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A B S T R A C T   

In this paper, the performance of the sparse reconstruction (SR) and the delay-and-sun (DAS) methods for 
damage localization, were evaluated for various environmental and operational conditions, both numerically and 
experimentally. To assess these damage localization methods, a methodology based on the Taguchi method was 
used to make the experimental design, and a modified performance-index was defined to represent the quality of 
reconstructed images. Then, the robustness and the accuracy of each method, in a well-defined performance 
region relevant to in-service aerospace structures, were investigated using the Taguchi and analysis of variance 
methods. It was concluded that for the defined conditions, the robustness of the delay and sum method is better 
than the sparse reconstruction method for uncontrolled factors. However, the sparse reconstruction method is 
more robust to poor baseline subtraction than the delay and sum method, while the delay and sum method was 
more robust to factors that lead to a model mismatch. These results provide additional insight into the design of 
reliable accurate structural health monitoring systems. The outcomes of this work can be used in future reaserch 
into SHM imaging techniques.   

1. Introduction 

Condition-Based Maintenance (CBM) of structures involves contin-
uous real-time monitoring of the structure, and decision making to 
determine its current condition of the structure. This allows the opera-
tors to improve maintenance efficiency by enabling a move from 
scheduled maintenance to maintenance based on condition [1]. Struc-
tural Health Monitoring (SHM) can support these significant changes in 
the maintenance procedures 

replacing the periodic and scheduled maintenance by real-time 
monitoring of the integrity of in-service structures [1]. 

To perform active SHM, guided Lamb waves have recently gained a 
lot of attention [2,3] as they can scan large areas of structures with a few 
sensors and are sensitive to barely-visible structural damages [4,5]. 

In guided Lamb-wave SHM, signal features e.g. amplitude, frequency 
and time of flight (TOF) changes [6], is used to identify the presence of 
damage followed by applying localization algorithms to find the damage 
location(s). Examples of localization algorithms are phase array ap-
proaches [7], the tomography technique [8], the semi-instantaneous 

baseline approach [9], the minimum variance method [10] and the 
Delay-and-Sum (DAS) algorithm [11]. Further steps would be to mea-
sure and to assess the effect of the damage on the structural integrity 
[12] and to preform prognosis of the remaining useful life of the 
structure. 

The DAS method was developed by Wang et al. [11], and Michaels 
applied this method to the residual signal (subtraction of the baseline 
signal from the acquired signal) [13]. This method has received 
noticeable attention due to its simplicity and robustness [14,15] with 
regard to other methods. However, in some circumstances such as at the 
presence of multiple damages and with poor baseline subtraction, the 
performance of this method decreases due to a large spot size and high 
noise levels [16]. Furthermore, some previous research has evaluated 
and increased the performance of this method [17,18] and investigated 
the effect of operational conditions such as temperature and vibration on 
the performance of the DAS method [13,19]. 

Recently, Levine and Michaels [20,21] developed a new imaging 
method that is based on the assumption of the sparsity of structural 
damages and sparse reconstruction (SR). This method was applied to 
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residual signals and is a dictionary-based approach that was successfully 
demonstrated to be applicable for the detection of scatters. Recently, 
Wang et al. [22] designed a comprehensive dictionary containing 
various waveforms under diverse conditions, and they validated its 
functionality by both metal beam and composite wind turbine experi-
ments. Later, Hua et al. [23] proposed sparse reconstruction imaging for 
Lamb wave simultaneous excitation system to obtain both efficient data 
acquisition and high imaging performance. In addition, Xu et al. [24] 
developed a method based on weighted sparse reconstruction and 
Nokhbatolfoghahai et al. [25,26] demonstrated a hybrid DAS-SR 
method based on combination of the SR and DAS methods and 
weighted sparse-reconstruction, to improve the computational perfor-
mance and robustness of both methods in case of multi damage presence 
and using low sampled signal. 

Although, some researchers have demonstrated that the SR method 
has a high potential and have shown that the images reconstructed with 
the SR method were superior to the DAS method [21,27,28], they did 
not study the influence of possible limitations such as poor baseline 
subtraction or model mismatch, which could occur in realistic in-service 
operational and environmental conditions. Levine also emphasized the 
importance of further assessment into the robustness of this method in 
some operational conditions in [28]. 

Other previous research [29–32] has investigated the effects of 
operational conditions on SHM systems for damage detection and only a 
few studies have assessed imaging methods [19,33–36]. However these 
environmental parameters were only assessed individually and multi- 
parameter interactions were not studied. 

In real operating conditions, uncertainty in some parameters cause 
model mismatch in SHM systems, such as existing unpredictable noise 
and lack of information about the exact mode of the Lamb wave prop-
agation, while others reduce the quality of comparison for example 
temperature variation and humidity. Despite applying the compensation 
methods described in [34,37–40] and some methods for signal treat-
ments such as sparse Bayesian learning [41,42], these factors continue 
to cause challenges and to decrease the accuracy and reliability of SHM 
methods. 

To perform a multi-parameter assessment, a simple approach using a 
full factorial would require a large number of measurements. Therefore 
we use the Taguchi method as a robust and efficient Design of Experi-
ment (DOE) method in this paper. Also, to use the proposed evaluation 
method for the first time, we have chosen a simple structure to reduced 
the uncontroled factors as much as possible. 

This paper consists of an introduction to the algorithms used (Section 
2), the developed methodology for the DOE (Section 3), a description of 
the design of the experimental setup and numerical models (Section 4), 
results, discussion and conclusions (Sections 5 and 6). 

2. Theoretical background 

This section, introduces the theory of Lamb waves, and the DAS and 
SR imaging methods. 

2.1. Lamb waves 

Lamb waves are a type of elastic wave that are guided between two 
parallel free surfaces of a thin-wall structure such as a plate or shell [3]. 
A propagating Lamb wave has two classes, symmetric (Sn) and anti-
symmetric (An) modes. The symmetrical and antisymmetric zero-order 
modes (S0 and A0) deserve special attention as they are the only 
modes that exist over the entire frequency spectrum and they carry more 
energy and have lower attenuation than the higher-order modes. In an 
active guided wave SHM system, Lamb waves are generated and 
detected by actuator-sensors, e.g. PZTs [6]. Then a localization method 
such as imaging methods is used to investigate the integrity of the 
structure and to find possible crack positions. 

Imaging methods for Lamb waves (as a category of localization 

methods) can be assigned into two general categories, methods based on 
a baseline signal and beseline-free methods such as time-reversal [11]. 
In the baseline methods [17] a differential signal is obtained from 
comparison with the baseline signal from an undamaged structure. To 
calculate the group velocity, the time of flight of directly propagating 
waves from each transducer pairs are obtained from the envelope- 
detected signals [13]. Also differential signals, are calculated by 
scaling the maximum amplitude of the signal, reduced by the square root 
of the propagation distance as in [13] to obtain the envelope-detected 
residual signal Rij(t) from the Hilbert transform as: 

Rij(t) = Ŝij(t) − Ŝ
b
ij(t) (1)  

Eij(t) = abs
(
Hilbert

(
Rij(t)

) )
(2) 

where Ŝij(t) and Ŝ
b
ij(t) are the scaled measured and baseline signals, 

respectively. Rij(t) is the residual signal and Eij(t) is the envelope- 
detected residual signal. Eij(t) is the input to both the DAS and SR al-
gorithms described below. 

2.2. Delay and Sum method 

To perform the DAS method, the signal arrival times for each pixel 
and each sensor-actuator pair are calculated based on a knowledge of 
the group velocity. To generate an image of the structure, we have used 
the method presented in [13] to calculate P(x, y) which is the value of 
pixel (x, y) in the DAS images: 

P(x, y) =
1

N(N − 1)
∑N− 1

i=1

∑N

j=i+1
Eij
(
tij(x, y)

)
(3)  

where N is the number of transducers and tij(x, y) is the time-of-flight for 
a signal that is actuated by PZT “i”, scattered at location (x, y) and 
detected by PZT “j”. 

2.3. The sparse reconstruction method 

The Sparse Reconstruction method is a dictionary-based method 
based on the assumption of damage sparsity of structures [20]. In this 
method, it is assumed that the differential signal is composed of a linear 
combination of signals from individuals scattering points [28]. The re-
sidual signals are decomposed into the sparse location-based compo-
nents that can be analytically computed from the single mode Lamb 
wave propagation model as follows [20] 

y(t) = F− 1

{(
d

dref

)− 1/2

F{x(t) }exp
(
− i2πfd
cp(f )

)}

(4)  

where y(t) shows the amplitude of time history of the propagating Lamb 
wave with excitation time function x(t) after propagating distance d, 
F{ } is the Fourier transform operator and cp(f) is the phase velocity. 
Also, f is the time frequency. 

In the approach of [20], the dictionary matrix A ∈ RN×M is formed 
from these pre-computed signals, and the measurement vector y ∈ RN is 
formed from the concatenation of differential signals recorded from the 
structure. By considering a dictionary matrix A, a measurement vector y 
and using the sparsity assumption, it is possible to reconstruct a sparse 
vector x ∈ RM which shows the possible location of damage such that 

y = Ax+ e (5)  

where e is a noise term. This linear equation is underdetermined if N <

M and overdetermined if N > M. In the present study, to solve such 
linear inverse problems, the l1 optimization method and the well known 
Basis Pursuit Denoising method (BPDN) are used. The l1 optimization 
methods use a linear program to minimize an objective function that 
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includes an l1norm term [28]. The BPDN method solves an optimization 
problem of the form 

x = argmin‖x‖1 subject to ‖y − Ax‖2 ≤ σ (6)  

where ‖ ‖1 is the l1norm and ‖ ‖2 is the l2norm of the vector. Also, σ is the 
user-specified parameter that should be between 0 ≤ σ < ‖y‖2. 
Choosing an optimal σ is not straightforward and is a trade off between 
sparsity (when σ approaches to 1) and reconstruction fidelity (when σ 
goes to 0). Based the selection of σ on previous works [202528] in this 
work, we set this value as a random variable in the range 0.6 ≤ σ

‖y‖2
< 1 

and considered this variable as an uncontrolled (noise) factor in the 
Taguchi analysis. Also, to perform the above optimization problem, the 
free and open-source SPGL1 software package (Version 1.9) was used. 

3. Methodology 

To perform a reliable assessment of the accuracy and robustness of 
the DAS and SR methods with a few numbers of statistical data, here the 
Taguchi method is used as a robust design method for Design of Ex-
periments (DoE). 

Furthermore, to study the effects of each individual factor, Taguchi 
and ANOVA methods are used. Also, to ease in the comparison of 
different condition results, a metric parameter is designed. Fig. 1 shows 
the steps of the evaluation methodology proposed in this work. 

3.1. Taguchi and ANOVA methods 

The Taguchi method is a statistical method developed by Taguchi 
and Shozo [43]. It was originally used for quality engineering, but 
nowadays its main application is for studying variation [44] and in 
Design of Experiments (DoE). 

In a problem with several variable factors with several levels, to 
study the effects of all factors and the effect of all interactions between 
these factors on the response, the common design of experiments 
method is the Full-Factorial design [44]. In the Full-Factorial method, 
the experimental design considers all possible combinations of all the 
levels across all such factors, which requires a large number of runs to be 
accomplished. To reduce the number of runs, a well-known method that 
generates the most information is known as a partial fractional design. 

However, there are no general guidelines for this method’s application 
or the analysis of the results obtained by performing the experiments 
[44]. Considering these difficulties, Taguchi formulated a special set of 
general design guidelines for factorial experiments that cover many 
applications. Taguchi proposed a design method, which uses an 
orthogonal array to study all of the parameter space with a lesser 
number of experiments to be conducted [43]. To use the Taguchi design 
method, first the main function and the control factors, as well as their 
levels, must be identified. Then, a suitable orthogonal array is selected 
and the matrix is constructed. It should be noted that the Taguchi 
method proposed specific orthogonal arrays and based of the most 
suitable one, we should redefine the number of levels to be consistent 
with the that orthogonal array. Finally, the matrix of runs is accom-
plished, the data is analyzed, and the effect of each factor on the accu-
racy of each SHM method will be studied. To evaluate the effect of each 
selected factor, it is necessary to calculate the signal-to-noise ratio (S/N 
ratio) for each control factor. The S/N ratio in the Taguchi analysis is 
calculated by the Mean Squared Deviation (MSD) [45] and shows the 
dependency of the results to controlled and uncontrolled factors (noise 
factors). A higher value of the S/N shows a low dependency of the results 
to uncontrolled factors and a higher robustness. To calculate the S/N 
ratio, the Performance-Index of each image is chosen as the main 
function and the objective function is considered as the “larger-the- 
better”. The S/N ratio and the mean value for this function is calculated 
as [44] 

η = − 10log10

(
1
n

∑n

i=1

(
1
Yi

)2
)

mean=

∑n

i=1
Yi

n

(7)  

where n is the sample size and Yi is the target variable. 
Then the data will be analysed using ANOVA to test general rather 

than specific differences among group means in a sample [46]. Also, an 
ANOVA analysis can determine how likely the changes in results are due 
to a change in each parameter rather than by chance. This probability is 
calculated as a p-value that is a probability that measures the evidence 
against the null hypothesis. Lower probabilities provide stronger evi-
dence against the null hypothesis. The p-value is calculated from an F- 
value that is the test statistic used to determine whether the term is 

Fig. 1. Proposed evaluation methodology steps.  
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associated with the response and the F-value is calculated as Adj MS Term
Adj MS Error 

for a 95% level of confidence [44]. 

3.2. Multi-parameter analysis 

To compare the performance of the SR and DAS methods in simu-
lated operational conditions, six parameters with different levels which 
are considered to influence the SHM system performance were selected. 
Generally, a larger number of considered levels would result in a better 
general conclusion, however, the computational cost and time should be 
in a reasonable range. Based on the number of parameters and the 
selected Taguchi method requierments, the most suitable orthogonal 
array was selected as L32

(
21 45 ), which is combination of 5 parame-

ters in 4 levels and one in 2 levels. The studied conditions are  

I. Poor baseline subtraction due to the temperature changes: In 
this work, the temperature is changed in the range 36 ◦C to 60 ◦C. 
36 ◦C is the maximum temperature for aluminum in which the 
Young modulus is considered to be equal to the room temperature 
modulus [47] and 60 ◦C is selected according to the highest 
environmental operatinal temperature for aircraft in Europe 
based on MIL-STD 180G [48]. The baseline signals are simulated 
at 36 ◦C and based on the selcted orthogonal array 
(L32

(
21 45 )), the signals from the damaged structure are 

simulated at 4 points namely 36 ◦C, 43 ◦C, 50 ◦C and 60 ◦C.  
II. Unwanted signal noise: In real conditions, the environmental 

conditions affect the quality of the signals by creating noise, and 
this makes challenges for damage detection methods. In this 
work, to assess the robustness of the methods, different levels of 
white-noise are applied to the residual signals (20 dB, 10 dB, 6 
dB, and 3 dB SNR).  

III. Errors in the calculation of wave propagation speed: In this 
paper, the traveling wave velocity is calculated as described in 
Section 2. In this process, some errors could happen due to errors 
in modeling the wave velocity, errors in the measurement of 
Time-of-Flight for direct waves, and variation in wave velocity 
due to inhomogeneity in the material. Therefore, to evaluate the 
robustness of the two SHM methods, the Lamb waves are 
modeled with 0%, 1%, 2%, and 3% errors in wave velocity. It 
should be noted that this error is totally different from the 

difference between the wave velocities in the baseline signal and 
measured signal that could happen due to the temperature vari-
ation or other operational conditions.  

IV. Model mismatch due to errors in sensor placement: The exact 
position of PZTs in real structures may be positioned differently 
from those in the mathematical model due to measurement er-
rors. In this work, to study the effect of this type of model 
mismatch, the maximum sensor placement error for each PZT is 
considered to be 5 mm in any direction on the surface of the plate. 
The overall error in sensor placement is simulated in four levels 

SP=(0.0, 1.0, 1.5, 2.0), where SP =

∑np
i=1

dsi

dsp
, np is the number of 

PZTs, dsi is the distance between the exact position of the ith 

sensor and its position in the mathematical model and dsp is a 
reference distance equal to the length/width of the PZTs (i.e. 10 
mm).  

V. Number of PZTs: Another parameter that affects the accuracy is 
the number of sensors and actuators in the SHM system. How-
ever, some previous works have focused on the optimal sensor 
placement which look for the minimization of the uncertainty or 
maximization of the information gain [49–51], in practice, it 
seems that using more sensors-actuators should increase accuracy 
and robustness of the results. However, this also increases 
experimental and computational costs. In addition, sometimes 
due to some operational conditions, one or more PZTs may be 
damaged and disconnected during system operation and it is 
important for SHM methods to be robust against these conditions. 
Here, different numbers of sensors-actuators; 8, 7, 6, and 5 PZTs, 
are considered in the same configuration for damage detection in 
the plate.  

VI. The effect of boundary reflection: The reflection of signals from 
boundaries can cause overlapping signals in the time domain 
which then cause poor baseline subtraction. In a structure with a 
uniform boundary condition at all boundaries, the effect of 
boundary reflection depends on the distance of the actuators from 
the boundaries. In this work, two configurations, A and B are 
considered as shown in Fig. 2. In configuration A, the minimum 
distance of PZTs from the boundary is 155 mm, and the distance 
of the furthest PZT from the boundary is 215 mm. These two 
distances for configuration B are 255 mm and 315 mm, 

Fig. 2. Two different configurations A and B [25] for PZTs placement.  
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respectively. With respect to selected orthogonal array and 
because of computational limitations and the good controllability 
of this parameter, two levels, which have a significant difference 
in boundary reflection, are considered. In addition, to isolate the 
effect of boundary reflection, the locations of PZTs are considered 
in the same pattern in both configurations. 

3.3. Test matrix 

To use the Taguchi design method, the main function, the control 
factors, their levels and some noise factors (factors that are uncontrol-
lable) are required. These are summarized in Table 1. 

The detail of the matrix of runs accomplished is shown in Table 3 in 
Section 5. 

To determine the accuracy of the reconstructed images, a perfor-
mance metric parameter is needed. The literature describes different 
performance metrics, such as the “peak-to-artifact ratio” [20], the 

exponential coefficient [10] and the absolute error of localization 
[1933]. Here, it is required to consider more aspects that assess image 
quality, so a modified performance index (PI) metric is defined that is 
the combination of previous metrics and some new terms. 

Performance Index =

(
Npi

Npt

)

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
dcr

Δd + dcr

)

× (PAR) ×
VNP

VMP

√

(8) 

In Eq. (8) Δd is the the absolute error of localization [19,33] that has 
become dimensionless by dividing by the length of the crack dcr. Also, 
Npt is the total umber of peaks and Npi is the number of peaks in the 
vicinity of a crack within a radius of 4 cm. In this problem, peaks pi are 
defined as every pixel with a value of at least 80% of the maximum pixel 
value, VNP is the amplitude of the nearest peak to the crack and VMP is the 
amplitude of maximum peak. Also, PAR is the “peak-to-artifact ratio”, a 
performance metric that was introduced by Levine and Michaels [20]. 

4. Numerical model and experimental setup 

In order to compare the accuracy and robustness of the Delay and 
Sum and SR methods, parameters with different levels were modeled 
using a commercial FEM software (Ansys Workbench 18.2) using the 
Explicit Dynamic Solver. The modeled structure was a 90 cm by 90 cm 
aluminum plate with 3 mm thickness, instrumented with a sparse array 
of piezo sensor-actuators, to detect and localize a 5 mm horizontal cut- 
damage with 3 mm depth. To generate the mesh, the solid element and 
mapped face approach is used. The square PZT actuator-sensors were 
modelled as an homogeneous material with material properties equal to 
APC 850, with a length/width of 10 mm and a thickness of 0.3 mm, as 
well as an infinitesimally small bounding layer. The element size in the 
worst case is less than 1/17 of the wavelength, and near the crack, it is 
much smaller (less than 1/100 wavelength). A mesh study was per-
formed, and a proper mesh size was selected. In Fig. 3, an example finite 
element model mesh of the plate with embedded PZTs and the simulated 

Table 1 
Control parameters and their levels.  

Parameters (Control 
Factors) 

Levels of Parameter Noise Factors 

1 2 3 4 

Temperature 
Variation, A 

0 ◦C 7 ◦C 14 ◦C 24 ◦C Errors in computational 
procedures and in 
determining σ  Signal to noise ratio, 

B (dB) 
3 dB 6 dB 10 dB 20 dB 

Wave propagation 
speed error, C (%) 

0% 1% 2% 3% Errors due to FEM 
modeling and material 
inhomogenity 

Sensor placement 
error, D 

0 1 1.5 2 Errors due to other types 
of model mismatch 

Number of sensor- 
actuators, E 

5 6 7 8 

Configuration, F A B  

Fig. 3. Finite element model of the plate (a) general overview (b) in the vicinity of the crack.  

Fig. 4. Experimental setup(a) general setup for data gathering (b) the plate with the cut damage.  
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crack is shown. 
To validate the numerical results, experimental testing was per-

formed on the aluminum plate with the same configuration as the “B” 
configuration in the analytical model, with a through thickness cut of 5 
mm cut damage throughout the plate thickness with the width of 0.7 
mm at the same position as in the analytical model. The experimental 
setup is shown in Fig. 4. 

Excitation signals were generated by an Agilent 33500B waveform 
generator and amplified by an Agilent 33502A wideband voltage 
amplifier. PZT signals were captured using a PicoScope 6402 oscilli-
scope, connected using cables with BNC connectors. The mentioned 
equipment is shown in Fig. 5. 

In both the numerical analysis and the experimental test, for the 
Lamb wave generation, a 150 kHz four-cycle Hann windowed tone burst 
was used as an excitation signal. Each transducer acts in turn as a wave 
generator while all the other transducers capture signals. Also, we have 
used two PZT were positioned on opposite sides of the plate, to excite the 

plate with the pure S0 Lamb-wave mode. 

5. Results 

In this section, experiment and numerical results are first compared 
to verify the numerical results. After verification, the numerical results 
are processed using both the DAS and SR methods. It should be noted 
that as the type of images reconstructed from these two methods is 
different, so it is not possible to directly compare the images from the 
two methods. However, it is possible to compare the trends in the pro-
cessed data when the control parameters are changed. For this purpose, 
the Taguchi and ANOVA analyses are used for the comparison of the 
DAS and SR results. 

5.1. Comparison of experimental and numerical results 

In this section, the ultrasonic wave signals from the numerical 

Fig. 5. Experimental equipment used for wave generation and capturing data.  

Fig. 6. Comparison between experimental measured and FEM simulated normalized signals.  
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simulations are compared with those from experimental testing to verify 
the numerical simulations. In Fig. 6, the numerical and experimental 
signals due to pure S0 Lamb waves propagated by PZT 1 and received by 
PZT 5 are depicted (the position of the PZTs is shown in Fig. 2(B)). The 
excitation signal that shown in Fig. 6 is normalized to its maximum 
value and the received signals are normalized with respect to maximum 
peak of the direct waves. 

As it can be seen in Fig. 6, there is a good agreement between 
experimental and simulated signals for the direct wave. However, there 
is some difference in the peak values of the signals that is due to a dif-
ference in the sampling frequency of the two signals as some data points 
are not measured in the FEM simulated signal. In addition, because of 

Table 2 
Comparison of normalized calculated PI using experimental and simulation 
data.   

Normalized PI (Experimental) Normalized PI (Simulation) 

Run Number DAS SR DAS SR 

5 80 100 83 100 
6 100 48 100 51 
7 32 1 28 1 
8 58 20 88 14  

Table 3 
Normalized calculated PI for numerically modelled data using SR and DAS Method.   

Control Factors Normalized PI 

Run Number A(◦C) B (dB) C (%) D E F DAS SR Difference 

1 0 20 0 0.0 8 B 100 100 0 
2 0 10 1 1.0 7 B 100 74 26 
3 0 6 2 1.5 6 B 100 54 46 
4 0 3 3 2.0 5 B 63 43 20 
5 7 20 0 1.0 7 B 69 100 ¡31 
6 7 10 1 0.0 8 B 83 51 32 
7 7 6 2 2.0 5 B 23 1 22 
8 7 3 3 1.5 6 B 73 14 59 
9 14 20 1 1.5 5 B 8 1 7 
10 14 10 0 2.0 6 B 53 60 ¡7 
11 14 6 3 0.0 7 B 52 44 8 
12 14 3 2 1.0 8 B 66 1 65 
13 24 20 1 2.0 6 B 19 41 ¡22 
14 24 10 0 1.5 5 B 1 1 0 
15 24 6 3 1.0 8 B 13 12 1 
16 24 3 2 0.0 7 B 34 44 ¡10 
17 0 20 3 0.0 5 A 55 89 ¡34 
18 0 10 2 1.0 6 A 100 27 73 
19 0 6 1 1.5 7 A 99 82 17 
20 0 3 0 2.0 8 A 70 75 ¡5 
21 7 20 3 1.0 6 A 9 9 0 
22 7 10 2 0.0 5 A 11 28 ¡17 
23 7 6 1 2.0 8 A 24 94 ¡70 
24 7 3 0 1.5 7 A 10 1 9 
25 14 20 2 1.5 8 A 17 1 16 
26 14 10 3 2.0 7 A 8 1 7 
27 14 6 0 0.0 6 A 21 1 20 
28 14 3 1 1.0 5 A 14 1 13 
29 24 20 2 2.0 7 A 1 1 0 
30 24 10 3 1.5 8 A 1 1 0 
31 24 6 0 1.0 5 A 7 1 6 
32 24 3 1 0.0 6 A 4 47 ¡43 
Average 40.9 34.4   

Fig. 7. Comparison of images for configuration B, run 5 constructed using DAS via (a) experimental measured signals (b) FEM simulated signals (c) difference 
between experimental and FEM results. “×” is the experimental defect location and black squres are the sesnsor locations. 
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complexity in boundary reflection and mode conversion phenomena, 
some differences can be seen between reflected waves in experimental 
and simulated signals. As a quantitive comparison, the difference be-
tween the RMS of two signals is about 1% and the cosine similarity 
between these two signals is about 0.9. In Table 2, a comparison is 
performed between the normalized calculated PI from the experimental 
and the simulation data using DAS and SR methods in the four different 
conditions (run numbers 5 to 8 in Table 3). 

As can be seen from Table 2, the experimental and simulation results 
are in good agreement. However, there are some differences that could 
be due to not-ideally isolated parameters in the experimental condition. 
Figs. 7 and 6 show images constructed using DAS and SR methods via 
experimental and simulation data, respectively. These images are con-
structed in the condition that was introduced in run 5 of Table 2. 

As it can be seen in Fig. 7(c) and from contour bar, the maximum 
difference between images reconstructed via simulated and experi-
mental data is about 25% of the maximum value of the contour which 
shown in Fig. 7(a) and (b). 

The images presented in Fig. 8 shows the predicted damage location 
in images reconstructed using simulated data agree with ones using 
experimental data within about 1 pixel. The results presented in Fig. 6 as 
well as in Table 2 shows the verification of simulation data that will be 
analyzed in the next step. 

5.2. Conducting the matrix of runs 

Here regarding L32
(

21 45 ) presented in Table 3, numerical simu-
lations were performed according to the factors and levels are shown in 
Table 1. The normalized PI was calculated for each run and each method 
and are presented in Table 3. Also, a min/max normalization was per-
formed on the PIs for each method, and the normalized data were scaled 
between 1 and 100. 

As is shown in Table 3, the change of PI in the DAS method is 
smoother than the SR method. In the results from the SR method, one 
can see that in some cases, the result suddenly falls to one. 

It sould be noted that in this study a simple structure was considered 
as a test case because it was important that the modelled structure was 
both simple enough to model the Lamb wave propagation accurately 
and to reduce the uncontrolled factors as least as possible, and also of a 
suitable size that it was computationally manageable to perform the FE- 
analysis. In addition, in real engineering complex structures, it is very 

difficult to study the effect of “boundary reflection” parameter because 
the multipath reflections are very complicated and dependent to other 
factors. 

In Complex structures, the effect of model mismatch seems much 
more serious than simple structures, because due to the existence of 
multipath reflections, modeling the propagation of Lamb waves is more 
challenging than simple structures. For example, to calculate wave ve-
locity, it is very difficult to find the exact time-of-flight for direct waves 
in complex structures due to the interference of reflective waves with 
direct waves. Also, the poor baseline subtraction in complex structures is 
more than simple structures due to the repetition of subtraction errors in 
reflection waves. However, the comparison of DAS and SR methods in 
simple and complex structures does not seem to be much different from 
each other. 

5.3. Constructed images 

In this section, sample images with various PIs constructed using 
simulated data from specific runs are depicted in Figs. 9 and 10 to 
demonstrate the consistency of image quality and PI number. 

As is shown in Fig. 9 in the DAS method, decreasing the PI index the 
spot size become larger and obscures the exact location of damage and in 
the case with the very small PI the spot area shows the wrong location of 
the defect. Also, by decreasing the PI index in images reconstructed via 
SR method depicted in Fig. 10, false detection increases and in case of 
very small PIs the detection totally failed. 

5.4. Taguchi analysis result 

In this section, after performing the runs presented in Table 3, to 
evaluate the effect of each factor on the quality and robustness of results, 
the mean values and the S/N ratio for each control factor are calculated. 
In the Taguchi analysis the S/N shows the dependency of the results to 
control and noise factors and a higher value of the S/N shows a low 
dependency of the results to noise factors and a higher robustness. The 
average of S/N is shown in Table 4 and the mean values of PIs for each 
level of control factor are presented in Table 5. Also, in these tables the 
“Delta” shows the difference between the maximum and minimum 
values and the “Rank” shows the ranking of each parameter with respect 
to higher value of Delta. 

According to Table 4, it can be seen that the overall robustness of the 

Fig. 8. Comparison of images constructed using SR via (a) experimentally measured signals (b) FEM simulated signals. “×” is the experimental defect location and 
black squres are the sesnsor locations. 
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DAS method against noise factors is better than the SR method. This 
seems logical because of the complexity of the calculations of the SR 
method against the simplicity of the DAS method. 

As we would expect from literature [13,19], the accuracy and 
robustness of the methods are very sensitive to temperature changes and 
the best accuracy and robustness is achieved when no temperature 
change occurs. Beyond that the DAS and SR methods show different 
sensitivities to the varing parameters. The DAS method is more sensitive 
to a change in boundary reflection and to a lesser extent the number of 
PZTs. But in the SR method, the effect of temperature changes and 
boundary reflection on the accuracy of results are less than those in the 

DAS method. Also, in the SR method, one can find more significant 
changes in results due to change in the Signal-to-Noise ratio (SNR) of 
data, error in wave speed calculation and error in sensor placement 
rather than DAS method. The results of Tables 4 and 5 are depicted in 
graphs in Figs. 11 and 12. 

According to graphs depicted in Figs. 11 and 12, it can be concluded 
that  

• The robustness and accuracy of the SR method falls down when the 
temperature changes from 7 ◦C to 14 ◦C, but the robustness of the 
DAS method does not change significantly in this range. Also, about 

Fig. 9. Images constructed using simulated data via DAS. “×” denotes defect location and black squres are the sensor locations.  
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the boundary reflection effect, the results show that a greater dis-
tance of sensor-actuators from the boundary leads to better results in 
both methods.  

• About the error in wave speed calculation, the best result is achieved 
for 1% error. It should be noted that, in the developed code, the wave 
speed is calculated from direct waves traveling between sensors and 
actuators and this calculation may have some computational errors. 
Thus it is also possible for the calculated speed with 1% change to be 
closer to the true wave speed. 

About the number of PZTs, in the SR method, the accuracy of the 
method reduces when the number of PZTs reduces from 7 to 6. But, there 
is not a significant difference in the results of 7 and 8 PZTs. In the DAS 
results this behavior happens when the number of PZTs changes from 5 
to 6. It seems that in both methods, if the number of sensors exceeds a 
certain number, the accuracy of damage location will not change vs. 
number of PZTs and the slope of the curve (mean of accuracy vs. number 
of PZTs) tend to zero after that certain number. This means that for a 
specific network geometry there is an optimal number of PZTs that using 

Fig. 10. Images constructed using simulated data via SR. “×” denotes defect location and black squres are the sesnsor locations.  

A. Nokhbatolfoghahai et al.                                                                                                                                                                                                                  



Measurement 169 (2021) 108495

11

PZT more than the optimal number does not significantly improve the 
accuracy of the results. This behavior, which is due to the increased 
overlap of the wave propagation path and PZT signals in a defined ge-
ometry, occurs when the number of PZTs exceeds the optimal number. 

5.5. ANOVA analysis result 

In this section, an ANOVA analysis is performed to estimate the 
contribution of each factor on changes in the PIs for each method. Also, 
ANOVA analysis can determine, how likely the changes in results are 
due to a change in each parameter rather than by other errors. This 

probability is calculated as a p value that is a probability that measures 
the evidence against the null hypothesis. Lower probabilities provide 
stronger evidence against the null hypothesis. The results of the ANOVA 
of the PIs are given in Table 6 for the DAS method and in Table 7 for the 
SR method. In Tables 6 and 7 (1 − p) × 100 shows how important are 
differences seen in Tables 4 and 5. For instance, Table 7 shows that the 
change of SNR in the defined range does not make significant impact on 
the results. Also, In Tables 6 and 7 “Seq SS” is the sequential sums of 
squares measured of variation of PIs, “Adj MS” is the adjusted mean 
square and “DF” is the total number of degrees of freedom. 

As it can be seen from the percentage of contribution column in 

Table 4 
Response table for the S/N ratio for the DAS and SR methods.  

Level Boundary reflection Temperature change (◦C) Signal to Noise (dB) Error in Wave Speed Error in Sensor Placement Number of PZTs  

DAS SR DAS SR DAS SR DAS SR DAS SR DAS SR 

1 22.5 13.5 38.5 36.0 28.9 16.5 26.4 19.1 29.6 26.5 22.1 13.0 
2 31.1 25.6 28.4 21.9 29.3 21.6 27.9 22.8 29.3 16.7 29.3 20.0 
3   27.0 8.6 24.0 21.1 27.5 16.1 22.5 12.7 27.5 22.7 
4   13.3 11.6 24.9 18.9 25.3 20.1 25.8 22.2 28.2 22.4  

Delta 8.6 12.1 25.2 27.5 5.3 5.1 2.6 6.7 7.1 13.8 7.2 9.7 
Rank 2 3 1 1 5 6 6 5 4 2 3 4  

Table 5 
Response table for the means value of PI for the DAS and SR methods.  

Level Boundary reflection Temperature change(◦C) Signal to Noise (dB) Error in Wave Speed Error in Sensor Placement Number of PZTs  

DAS SR DAS SR DAS SR DAS SR DAS SR DAS SR 

1 28.2 26.1 85.9 68.1 41.7 24.2 41.4 42.3 44.9 46.9 22.7 22.3 
2 53.5 41.9 37.8 40.1 42.3 37.7 43.7 43.7 47.3 28.6 47.4 26.6 
3   29.9 13.8 44.7 32.5 44.1 21.3 38.7 21.1 46.6 43.4 
4   9.8 14.1 34.7 41.7 34.4 28.9 32.7 39.5 46.7 43.9  

Delta 25.4 15.8 76.1 54.3 10.0 17.5 9.7 22.4 14.6 25.8 24.7 21.6 
Rank 2 6 1 1 5 5 6 3 4 2 3 4  

Fig. 11. Main effect plot for S/N ratios for results of the DAS and SR methods.  
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Table 6, the parameters that most determines the accuracy of the results 
in the DAS method is the temperature change, with the boundary 
reflection and number of PZTs in the second and third levels, respec-
tively. The three other parameters have a negligible contribution in the 
results. Also, it can be noted that the probability of contribution of each 
parameter, as shown by (1 − p) × 100 are in good agreement with the 
percentage of contribution. 

Table 7 shows the percentage of contribution of each parameter in 
the results of the SR method. The most dominant parameter in the ac-
curacy of the results is again temperature change, and the boundary 
reflection is the second most dominant parameter. However, the levels 
of the next three parameters are almost similar to each other. Also, it is 
noted that the probability of the contribution of each parameter, as 
shown by (1 − p) × 100, is in good agreement with the percentage of 

contribution. 

6. Conclusion 

In this paper, for performance assessment of SHM methods, a 
methodology based on the Taguchi method is proposed. Also, compar-
isons were performed between two SHM methods, SR and DAS, in a 
specific limited performance region and on a test case with simple ge-
ometry. For this purpose, a performance metric parameter (PI) was 
defined and six variable conditional parameters were chosen which 
included temperature-variation, boundary-reflection, SNR, error in 
sensor placement, error in the calculation of wave-speed and number of 
PZTs. Also, for the design of test matrix and statistical analysis, the 
Taguchi and ANOVA methods were used. 

Fig. 12. Main effect plot for means for results of the DAS and SR methods.  

Table 6 
ANOVA results of the PI calculated from the DAS method.  

Source DF Seq SS Adj MS F-value p-value (1 − p)× 100  Percentage of contribution 

Boundary reflection 1 5149 5149 20.38 0.000 100% 33,10% 
Temperature change 3 24,996 8332 32.98 0.000 100% 53,56% 
Signal to Noise 3 445 148 0.59 0.633 36.7% 0,95% 
Error in Wave Speed 3 484 161 0.64 0.601 39.9% 1,04% 
Error in Sensor Placement 3 1033 344 1.36 0.292 70.8% 2,22% 
Number of PZT 3 3505 1168 4,63 0,018 98,2% 7,51% 
Error 15 3789 252    1,62% 
Total 31 39,404 15,557    100%  

Table 7 
ANOVA results of the PI calculated from the SR method.  

Source DF Seq SS Adj MS F-value p-value (1 − p)× 100  Percentage of contribution 

Boundary reflection 1 1994 1994 3,02 0,103 89,7% 17,4% 
Temperature change 3 16,038 5346 8,09 0,002 99,8% 46,5% 
Signal to Noise 3 1373 457 0,69 0,571 42,9% 4,0% 
Error in Wave Speed 3 2801 933 1,41 0,278 72,2% 8,1% 
Error in Sensor Placement 3 3126 1042 1,58 0,237 76,3% 9,1% 
Number of PZT 3 3014 1005 1,52 0,250 75% 8,7% 
Error 15 9917 661    5,8% 
Total 31 38,262 11,439    100%  
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Based on the results, it could be concluded that the overall robustness 
of the DAS method with respect to noise factors is better than the SR 
method. Also, it can be concluded that the SR method was more robust 
than the DAS method with respect to changes in boundary reflection and 
temperature changes (factors that cause poor baseline subtraction). 
These conclusions show that these two methods could complement each 
other and that the combination of these two methods could improve the 
performance of damage localization under the defined conditions. In 
addition, using the proposed evaluation method for real engineering 
structures and considering some other operational conditions (such as 
applying loads and humidity) are interesting and practical ideas for 
future work. 

In conclusion, because of the inherent difference of the pictures that 
are constructed with these two methods, it is quite difficult to visually 
compare the accuracy of methods, but it was possible to compare the 
robustness and behaviour of these two methods using the Taguchi and 
ANOVA methods as has been demonstrated in this paper. In addition, it 
should be noted the conclusions presented in this paper, are valid in the 
defined performance region and to obtain more comprehensive con-
clusions, a much larger and prohibitively computationally expensive 
data set would be required. 
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