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Shearography is a non-destructive testing technique that provides full-field surface strain characterization.
Previous inspection of flat objects or simple geometric shapes has been reported. However, real-life objects es-
pecially in aerospace, transport, or cultural heritage are not flat, but their inspection with shearography is of
interest for both hidden defect detection and material characterization. Accurate strain measurement of a highly
curved or free-form surface needs to be performed by combining in-line object shape measuring and processing of
the shearography data in 3D. Previous research has not provided a general solution for that. This paper presents a
new approach of 3D shape shearography which is based on the integration of a structured light projector for
in-line shape measuring with 3D shearography. For the experimental part, a 3D shape shearography system
prototype was developed and its performance was evaluated with a cylinder specimen loaded by internal pressure
and compared with strain gauges. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.000498

1. INTRODUCTION

Shearography (speckle pattern shearing interferometry) is a
coherent-optical inspection technique [1,2] often used for
non-destructive testing and surface strain measurement [3].
Being an imaging technique, shearography provides full-field
measurements in a non-contact way. Shearography has a direct
sensitivity to the surface displacement gradient providing a
quantitative measurement of surface strain components
[2,3]. Six surface displacement gradient components, including
in- and out-of-plane components can be measured with well-
known multicomponent shearography instruments with three
or more viewing or illumination directions [4,5].

The shearography technique is capable of measuring the
surface strain components if the information about an object,
its shape, and location is known and telecentric imaging is used
[2,3]. In the case of a flat small object, the data processing can
be simplified with certain assumptions, such as constant shear
distances [2] together with constant sensitivity vectors within
the field of view [6]. Therefore, mostly flat objects at a known
distance were inspected before [2,3]. However, many objects of
interest for the inspection are curved, e.g., leading edges in
aerospace, sculptures in heritage. Their inspection with shear-
ography is also of an interest for both hidden defect detection
and characterization of the material behavior under various
loading scenarios. Therefore, the location, orientation, and
shape have to be measured for curved objects, preferably in-line

[4,7]. Three approaches to apply shearography to curved sur-
faces discussed below were found in the literature; however,
none of them provides a general solution for strain measuring
of a free-form object with an unknown orientation.

The first approach is to generate interferometric carrier
fringes and to project them on the object to perform profilom-
etry [8–11]. For this, a displacement of the laser source is used
resulting in a posterior revealing of carrier fringes and determin-
ing the object shape from their analysis [10]. This approach
results in a compact, single optical path shearography system,
but in practice, it has limited measuring performance because
of the fringe distortion and difficulties in data processing. In
[11] shape measurement was combined with out-of-plane dis-
placement gradient measurement with shearography. The inter-
ferometric combination of shearography with the electronic
speckle pattern interferometry (ESPI) technique was also re-
ported [12] to get in-line shape information at the laser wave-
length scale; however, a measuring range in the millimeter and
centimeter scales was not possible.

Another approach uses virtual reality techniques and strain
data mapping onto 2D or 3D surfaces (e.g., a canvas painting)
[13–16], CAD models, or real surface profiles measured with
various topography or shape measuring techniques [12,17,18].
In some cases, UV-mapping [15,19] is used for fusion of the
topography and shearography data. Several developments used
structured light projectors to measure the shape [14–16] or to
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project the shearography phase maps on the object for interac-
tive visualization [20,21]. Although the 3D shape measurement
approach was mentioned in a short report [22], the authors did
not report on the use of the surface data for correction of the
shear distances or the sensitivity vectors. In summary, the 3D
data was mostly used as a basis for visualization and data fusion,
rather than for precise strain measurement.

Shearography with precise mapping of the surface strain
components onto curved objects has also been reported
[10,23,24]. This mapping is based on the assumptions that
the location, orientation, and shape of the object are known
in advance, so all these parameters can be predefined parametri-
cally. Therefore, this technique is not applicable to free-form
surfaces with arbitrary location.

The need for the precise surface strain mapping onto real
curved objects is supported by numerous applications of shear-
ography in aerospace [2,3,18], e.g., airplane and automotive
tires inspection [2,25], inspection of inner cylindrical surfaces
using endoscopic shearography with radial sensitivity [26], or
inspection of soft tissue phantoms [27].

The aforementioned results in shearography, especially with
a single optical path are quite encouraging, but the flexibility of
those solutions for the surface strain measurement of highly
curved surfaces can be improved. The development of modern
digital light projectors provides the ability to use these relatively
small devices for in-line object shape measuring without signifi-
cant system complication. This is a step back from the joint
optical design or single optical path approach, but the benefits
that are demonstrated in this paper are promising.

In this paper, a general solution to the strain inspection of
free-form objects is presented. This includes in-line shape
measuring, an estimation of the actual shear distances in
3D, sensitivity matrix correction, and a direct calculation of
the surface strain components for each point of the point cloud,
which represents the object. For the experimental part, a 3D
shape shearography prototype was developed, equipped with
three spatially distributed shearing cameras, one illumination
laser source, and a structured light projector for in-line shape
measuring. Preliminary findings were reported earlier [28,29].

Similar inspections of curved shapes with ESPI were previ-
ously reported where a photogrammetric image analysis from
several cameras or digital image correlation (DIC) were used
for the shape reconstruction [30–32]. In general, ESPI and

shearography are similar speckle interferometry techniques;
however, the additional variation of the shear distances for
shearography makes the inspection of curved shapes more
challenging than with ESPI.

A comment has to be made about the term “3D,” which is
used in the literature for 3D shearography [4,33,34] and 3D
ESPI [35–37]. The “3D” term in these papers is used to em-
phasize the 3D nature of the surface strain vectors and not the
3D shape of the object. Most of the reported 3D systems were
used to characterize (nearly) flat objects. So a new term “3D
shape shearography” is proposed in the current paper to define
shearography systems capable of measuring and precise map-
ping of the surface strain components onto curved objects.

2. SHEAROGRAPHY THEORY

During measurements with shearography a speckle pattern is
generated by illuminating a rough surface with an expanded
laser beam. Speckle interferograms are recorded by a camera
with a shearing device [Fig. 1(a)] in two or more surface states,
e.g., before and after deformation. The object can be deformed
by thermal or mechanical loading. The shearing device dupli-
cates the camera field of view, generating a sheared image,
where two surface points P and Q [Fig. 1(b)], are combined
at one point on the camera sensor. For a non-planar surface,
surface points P�x, y, z� and Q�x � dx, y � dy, z � dz� are
separated by the shear distance d 1, which has three orthogonal
components �dx, dy, dz� in the object coordinate system
�xo, yo, zo�, where subscript 1 refers to camera 1. For the initial
surface state, reference interferograms are recorded and a phase-
shift algorithm can be used to obtain the initial phase difference
at the camera pixel ϕinitial

1 .
In practice, if the surface strain growth is relatively slow, the

shear in the x- and y-directions, d x1 and d y1, respectively, can
be applied one after another and interferograms corresponding
to each direction are recorded. More complicated optical
schemes can be used to obtain interferograms with a shear
in both directions simultaneously [38].

When the surface is deformed, points P andQ move to their
new positions, P 0 andQ 0 respectively, and signal interferograms
are recorded to get the signal difference of phase ϕ 0

1. The sur-
face deformation changes the length of the optical path from
the laser located at S to the object surface points P and Q then
to the first camera located at C1 [Fig. 1(b)] [2]. For a small

Fig. 1. Schematic representation of shearography principle in 3D: (a) optical paths in shearing device based on a Michelson interferometer and
(b) optical paths differences when the surface is deformed; (c) the relation of local coordinate system �xl , yl , zl � to the object coordinate system
�xo, yo, zo�.
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amount of shear in the y-direction d y1 (defined as jd y1j ≪
jPC1

��!j and jd y1j ≪ j PS�!j) the change in optical path length
causes the phase change Δϕy1 where the subscript 1 refers
to the camera 1. The phase change Δϕy1 can also be calcu-
lated as a function of the surface strain components
�∂u∕∂y, ∂v∕∂y, ∂w∕∂y� [2]:

Δϕy1 � ϕ 0
y1 − ϕ

initial
y1 � 2π

λ

�
kx1

∂u
∂y

� ky1
∂v
∂y

� kz1
∂w
∂y

�
d y1,

(1)

where ϕinitial
y1 and ϕ 0

y1 are the reference and signal phase
differences obtained at the camera 1 at the initial surface state
and after the load, respectively, λ is the laser wavelength,
�kx1, ky1, kz1� are components of the sensitivity vector k1 of
the camera 1, that is the bisector between the illumination
PS and viewing PC1 directions [Fig. 1(b)]:

k1
!� PS

�!
j PS�!j

� PC1

��!
jPC1

��!j
: (2)

In order to isolate the surface strain components, a multi-
component shearography instrument with at least three viewing
directions (three cameras) needs to be used [4,5]. The surface
strain components �∂u∕∂y, ∂v∕∂y, ∂w∕∂y� for the shear d yj in
the y-direction can be calculated [2,39] by processing the phase
changes Δϕyj obtained at each camera j � 1, 2, 3:2

664
∂u
∂y
∂v
∂y
∂w
∂y

3
775 � λ

2π
M −1

2
6664�

Δϕy1

dy1
Δϕy2
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3
7775
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3
75
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2
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Δϕy1

d y1
Δϕy2

d y2
Δϕy3

d y3

3
7775, (3)

where M is a sensitivity matrix of sensitivity vector compo-
nents for each camera. The surface strain components in the

x-direction �∂u∕∂x, ∂v∕∂x, ∂w∕∂x� can be calculated in the
same way replacing y by x in Eqs. (1) and (3) [4].

In case of a flat object, its coordinate system �xo, yo, zo� co-
incides with the surface local coordinate system �xl , yl , zl �
[Fig. 1(c)] and two normal strains εxx , εyy in the xl -, yl -direc-
tions which are commonly used in practice are defined as

εxx �
∂u
∂x

, εyy �
∂v
∂y

: (4)

When the object is curved as in Fig. 1(c), Eq. (4) has to be
added with a coordinate transformation from the object
coordinate system �xo, yo, zo� to the local one �xl , yl , zl �, which
can be done by identifying tangent planes at each point [40].

3. 3D SHAPE SHEAROGRAPHY

The proposed approach for the surface strain measuring of
curved objects by 3D shape shearography (Fig. 2) is based
on transferring shearography data from the shearography sys-
tem with three shearing cameras to each point of the point
cloud in three main steps:

1. In-line object shape measurement using geometric
fringe projection (steps 1.1–1.3 in Fig. 2, Section 3.A) to
get a point cloud representing the object shape. This is a
key step that matches the shape of the object together with
the shearography system geometry. This matching is used to
correct the sensitivity matrix (step 1.4), to estimate shear in
3D and to map the strain maps.

2. Estimation of the actual shear distances in 3D for each
shearing camera (steps 2.1–2.2 in Fig. 2, Section 3.B) mapped
onto the curved surface, which is required for accurate numeri-
cal interpretation of phase maps.

3. The object loading and conventional shearography with
registration of the phase changes Δϕxj and Δϕyj (step 3 in
Fig. 2, Section 3.C) with temporal or spatial phase shifting,
phase filtering and unwrapping, zero-order fringe tracking.

All these steps have to be done for each point P that is of
interest for strain calculation in order to obtain parameters
needed for Eq. (3).

Fig. 2. Approach for surface strain measurement of free-form surfaces with 3D shape shearography.
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A. Step 1. Cameras and Projector Geometric
Calibration and Object Shape Measuring with Fringe
Projection
In order to measure the shape of the surface (step 1), the
cameras and the projector require a geometric calibration.
The well-known Zhang’s camera model [41] was used for this
purpose together with commonly used toolboxes [42,43]. The
projector was calibrated using the same model, but acting as an
inverse camera.

The global calibration of three cameras and the projector (as
an inverse camera) was done using the multiple view computer
vision approach [44]. First, the cameras intrinsic parameters
were identified in a conventional way [42]. Then, a global
optimization procedure was performed to redefine both the
extrinsic and the intrinsic parameters of the cameras and the
projector by minimizing the reprojection error [29,44]. The
reprojection error is the size of an uncertainty area when a re-
constructed point P is projected to the cameras and compared
with its position in the original images. During the calibration,
a predefined checkerboard was projected onto a flat surface and
captured by the cameras at different surface orientations. The
corners of the checkerboard were used for the reprojection with
a condition of belonging to one plane in 3D.

The 3D shape shearography system geometry can be cali-
brated based on the reference optical paths of shearing cameras.
The reference paths were set by blocking the shutters in the
shearing arm of each interferometer [Fig. 1(a)]. The calibration
of reference paths is acceptable in practice because the shear-
ography principle introduces coordinate uncertainty within
the shear distance. Also, the orientation of the shear mirror
is less stable over time than the fixed reference one especially
when a piezo actuator is used.

Once the cameras and projector geometric calibration is
done (as shown in Fig. 3), four matrices of intrinsic Aj and
extrinsic �RjjT j� parameters for each camera and the projector
are known [41,42]. They are used for coordinate transforma-
tion from the homogeneous coordinates � x y z 1 �T of the
point P in the object coordinate system �xo, yo, zo� to the
homogeneous coordinates of a point pj in the cameras image
coordinate system � α β 1 �T [Fig. 4(a)]:

sjpj � Aj

h
Rj T j

i
P, (5)

where Rj and T j are the rotation matrix and translation vector,
respectively, sj is a scale factor, and j � 1, 2, 3, 4 are the cameras
and the projector internal numbers.

One of the cameras, e.g., the camera 1 coordinate system
�xc1, yc1, zc1� can be used as the master coordinate system
�xc , yc , zc� of the shearography instrument. In this case, the re-
lationship between the coordinate systems of the remaining
cameras �j � 2, 3, 4�, the projector, and the camera 1 for a
point Pcj is defined as [44]

Pc � Pc1 �
�
R−1
j −R−1

j T j

0 1

�
Pcj: (6)

The object global �xo, yo, zo� and local �xl , yl , zl � coordinate
systems have to be defined to relate the measured surface strain
components to the object localized data (e.g., from strain
gauges or numerical modeling) [Fig. 1(c)]. In the case of a flat
object, these coordinate systems coincide; however, for a curved
object a reconstruction of tangent planes is needed [40]. A
mechanical reference or some surface point together with an
axis of symmetry, if applicable, can be used to define
�xo, yo, zo� by a rotation matrix Ro and a translation vector T o:

Po �
�
Ro T o
0 1

�
Pc: (7)

The object shape can be measured with the common fringe
projection technique by projecting predefined phase-shifted
fringes (e.g., sinusoidal) onto the object [45] and presented
as a point cloud of data points in 3D space (Fig. 3). The
3D shape shearography system has a benefit of using all three
or more cameras during the fringe projection resulting in a
potentially high accuracy of the shape measurement in com-
parison with conventional stereo-systems.

Once the point cloud is generated and the relationships be-
tween the coordinate systems are known, the sensitivity matrix
M [Eq. (3)] can be corrected by simple use of coordinates for
each point P in �xo, yo, zo� (Fig. 3) and the system geometry
represented by the cameras extrinsic parameters �RjjT j��j �
1, 2, 3� [2,39] using Eqs. (2) and (3). Following the proposed
approach (Fig. 2), a sensitivity matrix value MP has to be
assigned as a property to each point P of the cloud.

B. Step 2. Shear Estimation in 3D
As reported earlier [2,24], the shear angle of a shearing device
may be not uniform across the field of view because of aberra-
tions and wavefront errors of the interferometer mirrors and the
beam splitter [Fig. 1(a)], and therefore the actual shear distan-
ces require calibration. This task becomes more complicated
when the shear is mapped onto a curved object because of
the varying dz component and differences in scale along zcj
[Fig. 1(b)]. It is proposed here to estimate the shear distance
for each data point of the cloud in 3D by projecting it to each
camera, identifying the shear in the image space of each camera
(in pixels), and reprojecting it back onto the surface, as depicted
in Fig. 4. The detailed explanation is given below.

Prior to the shear estimation in 3D it has to be identified
in 2D, e.g., with DIC in the image space �αj, βj� of each

Fig. 3. Results of the cameras-projector geometry calibration with
the point cloud measured with the fringe projection and a fitted
cylinder model.
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camera [2,40]. For that, a predefined digital speckle pattern
can be projected onto the object by the projector. Three images
for each camera have to be taken through the reference paths
(when the shear mirrors are blocked), and through the shear
paths with shear applied sequentially in the x- and y-directions
(when the reference mirrors are blocked). Digital image corre-
lation of the reference images with the speckle pattern captured
with shear in the x- and y-directions gives an estimation of
the shear distances for each pixel of each camera, namely a 2D
shear map [e.g., a sheared pixel qj for the reference pixel pj
in Fig. 4(a)].

The shear distance in 3D can be found by reprojecting the
sheared point qj back to the point cloud; however, the exact
scale value sj is unknown for that [Eq. (5)]. The reprojection
can be done with an arbitrary non-zero scale to define a ray
CjQsj
���!

and then to find its intersection with the point cloud.
Assuming that pjqj is the shear amount in the image space
for pixel pj estimated with the digital image correlation, a point
Qsj can be identified in �xo, yo, zo� by inverting Eq. (5) and
performing an additional coordinate transformation from the
camera j coordinate system to the object coordinate system
�xo, yo, zo�:

Qs1 �
�
Ro T o

0 1

��
R−1
j −R−1

j T j

0 1

��
A−1
j sjqj
1

�
: (8)

The intersection of the ray CjQsj
���!

with the object surface has to
be discovered. At least three algorithms can be used for that,
including a simple search of the nearest point of the point
cloud, a parametric search (if the surface can be parametrically
defined), and a triangulation of the ray intersection within each
facet of the point cloud [Fig. 4(b)].

Once the intersection pointQj is found for each point of the
cloud for the shear maps in the x- and y-directions, the shear
distances PQj for each point P and camera j � 1, 2, 3 can be
directly calculated and stored as a set of parameters
�dx1, d x2, d x3� and �d y1, d y2, d y3�. The shear distances in 3D
are required for the calculation of the surface strain components
[Fig. 2, Eq. (3)].

C. Step 3. Object Loading and Conventional
Shearography with Estimation of the Surface Strain
Components
The last step is to load the object thermally or mechanically and to
register the phase changesΔϕj corresponding to the surface defor-
mation for the shear in the x- and y-directions for each
camera j � 1, 2, 3, as described in Section 2. This may be done
in a conventionalway, that has been reported indetail for 3Dshear-
ography systems with multiple viewing configurations [2–4,23].

The estimation of the surface strain components requires
absolute values of the phase maps Δϕj [Eq. (1)] from all cam-
eras. However, depending on the loading amount the phase
change Δϕj may exceed the range of �0, 2π� or �−π, π�, which
results in phase jumps of 2π. If so, an additional processing
step, phase unwrapping, removes these phase jumps [2]; how-
ever, in most cases the absolute value of the phase is lost.
Multiple additions of 2π, where needed, remove the phase
jumps, but the absolute value gets lost. A possible solution
is to track the zero-order fringe (zone of phase distribution
corresponding to a zero surface displacement) as it was reported
in the literature [2,46].

Following the proposed approach for the surface strain
measuring of curved surfaces (Fig. 2), the registered and un-
wrapped absolute phase maps �Δϕx1,Δϕx2,Δϕx3� and
�Δϕy1,Δϕy2,Δϕy3� for the shear applied in the x- and
y-directions have to be assigned to the points in 3D. For that,
a point of interest P is projected to each camera j � 1, 2, 3
using Eq. (5) to identify its pixel coordinates pj�αj, βj� on
the cameras sensors, then the corresponding values of the reg-
istered phase mapsΔϕxj�αj, βj� andΔϕyj�αj, βj� are assigned to
the projected point P as additional properties.

By this moment and according to the proposed approach
(Fig. 2), any point P gets the complete set of properties that
is required for the surface strain components calculation
�∂u∕∂x, ∂v∕∂x, ∂w∕∂x� and �∂u∕∂y, ∂v∕∂y, ∂w∕∂y� using
Eq. (3). The set includes

• the point coordinates �xc , yc , zc�;
• calculated sensitivity matrixMP reflecting the instrument

geometry;
• the shear values in 3D �d x1, d x2, d x3� and

�d y1, d y2, d y3�; and

Fig. 4. Estimation of a shear map for 3D point cloud: (a) shear projection and (b) intersection of the reprojected “sheared” ray with the object
surface.
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• the phase values �Δϕx1,Δϕx2,Δϕx3� and
�Δϕy1,Δϕy2,Δϕy3�.

4. EXPERIMENTAL EVALUATION

A. 3D Shape Shearography System Prototype
For the experimental evaluation of the proposed approach for
the surface strain measuring of curved surfaces, a 3D shape
shearography system prototype was developed (Fig. 5)
[47,48]. Three spatially distributed shearing cameras, a laser
with beam expansion optics, and the projector were placed
in a “T” configuration using an Alufix modular fixture system.
ATorus laser from LASERQUANTUM with an optical power
of 500 mW and a wavelength of 532 nm was used. Shearing
cameras consisted of Basler Pilot piA2400 cameras with Linos
MeVis-C 1.6/25 imaging lenses (apertures set to 1/8) and the
shearing devices were based on Michelson interferometers
[Fig. 1(a)]. An integrated structured light projector
(LightCrafter DLP45000 from Texas Instruments) was used
for the in-line shape measuring with fringe projection. For
shearography, shearing and temporal phase shifting were
performed by controlling the shearing mirrors in each camera
with three coordinate piezo-electric actuators PSH 4z from
Piezosystem Jena. The five-step phase-shifting method was
found to be a rational compromise between the number of
phase steps and the resulting accuracy.

The cameras and the projector were globally calibrated as a
multiple-view computer vision system [42,43] in a volume of
200 × 150 × 150 mm (Section 3, Fig. 3). As a result of the
global calibration, a reprojection error for the three cameras
was less than 2.7 pixels (RMSE) corresponding to the triangu-
lation error of 0.2 mm. The triangulation error defines the
overall spatial resolution of the 3D shape shearography instru-
ment when interferometric phase values from three cameras are
combined at each point of the point cloud.

A previously reported, a cylinder specimen with a length of
400 mm and an external diameter of 190 mm was used as a test
object [23,24]. The specimen was mounted in front of the

system at a distance of 500 mm and was loaded by internal
pressure with a pump using oil. Several strain gauges were
mounted on the specimen to provide reference values for
the normal strains εxx and εyy in the xl -, yl -directions, respec-
tively.

B. Experimental Results
The shape of the specimen was measured as proposed in
Subsection 3.A using the fringe projection with a five-step
Schwider–Hariharan phase-shifting algorithm [49]. First,
pre-generated sinusoidal fringes were projected on the speci-
men and captured through the reference optical paths
[Fig. 1(a)]. Second, the geometric phase maps from the cameras
were unwrapped with the branch-cut method [50] and co-reg-
istered using an additional projected image with a bright spot at
the center of the projector field of view. Then, the pixel coor-
dinates from three cameras and the projector with the same
geometric phase values were used for a direct multiple-view
triangulation of the point cloud [44]. Once the point cloud
was calculated, the cylinder coordinate system �xo, yo, zo� was
aligned with the axis of symmetry of a fitted parametric cylinder
model [Fig. 5(a)].

The actual shear distances were estimated for each point of
the cloud as proposed in Subsection 3.B. The shear maps in the
image space of the cameras were estimated by projecting a pre-
defined speckle pattern by the projector and processing of im-
ages taken through the reference and sheared optical paths with
the 2D image correlation technique [Fig. 6(a)].

Shear distances in 3D were estimated with three different
algorithms. The first, the simplest, is a search of the nearest
point [e.g., Di in Fig. 4(b)]. For that, the point cloud density
should be high enough (in our practice less than 0.05 mm).
However, this simple approach results in areas with step varia-
tions of the shear distances in 3D [low contrast radial fringes
in Fig. 6(b)]. This happens when a smooth continuous 2D
shear map [Fig. 6(a)] is reprojected on a regularized point
cloud. These step variations are also shown in zoom into
the cross sections with the shear distances in Fig. 6(e) with

Fig. 5. 3D shape shearography system prototype (a) with the cylinder specimen in front of it and (b) as seen from the specimen. The cameras-
projector geometry is also shown in Fig. 3.
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approximately 0.05–0.1 mm differences of the shear values
estimated by the search of the nearest point at the bottom-left
and top-right in comparison with two other algorithms.

The second algorithm is applicable if the object has a simple
shape and a parametric surface can be fitted to the point cloud,

and therefore the intersection of the ray CjQsj
���!

with the surface
can also be found parametrically [29,51,52]. In the case of a
cylinder [Fig. 3(b)], a cylinder model was fitted into the data
points using the RANSAC algorithm [53]. Results of the para-
metric shear calculation are presented in Figs. 6(c) and 6(e).

The third algorithm, which is more universal, is to identify a
triangle that contains the intersection with the reprojected ray

CjQsj
���!

[e.g., DiDi�1Di�2 in Fig. 4(b)] and to triangulate the
intersection point within this triangle [54]. Triangulated shear
distances are shown in Figs. 6(d) and 6(e).

A comparison of the three algorithms for the shear estima-
tion in 3D is presented in Figs. 6(e) and 7 with an assumption
that the parametric search provides the most reliable results for
the cylindrical object, and therefore it was used as a reference.
The third algorithm based on triangulation [Fig. 7(b)] has a
significantly better performance than the search of the nearest
point [Fig. 7(a)]. Also, the point cloud density can be lowered
up to 1 mm without loss in accuracy of the shear
reconstruction, which is beneficial for the processing time.

As proposed in Subsection 3.C during the strain measure-
ments, the specimen was loaded by an internal pressure of
1.0� 0.1 MPa in a sequential mode [23] with steps of approx-
imately 0.1 MPa controlled by a manometer. Such small load
steps correspond to a phase change of less than 2π for reliable
tracking of the zero-order fringe. At each load step five phase-
shifted interferograms for the shear x- and y-directions were
recorded [49]. After that, the total phase maps were calculated
as a sum of all the steps and six surface strain components were
calculated for each point of the entire point cloud according to
Subsection 3.C [Figs. 8(a)–8(f )]. Each subplot is a 3D point
cloud with a gray level corresponding to the strain level.
The measured area is close to 200 × 130 mm in the yoxo-plane.
The measured surface strain components �∂u∕∂x� and �∂v∕∂y�
that are commonly used are enlarged in Figs. 8(e) and 8(f ). A
cross section in Fig. 8(g) shows the mapping of the surface

strain components over the cylinder. Zones with missing data
at the center and top of the cloud correspond to locations where
the strain gauges were mounted. Minor incomplete areas
correspond to a high specular reflection.

The comparison of the surface strain components measured
with the 3D shape shearography and four strain gauges is pro-
vided in Table 1. For that, the surface strain components
�∂u∕∂x, ∂v∕∂x, ∂w∕∂x� and �∂u∕∂y, ∂v∕∂y, ∂w∕∂y� measured
in �xo, yo, zo� [Figs. 8(a)–8(f )] were mapped in �xl , yl , zl � by
identification of local tangent planes in each point of the point
cloud [Fig. 1(c)]. Values from four strain gauges were averaged
in time.

The overall effect of the proposed approach for 3D shape
shearography is presented in Fig. 9. For that, �∂v∕∂y� was

Fig. 6. Shear distances estimated for camera 1 in the y-direction: (a) 2D shear map in the camera image space identified with DIC, shear in 3D
(b) by searching the nearest point of the point cloud, (c) by intersection with a fitted cylinder model, and (d) by triangulation of the intersection
within each facet with a cross section (e) revealing strain values at xo � 20.

Fig. 7. Comparison of the shear distances in 3D for camera 1 in the
y-direction estimated with the fitted cylinder and (a) the search the
nearest point of the point cloud and (b) by triangulation of the inter-
section within each facet.

504 Vol. 58, No. 3 / 20 January 2019 / Applied Optics Research Article



estimated �xo, yo, zo� without any correction for the shape
(fixed shear of 2.2 mm for the cameras 1 and 3, 1.8 mm
for the camera 2, and constant sensitivity matrix corresponding
to the center of the object at xo � yo � zo � 0). Both not cor-
rected and corrected �∂v∕∂y� in �xo, yo, zo� were compared with
the calculated normal strain ϵyy in �xl , yl , zl � in Fig. 9(c). The
comparison shows that in the center of the specimen, where the
cylinder surface is close to a flat surface (jyoj < 20 mm), the
results before and after corrections are close. With the height
increase, the not corrected strain significantly increases, as the
increase in shearography phase for the cylinder specimen [23] is
not compensated by the fixed shear. The recalculation of cor-
rected �∂v∕∂y� in �xo, yo, zo� to ϵyy in �xl , yl , zl � reveals the im-
proved uniformity of the mapped strain components close to
the strain gauges values. The strains in the y-direction are
presented as they are more affected by the cylinder curvature,
than in the x-direction.

5. DISCUSSION

A new approach for the measurement of the surface strain com-
ponents of curved objects by 3D shape shearography has been
proposed. This approach is based on individual points of the
point cloud acting as a “carrier” of the shearography data (see
point properties in Fig. 2). A triangulated mesh can also be
used, with a vertex face acting as the carrier keeping the same
processing steps. The presented approach can also be applied to
flat surfaces, especially when the surface is not normal to the
system and the shear distance changes due to a difference in
scale along the distance. If the shape of the object is known
or its CAD model is available, the in-line shape measuring with
fringe projection can be used for estimation of the object ori-
entation. A realization of the approach based on a multiple
viewing shearography system with three shearing cameras
and one illumination source has been presented. It can, how-
ever, be adapted to a higher number of cameras or a multiple
illumination concept.

The accuracy of the cameras-projector calibration directly de-
fines the performance of the 3D shape shearography instrument.
Based on our experience with the 3D shape shearography setup
(Fig. 5) the triangulation error should be less than 1 mm. This
practical requirement determined the need of the global calibra-
tion procedure using the multiple-view computer vision approach.
Initially, the cameras and the projector were calibrated in pairs as
stereovision systems (cameras 1 + 2, 1 + 3, 1 + projector) [28,55].
As a result of multiple coordinate systems conversions, the

Fig. 8. Surface strain components in �xo, yo, zo� mapped onto the point cloud (a)–(f ) with a cross section (g) revealing strain values at xo � 20.

Table 1. Comparison of Experimental Results Obtained
with 3D Shape Shearography and Strain Gauges (	10−6)

3D Shape
Shearography Strain Gauges

Normal
Strain

Mean
value STD

Mean
value STD

Mean
Difference

ϵxx 144 28 62 4 82
ϵyy 196 31 170 3 26
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triangulation error reached 3 mm in the worst cases. This error
introduced uncertainty to the transfer of all parameters to the
point cloud (Fig. 2).

An assumption was made when the actual shear distance was
estimated in 3D [Fig. 4(a)] as the chord PQj was determined,
not the arc PQj. This is applicable in practice, as the additional
error of shear estimation is less than 5% when the shear
distance is 5 mm and local radius of curvature is 5 mm. In
the case of higher radiuses and smaller shear distances, the error
of local surface flattening is almost negligible.

The residual non-flatness of the normal strain ϵyy in Figs. 9(b)
and 9(c) is a probable result of uncertainties of the shear esti-
mation in 2D [Fig. 6(a)]. An improvement of the uniformity
in 2D can be achieved by use of more precise optical elements
(mirrors, beam splitter) in the shearing interferometers. A rela-
tively high mean difference (Table 1) between the results ob-
tained with the 3D shearography prototype and strain gauges
may be explained by a low absolute level of the measured strain
and insufficient system calibration. Further experiments at
higher strain levels with various curved objects (e.g., leading
edges) are planned to explore the new technique.

The cylinder specimen was used for the experiments as a
compromise in the specimen complexity. The cylindrical speci-
men has a radial symmetry which is practical to analyze the
uniformity of the shear maps in 3D (Fig. 6) and the symmetry
and uniformity of the surface strain components about the
xo-axis (as in Figs. 8 and 9). However, the presented approach
of 3D shape shearography can be applied to various curved or
free-form smooth surfaces, which can be reliably measured with
the fringe projection and provide smooth shearography
phase maps.

The proposed combination of the fringe projection with the
shearography resulting in 3D shape shearography also fuses the
drawbacks of both techniques. One of them is the dependence
of fringe projection and computer vision systems in general on
the distance from the system. Normally the accuracy of the
shape measurement decreases with the distance, which is

expected to affect the overall performance in 3D shape
shearography. In practice, the apertures of imaging lenses in
shearography are set to 1∕4…1∕10 to increase the speckle size
in the image space for a reliable shearography phase
reconstruction. This also helps for reliable shape measurements
of curved and free-form objects as the depth of view is in-
creased. The overall fusion of drawbacks will be explored in
the future during optimization of the new technique.

6. CONCLUSIONS

This paper presents a new approach of 3D shape shearography
for strain inspection of curved objects. This approach is based
on the integration of a structured light projector into the 3D
shearography system for in-line shape measuring. As a result,
the actual shear distances along the curved object can be esti-
mated together with a correction of the sensitivity matrices for
calculation of the surface strain components.

The proposed approach can improve the overall perfor-
mance of the shearography technique. The new ability to per-
form an inspection of 3D and free-form surfaces may open new
applications and lead to practical solutions of new tasks in cru-
cial fields, such as aerospace (e.g., inspection of leading edges
and nose cone of aircraft), energy (e.g., turbine blades), and
cultural heritage (e.g., sculptures). At the same time a higher
accuracy of measurement of the surface strain components,
mapped onto curved surfaces, may lead to better characteriza-
tion of materials and more reliable detection of inner defects.

Experimental results obtained with the cylinder specimen
prove the applicability of the approach; however, some im-
provements have to be done. The next steps of the research
are to improve the uniformity of the shear maps in 2D and
to employ an additional viewing direction for robust absolute
phase and consequently, absolute strain reconstruction [56,57].

Some of the algorithms used in this paper (e.g., the fringe-
projection, cameras-projection calibration) can be improved
by employing more advanced or recent technical solutions.

Fig. 9. (a),(b) Comparison of �∂v∕∂y� mapped in �xo, yo, zo� calculated without any correction for the shape (fixed shear and the sensitivity
matrix) and the final estimation of ϵyy in �xl , yl , zl � with a cross section (c) revealing strain values at xo � 20, also for corrected �∂v∕∂y� in
�xo, yo, zo� taken from Figs. 8(f ) and 8(g). Extended color range in comparison with Fig. 8.
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The main aim of this paper was to present the developed ap-
proach using the commonly used techniques. Optimization of
each processing step is also a subject for the future work.
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