<]
TUDelft

Delft University of Technology

Evaluation of the Bridge Architecture

Kashyap, Shruthi; Rao, Vijay; Venkatesha Prasad, Ranga Rao; Staring, Toine

DOI
10.1007/978-3-030-85836-0_6

Publication date
2021

Document Version
Final published version

Published in
SpringerBriefs in Applied Sciences and Technology

Citation (APA)

Kashyap, S., Rao, V., Venkatesha Prasad, R. R., & Staring, T. (2021). Evaluation of the Bridge Architecture.
In SpringerBriefs in Applied Sciences and Technology (pp. 63-71). (SpringerBriefs in Applied Sciences and
Technology). Springer. https://doi.org/10.1007/978-3-030-85836-0_6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-030-85836-0_6
https://doi.org/10.1007/978-3-030-85836-0_6

Chapter 6 ®)
Evaluation of the Bridge Architecture oo

Chapter 5 gave an overview of some of the factors influencing the performance of
the bridge architecture and discussed how the standard TCP/IP stack can be adapted
to the time-slotted NFC channel. Two major problems related to packet drops and
spurious retransmissions were identified as the major contributors to the system
latency. They were solved by introducing an NFC channel sensing mechanism and
a new way of estimating and updating the TCP RTO values. This chapter contains
the verification results of these solutions. Additionally, this chapter provides some
recommendations for implementing the bridge architecture.

6.1 Implementation Recommendations

Certain use-case scenarios that are encountered while implementing the bridge archi-
tecture are listed below. Possible methods to handle/implement such scenarios are
also briefly described. This research, however, does not consider these scenarios
while evaluating the performance of the bridge architecture.

1. Non-identical NFC buffer and MTU sizes in PTx and appliance:

The appliances and the PTxs may have different versions of software implemen-
tations, and they could be from different manufacturers. So it is not necessary that
the uplink and downlink characteristics of the communication channel between
the two will be the same.

The PTx and appliance may have different buffer sizes in their NFC modules.
Before starting a TCP connection, it is necessary to exchange information regard-
ing buffer sizes so that packets with appropriate sizes can be sent without causing
buffer overflows. It is also important for the appliance to know the Maximum

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 63
S. Kashyap et al., Cook Over IP,

SpringerBriefs in Applied Sciences and Technology,
https://doi.org/10.1007/978-3-030-85836-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85836-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-85836-0_6

64

6 Evaluation of the Bridge Architecture

Transmission Unit (MTU) size of the PTx. The TCP MSS size can then be
adjusted accordingly to prevent packet drops.

. Increased communication overhead due to small packet buffer size:

The memory allocated for the TCP/IP packets by the stack should be large
enough to hold an entire packet with maximum segment size. In the LwIP stack,
a single TCP/IP packet is stored in multiple small packet buffers that are chained
together. This type of storing increases the overhead in the packet and adds to
the latency on the NFC channel.

. Upgrading the TCP/IP stack in the end-user devices:

The new algorithm proposed for handling the RTO mechanism requires modi-
fications to be made in the TCP/IP stack. This would be easy for the appliance
because its stack needs to support only the NFC-enabled kitchen applications.
On the contrary, the end-user device cannot readily make these changes as its
TCP/IP stack is shared by various other applications. The stack needs to be
upgraded with the new algorithm such that it dynamically supports all types of
applications and channels.

As explained in Sect. 5.3.2.2, the algorithm sets the RTO of the packets by con-
sidering the NFC transmission rate, packet size and observing the delay on the
Ethernet/Wi-Fi channel. Similarly, this method could also be used for applica-
tions that do not involve NFC channels. The stack can study the channel delay by
constantly measuring the RTT of the packets and use this to calculate the delay
experienced per byte on the channel. It can then set the RTO of the packets using
the current packet size and the delay per byte factor. A better RTO estimation
can be achieved with this method which would help in avoiding spurious and
delayed retransmissions especially in high delay, low bandwidth channels. By
upgrading the TCP/IP stack with this algorithm, it can dynamically adapt itself
to different channels and support a wide variety of applications with improved
performance.

6.2 Results

The performance of the bridge architecture is evaluated by carrying out various
experiments with different NFC bit rates and data sizes. The performance is analyzed
by measuring latency, throughput, number of retransmissions in the TCP sessions,
NFC channel bandwidth utilization, etc.

6.2.1 Packet Retransmissions

Tables 6.1 and 6.2 show the number of retransmissions, DUP ACKs and keep-alive
messages in the TCP session after using the mitigation techniques Sects.5.3.1 and
5.3.2 described in Chap. 5, at 11.2kbps and 24 kbps, respectively. The retransmitted

6.2 Results 65
Table 6.1 Number of retransmissions at 11.2kbps
NFC payload size | Retransmissions in TCP session
(Bytes)
Original TCP/IP | NFC channel Optimum TCP NFC channel
configuration sense RTO sense + Optimum
TCP RTO
250 IR IR + 1DA 1R OR
500 2R 2R + 1DA + 2KA | IR OR
1000 3R + 1DA 3R +2DA +2KA | IR OR
1080 3R+ 1DA 3R +2DA +2KA | IR OR
Table 6.2 Number of retransmissions at 24 kbps
NFC payload size | Retransmissions in TCP session
(Bytes)
Original TCP/IP | NFC Channel Optimum TCP NFC Channel
configuration sense RTO sense + Optimum
TCP RTO
250 IR OR IR OR
500 IR + 1DA OR IR OR
1000 IR 2R + 1DA + 2KA | IR OR
1080 3R + 1DA 2R + 1DA +2KA | IR OR

packets are depicted by the symbol ‘R’, DUP ACKs by ‘DA’ and keep-alive packets
by ‘K A’. The experiments are carried out with TCP sessions exchanging single
packets with NFC payload sizes of 250 bytes, 500 bytes, 1000 bytes and 1080 bytes
at 11.2kbps and 24 kbps.

The technique Sect. 5.3.2 introduced is to remove the spurious retransmissions by
setting optimum initial RTO values for all the outgoing TCP/IP packets. Tables 6.1
and 6.2 show that by using only this solution, the total number of retransmissions
can be brought down to one. The technique in Sect.5.3.1 is an NFC channel sensing
mechanism introduced to avoid packet drops at the NFC interface. As shown in
the tables, using only technique in Sect.5.3.1 the total number of packets increases
compared to the respective original TCP sessions in most of the cases. However,
when both these techniques are used together, all types of retransmissions, DUP
ACKSs and keep-alive packets are removed. Before concluding on the performance
based on the number of packets in the TCP session, it is important to study the latency
of the session, which is done in Sect.6.2.2.

Figure 6.1 depicts the RTO values estimated by the new algorithm (Sect.5.3.2.2)
in along TCP session with randomly varying packet sizes. These values are compared
with the ones estimated by VJ’s algorithm used in the LwIP stack and the packet
RTT values obtained over an Ethernet channel with <1 ms delay. The estimations
are, however, still carried out considering the Wi-Fi channel characteristics with a

66 6 Evaluation of the Bridge Architecture

w

5

B

4

w

L]

Packet RTO (s)

[y
ey

Packet RTT on Ethernet (s)

0 0
KPS . P TS - L. - T N4 W7 W54 NS W™ PR P4 1
R S R A A A

Data packet sizes in a TCP session (Bytes)

Packet RTT —\J's RTO estimation algorithm -—New RTO estimation algorithm

Fig. 6.1 Comparison of packet RTO values with the new and VJ’s RTO estimation algorithms

minimum RTO of 1 s, which results in an offset of about 1 s between the measured
RTT and the estimated RTO values as seen in Fig.6.1. The new algorithm clearly
gives a more accurate estimation of the RTO values compared to VJ’s algorithm as
it takes the packet sizes and bit rates of the channels into account, therefore avoiding
all the spurious and delayed retransmission scenarios.

6.2.2 Latency

Reduction in the number of packets in the TCP session need not necessarily improve
the latency of the session. This is because the time delay between packet generation,
especially in the case of retransmitted packets, is also an important factor that affects
the overall latency. Figures 6.2 and 6.3 show the graphs of latencies of TCP sessions
with and without the mitigation techniques in Sects.5.3.1 and 5.3.2 at 11.2kbps and
24 kbps, respectively.

The percentage by which the latencies increase or decrease using the mitigation
techniques compared to the original latency is indicated in the graphs. At lower NFC
bit rates, for example, 11.2kbps, the TCP session latency with only technique in
Sect. 5.3.1 becomes higher than that with only technique in Sect. 5.3.2 when there are
more number of retransmissions/DUP ACKs/keep-alive messages. This is because
even though the packet drops are prevented, there will be too many extra packets to
be transmitted over a low bandwidth channel. On the contrary, at higher bit rates like
24 kbps, the latency with only technique Sect. 5.3.1 will be lower than that with only
technique Sect.5.3.2 because when only technique in Sect.5.3.2 is used, the time
delay created by retransmission caused due to packet drop will be more significant
compared to the packet transmission time on a relatively higher bandwidth channel.
The TCP/IP stack has to wait for the timeout to realize that the packet is dropped and

6.2 Results 67

7
o 38%330, 33% 30%30%
=
g5 117% -
Q 157%
o4
c
o3 - _38% -37%
vl
v
22 -25%
5 -34%
21 I
0 -

1000 1080
NFC payload size exchanged in TCP session (Bytes)

m Original TCP/IP configuration M NFC channel sense
= Optimum initial TCP RTO © New RTO algorithm
M NFC channel sense + Optimum TCP RTO

Fig. 6.2 Latencies of TCP sessions at 11.2kbps

4
= 35 799, 41%4_1%
E 3 s 106%
[}
s 2.5 13% 0% 5
c 2
o
@15 g -33% -46%
a1
5 54 | :-53%
= 05 l I
0 1
250 bytes 500 bytes 1000 bytes 1080 bytes
NFC payload size exchanged during TCP session (Bytes)
m Original TCP/IP configuration m NFC channel sense
= Optimum initial TCP RTO " New RTO algorithm

B NFC channel sense + Optimum TCP RTO

Fig. 6.3 Latencies of TCP sessions at 24 kbps

resend it. This waiting time will be longer compared to the time taken to transmit
extra packets.

To achieve the best results, it is recommended to use both the mitigation techniques
together. Using both, up to 38% reduction in latency can be achieved at 11.2kbps
and up to 53% at 24 kbps. Higher reduction is achieved at higher bit rates because of
the same reason explained above. At higher bit rates, the time delay created because
of packet drops will be more significant when compared to the total transmission

68 6 Evaluation of the Bridge Architecture

i II Il I|
250 500

1000 1080
NFC payload size in TCP session (Bytes)

o]
o

[y
w

un

Throughput & Goodput (kbps)
=
(=]

[=]

® Throughput at 11.2kbps ® Goodput at 11.2kbps
W Throughput at 24kbps Goodput at 24kbps

Fig. 6.4 System throughput at 11.2 and 24 kbps

time. So by removing this delay which is a bigger overhead, a higher gain in latency
reduction can be achieved.

6.2.3 Throughput and Goodput

The throughput of the system remains the same with or without the retransmission
mitigation techniques in Sects. 5.3.1 and 5.3.2. It is known that the techniques are used
to reduce the latency, however, the reduction in latency is achieved by reducing the
number of packets or bytes traveling through the channel. Therefore, the throughput,
which is the number of bytes transferred per unit time, will be unchanged because
with the mitigation techniques less packets/bytes travel through the channel which
takes less time. So the overall throughput of the system technically remains constant.

Figure 6.4 depicts the throughput versus goodput of the system for different NFC
payload sizes exchanged in the TCP session using both techniques in Sects.5.3.1 and
5.3.2 at 11.2kbps and 24 kbps. On an average, the throughput is 9.9 kbps at an NFC
bit rate of 11.2kbps and 17.01 kbps at 24 kbps. It can be seen that the goodput of the
system improves with an increase in the payload size. This is because the overheads
from the TCP/IP header and UI protocol become less significant with an increase in
payload size. Choosing a bigger TCP MSS size will help in increasing the goodput
of the system.

The throughputis lower for TCP sessions with small payload sizes, and it gradually
increases with the increase in payload size. This is because with small payload sizes,
the time spent waiting for a time slot will be significant compared to the packet
transmission time. At higher bit rates, this becomes more noticeable because the
transmission time will be even smaller. This affects the total transmission time and
thus the throughput of the TCP session. The throughput could be improved by

6.2 Results 69

100
90
80
R)
S 60
g s0
B 40
= 30
[=a]
20
10
0
250 500 1000 1080

NFC payload size in TCP session (Bytes)
W 11.2kbps m 24kbps

Fig. 6.5 Bandwidth Utilization at 11.2 and 24 kbps

—_

. using TCP/IP header compression techniques such as [1, 2].

2. employing the 6LoWPAN technology for the compression of TCP/IP packets
over NFC as described in [3, 4].

3. letting the PTx detect and filter out the spuriously retransmitted packets and DUP
ACKs coming from the appliance and the end-user device, similar to the technique
proposed in [5]. This would reduce the number of packets on the NFC channel
and improve the system performance.

4. modifying the NFC protocol in order to optimize the NFC handshake sequence

as suggested in [6].

6.2.4 Bandwidth Utilization

The bandwidth utilization of the NFC channel for the experiments performed is
illustrated in Fig.6.5. It is calculated using the following equation:

Throughput
BW Utilization = 100 (% 6.1
Htzaton Theoretical BW * (%) 1)

The average bandwidth utilization is found to be 88.4% at 11.2kbps and 70.89%
at 24kbps. Lower bandwidth utilization is observed at higher bit rate because the
processing time which includes packet transmission time over the UART and Wi-
Fi/Ethernet channels, packet processing time by the stack, etc. remains constant
irrespective of the NFC bit rate. This processing time overhead will be more signifi-
cant at higher bit rates because it has smaller NFC transmission time. When Figs. 5.18
and 6.6 are compared, it can be seen that the UART Data Tx time is the same at both
11.2kbps and 24 kbps, which is a fixed overhead. However, NFC Data Tx time is

70

6 Evaluation of the Bridge Architecture

0 500v/ @ 500v/ @ 500v/ [500V/ # 8000F 20008/ Stop § E 113V

UART Data Tx

NFC Data Tx

UART
BN MCU to NFC-CE
I NFC-RW to MCU

Fig. 6.6 TCP session capture in the direction from the appliance through the NFC-CE and NFC-RW
modules at 24 kbps

smaller at 24 kbps compared to 11.2kbps. This keeps the NFC channel idle for a
longer period at a higher bit rate, thus reducing the bandwidth utilization. The main
factors affecting the NFC bandwidth utilization of this system are

1.

Packet processing time: The NFC channel remains idle while the TCP/IP packet
is being processed and transferred over the UART from the stack to the NFC
module.

. Synchronization of data transfer with the communication time slot: The packet

arrival time at the MCU can lie anywhere between two consecutive time slots.
As explained earlier, the NFC module requires the packet to be available for
transmission at least 2 ms before the time slot occurs. This may result in a waiting
time of up to 12 ms for every packet (assuming that the subsequent chunks arrive
on time), which adds to the total packet transmission time.

Some ways to improve bandwidth utilization are listed below. These techniques

could not be tested due to the limitations in the available hardware.

—_—

. Parallelizing the packet processing and packet transmission operations;
. Increasing bit rate of serial communication (UART);
. Eliminating the MCUs and directly interfacing the appliance and the PTx stacks

to their respective NFC devices. This will reduce the processing delay caused by
the serial communication.

References

1.
2.

V. Jacobson, Compressing TCP/IP headers for low-speed serial links. RFC 1144, 1-49 (1990)
M. Degermark, M. Engan, B. Nordgren, S. Pink, Low-loss TCP/IP header compression for
wireless networks. MobiCom 96 (1996)

References 71

3. J. Youn, Y. Hong, D. Kim, J. Choi, Y. Choi, Transmission of IPv6 packets over near field
communication (2000)

4. J. Park, S. Lee, S. Bouk, D. Kim, Y. Hong, 6LoWPAN adaptation protocol for IPv6 packet
transmission over NFC device, in Seventh International Conference on Ubiquitous and Future
Networks (2015), pp. 541-543

5. Y. Kim, D. Cho, Considering spurious timeout in proxy for improving TCP performance in
wireless networks. Comput. Netw. 44, 599-616 (2004)

6. H.Sakai, A. Arutaki, Protocol enhancement for near field communication (NFC): future direction
and cross-layer approach, in Third International Conference on Intelligent Networking and
Collaborative Systems (2011), pp. 605-610

	6 Evaluation of the Bridge Architecture
	6.1 Implementation Recommendations
	6.2 Results
	6.2.1 Packet Retransmissions
	6.2.2 Latency
	6.2.3 Throughput and Goodput
	6.2.4 Bandwidth Utilization

	References

