even less than Nyquist rate. Also, in
Figures 10 to 14, the results obtained from the FEM
numerical simulation are shown.

The results obtained from the numerical simulations
show the similar behavior with those of the experimen-
tal tests and both of them prove the capability of the
hybrid method to produce accurate results with a
smaller size of dictionary matrix than that of the SR
method. In addition, the processing times used by SR-
DAS method for signals with different sampling fre-
quencies are shown in Table 2. For this computation, a
desktop PC with a 64 GB RAM and a processor of
CPU E5-1620 v2 3.7 GHz is used and the duration of
signals is about 240 ms.

Table 2 only shows the elapsed time in the
preprocessing and processing steps and does not
include the elapsed time for data transfer to and from
memory.

3.2. Multi-damage detection

One of the weaknesses of both the DAS and SR meth-
ods is in the detection of multiple damages,

Figure 2. The finite element model of the plate with embedded PZTs and the simulation crack.

Figure 3. Experimental setup: (a) general setup for data gathering and (b) the plate with simulated damage.
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simultaneously. In the DAS method, however, while
the general area of the presence of damages can be
identified, the detection of the exact location of dam-
ages tends to be poor due to the interference of hot

spots. However, in the SR method, the spot size usually
is one or two pixels, but in some cases, the detection
can totally fail. Therefore, it seems that by combining
these two methods in the application of multi-damage

Direct wave

Reflected wave

Excitation signal

Figure 4. Comparison between experimental measured and FEM simulated normalized signals for actuator 6 and sensor 2.

(a) (b) (c)

Figure 5. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the experimental signals
sampled at 2.4 MHz (83 Nyquist rate).

(a) (b) (c) 

Figure 6. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the experimental signals
sampled at 1.2 MHz (43 Nyquist rate).
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location detection, we can gain from both the robust-
ness of DAS and the accuracy of the SR method.

3.2.1. Case study. In this work, for evaluation of the
hybrid method in multi-damage detection, numerical

simulation for two damages as well as the experimental
test for two and three damages has been performed.
For the numerical simulations and experimental tests, a
FEM and experimental setup just like those described
in section ‘‘Case studies’’ are prepared, with the only

(a) (b) (c) 

Figure 7. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the experimental signals
sampled at 600 kHz (23 Nyquist rate).

(a) (b) (c)

Figure 8. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the experimental signals
sampled at 300 kHz (13 Nyquist rate).

(a) (b) (c)

Figure 9. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the experimental signals
sampled at 150 kHz (1/23 Nyquist rate).

2926 Journal of Intelligent Material Systems and Structures 30(18-19)



difference being in the number of damages. The config-
urations of test cases with two and three damages are
shown in Figure 15.

As stated above, for experimental validation, the sig-
nal measurements are performed for test setups

with two and three simulated damages, as shown in
Figure 16.

3.2.2. Results. In this section, the results achieved by
DAS, SR, and hybrid methods are compared for a

(a) (b) (c) 

Figure 10. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the FEM simulation signals
sampled at 2.4 MHz (83 Nyquist rate).

(a) (b) (c) 

Figure 11. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the FEM simulation signals
sampled at 1.2 MHz (43 Nyquist rate).

 
(a) (b) (c) 

Figure 12. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the FEM simulation signals
sampled at 600 kHz (23 Nyquist rate).
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plate with two and three simulated damages. It should
be noted that the A0 mode is more sensitive to sur-
face scatters 0 (such as glued rods) and S0 mode is
better in the detection of defects throughout the
thickness (such as cut damage) (Su et al., 2006). In
the present study, we chose S0 mode for surface
scatters detection to evaluate the methods for cut
damage detection. Therefore, evaluation of meth-
ods is performed conservatively. Figures 17 and 18
show the results achieved from the experimental
measurement.

Also, Figure 19 shows the results achieved by numer-
ical simulations for the case of two 5-mm-long simu-
lated crack on the plate.

It is clear from Figures 17 to 19 that the images
reconstructed through the hybrid method are signifi-
cantly improved in comparison with the DAS and SR
methods when separately used. Also, as shown in
Figure 18(b) in the SR method, the detection of a third
damage location has almost totally failed, and some
mistakes occur in the detection of damages in the both
the SR and the DAS methods.

(a) (b) (c)

Figure 13. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the FEM simulation signals
sampled at 300 kHz (13 Nyquist rate).

(a) (b) (c)

Figure 14. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the FEM simulation signals
sampled at 150 kHz (1/23 Nyquist rate).

Table 2. Time elapsed for signals with different sampling ratios using SR-DAS.

Sampling frequency Processing time for the
DAS method (s)

Processing time for the
SR method (s)

Processing time for the hybrid
SR-DAS method (s)

2.4 MHz 3.6 177.4 169.4
1.2 MHz 2.5 106.6 100.4
600 kHz 2.1 53.7 49.4
300 kHz 2.0 38.5 32.6
150 kHz 1.9 24.0 23.7

SR: sparse reconstruction; DAS: delay-and-sum.

2928 Journal of Intelligent Material Systems and Structures 30(18-19)



4. Conclusion

In this article for application in SHM, a hybrid method
based on SR and DAS methods is proposed. The
hybrid method increases the accuracy and robustness

of the image reconstruction in the presence of multi-
location damage and in cases with signal sampling fre-
quency just below the Nyquist limit. To evaluate this
method, experimental tests, as well as FEM numerical

Figure 15. The configuration of the plates with (a) two damages and (b) three damages.

Figure 16. Experimental setup: (a) for two simulated damages and (b) for three simulated damages.

(a) (b) (c)

Figure 17. Images reconstructed through (a) DAS method, (b) SR method, and (c) hybrid method with the experimental signals for
configuration (A). Damages are located at coordinates (39 cm, 51 cm) and (51 cm, 39 cm).
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simulations, were performed on an aluminum plate.
The results achieved from both experiments and numer-
ical simulations show that using the hybrid method,
one can obtain accurate and robust results with the
reduced size dictionary matrix, which significantly
decreases the cost and time of computation while also
increasing the computational performance. Besides, in
the hybrid method, the probability of multi-damage
detection is much more than using either the SR or the
DAS methods.
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