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A B S T R A C T   

In this paper, we incorporate the spacing of transit lines in addition to frequencies, vehicle sizes and routes in 
both the design and the analysis of scale economies in transit systems. First, we present a way of looking at lines 
spacing in a simple parallel-lines-model whose properties regarding optimal design and scale economies are 
derived. Then we introduce this concept of spacing into the parametric description of a city - that permits the 
representation of different degrees of mono and polycentrism - in order to analyze the choice between basic 
strategic lines structures as feeder-trunk, hub-and-spoke or direct services, where lines spacing is optimized 
jointly with frequencies, vehicle sizes and routes of all lines involved. We show that (a) there is a link between 
optimal spacing and frequency such that waiting and access costs are equal; (b) the inclusion of spacing increases 
the range of demand volumes where transit networks that include transfers are preferred; (c) the degrees of mono 
and polycentrism influences optimal spacing; and (d) introducing spacing increases the degree of scale 
economies.   

1. Introduction 

At a strategic aggregate level, the design of urban public transport 
systems involves the identification of routes, and the calculation of 
frequencies and vehicle sizes of all lines that form the transit network. 
Designing the routes of public transport lines is one of the most relevant 
and complex aspects of transit design. Real cities present a very large 
number of streets of different hierarchy and many zones involving 
different activities. Finding optimal line structures in real cities is an NP- 
hard problem,1 which makes the search for an appropriate generic 
structure of lines a very important step prior to the detailed design of the 
system. Although heuristics and previous applied experience have 
played an important role in this search, it has been shown that the 
comparative analysis of preconceived strategic line structures can be 
quite rewarding, e.g. transit lines spatially organized as feeder-trunk, 
hub-and-spoke or direct services. Under this approach, the idea is to 
identify possible strategic lines structures and to study which one has the 
optimal response for different city models taking into account all 

resources involved including those contributed by the operators (e.g. 
fleet, labor, energy) and those contributed by the users (their time). 
Several authors have proposed different ways of approaching this 
problem, such as Byrne (1976), Jara-Díaz and Gschwender (2003a), 
Daganzo (2010), Badia et al. (2014), Chen et al. (2015), Gschwender 
et al. (2016) or Fielbaum et al. (2016). 

The most appropriate arrangement of lines in an urban space from a 
strategic viewpoint depends on some characteristics of the city, on the 
volume and distribution of demand in space, and on the characteristics 
of the transport modes considered. Therefore, one key element in the 
process of finding the most appropriate strategic line structures is the 
way in which the city is described, including not only its network to
pology but also its demand pattern. Simple graphs have been very useful 
to link and explore these aspects. Díaz et al. (2002), for instance, 
inspired a huge change in the structure of the lines in Santiago, Chile, in 
2007, by using a Y-shaped model of a city where they compare a 
feeder-trunk system with a direct one, which was refuted later on by 
Gschwender et al. (2016). Quadrifoglio and Li (2009) and Jara-Díaz and 

* Corresponding author. 
E-mail address: jaradiaz@ing.uchile.cl (S. Jara-Diaz).   

1 A combinatorial problem is said to be NP-Hard if there is no algorithm (up to current knowledge) that can solve it optimally in a reasonable time when the size of 
the input is large (as a real-life transit network). Several specifications of the problem of finding optimal lines structures have been proven to be NP-Hard (see, for 
instance, Borndörfer et al., 2007). 
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Gschwender (2003a) also used a simple-graph perspective to study this 
type of problem, while Fielbaum et al. (2017) proposed a not-so-simple 
graph that has topological properties which were shown to be closer to 
those of real cities and permits representing different centers structures 
within a city in a parametric form. Using this representation of a city, 
Fielbaum et al. (2016) introduced the decision on lines structure as part 
of the public transport design problem besides frequencies and vehicle 
sizes for each of the lines in the system. Later on, Fielbaum et al. (2020) 
showed that, as patronage grows keeping trip distribution constant, the 
lines structure evolves increasing directness, i.e. the system has to adapt 
by diminishing distance traveled, number of transfers and number of 
stops, such that the degree of scale economies increases when lines 
structure changes (decreasing afterward). But even in this latter case, 
there is one important limitation that is troublesome: streets are inevi
tably aggregated because of the simplicity of the network representa
tion, i.e., each arc is actually representing many real arcs. This leads to 
models that - by construction - ignore the access to the transit network as 
a variable and treat every arc as a collector of many lines that actually 
run along different parallel streets. This is not a minor issue, as it also has 
an evident impact on the calculation of waiting times which are 
underestimated because the modeled frequencies are the sum over 
possibly many lines that run in parallel (which, in turn, affects the other 
design variables). The different strategic line structures are affected in 
different ways by this omission; for example, structures that involve 
more transfers may be favored. The impact of lines spacing on waiting 
times and transfers in addition to the introduction of access time as a 
new element has also an effect on the analysis of scale economies in 
transit networks. Our challenge, then, is to incorporate spatial spacing of 
transit lines as a design variable in a model based on an adequate rep
resentation of the city without going into a highly-detailed description 
of its network. 

Transit lines spacing has been indeed introduced as a design variable 
in transit analysis. Hurdle (1973), Kocur and Hendrickson (1982) and 
Chang and Schonfeld (1991), have proposed different models aimed at 
optimizing frequency and spacing between identical parallel transit 
lines, which introduces access time users’ cost besides waiting time 
costs. Later on Daganzo (2010), Badia et al. (2014) and Tirachini et al. 
(2010) introduced line spacing or angular distance as one of the vari
ables to optimize on an urban space described either as a regular grid or 
as a radial grid in a monocentric city. As shown by Fielbaum et al. 
(2017), these regular models of the underlying urban spaces exhibit 
topological properties that are far from those present in real cities and, 
therefore, are not particularly appropriate for the analysis of transport 
systems design at a strategic level where avenues tend to define the 
relevant network.2 Besides, the specific impact of introducing lines 
spacing - that affects all other design variables - on scale economies is 
not studied. 

In this paper, we contribute to understanding this topic in two steps. 
First, in Section 2 we formulate and solve a simple parallel transit lines 
model that incorporates both a cycle time that is sensitive to boarding 
and alighting, and operators’ cost depending on vehicle size, analyzing 
scale economies. Three results are obtained: (i) within each line optimal 
frequency and vehicle size follow the same rule as in a one-line model, 
keeping its properties; (ii) optimal frequency is proportional to optimal 
density for all levels of patronage, in such a way that the average waiting 
time cost has to be equal to the average access time cost; and (iii) the 
simultaneous adjustment of lines spacing and frequency enlarges the 
degree of scale economies. 

The second step - and main contribution of this paper - is to expand 
the analysis of lines spacing towards the design of transit networks (lines 
structures) in a general city. For this purpose, in Section 3 we use the 

parametric representation of a city introduced and applied by Fielbaum 
et al. (2016, 2017; 2020); as explained above, this model was originally 
constructed with an aggregate description of streets and, therefore, we 
now recognize that each arc represents a limited number of parallel 
streets or avenues such that a new design variable emerges, lines 
spacing, involving the number of streets that will be used by parallel 
transit lines. This new variable is optimized jointly with frequencies and 
vehicle sizes of all lines involved in the design. From this analysis, we get 
three main conclusions: (i) as patronage increases, optimal spacing tends 
to diminish while the best lines structures evolve from hub-and-spoke 
through feeder-trunk and a direct structure with no transfers, towards 
a set of OD specific lines with no intermediate stops; however, the 
introduction of spacing as a design variable postpones the emergence of 
more direct structures, which now occurs for larger demand volumes; 
(ii) the equality between the costs of access and waiting times is shown 
to persist; and (iii) adapting lines spacing increases the degree of scale 
economies. As explained, the analysis presented here requires the transit 
network to have design flexibility as patronage increases, which makes it 
more appropriate for bus systems than for subway systems, where 
infrastructure investment is essentially irreversible. For this reason, the 
models in subsequent sections will be referred to as bus related. 

1.1. Lines spacing as a design variable: a simple parallel lines model 

In the basic single-line models (Mohring, 1972; Jansson, 1980; Jar
a-Díaz & Gschwender, 2009), several design variables like frequencies 
and bus sizes are optimized to minimize the value of the resources 
consumed by operators and users. This is done on a circular line where 
passengers are evenly distributed. 

In order to analyze the introduction of lines spacing as a design 
variable, we will first develop a single-line model serving a single origin- 
destination (OD) pair. This will be extended to optimize spacing at the 
origin of a number of parallel lines in a model shaped after Kocur and 
Hendrickson (1982) and Chang and Schonfeld (1991). 

Let us consider a single line where buses collect Ypassengers per unit 
of time from one origin towards a single destination. The value of the 
resources consumed (VRC) includes the acquisition and operation of a 
fleet of B buses of size K (assumed to be continuous) and the values of 
waiting and in-vehicle times twand tv respectively. The design variables 
are B, Kand the frequency f of the line. 

VRC =B(c0 + c1K)+ pwYtw + pv Ytv (1) 

The known parameters are c0 and c1 representing operators costs; pw 

and pV representing the values of waiting and in-vehicle times respec
tively. Also, T is vehicle time in motion needed to run the line in one 
direction, and tis the time needed by each passenger to board and alight 
from a vehicle (t/2 in each case), such that average in-vehicle time tv is 
obtained by adding two terms: in motion time of passengers (T), and 
average in-vehicle time at the destination while other passengers are 
alighting3 (tY

4f), yielding tv = T+ tY
4f. The arrivals of buses and passengers 

at the origin are assumed to be evenly distributed, such that the average 
waiting time is tw = 1

2f. Fleet size is given by B = ftc, where the cycle time 
tc is given by tc = 2T+ tY

f . Finally, vehicle size has to bear the load Yf , such 
that K = Y

f . Replacing these in equation (1) and optimizing yields: 

f * =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Y

2Tc0

(pw

2
+ tY

(pv

4
+ c1

))√

and K*

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Tc0Y
(pw

2
+ tY

(pv

4
+ c1

))− 1
√

(2) 

2 The intuition behind the bad topological performance of some popular 
regular representations of a city network lies in elements as the lack of arc 
hierarchy (grid) or structures that fail for relatively large cities (monocentric). 

3 The second term is built as the average between the passengers that face the 
best situation (zero time for the first alightment) and the worst situation (the 
time needed by all passengers to alight, for the last alightment). 

A. Fielbaum et al.                                                                                                                                                                                                                               



Research in Transportation Economics 90 (2021) 100991

3

which closely resembles results previously obtained by, for example, 
Jara-Díaz and Gschwender (2009) in a circular single line where users 
are evenly distributed. 

Plugging back expressions (2) into (1) gives us the cost function for 
this one-line simple system. Using this cost function, it can be easily 
shown that the degree of scale economies DSE (defined as the ratio be
tween the average and the marginal costs) has the generic form found in 
Fielbaum et al. (2020), i.e. DSE = 1 +

β
2αY+β+2εY

̅̅̅̅̅̅̅̅̅̅̅
α+β/Y

√ , with α =

Tc0(8c1 +2pv), β = 4Tc0pw and ε = c0t+ pvT+ 2Tc1. This means that 
scale economies are always present (DSE > 1) but get exhausted even
tually, with DSE decreasing asymptotically to 1. 

Let us extend this model by considering a rectangular area of width P 
and length Las shown in Fig. 1, where Ypassengers are homogeneously 
distributed along Pat the top and travel to a faraway point where a 
number of vertical parallel lines equally spaced converge (which means 
that egress costs do not enter the design problem); this way there are y =

Y/P users per time-width unit. The spacing between lines is R such that 
its inverse represents the number of lines per unit width, the spatial 
density D. The decision (design) variables are the spatial separation of 
the lines (R = 1

D) and the frequency of each line (f), considering that each 
passenger uses the closest line, as represented in Fig. 1, in which 1

2
y
D 

passengers board each line from each side, such that y
D = Y

PD is the 
patronage per hour of each line. 

Let us formulate operators’ and users’ costs. As transit lines run in 
parallel, we can work either with R or D. To calculate the value of the 
resources consumed per unit of time and width, it is necessary to express 
the different components of VRC as a function of the decision variables (f 
and D): cycle time tc is given by tc = 2T+ t y

fD. Then B = tcfD vehicles per 
unit width; K =

y
fD (passengers aboard each vehicle); average in-vehicle 

time tv = T + t
4

y
fD (individual alighting time is t

2); average waiting time 
tw = 1

2f; and, following Fig. 1, average access time ta = 1
4Dva 

with va the 
walking speed. 

Then the value of the resources consumed by operators and users per 
unit of time and width is 

VRC = 2c0TfD+ c0ty+ 2c1yT +
c1ty2

fD
+ pa

y
4Dva

+ pw
y
2f

+ pvy
(

T +
t
4

y
fD

)

(3) 

Equation (3) shows the effect of each of the two decision variables 
very clearly. It is evident that analytically D acts very similar to f, as they 
always appear as a product with the exception of the two terms dealing 
with their direct specific effects on access time (D) and waiting time (f). 
Therefore, D is yet another source of scale economies, just as f generates 
the so-called Mohring effect. 

Now we can get the first-order conditions in f and D for VRC to be a 
minimum. Taking the first derivative in (3) with respect to f , making it 
equal to zero and multiplying times f2D yields: 

2c0Tf 2D2 − c1ty2 − pw
y
2

D − pv
t
4

y2 = 0 (4) 

This implies that 

f * =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y
D

2Tc0

(pw

2
+ t

y
D

(pv

4
+ c1

))
√

and K*

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Tc0
y
D

(pw

2
+ t

y
D

(pv

4
+ c1

))− 1
√

(5) 

Note that the same form of equations (2) is replicated here, with y/D 
replacing Y: within each of the parallel lines of this model, the rela
tionship between frequency (and K) and the number of passengers is the 
same as in the single-line model. This is an interesting novel result: each 
of the lines (that carry y/D passengers) operates as in the one-line model, 
such that frequency (and vehicle capacity) increases with patronage per 
line. 

Regarding D, making the first derivative of (3) equal zero and 
multiplying times fD2 we get: 

2c0Tf 2D2 − c1ty2 − pa
y

4va
f − pv

t
4
y2 = 0 (6) 

The left-hand sides of equations (4) and (6) have three identical 
terms, such that the remaining terms have to be equal, which means that 
at the optimum 

f = uD with u = 2
pwva

pa
(7) 

Using equations (7), equation (4) can be written as a function of f 
only: 

0= 2c0T
1
u2f 4 − c1ty2 − pw

y
2

f
u
− pv

t
4

y2 (8) 

Note that by dividing equation (8) by f4 it becomes evident that f 
increases with Y, and so does D because of equations (7). 

The explicit solution of equation (8) - degree 4 in f - is extremely long. 
However, equations (5) and (7) lead to the following properties of the 
model. 

Property 1. passengers per line and bus size increase as y grows. 

The number of passengers per line z =
y
D increases with y, because 

dz
dy = dz

df
df
dy; the first factor is positive by equation (5) and the second was 

already shown to be positive. 

Fig. 1. The parallel-lines transit design problem.  
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Bus size increases with y because dK
dy = dK

dz
dz
dYand both terms are pos

itive. 

Property 2. optimal design implies that the average waiting and access 
costs are equal in this model. This flows directly from equation (7), i.e. 
pw
2f =

pa
4Dva

. 

The relationship between the results in equations (5) and (2) (ob
tained for the single-line model) suggests some conclusions regarding 
scale economies. First, those sources of scale economies presented for 
the single-line model remains valid for each of the lines in this model as 
well: increasing patronage induces a larger frequency and vehicle size, 
diminishing waiting time, and also induces larger times at stops 
increasing both in-vehicle time and operators’ costs. Second, intro
ducing the separation R between lines works in favor of scale economies 
because, as shown earlier, R diminishes (D increases) with patronage 
inducing a reduction in access time. Note that the effect of y on the 
optimal frequency in equation (5) is “softened” by lines density D, which 
also increases with patronage such that the Mohring effect is mitigated; 
as passengers are divided into many lines, buses become smaller when 
compared to the single-line model, which diminishes the diseconomies 
of scale provoked by the time at the stops. 

Adding spacing as a design variable works in favor of scale econo
mies such that the degree of scale economies DSE is expected to be larger 
than in the single line case; we now show that this is, in fact, the case. In 
order to compare both models rigorously, one should add access cost to 
the transit line in the single-line model. As in that model access time 
does not depend on the design, and therefore is constant per passenger, 
the total access cost is linearly increasing with Y, which means adding a 
term of the form λYin the total cost function. This means that both 
average and marginal costs increase by λ. On the other hand, in the 
single-line case DSE is larger than 1 when access is not considered (i.e. 
when λ = 0), which means that average cost AC is larger than marginal 
cost m; then the new average cost is AC+ λand the new marginal cost is 
m + λ such that DSE, given by (AC + λ)/(m + λ), decreases with λ. This 
means that DSE has an upper bound for λ = 0. This upper bound is 
represented in Fig. 2 (bottom-red line) together with the DSE of the new 
model (upper-blue line), using the simulation parameters shown in the 
Appendix. The new DSE is always larger than the upper bound of the 
single-line DSE, i.e. DSE increases when lines spacing is included. Note 
that scale economies get exhausted eventually. A sensitivity analysis on 
the parameters maintains these conclusions. 

Let us now take a closer look at equation (7) that implies f
D = 2va

pw
pa

. 
An analogous property was also found by Hurdle (1973), Schonfeld 
(1981), Kocur and Hendrickson (1982) and Chang and Schonfeld 
(1991), where vehicle cost was assumed independent of bus size and 
total boarding-alighting time was assumed constant (i.e. affecting 
neither users’ in-vehicle time nor cycle time); we have shown that the 
property remains valid even if those quite strong assumptions are 
dropped. This means that frequency and lines density grow at the same 

rate, irrespective of the number of passengers, of the boarding-alighting 
times, of the distances traveled by buses or passengers, etc. The intuition 
behind this is quite attractive: the optimal fleet of vehicles of an optimal 
size could be distributed in a large number of lines with a small fre
quency or vice versa; what the result says is that this trade-off between D 
and f is resolved by making the average waiting time value equal to the 
average access time value (Property 2).4 

2. Lines spacing in a synthetic city model 

2.1. Strategic lines in the parametric city 

The role of lines spacing when deciding the most appropriate transit 
lines structure as part of the design requires the definition of a network 
and a demand pattern. Here we will use the model proposed and applied 
by Fielbaum et al. (2016, 2017), which has proven to be a useful city 
model for the analysis of transport systems. The city is composed by n 
zones - each one containing a subcenter and a periphery - and a CBD. The 
CBD is linked to each subcenter, and subcenters are linked to their pe
ripheries and to their neighbor subcenters, as represented in Fig. 3a, 
where some spatial parameters are shown. Demand pattern is synthe
sized in Fig. 3b and represents morning peak, such that the CBD only 
attracts trips, peripheries only generate them and subcenters do both. 
There are three very relevant demand parameters: α, β and γ, that 
(grossly speaking) represent respectively the proportion of trips that are 
attracted by the CBD, by the own subcenters and by the rest of the 
subcenters (with α̂ and γ̂ defined proportional to αand γ) such that 
monocentric, polycentric and dispersed cities can be modeled when the 
respective parameters approach one; a and b are the proportion of trips 
generated at the peripheries and subcenters respectively. T0 and g are 
spatial parameters. For a detailed explanation of the model, see Fiel
baum et al. (2017).5 

Four basic line structures are proposed over this urban scheme: 
feeder-trunk (FT), hub and spoke (HS), no transfers (NT) and no stops 
(NS).6 They are represented in Fig. 4 showing only lines emerging from 
the “south” as they are all radially symmetric, together with a circular 
line when it exists. Note that, to simplify the figures, some arcs are 
drawn each per “type” of line; for instance, there are 3 black lines per 
zone in FT, and 3 blue lines per zone in HS, all reaching the opposite 
subcenters. A brief description follows:  

● FT: “feeder” lines bring passengers from the peripheries to their own 
subcenter. There exist several “trunk” lines connecting each sub
center with the CBD and with some opposing subcenters, and a cir
cular line.  

● HS: from each periphery several lines depart passing through the 
CBD, that acts as the hub, arriving at some opposing subcenters. 
There is an additional circular line.7 

Fig. 2. The effect of lines spacing on the Degree of Scale Economies.  

4 The equality between waiting and access costs (Property 2) was shown by 
Chang and Schonfeld (1991) to extend to operators cost as well. However, when 
their simplifying assumptions regarding vehicle costs and boarding-alighting 
time are dropped, this fails to be true even in the single-line case explained 
at the beginning of this section, and it remains untrue in the parallel-lines 
model.  

5 The conceptual model is suitable for any transit mode. However, adapting 
rail systems’ infrastructure to an optimal design as patronage grows requires 
the consideration of capital costs associated to the length of the lines (Fawaz & 
Newell, 1976; Marín & García-Ródenas, 2009; Lovett et al. 2013) which is not 
done here.  

6 In previous papers, the No Transfers and No Stops structures had been 
named Direct (DIR) and Exclusive (EXC) respectively.  

7 When frequencies are optimized, the “green” lines that go from the CBD to 
each subcenter vanish as they always obtain null frequency. 
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● NT: each OD pair is connected by some line such that transfers are 
not needed. When optimizing frequencies, some lines might vanish 
(null frequency).  

● NS: each OD pair is connected by an exclusive line that does not have 
intermediate stops. 

In this approach, the design variables are the lines structure (i.e. the 
choice among FT, HS, NT and NS) and both frequency and bus size for 

each line within each structure. 
Fielbaum et al. (2016) describe in detail each of these structures and 

explain how to obtain optimal frequencies for each line for all the four 
lines structures. The value of the resources consumed is now 

VRC =ΣLBL(c0 + c1KL) + Y
(

pvtv
−

+ pwtw
−

+ pata
−

+ pTrT
−

r
)

(9) 

As a brief synthesis, the number of buses BL of each line depends on 

Fig. 3. Parametric representation of a city: network and demand pattern.  

Fig. 4. Line structures in the parametric city.  

A. Fielbaum et al.                                                                                                                                                                                                                               



Research in Transportation Economics 90 (2021) 100991

6

its frequency and cycle time; bus size KL depends on the most loaded 
segment of the respective routes; average waiting time tw

−

depends on 
the frequencies of each of the lines; average in-vehicle time tv

−

depends 
on the paths followed by each of the users and on the time spent at stops; 

and T
−

r is the average number of transfers per trip; when transfers occur, 
the extra waiting time is included in tw

−

, while the so-called pure transfer 
penalty (the discomfort due to the trip interruption) is captured by pTr 

(see García-Martinez et al., 2018, for a discussion and empirical esti
mation of this parameter). Note that the number of transfers and the 
length of the trips might depend on users’ choices when they have more 
than one possible route. Fielbaum et al. (2016) use an iterative approach 
that assumes that all passengers choose their less costly route; fares are 
flat so travel time is all that matters. However, average access time ta

−

played no role in that formulation; this is exactly what we want to study 
in detail now. 

2.2. Lines spacing as a new design variable 

How can we adapt the model explained above in order to also 
consider lines spacing? To do so, we will consider that each former line l 
is now a “super-line” containing D parallel lines per unit width, each one 
with the same frequency fl. This design variable D represents the spatial 
density of lines. The frequency of the super-line Fl is then given by 

Fl = flD (10) 

The introduction of D has two effects on the users’ cost that have to 
be taken into account: each user has to walk to the closest line inducing 
an access time, and buses distribute on more lines diminishing perceived 
frequency, increasing waiting time. Passengers walk in average ta

−

=
1
va

Y
4D minutes to access the nearest line, where va is walking speed. We 

assume that whenever transfers are required the bus stops coincide in 
space such that walking is negligible (but additional waiting and the 
interruption of the trip - the pure transfer penalty - are indeed consid
ered). The design exercise was made using the four strategic lines 
structures explained in 3.1, including D as a design variable in addition 
to frequency and bus size for every line. 

For a given lines structure, VRC depends on the lines frequencies and 
D only. In order to obtain the first order conditions, VRC can be written 
in a very compact way because derivatives require a local analysis (in a 
neighborhood of a given point) such that assignment can be assumed 
constant.8 Following Fielbaum et al. (2016), fleets, (optimal) bus sizes, 
in-vehicle times and transfers can be expressed as functions of fre
quencies only. In this case, and with a fixed passenger’s assignment, 
these functions depend on the frequencies of the super-lines: 

Bl =Bl(F1,…,FL), Kl =Kl(F1,…,FL), tv
−

= tv
−

(F1,…,FL), T
−

r= constant
(11) 

The intuition behind these relations is straightforward. Fleets depend 
on the total number of buses running per unit time; buses should be large 
enough to carry the maximum load on each line, which again depends 
on the total number of buses per hour; in-vehicle time depends on total 
time in-motion (which is constant) and on time spent at bus stops, which 
depends on the number of passengers that board a specific bus, which in 
turn depends on the total number of buses; and finally, the number of 
transfers usually depends on the lines structure and on passengers 
assignment, both fixed in our case. 

Considering relations (11) and equation (10), we can rewrite VRC as 
a function of D and frequencies. If no common lines exist, then 

VRC =G(f1D,…, fLD) +
θa

D
+
∑

l

θl

fl
(12)  

G is a differentiable function that encompasses all terms in equation (9) 
but waiting and access users’ cost. θl contains all the information related 
to waiting costs (like the number of passengers and their assignment, 
among others) and θa =

pa
va

YP
4 . 

If common lines are present, the third term in equation (12) becomes 
more complex, as some passengers’ routes can use several lines such that 
the observed frequency is the sum over all common lines. In this case, 
total waiting time can be better expressed adding over OD-pairs w rather 
than lines: 

VRC =G(f1D,…, fLD)+
θa

D
+

∑

w ∈OD

∑Mw

q=1

θwq

f1ε1wq + ….+ fLεLwq
(13) 

Trips on the OD-pair w are composed by Mw stages (Mw − 1 trans
fers), and εlwq is a binary variable whose value is 1 if passengers on that 
OD-pair use line l at stage q, and 0 otherwise. Note that equation (13) 
can be written as (14), with only one εlwq = 1for each w,q, and 

θl = θwqεlwq (14) 

Now we can prove the following 

Proposition 1. Total access costs equal total waiting costs in this scheme. 

Proof: 
Making the derivative with respect to fl in (13) yields: 

D∂lG −
∑

w, q

εlwqθwq
(
f1ε1wq +…+ fLεLwq

)2 =0 ⇒Dfl∂lG=
∑

w, q

εlwqθwqfl
(
f1ε1wq +…+ fLεLwq

)2

(15) 

Fig. 5. Optimal density for each structure as a function of total demand.  

Fig. 6. Optimal density as a function of total demand.  

8 Varying D might induce changes in passenger assignment because it affects 
waiting times of the different routes according to the frequencies of the cor
responding lines. To be clear, if D doubles average waiting time of a route with 
4 min increases to 8 min, while it increases to 20 in a route that exhibited an 
average waiting time of 10 min. Then the second route is more likely to lose 
passengers. 
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Here we are using ∂l to represent the partial derivative with respect to 
the l-th variable in G; the arguments of G have been omitted to simplify 
notation. Making the derivative with respect to D yields: 
∑

l
fl∂lG −

θa

D2 = 0 ⇒
∑

l
Dfl∂lG =

θa

D
(16) 

Introducing (15) into the second equality in (16):  

2.2.1. Q.E.D 
Proposition 1 proves that the property obtained in our simple par

allel lines model in Section 2 (Property 2) remains valid: at the optimum 
design, average waiting and access costs are equal. The intuition behind 
this result is interesting, as it is not the usual microeconomic equality 
between some marginal costs. For any given fleet, optimizing D means 
deciding on how many parallel lines the buses should be distributed. If 
access cost is larger than waiting cost, then splitting the buses into more 
lines will induce savings in access costs that will outbalance the losses in 
waiting costs (analogously in the opposite situation). This happens 
because access and waiting costs are proportional to 1D and 1fl respectively 
and, therefore, decreasing the largest of them in some proportion is more 
relevant than increasing the other one in the same proportion. For 
example, if there is a single line that needs walking 14 min and waiting 2 
min on average, splitting it into two lines would increase waiting time to 
4 min but reduce walking times to 7 min, which is more efficient. 

Proposition 1 extends to a network our generalization in Section 2 of 
what had been obtained by Hurdle (1973), Schonfeld (1981), Kocur and 
Hendrickson (1982) and Chang and Schonfeld (1991). It is worth noting 
as well that our result resembles a property shown by Kraus (2008), that 
states that in a cost-minimizing network “the degree of local economies 
of scale in the cost function for the network’s outputs is the same along 
all margins for adjusting capacity”. In this case, the “margins for 
adjusting capacity” are frequency and density; however, as discussed by 
Fielbaum et al. (2020), Kraus’ result relies on users’ assignment to routes 
under a system optimizing rule which is not the case when users decide 
their routes according to individual preferences (as in this parametric 
city). 

2.3. Numerical analysis 

Numerical analysis was done using Y as the variable, with Santiago- 
like parameters α = 0.22, β = 0.25 and γ = 0.53 (Fielbaum et al., 2017). 
The rest of the parameters (also used in Fielbaum et al., 2016) are found 
in the appendix. The procedure to find the best lines structure for each Y 
has two steps: first, for a given structure, the optimal (social cost mini
mizing) frequencies are found for each line together with the optimal D. 
Second, the best lines structure is found as the one that exhibits the 
minimum VRC across structures for each Y. Results are shown for a wide 
range of passenger volumes which makes the logarithmic scale prefer
able in order to facilitate the analysis for lower values of Y. 

The results of step one are shown in Fig. 5; the optimal value of D 
increases with Yfor each of the four structures, which fits intuition and is 
consistent with results in section 2. Note that structures that are less 
direct, i.e. those whose routes are longer with more transfers and stops 
(Fielbaum et al., 2020), present in general larger D; in other words D 

increases from NS (bottom-green curve) to HS (upper-red curve). This is 
because less direct structures involve super-lines that collect passengers 
from many OD pairs; the resulting large volume of passengers on the 
super-lines increases D. 

In Fielbaum et al. (2020) we define a threshold point that, simply 
stated, is the value of Y where a slight increase in the number of trips 
makes a different lines structure the one that minimizes total cost. This is 

a discrete change because each lines structure is defined by a specific set 
of lines, which induces “jumps” (discrete changes) in frequencies, lines 
density, etc. In our example, as the number of passengers increases, the 
best lines structure (i.e. the one that minimizes VRC) evolves from HS to 
FT, then NT, and finally to NS, increasing directness. The corresponding 
D evolves as shown in Fig. 6. Within each structure lines density in
creases with Y, but it decreases locally at those threshold points where 
the line structure changes; this happens because, as directness increases, 
it is necessary to compensate for the fact that less passengers are being 
collected. Overall, however, D increases with Y as lines structure evolves 
from HS (left-red) to NS (right-green). 

In Fig. 7 we show the impact of including D as a new design variable. 
The dotted lines represent the average cost curves of the best structures 
when D = 1 (fixed), while the solid lines show the result when D is 
optimized (i.e. the ones that correspond to Fig. 6). In both cases the 
evolution is towards those structures that are more direct, i.e. reducing 
transfers, stops and traveled distances. Different models (that usually 
consider only some of these three aspects) have shown that, as the 
number of passengers grows, structures that are increasingly direct 
become superior (Jara-Díaz & Gschwender, 2003a; Daganzo, 2010; 
Badia et al., 2014; Fielbaum et al., 2016, 2020). The novelty here is that 
introducing D not only reduces average cost but also postpones the 
emergence of those structures with increasing degrees of directness as Y 
increases: HS, FT, NT, and NS. This can be graphically seen by noting the 
lower levels of patronage at which a change in lines structure occurs 
along the dotted lines when compared with the solid lines in Fig. 7. Note 
that the difference in average cost between the best structures consid
ering D or not increases with Y from nearly zero to nearly 24%. 

For synthesis, less direct structures become more competitive when 
spacing is taken into account. This happens because when the number of 
passengers is low, reducing waiting times is the most relevant target, 
which is achieved through lines structures that collect passengers (at the 
transferring stations), making them share the same intermediate 

Fig. 7. Average total cost as a function of total demand.  

θa

D
=
∑

l

∑

w, q

εlwqθwqfl
(
f1ε1wq + … + fLεLwq

)2 =
∑

w∈OD

θwq
(
f1ε1wq + … + fLεLwq

)2

∑

l
εlwqfl =

∑

w ∈OD

∑Mw

q=1

θwq

f1ε1wq + ….+ fLεLwq
(17)   
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destinations; the change towards more direct structures takes place only 
when the number of passengers is high enough to make waiting times 
less relevant (Fielbaum et al., 2020). When spacing is included as a 
design variable, frequencies decrease (because each line is split into 
many) such that the number of passengers that make direct line struc
tures more convenient, increases. 

We have shown that under an optimal design average access and 
waiting costs are going to be equal. Their (joint) evolution as Y increase 
is shown in Fig. 8, where one can see that for any given lines structure 
these costs decrease (the Mohring effect operates). But when the lines 
structure changes, this curve jumps upwards (just as D decreases 
locally). This is consistent with the results of Fielbaum et al. (2020) 
when studying the impact of lines structure changes on waiting times. 

In section 2 we showed the effect of considering lines spacing on 
scale economies. The same analysis can be replicated here, by 
comparing the DSE obtained with the model just presented (solid lines in 
Fig. 9) against the DSE obtained if access time is considered but with D =

1 (dotted lines in Fig. 9). In both cases at the points in which lines 
structure changes, the DSE jumps discreetly upwards (as shown in 
Fielbaum et al., 2020)9 and then continues decreasing asymptotically to 
1. Overall, solid lines lay above dotted lines which means that opti
mizing spacing is yet another source of scale economies: increasing the 
number of users makes lines density increase, reducing the average 
walking time; this can be interpreted as the spatial counterpart of the 
so-called “Mohring effect” and the reduction of waiting time after an 
increase in patronage due to the associated increase in frequency. As 
advanced in Fig. 7, the jumps occur first (i.e. for lower levels of Y) in the 
dotted lines, which explains the small anomaly when HS turns into FT 
for the D = 1 model. The only true exception occurs at the beginning of 
the graph, where the optimal D is lower than 1: frequencies are large in 

this zone, making the Mohring effect less relevant. 
As advanced by Daganzo (2010), Gschwender et al. (2016) or Fiel

baum et al. (2016), the internal distribution of the trips has an impact 
over public transport design for a given level of total trips. To have an 
idea of this effect, in Fig. 10 we show the evolution of the optimal 
density as the degree of monocentrism - represented by α - increases 
from 0.1 to 0.9 keeping β = γ, for Y = 90, 000 passengers per hour. Here 
the lines structure evolves from FT to NT to HS; as α grows within a given 
lines structure, lines density increases a little (when trips are more 
concentrated, lines can split up to reduce access times), but it varies 
notably when the lines structure changes. When most trips go from the 
peripheries to the subcenters - a non-monocentric city - FT dominates 
with the circular line playing an important role. As α increases such that 
α ≅ β = γ, the CBD, the own subcenter and the other subcenters become 
equally important such that direct lines are superior using all arcs and 
density drops. When α begins to dominate (mildly monocentric) it is 
more efficient to begin using the CBD as a hub combined with the cir
cular line (see Fig. 4) until the city becomes very centralized (α>0.8) 
such that it is better to let the few trips that go to other subcenters 
transfer at the CBD, which explains the slight increase of D within HS 
because the circular line disappears, i.e. its frequency becomes zero. 

Fig. 10 admits an intuitive explanation, keeping in mind that β = γ 
and that only α varies. The intuition behind the dominant lines struc
tures is quite clear, as discussed in detail in Fielbaum et al. (2016): when 
α is small, trips to all subcenters are very important and the own sub
center is the dominant one for each periphery, such that the feeder-trunk 
structure is obviously the more convenient; when α is large it is the CBD 
the destination that dominates, making an HS structure more convenient 
with an obvious hub at the CBD; when α is around 0.33 the CBD, the own 
subcenter and the other subcenters have the same importance which 
makes direct lines the “balanced” choice. Regarding lines density, the 
two extremes are quite intuitive because, compared against HS, FT 
dominates when trips to the subcenters are larger (i.e. trips are more 
distributed in space) such that waiting times are larger than those 
occurring in the HS zone; as waiting time values have to equal access 
time values, density is smaller for FT than for HS. The small density of 
the direct lines occurs because they have no transfers and exhibit the 
largest waiting (and therefore also access) times, which means large 
spacing. Regarding the (slight) increase of density for a given lines 
structure, the explanation is simple: trips to the CBD increase with α so 
that optimal frequencies increase and waiting time diminishes along 
with access time (density increases). 

Finally, D has been treated as a continuous variable: the number of 
lines per unit width. Nevertheless, as streets are exogenous to the model, 
flexibility to adjust this variable is somewhat limited. This is why it is 
worth analyzing if results previously found are still valid if D is modeled 
as discrete. The results presented in Fig. 11 reveals that they tend to 
hold. Fig. 11a shows the optimal discrete D as a function of the number 
of passengers (similar to Fig. 6); Fig. 11b shows the differences in 
average costs (similar to Fig. 7); and Fig. 11c represents the ratio be
tween access and waiting costs (always 1 in the continuous case). This 

Fig. 8. Average access and waiting cost as a function of total demand.  

Fig. 9. Effect of spacing on the Degree of Scale Economies as a function of 
total demand. 

Fig. 10. Effect of monocentricity on the optimal lines density.  

9 At each threshold point average costs are equal but marginal cost of the 
emerging structure is lower, increasing DSE. 
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last Figure is quite interesting, as these costs are not exactly equal 
anymore because the discreteness of D prevents full adjustment between 
density and frequencies; nevertheless this ratio oscillates around 1 and 
approaches this value as Y grows. 

3. Synthesis, conclusions, and further research 

In this paper the role of spacing as a design variable emerges very 
clearly. From a strategic viewpoint, the optimal design of transit systems 
involves decisions that somehow belong to a rank. In very simple set
tings (networks), different combinations of fleet and vehicle sizes can 
provide the same total capacity. To generate the same number of seats, 
the choice of an optimal combination depends on what the designer 
wants to achieve: a small fleet of large buses would be the cheapest (with 
a low frequency) while a large fleet of small vehicles would be the best 
for the users (but very expensive), a trade-off that emerges indeed when 
a budget constraint or self-financing policies are imposed (Jara-Díaz & 
Gschwender, 2009). In not so simple networks this type of choice re
mains as an important one, but another dimension has to be considered 
as well: the design of the transit network - a lines structure -, i.e. a set of 
transit lines that can be thought of in many ways, from lines organized 
involving a certain amount of transfers (e.g. hub-and-spoke or 
feeder-trunk systems), to a set of OD specific lines with neither transfers 
nor stops, which begins to be attractive as demand gets large enough. 
Here we have shown that these dimensions do not exhaust all design 
possibilities, however: lines can be replicated in space, i.e. decreasing 
lines spacing could be an adequate response to demand growth. 

We first developed a version of a single line model adding spacing 
between parallel lines as a design variable, including boarding and 
alighting time and the role of bus size on operators’ cost, which yielded 
some interesting properties: first, frequency and bus size for each of the 
parallel lines replicate the relations found in the single-line model; 
second, as total demand grows, optimal spacing decreases (inducing less 
walking) while frequency increases (inducing less waiting), and this 
happens in such a way that total waiting and access times remain equal, 
showing that spacing is yet another source of scale economies. This 
latter property remains valid in the context of the design of a transit 
network - a lines structure - in a city described around the role of pe
ripheries, sub-centers, and a center (Fielbaum et al., 2017), using trip 
distribution parameters that admit the representation of monocentric, 

polycentric or dispersed scenarios. In this case density -the inverse of 
spacing-also grows with total demand except at the points where a 
change in lines structure takes place, making access and waiting costs 
increase locally. In this context, a new property emerges, namely that 
lines spacing is relevant not only when total demand is large but also 
plays a role that is linked with what we have called “directness” of a lines 
structure (Fielbaum et al., 2020), which is said to increase as routes 
become shorter and transfers and stops diminish. When lines spacing is 
considered as a design variable, it begins to grow at relatively low values 
of total demand such that the nice properties of more direct routes 
require larger flows to emerge. For short, spacing exhibits some degree 
of substitution with both frequency and directness. 

From the point of view of the introduction of spacing in the para
metric representation of a city, we have to recall that this model is 
conceived as a spatial setting based on the structure of centers that is 
simple enough to find the most appropriate strategic transit lines 
structure as a basis for a detailed design. There are parameters that 
represent the basic network - its centers and arcs - and those that 
represent the demand structure that corresponds to different city types - 
the proportion of trips to subcenters and to the CBD. When spacing is 
allowed, polycentrism and dispersion favor a feeder-trunk structure with 
the sub-centers as transfer points while mostly monocentric cities favor 
hub-and-spoke with a hub at the CBD. 

In a model aimed at the strategic design of a transit network, there 
are many elements that are either simplified or neglected. This is due not 
only to the aggregated approach inherent to a strategic view but also to 
the trade-off that exists in public transport models between the number 
of variables and details included in the model and the possibility of 
deriving analytical results. There are several directions in which our 
models can move in order to incorporate some elements that have not 
been considered. 

First, the heterogeneity of trip length across users has been proven to 
have relevant impacts over an optimal design (Hörcher & Graham, 
2018; Dakic et al., 2020). This could be included in the simple model 
studied in Section 2, and radial asymmetries could make the model 
studied in Section 3 more general (although trips of different length are 
indeed present in that model). Second, the models considered here are 
static, not accounting for intra-day traffic dynamics, a factor whose 
impact on public transport design has been studied by Jara-Díaz et al. 
(2017) regarding frequencies across periods; it is noteworthy that 

Fig. 11. Optimal density (a), average costs (b) and access/waiting cost ratio (c) as a function of patronage for the discrete density case.  
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whereas lines’ frequencies can easily be changed throughout a day, this 
is not the case for either the lines structure and its spatial density. 

Third, the models we studied in this paper consider many elements in 
a deterministic way, but there are many factors of uncertainty in public 
transport: traveling times might change due to congestion, the arrival of 
passengers might not be uniform, or buses might face bunching, among 
others. All these random facts affect the optimal design, as the system 
needs to stay reliable and robust when unexpected changes happen. In 
contrast to the said sources of uncertainty, access times are quite stable, 
so spacing might not be directly affected when randomness is included 
in the model. 

Fourth, users might be heterogeneous, which could be included in 
the model either by considering different time values in different zones 
within the parametric city (representing inter-zonal differences in in
come, for example) or by assuming that there is some random noise 
when passengers choose their routes, leading to logit-type models. 

Fifth, users’ experience on the bus could be modeled in more detail. 
So far we have assumed that buses can be filled up to a certain capacity 
that is reached in the most loaded segment of the line. It has been shown, 
though, that a more crowded bus is usually perceived as less comfortable 
by users (Jara-Díaz & Gschwender, 2003b; Tirachini et al., 2013; 
Hörcher & Graham, 2018), which has an impact on scale analysis, as 
increasing the load factor (a measure of crowding) of a bus is a negative 
externality. In a similar note, the fare collection system (Tirachini & 
Hensher, 2011), as well as the boarding-alighting technology (Jara-Díaz 
& Tirachini, 2013) might also be designed optimally; the effect of these 
on spacing and scale is yet unknown. 

There are two other elements that correspond to another level of 
analysis. One is optimal pricing, which depends on short-run long-run 
considerations. If everything can be varied in an optimal way, increasing 
the demand volume increases frequencies, vehicle sizes, directness and 
density, reducing waiting, in-vehicle and access times; these are scale 
economies that translate into (long-run) optimal prices and revenues 
that fall short of operators’ costs, inducing optimal subsidies. When 
prices are not the optimal ones, the design is affected indeed, as shown 
by Jara-Díaz and Gschwender (2009) regarding lower than optimal 
frequencies and larger than optimal vehicles. 

Optimal prices (and subsidies), as well as level-of-service variables, 
might affect demand, which calls for an expanded general equilibrium 
approach including not only mode choice but also long-run effects in 
location, land use, and time use which links with the second element: 
transit network design interacts with the development of the city in 
which it is immersed. This can affect the general urban form (Anas & 
Moses, 1979; Brueckner, 2005; Basso et al. 2020), the internal distri
bution of people (Glaeser et al., 2008), and the evolution of zones close 
to transit stations (Bertolini, 1999; Diao et al. 2017), all of which depend 
on whether the city is considered as closed (fixed boundaries) or open 
(Brueckner, 1987; Kono & Joshi, 2012). Relating this research to lines’ 
density is a promising research direction, as space and time play a vital 
role in all these phenomena. 

Finally, density is a design variable that has an upper limit given by 
the local size of the underlying network, i.e. the number of parallel lines 
that fit into each of the (aggregated) arcs. This number, in turn, would 
depend on the technology conceived for the transit system. Admitting 
more than one technology would make this an important avenue for 
future research. 
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